urb.c 33 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017
  1. // SPDX-License-Identifier: GPL-2.0
  2. /*
  3. * Released under the GPLv2 only.
  4. */
  5. #include <linux/module.h>
  6. #include <linux/string.h>
  7. #include <linux/bitops.h>
  8. #include <linux/slab.h>
  9. #include <linux/log2.h>
  10. #include <linux/usb.h>
  11. #include <linux/wait.h>
  12. #include <linux/usb/hcd.h>
  13. #include <linux/scatterlist.h>
  14. #define to_urb(d) container_of(d, struct urb, kref)
  15. static void urb_destroy(struct kref *kref)
  16. {
  17. struct urb *urb = to_urb(kref);
  18. if (urb->transfer_flags & URB_FREE_BUFFER)
  19. kfree(urb->transfer_buffer);
  20. kfree(urb);
  21. }
  22. /**
  23. * usb_init_urb - initializes a urb so that it can be used by a USB driver
  24. * @urb: pointer to the urb to initialize
  25. *
  26. * Initializes a urb so that the USB subsystem can use it properly.
  27. *
  28. * If a urb is created with a call to usb_alloc_urb() it is not
  29. * necessary to call this function. Only use this if you allocate the
  30. * space for a struct urb on your own. If you call this function, be
  31. * careful when freeing the memory for your urb that it is no longer in
  32. * use by the USB core.
  33. *
  34. * Only use this function if you _really_ understand what you are doing.
  35. */
  36. void usb_init_urb(struct urb *urb)
  37. {
  38. if (urb) {
  39. memset(urb, 0, sizeof(*urb));
  40. kref_init(&urb->kref);
  41. INIT_LIST_HEAD(&urb->urb_list);
  42. INIT_LIST_HEAD(&urb->anchor_list);
  43. }
  44. }
  45. EXPORT_SYMBOL_GPL(usb_init_urb);
  46. /**
  47. * usb_alloc_urb - creates a new urb for a USB driver to use
  48. * @iso_packets: number of iso packets for this urb
  49. * @mem_flags: the type of memory to allocate, see kmalloc() for a list of
  50. * valid options for this.
  51. *
  52. * Creates an urb for the USB driver to use, initializes a few internal
  53. * structures, increments the usage counter, and returns a pointer to it.
  54. *
  55. * If the driver want to use this urb for interrupt, control, or bulk
  56. * endpoints, pass '0' as the number of iso packets.
  57. *
  58. * The driver must call usb_free_urb() when it is finished with the urb.
  59. *
  60. * Return: A pointer to the new urb, or %NULL if no memory is available.
  61. */
  62. struct urb *usb_alloc_urb(int iso_packets, gfp_t mem_flags)
  63. {
  64. struct urb *urb;
  65. urb = kmalloc(sizeof(struct urb) +
  66. iso_packets * sizeof(struct usb_iso_packet_descriptor),
  67. mem_flags);
  68. if (!urb)
  69. return NULL;
  70. usb_init_urb(urb);
  71. return urb;
  72. }
  73. EXPORT_SYMBOL_GPL(usb_alloc_urb);
  74. /**
  75. * usb_free_urb - frees the memory used by a urb when all users of it are finished
  76. * @urb: pointer to the urb to free, may be NULL
  77. *
  78. * Must be called when a user of a urb is finished with it. When the last user
  79. * of the urb calls this function, the memory of the urb is freed.
  80. *
  81. * Note: The transfer buffer associated with the urb is not freed unless the
  82. * URB_FREE_BUFFER transfer flag is set.
  83. */
  84. void usb_free_urb(struct urb *urb)
  85. {
  86. if (urb)
  87. kref_put(&urb->kref, urb_destroy);
  88. }
  89. EXPORT_SYMBOL_GPL(usb_free_urb);
  90. /**
  91. * usb_get_urb - increments the reference count of the urb
  92. * @urb: pointer to the urb to modify, may be NULL
  93. *
  94. * This must be called whenever a urb is transferred from a device driver to a
  95. * host controller driver. This allows proper reference counting to happen
  96. * for urbs.
  97. *
  98. * Return: A pointer to the urb with the incremented reference counter.
