clock.c 35 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281
  1. // SPDX-License-Identifier: GPL-2.0+
  2. /*
  3. * (C) Copyright 2013-2015
  4. * NVIDIA Corporation <www.nvidia.com>
  5. */
  6. /* Tegra210 Clock control functions */
  7. #include <common.h>
  8. #include <errno.h>
  9. #include <asm/io.h>
  10. #include <asm/arch/clock.h>
  11. #include <asm/arch/sysctr.h>
  12. #include <asm/arch/tegra.h>
  13. #include <asm/arch-tegra/clk_rst.h>
  14. #include <asm/arch-tegra/timer.h>
  15. #include <div64.h>
  16. #include <fdtdec.h>
  17. /*
  18. * Clock types that we can use as a source. The Tegra210 has muxes for the
  19. * peripheral clocks, and in most cases there are four options for the clock
  20. * source. This gives us a clock 'type' and exploits what commonality exists
  21. * in the device.
  22. *
  23. * Letters are obvious, except for T which means CLK_M, and S which means the
  24. * clock derived from 32KHz. Beware that CLK_M (also called OSC in the
  25. * datasheet) and PLL_M are different things. The former is the basic
  26. * clock supplied to the SOC from an external oscillator. The latter is the
  27. * memory clock PLL.
  28. *
  29. * See definitions in clock_id in the header file.
  30. */
  31. enum clock_type_id {
  32. CLOCK_TYPE_AXPT, /* PLL_A, PLL_X, PLL_P, CLK_M */
  33. CLOCK_TYPE_MCPA, /* and so on */
  34. CLOCK_TYPE_MCPT,
  35. CLOCK_TYPE_PCM,
  36. CLOCK_TYPE_PCMT,
  37. CLOCK_TYPE_PDCT,
  38. CLOCK_TYPE_ACPT,
  39. CLOCK_TYPE_ASPTE,
  40. CLOCK_TYPE_PMDACD2T,
  41. CLOCK_TYPE_PCST,
  42. CLOCK_TYPE_DP,
  43. CLOCK_TYPE_PC2CC3M,
  44. CLOCK_TYPE_PC2CC3S_T,
  45. CLOCK_TYPE_PC2CC3M_T,
  46. CLOCK_TYPE_PC2CC3M_T16, /* PC2CC3M_T, but w/16-bit divisor (I2C) */
  47. CLOCK_TYPE_MC2CC3P_A,
  48. CLOCK_TYPE_M,
  49. CLOCK_TYPE_MCPTM2C2C3,
  50. CLOCK_TYPE_PC2CC3T_S,
  51. CLOCK_TYPE_AC2CC3P_TS2,
  52. CLOCK_TYPE_PC01C00_C42C41TC40,
  53. CLOCK_TYPE_COUNT,
  54. CLOCK_TYPE_NONE = -1, /* invalid clock type */
  55. };
  56. enum {
  57. CLOCK_MAX_MUX = 8 /* number of source options for each clock */
  58. };
  59. /*
  60. * Clock source mux for each clock type. This just converts our enum into
  61. * a list of mux sources for use by the code.
  62. *
  63. * Note:
  64. * The extra column in each clock source array is used to store the mask
  65. * bits in its register for the source.