  99. */
  100. struct urb *usb_get_urb(struct urb *urb)
  101. {
  102. if (urb)
  103. kref_get(&urb->kref);
  104. return urb;
  105. }
  106. EXPORT_SYMBOL_GPL(usb_get_urb);
  107. /**
  108. * usb_anchor_urb - anchors an URB while it is processed
  109. * @urb: pointer to the urb to anchor
  110. * @anchor: pointer to the anchor
  111. *
  112. * This can be called to have access to URBs which are to be executed
  113. * without bothering to track them
  114. */
  115. void usb_anchor_urb(struct urb *urb, struct usb_anchor *anchor)
  116. {
  117. unsigned long flags;
  118. spin_lock_irqsave(&anchor->lock, flags);
  119. usb_get_urb(urb);
  120. list_add_tail(&urb->anchor_list, &anchor->urb_list);
  121. urb->anchor = anchor;
  122. if (unlikely(anchor->poisoned))
  123. atomic_inc(&urb->reject);
  124. spin_unlock_irqrestore(&anchor->lock, flags);
  125. }
  126. EXPORT_SYMBOL_GPL(usb_anchor_urb);
  127. static int usb_anchor_check_wakeup(struct usb_anchor *anchor)
  128. {
  129. return atomic_read(&anchor->suspend_wakeups) == 0 &&
  130. list_empty(&anchor->urb_list);
  131. }
  132. /* Callers must hold anchor->lock */
  133. static void __usb_unanchor_urb(struct urb *urb, struct usb_anchor *anchor)
  134. {
  135. urb->anchor = NULL;
  136. list_del(&urb->anchor_list);
  137. usb_put_urb(urb);
  138. if (usb_anchor_check_wakeup(anchor))
  139. wake_up(&anchor->wait);
  140. }
  141. /**
  142. * usb_unanchor_urb - unanchors an URB
  143. * @urb: pointer to the urb to anchor
  144. *
  145. * Call this to stop the system keeping track of this URB
  146. */
  147. void usb_unanchor_urb(struct urb *urb)
  148. {
  149. unsigned long flags;
  150. struct usb_anchor *anchor;
  151. if (!urb)
  152. return;
  153. anchor = urb->anchor;
  154. if (!anchor)
  155. return;
  156. spin_lock_irqsave(&anchor->lock, flags);
  157. /*
  158. * At this point, we could be competing with another thread which
  159. * has the same intention. To protect the urb from being unanchored
  160. * twice, only the winner of the race gets the job.
  161. */
  162. if (likely(anchor == urb->anchor))
  163. __usb_unanchor_urb(urb, anchor);
  164. spin_unlock_irqrestore(&anchor->lock, flags);
  165. }
  166. EXPORT_SYMBOL_GPL(usb_unanchor_urb);
  167. /*-------------------------------------------------------------------*/
  168. static const int pipetypes[4] = {
  169. PIPE_CONTROL, PIPE_ISOCHRONOUS, PIPE_BULK, PIPE_INTERRUPT
  170. };
  171. /**
  172. * usb_urb_ep_type_check - sanity check of endpoint in the given urb
  173. * @urb: urb to be checked
  174. *
  175. * This performs a light-weight sanity check for the endpoint in the
  176. * given urb. It returns 0 if the urb contains a valid endpoint, otherwise
  177. * a negative error code.
  178. */
  179. int usb_urb_ep_type_check(const struct urb *urb)
  180. {
  181. const struct usb_host_endpoint *ep;
  182. ep = usb_pipe_endpoint(urb->dev, urb->pipe);
  183. if (!ep)
  184. return -EINVAL;
  185. if (usb_pipetype(urb->pipe) != pipetypes[usb_endpoint_type(&ep->desc)])
  186. return -EINVAL;
  187. return 0;
  188. }
  189. EXPORT_SYMBOL_GPL(usb_urb_ep_type_check);
  190. /**
  191. * usb_submit_urb - issue an asynchronous transfer request for an endpoint
  192. * @urb: pointer to the urb describing the request
  193. * @mem_flags: the type of memory to allocate, see kmalloc() for a list
  194. * of valid options for this.
  195. *
  196. * This submits a transfer request, and transfers control of the URB
  197. * describing that request to the USB subsystem. Request completion will
  198. * be indicated later, asynchronously, by calling the completion handler.
  199. * The three types of completion are success, error, and unlink
  200. * (a software-induced fault, also called "request cancellation").
  201. *
  202. * URBs may be submitted in interrupt context.
  203. *
  204. * The caller must have correctly initialized the URB before submitting
  205. * it. Functions such as usb_fill_bulk_urb() and usb_fill_control_urb() are
  206. * available to ensure that most fields are correctly initialized, for
  207. * the particular kind of transfer, although they will not initialize
  208. * any transfer flags.
  209. *
  210. * If the submission is successful, the complete() callback from the URB
  211. * will be called exactly once, when the USB core and Host Controller Driver
  212. * (HCD) are finished with the URB. When the completion function is called,
  213. * control of the URB is returned to the device driver which issued the
  214. * request. The completion handler may then immediately free or reuse that
  215. * URB.
  216. *
  217. * With few exceptions, USB device drivers should never access URB fields
  218. * provided by usbcore or the HCD until its complete() is called.
  219. * The exceptions relate to periodic transfer scheduling. For both
  220. * interrupt and isochronous urbs, as part of successful URB submission
  221. * urb->interval is modified to reflect the actual transfer period used
  222. * (normally some power of two units). And for isochronous urbs,
  223. * urb->start_frame is modified to reflect when the URB's transfers were
  224. * scheduled to start.
  225. *
  226. * Not all isochronous transfer scheduling policies will work, but most
  227. * host controller drivers should easily handle ISO queues going from now
  228. * until 10-200 msec into the future. Drivers should try to keep at
  229. * least one or two msec of data in the queue; many controllers require
  230. * that new transfers start at least 1 msec in the future when they are
  231. * added. If the driver is unable to keep up and the queue empties out,
  232. * the behavior for new submissions is governed by the URB_ISO_ASAP flag.
  233. * If the flag is set, or if the queue is idle, then the URB is always
  234. * assigned to the first available (and not yet expired) slot in the
  235. * endpoint's schedule. If the flag is not set and the queue is active
  236. * then the URB is always assigned to the next slot in the schedule
  237. * following the end of the endpoint's previous URB, even if that slot is
  238. * in the past. When a packet is assigned in this way to a slot that has
  239. * already expired, the packet is not transmitted and the corresponding
  240. * usb_iso_packet_descriptor's status field will return -EXDEV. If this
  241. * would happen to all the packets in the URB, submission fails with a
  242. * -EXDEV error code.
  243. *
  244. * For control endpoints, the synchronous usb_control_msg() call is
  245. * often used (in non-interrupt context) instead of this call.
  246. * That is often used through convenience wrappers, for the requests
  247. * that are standardized in the USB 2.0 specification. For bulk
  248. * endpoints, a synchronous usb_bulk_msg() call is available.
  249. *
  250. * Return:
  251. * 0 on successful submissions. A negative error number otherwise.
  252. *
  253. * Request Queuing:
  254. *
  255. * URBs may be submitted to endpoints before previous ones complete, to
  256. * minimize the impact of interrupt latencies and system overhead on data
  257. * throughput. With that queuing policy, an endpoint's queue would never
  258. * be empty. This is required for continuous isochronous data streams,
  259. * and may also be required for some kinds of interrupt transfers. Such
  260. * queuing also maximizes bandwidth utilization by letting USB controllers
  261. * start work on later requests before driver software has finished the
  262. * completion processing for earlier (successful) requests.
  263. *
  264. * As of Linux 2.6, all USB endpoint transfer queues support depths greater
  265. * than one. This was previously a HCD-specific behavior, except for ISO
  266. * transfers. Non-isochronous endpoint queues are inactive during cleanup
  267. * after faults (transfer errors or cancellation).
  268. *
  269. * Reserved Bandwidth Transfers:
  270. *
  271. * Periodic transfers (interrupt or isochronous) are performed repeatedly,
  272. * using the interval specified in the urb. Submitting the first urb to
  273. * the endpoint reserves the bandwidth necessary to make those transfers.
  274. * If the USB subsystem can't allocate sufficient bandwidth to perform
  275. * the periodic request, submitting such a periodic request should fail.
  276. *
  277. * For devices under xHCI, the bandwidth is reserved at configuration time, or
  278. * when the alt setting is selected. If there is not enough bus bandwidth, the
  279. * configuration/alt setting request will fail. Therefore, submissions to
  280. * periodic endpoints on devices under xHCI should never fail due to bandwidth
  281. * constraints.
  282. *
  283. * Device drivers must explicitly request that repetition, by ensuring that
  284. * some URB is always on the endpoint's queue (except possibly for short
  285. * periods during completion callbacks). When there is no longer an urb
  286. * queued, the endpoint's bandwidth reservation is canceled. This means
  287. * drivers can use their completion handlers to ensure they keep bandwidth
  288. * they need, by reinitializing and resubmitting the just-completed urb
  289. * until the driver longer needs that periodic bandwidth.
  290. *
  291. * Memory Flags:
  292. *
  293. * The general rules for how to decide which mem_flags to use
  294. * are the same as for kmalloc. There are four
  295. * different possible values; GFP_KERNEL, GFP_NOFS, GFP_NOIO and
  296. * GFP_ATOMIC.
  297. *
  298. * GFP_NOFS is not ever used, as it has not been implemented yet.
  299. *
  300. * GFP_ATOMIC is used when
  301. * (a) you are inside a completion handler, an interrupt, bottom half,
  302. * tasklet or timer, or
  303. * (b) you are holding a spinlock or rwlock (does not apply to
  304. * semaphores), or
  305. * (c) current->state != TASK_RUNNING, this is the case only after
  306. * you've changed it.
  307. *
  308. * GFP_NOIO is used in the block io path and error handling of storage
  309. * devices.
  310. *
  311. * All other situations use GFP_KERNEL.
  312. *
  313. * Some more specific rules for mem_flags can be inferred, such as
  314. * (1) start_xmit, timeout, and receive methods of network drivers must
  315. * use GFP_ATOMIC (they are called with a spinlock held);
  316. * (2) queuecommand methods of scsi drivers must use GFP_ATOMIC (also
  317. * called with a spinlock held);
  318. * (3) If you use a kernel thread with a network driver you must use
  319. * GFP_NOIO, unless (b) or (c) apply;
  320. * (4) after you have done a down() you can use GFP_KERNEL, unless (b) or (c)
  321. * apply or your are in a storage driver's block io path;
  322. * (5) USB probe and disconnect can use GFP_KERNEL unless (b) or (c) apply; and
  323. * (6) changing firmware on a running storage or net device uses
  324. * GFP_NOIO, unless b) or c) apply
  325. *
  326. */
  327. int usb_submit_urb(struct urb *urb, gfp_t mem_flags)
  328. {
  329. int xfertype, max;
  330. struct usb_device *dev;
  331. struct usb_host_endpoint *ep;
  332. int is_out;
  333. unsigned int allowed;
  334. if (!urb || !urb->complete)
  335. return -EINVAL;
  336. if (urb->hcpriv) {
  337. WARN_ONCE(1, "URB %pK submitted while active\n", urb);
  338. return -EBUSY;
  339. }
  340. dev = urb->dev;
  341. if ((!dev) || (dev->state < USB_STATE_UNAUTHENTICATED))
  342. return -ENODEV;
  343. /* For now, get the endpoint from the pipe. Eventually drivers
  344. * will be required to set urb->ep directly and we will eliminate
  345. * urb->pipe.