  66. */
  67. #define CLK(x) CLOCK_ID_ ## x
  68. static enum clock_id clock_source[CLOCK_TYPE_COUNT][CLOCK_MAX_MUX+1] = {
  69. { CLK(AUDIO), CLK(XCPU), CLK(PERIPH), CLK(OSC),
  70. CLK(NONE), CLK(NONE), CLK(NONE), CLK(NONE),
  71. MASK_BITS_31_30},
  72. { CLK(MEMORY), CLK(CGENERAL), CLK(PERIPH), CLK(AUDIO),
  73. CLK(NONE), CLK(NONE), CLK(NONE), CLK(NONE),
  74. MASK_BITS_31_30},
  75. { CLK(MEMORY), CLK(CGENERAL), CLK(PERIPH), CLK(OSC),
  76. CLK(NONE), CLK(NONE), CLK(NONE), CLK(NONE),
  77. MASK_BITS_31_30},
  78. { CLK(PERIPH), CLK(CGENERAL), CLK(MEMORY), CLK(NONE),
  79. CLK(NONE), CLK(NONE), CLK(NONE), CLK(NONE),
  80. MASK_BITS_31_30},
  81. { CLK(PERIPH), CLK(CGENERAL), CLK(MEMORY), CLK(OSC),
  82. CLK(NONE), CLK(NONE), CLK(NONE), CLK(NONE),
  83. MASK_BITS_31_30},
  84. { CLK(PERIPH), CLK(DISPLAY), CLK(CGENERAL), CLK(OSC),
  85. CLK(NONE), CLK(NONE), CLK(NONE), CLK(NONE),
  86. MASK_BITS_31_30},
  87. { CLK(AUDIO), CLK(CGENERAL), CLK(PERIPH), CLK(OSC),
  88. CLK(NONE), CLK(NONE), CLK(NONE), CLK(NONE),
  89. MASK_BITS_31_30},
  90. { CLK(AUDIO), CLK(SFROM32KHZ), CLK(PERIPH), CLK(OSC),
  91. CLK(EPCI), CLK(NONE), CLK(NONE), CLK(NONE),
  92. MASK_BITS_31_29},
  93. { CLK(PERIPH), CLK(MEMORY), CLK(DISPLAY), CLK(AUDIO),
  94. CLK(CGENERAL), CLK(DISPLAY2), CLK(OSC), CLK(NONE),
  95. MASK_BITS_31_29},
  96. { CLK(PERIPH), CLK(CGENERAL), CLK(SFROM32KHZ), CLK(OSC),
  97. CLK(NONE), CLK(NONE), CLK(NONE), CLK(NONE),
  98. MASK_BITS_31_28},
  99. /* CLOCK_TYPE_DP */
  100. { CLK(NONE), CLK(NONE), CLK(NONE), CLK(NONE),
  101. CLK(NONE), CLK(NONE), CLK(NONE), CLK(NONE),
  102. MASK_BITS_31_28},
  103. /* Additional clock types on Tegra114+ */
  104. /* CLOCK_TYPE_PC2CC3M */
  105. { CLK(PERIPH), CLK(CGENERAL2), CLK(CGENERAL), CLK(CGENERAL3),
  106. CLK(MEMORY), CLK(NONE), CLK(NONE), CLK(NONE),
  107. MASK_BITS_31_29},
  108. /* CLOCK_TYPE_PC2CC3S_T */
  109. { CLK(PERIPH), CLK(CGENERAL2), CLK(CGENERAL), CLK(CGENERAL3),
  110. CLK(SFROM32KHZ), CLK(NONE), CLK(OSC), CLK(NONE),
  111. MASK_BITS_31_29},
  112. /* CLOCK_TYPE_PC2CC3M_T */
  113. { CLK(PERIPH), CLK(CGENERAL2), CLK(CGENERAL), CLK(CGENERAL3),
  114. CLK(MEMORY), CLK(NONE), CLK(OSC), CLK(NONE),
  115. MASK_BITS_31_29},
  116. /* CLOCK_TYPE_PC2CC3M_T, w/16-bit divisor (I2C) */
  117. { CLK(PERIPH), CLK(CGENERAL2), CLK(CGENERAL), CLK(CGENERAL3),
  118. CLK(MEMORY), CLK(NONE), CLK(OSC), CLK(NONE),