  346. */
  347. ep = usb_pipe_endpoint(dev, urb->pipe);
  348. if (!ep)
  349. return -ENOENT;
  350. urb->ep = ep;
  351. urb->status = -EINPROGRESS;
  352. urb->actual_length = 0;
  353. /* Lots of sanity checks, so HCDs can rely on clean data
  354. * and don't need to duplicate tests
  355. */
  356. xfertype = usb_endpoint_type(&ep->desc);
  357. if (xfertype == USB_ENDPOINT_XFER_CONTROL) {
  358. struct usb_ctrlrequest *setup =
  359. (struct usb_ctrlrequest *) urb->setup_packet;
  360. if (!setup)
  361. return -ENOEXEC;
  362. is_out = !(setup->bRequestType & USB_DIR_IN) ||
  363. !setup->wLength;
  364. } else {
  365. is_out = usb_endpoint_dir_out(&ep->desc);
  366. }
  367. /* Clear the internal flags and cache the direction for later use */
  368. urb->transfer_flags &= ~(URB_DIR_MASK | URB_DMA_MAP_SINGLE |
  369. URB_DMA_MAP_PAGE | URB_DMA_MAP_SG | URB_MAP_LOCAL |
  370. URB_SETUP_MAP_SINGLE | URB_SETUP_MAP_LOCAL |
  371. URB_DMA_SG_COMBINED);
  372. urb->transfer_flags |= (is_out ? URB_DIR_OUT : URB_DIR_IN);
  373. if (xfertype != USB_ENDPOINT_XFER_CONTROL &&
  374. dev->state < USB_STATE_CONFIGURED)
  375. return -ENODEV;
  376. max = usb_endpoint_maxp(&ep->desc);
  377. if (max <= 0) {
  378. dev_dbg(&dev->dev,
  379. "bogus endpoint ep%d%s in %s (bad maxpacket %d)\n",
  380. usb_endpoint_num(&ep->desc), is_out ? "out" : "in",
  381. __func__, max);
  382. return -EMSGSIZE;
  383. }
  384. /* periodic transfers limit size per frame/uframe,
  385. * but drivers only control those sizes for ISO.
  386. * while we're checking, initialize return status.
  387. */
  388. if (xfertype == USB_ENDPOINT_XFER_ISOC) {
  389. int n, len;
  390. /* SuperSpeed isoc endpoints have up to 16 bursts of up to
  391. * 3 packets each
  392. */
  393. if (dev->speed >= USB_SPEED_SUPER) {
  394. int burst = 1 + ep->ss_ep_comp.bMaxBurst;
  395. int mult = USB_SS_MULT(ep->ss_ep_comp.bmAttributes);
  396. max *= burst;
  397. max *= mult;
  398. }
  399. if (dev->speed == USB_SPEED_SUPER_PLUS &&
  400. USB_SS_SSP_ISOC_COMP(ep->ss_ep_comp.bmAttributes)) {
  401. struct usb_ssp_isoc_ep_comp_descriptor *isoc_ep_comp;
  402. isoc_ep_comp = &ep->ssp_isoc_ep_comp;
  403. max = le32_to_cpu(isoc_ep_comp->dwBytesPerInterval);
  404. }
  405. /* "high bandwidth" mode, 1-3 packets/uframe? */
  406. if (dev->speed == USB_SPEED_HIGH)
  407. max *= usb_endpoint_maxp_mult(&ep->desc);
  408. if (urb->number_of_packets <= 0)
  409. return -EINVAL;
  410. for (n = 0; n < urb->number_of_packets; n++) {
  411. len = urb->iso_frame_desc[n].length;
  412. if (len < 0 || len > max)
  413. return -EMSGSIZE;
  414. urb->iso_frame_desc[n].status = -EXDEV;
  415. urb->iso_frame_desc[n].actual_length = 0;
  416. }
  417. } else if (urb->num_sgs && !urb->dev->bus->no_sg_constraint &&
  418. dev->speed != USB_SPEED_WIRELESS) {
  419. struct scatterlist *sg;
  420. int i;
  421. for_each_sg(urb->sg, sg, urb->num_sgs - 1, i)
  422. if (sg->length % max)
  423. return -EINVAL;
  424. }
  425. /* the I/O buffer must be mapped/unmapped, except when length=0 */
  426. if (urb->transfer_buffer_length > INT_MAX)
  427. return -EMSGSIZE;
  428. /*
  429. * stuff that drivers shouldn't do, but which shouldn't
  430. * cause problems in HCDs if they get it wrong.
  431. */
  432. /* Check that the pipe's type matches the endpoint's type */
  433. if (usb_urb_ep_type_check(urb))
  434. dev_WARN(&dev->dev, "BOGUS urb xfer, pipe %x != type %x\n",
  435. usb_pipetype(urb->pipe), pipetypes[xfertype]);
  436. /* Check against a simple/standard policy */
  437. allowed = (URB_NO_TRANSFER_DMA_MAP | URB_NO_INTERRUPT | URB_DIR_MASK |
  438. URB_FREE_BUFFER);
  439. switch (xfertype) {
  440. case USB_ENDPOINT_XFER_BULK:
  441. case USB_ENDPOINT_XFER_INT:
  442. if (is_out)
  443. allowed |= URB_ZERO_PACKET;
  444. /* FALLTHROUGH */
  445. default: /* all non-iso endpoints */
  446. if (!is_out)
  447. allowed |= URB_SHORT_NOT_OK;
  448. break;
  449. case USB_ENDPOINT_XFER_ISOC:
  450. allowed |= URB_ISO_ASAP;
  451. break;
  452. }
  453. allowed &= urb->transfer_flags;
  454. /* warn if submitter gave bogus flags */
  455. if (allowed != urb->transfer_flags)
  456. dev_WARN(&dev->dev, "BOGUS urb flags, %x --> %x\n",
  457. urb->transfer_flags, allowed);
  458. /*
  459. * Force periodic transfer intervals to be legal values that are
  460. * a power of two (so HCDs don't need to).
  461. *
  462. * FIXME want bus->{intr,iso}_sched_horizon values here. Each HC
  463. * supports different values... this uses EHCI/UHCI defaults (and
  464. * EHCI can use smaller non-default values).
  465. */
  466. switch (xfertype) {
  467. case USB_ENDPOINT_XFER_ISOC:
  468. case USB_ENDPOINT_XFER_INT:
  469. /* too small? */
  470. switch (dev->speed) {
  471. case USB_SPEED_WIRELESS:
  472. if ((urb->interval < 6)
  473. && (xfertype == USB_ENDPOINT_XFER_INT))
  474. return -EINVAL;
  475. /* fall through */
  476. default:
  477. if (urb->interval <= 0)
  478. return -EINVAL;
  479. break;
  480. }
  481. /* too big? */
  482. switch (dev->speed) {
  483. case USB_SPEED_SUPER_PLUS:
  484. case USB_SPEED_SUPER: /* units are 125us */
  485. /* Handle up to 2^(16-1) microframes */
  486. if (urb->interval > (1 << 15))
  487. return -EINVAL;
  488. max = 1 << 15;
  489. break;
  490. case USB_SPEED_WIRELESS:
  491. if (urb->interval > 16)
  492. return -EINVAL;
  493. break;
  494. case USB_SPEED_HIGH: /* units are microframes */
  495. /* NOTE usb handles 2^15 */
  496. if (urb->interval > (1024 * 8))
  497. urb->interval = 1024 * 8;
  498. max = 1024 * 8;
  499. break;
  500. case USB_SPEED_FULL: /* units are frames/msec */
  501. case USB_SPEED_LOW:
  502. if (xfertype == USB_ENDPOINT_XFER_INT) {
  503. if (urb->interval > 255)
  504. return -EINVAL;
  505. /* NOTE ohci only handles up to 32 */
  506. max = 128;
  507. } else {
  508. if (urb->interval > 1024)
  509. urb->interval = 1024;
  510. /* NOTE usb and ohci handle up to 2^15 */
  511. max = 1024;
  512. }
  513. break;
  514. default:
  515. return -EINVAL;
  516. }
  517. if (dev->speed != USB_SPEED_WIRELESS) {
  518. /* Round down to a power of 2, no more than max */
  519. urb->interval = min(max, 1 << ilog2(urb->interval));
  520. }
  521. }
  522. return usb_hcd_submit_urb(urb, mem_flags);
  523. }
  524. EXPORT_SYMBOL_GPL(usb_submit_urb);
  525. /*-------------------------------------------------------------------*/
  526. /**
  527. * usb_unlink_urb - abort/cancel a transfer request for an endpoint
  528. * @urb: pointer to urb describing a previously submitted request,
  529. * may be NULL
  530. *
  531. * This routine cancels an in-progress request. URBs complete only once
  532. * per submission, and may be canceled only once per submission.
  533. * Successful cancellation means termination of @urb will be expedited
  534. * and the completion handler will be called with a status code
  535. * indicating that the request has been canceled (rather than any other
  536. * code).
  537. *
  538. * Drivers should not call this routine or related routines, such as
  539. * usb_kill_urb() or usb_unlink_anchored_urbs(), after their disconnect
  540. * method has returned. The disconnect function should synchronize with
  541. * a driver's I/O routines to insure that all URB-related activity has
  542. * completed before it returns.
  543. *
  544. * This request is asynchronous, however the HCD might call the ->complete()
  545. * callback during unlink. Therefore when drivers call usb_unlink_urb(), they
  546. * must not hold any locks that may be taken by the completion function.
  547. * Success is indicated by returning -EINPROGRESS, at which time the URB will
  548. * probably not yet have been given back to the device driver. When it is
  549. * eventually called, the completion function will see @urb->status ==
  550. * -ECONNRESET.
  551. * Failure is indicated by usb_unlink_urb() returning any other value.
  552. * Unlinking will fail when @urb is not currently "linked" (i.e., it was
  553. * never submitted, or it was unlinked before, or the hardware is already
  554. * finished with it), even if the completion handler has not yet run.
  555. *
  556. * The URB must not be deallocated while this routine is running. In
  557. * particular, when a driver calls this routine, it must insure that the
  558. * completion handler cannot deallocate the URB.
  559. *
  560. * Return: -EINPROGRESS on success. See description for other values on
  561. * failure.
  562. *
  563. * Unlinking and Endpoint Queues:
  564. *
  565. * [The behaviors and guarantees described below do not apply to virtual
  566. * root hubs but only to endpoint queues for physical USB devices.]
  567. *
  568. * Host Controller Drivers (HCDs) place all the URBs for a particular
  569. * endpoint in a queue. Normally the queue advances as the controller
  570. * hardware processes each request. But when an URB terminates with an
  571. * error its queue generally stops (see below), at least until that URB's
  572. * completion routine returns. It is guaranteed that a stopped queue
  573. * will not restart until all its unlinked URBs have been fully retired,
  574. * with their completion routines run, even if that's not until some time
  575. * after the original completion handler returns. The same behavior and
  576. * guarantee apply when an URB terminates because it was unlinked.
  577. *
  578. * Bulk and interrupt endpoint queues are guaranteed to stop whenever an
  579. * URB terminates with any sort of error, including -ECONNRESET, -ENOENT,
  580. * and -EREMOTEIO. Control endpoint queues behave the same way except
  581. * that they are not guaranteed to stop for -EREMOTEIO errors. Queues
  582. * for isochronous endpoints are treated differently, because they must
  583. * advance at fixed rates. Such queues do not stop when an URB
  584. * encounters an error or is unlinked. An unlinked isochronous URB may
  585. * leave a gap in the stream of packets; it is undefined whether such
  586. * gaps can be filled in.
  587. *
  588. * Note that early termination of an URB because a short packet was
  589. * received will generate a -EREMOTEIO error if and only if the
  590. * URB_SHORT_NOT_OK flag is set. By setting this flag, USB device
  591. * drivers can build deep queues for large or complex bulk transfers
  592. * and clean them up reliably after any sort of aborted transfer by
  593. * unlinking all pending URBs at the first fault.
  594. *
  595. * When a control URB terminates with an error other than -EREMOTEIO, it
  596. * is quite likely that the status stage of the transfer will not take
  597. * place.
  598. */
  599. int usb_unlink_urb(struct urb *urb)
  600. {
  601. if (!urb)
  602. return -EINVAL;
  603. if (!urb->dev)
  604. return -ENODEV;
  605. if (!urb->ep)
  606. return -EIDRM;
  607. return usb_hcd_unlink_urb(urb, -ECONNRESET);
  608. }
  609. EXPORT_SYMBOL_GPL(usb_unlink_urb);
  610. /**
  611. * usb_kill_urb - cancel a transfer request and wait for it to finish
  612. * @urb: pointer to URB describing a previously submitted request,
  613. * may be NULL
  614. *
  615. * This routine cancels an in-progress request. It is guaranteed that
  616. * upon return all completion handlers will have finished and the URB
  617. * will be totally idle and available for reuse. These features make
  618. * this an ideal way to stop I/O in a disconnect() callback or close()
  619. * function. If the request has not already finished or been unlinked
  620. * the completion handler will see urb->status == -ENOENT.
  621. *
  622. * While the routine is running, attempts to resubmit the URB will fail
  623. * with error -EPERM. Thus even if the URB's completion handler always
  624. * tries to resubmit, it will not succeed and the URB will become idle.
  625. *
  626. * The URB must not be deallocated while this routine is running. In
  627. * particular, when a driver calls this routine, it must insure that the
  628. * completion handler cannot deallocate the URB.
  629. *
  630. * This routine may not be used in an interrupt context (such as a bottom
  631. * half or a completion handler), or when holding a spinlock, or in other
  632. * situations where the caller can't schedule().
  633. *
  634. * This routine should not be called by a driver after its disconnect
  635. * method has returned.
  636. */
  637. void usb_kill_urb(struct urb *urb)
  638. {
  639. might_sleep();
  640. if (!(urb && urb->dev && urb->ep))
  641. return;
  642. atomic_inc(&urb->reject);
  643. usb_hcd_unlink_urb(urb, -ENOENT);
  644. wait_event(usb_kill_urb_queue, atomic_read(&urb->use_count) == 0);
  645. atomic_dec(&urb->reject);
  646. }
  647. EXPORT_SYMBOL_GPL(usb_kill_urb);
  648. /**
  649. * usb_poison_urb - reliably kill a transfer and prevent further use of an URB
  650. * @urb: pointer to URB describing a previously submitted request,
  651. * may be NULL
  652. *
  653. * This routine cancels an in-progress request. It is guaranteed that
  654. * upon return all completion handlers will have finished and the URB
  655. * will be totally idle and cannot be reused. These features make
  656. * this an ideal way to stop I/O in a disconnect() callback.
  657. * If the request has not already finished or been unlinked
  658. * the completion handler will see urb->status == -ENOENT.
  659. *
  660. * After and while the routine runs, attempts to resubmit the URB will fail
  661. * with error -EPERM. Thus even if the URB's completion handler always
  662. * tries to resubmit, it will not succeed and the URB will become idle.
  663. *
  664. * The URB must not be deallocated while this routine is running. In
  665. * particular, when a driver calls this routine, it must insure that the
  666. * completion handler cannot deallocate the URB.
  667. *
  668. * This routine may not be used in an interrupt context (such as a bottom
  669. * half or a completion handler), or when holding a spinlock, or in other
  670. * situations where the caller can't schedule().
  671. *
  672. * This routine should not be called by a driver after its disconnect
  673. * method has returned.
  674. */
  675. void usb_poison_urb(struct urb *urb)
  676. {
  677. might_sleep();
  678. if (!urb)
  679. return;
  680. atomic_inc(&urb->reject);
  681. if (!urb->dev || !urb->ep)
  682. return;
  683. usb_hcd_unlink_urb(urb, -ENOENT);
  684. wait_event(usb_kill_urb_queue, atomic_read(&urb->use_count) == 0);
  685. }
  686. EXPORT_SYMBOL_GPL(usb_poison_urb);
  687. void usb_unpoison_urb(struct urb *urb)
  688. {
  689. if (!urb)
  690. return;
  691. atomic_dec(&urb->reject);
  692. }
  693. EXPORT_SYMBOL_GPL(usb_unpoison_urb);
  694. /**
  695. * usb_block_urb - reliably prevent further use of an URB
  696. * @urb: pointer to URB to be blocked, may be NULL
  697. *
  698. * After the routine has run, attempts to resubmit the URB will fail
  699. * with error -EPERM. Thus even if the URB's completion handler always
  700. * tries to resubmit, it will not succeed and the URB will become idle.
  701. *
  702. * The URB must not be deallocated while this routine is running. In
  703. * particular, when a driver calls this routine, it must insure that the
  704. * completion handler cannot deallocate the URB.
  705. */
  706. void usb_block_urb(struct urb *urb)
  707. {
  708. if (!urb)
  709. return;
  710. atomic_inc(&urb->reject);
  711. }
  712. EXPORT_SYMBOL_GPL(usb_block_urb);
  713. /**
  714. * usb_kill_anchored_urbs - kill all URBs associated with an anchor
  715. * @anchor: anchor the requests are bound to
  716. *
  717. * This kills all outstanding URBs starting from the back of the queue,
  718. * with guarantee that no completer callbacks will take place from the
  719. * anchor after this function returns.
  720. *
  721. * This routine should not be called by a driver after its disconnect
  722. * method has returned.
  723. */
  724. void usb_kill_anchored_urbs(struct usb_anchor *anchor)
  725. {
  726. struct urb *victim;
  727. int surely_empty;
  728. do {
  729. spin_lock_irq(&anchor->lock);
  730. while (!list_empty(&anchor->urb_list)) {
  731. victim = list_entry(anchor->urb_list.prev,
  732. struct urb, anchor_list);
  733. /* make sure the URB isn't freed before we kill it */
  734. usb_get_urb(victim);
  735. spin_unlock_irq(&anchor->lock);
  736. /* this will unanchor the URB */
  737. usb_kill_urb(victim);
  738. usb_put_urb(victim);
  739. spin_lock_irq(&anchor->lock);
  740. }
  741. surely_empty = usb_anchor_check_wakeup(anchor);
  742. spin_unlock_irq(&anchor->lock);
  743. cpu_relax();
  744. } while (!surely_empty);
  745. }
  746. EXPORT_SYMBOL_GPL(usb_kill_anchored_urbs);
  747. /**
  748. * usb_poison_anchored_urbs - cease all traffic from an anchor
  749. * @anchor: anchor the requests are bound to
  750. *
  751. * this allows all outstanding URBs to be poisoned starting
  752. * from the back of the queue. Newly added URBs will also be
  753. * poisoned
  754. *
  755. * This routine should not be called by a driver after its disconnect
  756. * method has returned.
  757. */
  758. void usb_poison_anchored_urbs(struct usb_anchor *anchor)
  759. {
  760. struct urb *victim;
  761. int surely_empty;
  762. do {
  763. spin_lock_irq(&anchor->lock);
  764. anchor->poisoned = 1;
  765. while (!list_empty(&anchor->urb_list)) {
  766. victim = list_entry(anchor->urb_list.prev,
  767. struct urb, anchor_list);
  768. /* make sure the URB isn't freed before we kill it */
  769. usb_get_urb(victim);
  770. spin_unlock_irq(&anchor->lock);
  771. /* this will unanchor the URB */
  772. usb_poison_urb(victim);
  773. usb_put_urb(victim);
  774. spin_lock_irq(&anchor->lock);
  775. }
  776. surely_empty = usb_anchor_check_wakeup(anchor);
  777. spin_unlock_irq(&anchor->lock);
  778. cpu_relax();
  779. } while (!surely_empty);
  780. }
  781. EXPORT_SYMBOL_GPL(usb_poison_anchored_urbs);
  782. /**
  783. * usb_unpoison_anchored_urbs - let an anchor be used successfully again
  784. * @anchor: anchor the requests are bound to
  785. *
  786. * Reverses the effect of usb_poison_anchored_urbs
  787. * the anchor can be used normally after it returns
  788. */
  789. void usb_unpoison_anchored_urbs(struct usb_anchor *anchor)
  790. {
  791. unsigned long flags;
  792. struct urb *lazarus;
  793. spin_lock_irqsave(&anchor->lock, flags);
  794. list_for_each_entry(lazarus, &anchor->urb_list, anchor_list) {
  795. usb_unpoison_urb(lazarus);
  796. }
  797. anchor->poisoned = 0;
  798. spin_unlock_irqrestore(&anchor->lock, flags);
  799. }
  800. EXPORT_SYMBOL_GPL(usb_unpoison_anchored_urbs);
  801. /**
  802. * usb_unlink_anchored_urbs - asynchronously cancel transfer requests en masse
  803. * @anchor: anchor the requests are bound to
  804. *
  805. * this allows all outstanding URBs to be unlinked starting
  806. * from the back of the queue. This function is asynchronous.
  807. * The unlinking is just triggered. It may happen after this
  808. * function has returned.
  809. *
  810. * This routine should not be called by a driver after its disconnect
  811. * method has returned.
  812. */
  813. void usb_unlink_anchored_urbs(struct usb_anchor *anchor)
  814. {
  815. struct urb *victim;
  816. while ((victim = usb_get_from_anchor(anchor)) != NULL) {
  817. usb_unlink_urb(victim);
  818. usb_put_urb(victim);
  819. }
  820. }
  821. EXPORT_SYMBOL_GPL(usb_unlink_anchored_urbs);
  822. /**
  823. * usb_anchor_suspend_wakeups
  824. * @anchor: the anchor you want to suspend wakeups on
  825. *
  826. * Call this to stop the last urb being unanchored from waking up any
  827. * usb_wait_anchor_empty_timeout waiters. This is used in the hcd urb give-
  828. * back path to delay waking up until after the completion handler has run.
  829. */
  830. void usb_anchor_suspend_wakeups(struct usb_anchor *anchor)
  831. {
  832. if (anchor)
  833. atomic_inc(&anchor->suspend_wakeups);
  834. }
  835. EXPORT_SYMBOL_GPL(usb_anchor_suspend_wakeups);
  836. /**
  837. * usb_anchor_resume_wakeups
  838. * @anchor: the anchor you want to resume wakeups on
  839. *
  840. * Allow usb_wait_anchor_empty_timeout waiters to be woken up again, and
  841. * wake up any current waiters if the anchor is empty.
  842. */
  843. void usb_anchor_resume_wakeups(struct usb_anchor *anchor)
  844. {
  845. if (!anchor)
  846. return;
  847. atomic_dec(&anchor->suspend_wakeups);
  848. if (usb_anchor_check_wakeup(anchor))
  849. wake_up(&anchor->wait);
  850. }
  851. EXPORT_SYMBOL_GPL(usb_anchor_resume_wakeups);
  852. /**
  853. * usb_wait_anchor_empty_timeout - wait for an anchor to be unused
  854. * @anchor: the anchor you want to become unused
  855. * @timeout: how long you are willing to wait in milliseconds
  856. *
  857. * Call this is you want to be sure all an anchor's
  858. * URBs have finished
  859. *
  860. * Return: Non-zero if the anchor became unused. Zero on timeout.
  861. */
  862. int usb_wait_anchor_empty_timeout(struct usb_anchor *anchor,
  863. unsigned int timeout)
  864. {
  865. return wait_event_timeout(anchor->wait,
  866. usb_anchor_check_wakeup(anchor),
  867. msecs_to_jiffies(timeout));
  868. }
  869. EXPORT_SYMBOL_GPL(usb_wait_anchor_empty_timeout);
  870. /**
  871. * usb_get_from_anchor - get an anchor's oldest urb
  872. * @anchor: the anchor whose urb you want
  873. *
  874. * This will take the oldest urb from an anchor,
  875. * unanchor and return it
  876. *
  877. * Return: The oldest urb from @anchor, or %NULL if @anchor has no
  878. * urbs associated with it.
  879. */
  880. struct urb *usb_get_from_anchor(struct usb_anchor *anchor)
  881. {
  882. struct urb *victim;
  883. unsigned long flags;
  884. spin_lock_irqsave(&anchor->lock, flags);
  885. if (!list_empty(&anchor->urb_list)) {
  886. victim = list_entry(anchor->urb_list.next, struct urb,
  887. anchor_list);
  888. usb_get_urb(victim);
  889. __usb_unanchor_urb(victim, anchor);
  890. } else {
  891. victim = NULL;
  892. }
  893. spin_unlock_irqrestore(&anchor->lock, flags);
  894. return victim;
  895. }
  896. EXPORT_SYMBOL_GPL(usb_get_from_anchor);
  897. /**
  898. * usb_scuttle_anchored_urbs - unanchor all an anchor's urbs
  899. * @anchor: the anchor whose urbs you want to unanchor
  900. *
  901. * use this to get rid of all an anchor's urbs
  902. */
  903. void usb_scuttle_anchored_urbs(struct usb_anchor *anchor)
  904. {
  905. struct urb *victim;
  906. unsigned long flags;
  907. int surely_empty;
  908. do {
  909. spin_lock_irqsave(&anchor->lock, flags);
  910. while (!list_empty(&anchor->urb_list)) {
  911. victim = list_entry(anchor->urb_list.prev,
  912. struct urb, anchor_list);
  913. __usb_unanchor_urb(victim, anchor);
  914. }
  915. surely_empty = usb_anchor_check_wakeup(anchor);
  916. spin_unlock_irqrestore(&anchor->lock, flags);
  917. cpu_relax();
  918. } while (!surely_empty);
  919. }
  920. EXPORT_SYMBOL_GPL(usb_scuttle_anchored_urbs);
  921. /**
  922. * usb_anchor_empty - is an anchor empty
  923. * @anchor: the anchor you want to query
  924. *
  925. * Return: 1 if the anchor has no urbs associated with it.
  926. */
  927. int usb_anchor_empty(struct usb_anchor *anchor)
  928. {
  929. return list_empty(&anchor->urb_list);
  930. }
  931. EXPORT_SYMBOL_GPL(usb_anchor_empty);