  119. MASK_BITS_31_29},
  120. /* CLOCK_TYPE_MC2CC3P_A */
  121. { CLK(MEMORY), CLK(CGENERAL2), CLK(CGENERAL), CLK(CGENERAL3),
  122. CLK(PERIPH), CLK(NONE), CLK(AUDIO), CLK(NONE),
  123. MASK_BITS_31_29},
  124. /* CLOCK_TYPE_M */
  125. { CLK(MEMORY), CLK(NONE), CLK(NONE), CLK(NONE),
  126. CLK(NONE), CLK(NONE), CLK(NONE), CLK(NONE),
  127. MASK_BITS_31_30},
  128. /* CLOCK_TYPE_MCPTM2C2C3 */
  129. { CLK(MEMORY), CLK(CGENERAL), CLK(PERIPH), CLK(OSC),
  130. CLK(MEMORY2), CLK(CGENERAL2), CLK(CGENERAL3), CLK(NONE),
  131. MASK_BITS_31_29},
  132. /* CLOCK_TYPE_PC2CC3T_S */
  133. { CLK(PERIPH), CLK(CGENERAL2), CLK(CGENERAL), CLK(CGENERAL3),
  134. CLK(OSC), CLK(NONE), CLK(SFROM32KHZ), CLK(NONE),
  135. MASK_BITS_31_29},
  136. /* CLOCK_TYPE_AC2CC3P_TS2 */
  137. { CLK(AUDIO), CLK(CGENERAL2), CLK(CGENERAL), CLK(CGENERAL3),
  138. CLK(PERIPH), CLK(NONE), CLK(OSC), CLK(SRC2),
  139. MASK_BITS_31_29},
  140. /* CLOCK_TYPE_PC01C00_C42C41TC40 */
  141. { CLK(PERIPH), CLK(CGENERAL_1), CLK(CGENERAL_0), CLK(NONE),
  142. CLK(CGENERAL4_2), CLK(CGENERAL4_1), CLK(OSC), CLK(CGENERAL4_0),
  143. MASK_BITS_31_29},
  144. };
  145. /*
  146. * Clock type for each peripheral clock source. We put the name in each
  147. * record just so it is easy to match things up
  148. */
  149. #define TYPE(name, type) type
  150. static enum clock_type_id clock_periph_type[PERIPHC_COUNT] = {
  151. /* 0x00 */
  152. TYPE(PERIPHC_I2S2, CLOCK_TYPE_AXPT),
  153. TYPE(PERIPHC_I2S3, CLOCK_TYPE_AXPT),
  154. TYPE(PERIPHC_SPDIF_OUT, CLOCK_TYPE_AXPT),
  155. TYPE(PERIPHC_SPDIF_IN, CLOCK_TYPE_PC2CC3M),
  156. TYPE(PERIPHC_PWM, CLOCK_TYPE_PC2CC3S_T),
  157. TYPE(PERIPHC_05h, CLOCK_TYPE_NONE),
  158. TYPE(PERIPHC_SBC2, CLOCK_TYPE_PC2CC3M_T),
  159. TYPE(PERIPHC_SBC3, CLOCK_TYPE_PC2CC3M_T),
  160. /* 0x08 */
  161. TYPE(PERIPHC_08h, CLOCK_TYPE_NONE),
  162. TYPE(PERIPHC_I2C1, CLOCK_TYPE_PC2CC3M_T16),
  163. TYPE(PERIPHC_I2C5, CLOCK_TYPE_PC2CC3M_T16),
  164. TYPE(PERIPHC_0bh, CLOCK_TYPE_NONE),
  165. TYPE(PERIPHC_0ch, CLOCK_TYPE_NONE),
  166. TYPE(PERIPHC_SBC1, CLOCK_TYPE_PC2CC3M_T),
  167. TYPE(PERIPHC_DISP1, CLOCK_TYPE_PMDACD2T),
  168. TYPE(PERIPHC_DISP2, CLOCK_TYPE_PMDACD2T),
  169. /* 0x10 */
  170. TYPE(PERIPHC_10h, CLOCK_TYPE_NONE),
  171. TYPE(PERIPHC_11h, CLOCK_TYPE_NONE),
  172. TYPE(PERIPHC_VI, CLOCK_TYPE_MC2CC3P_A),
  173. TYPE(PERIPHC_13h, CLOCK_TYPE_NONE),
  174. TYPE(PERIPHC_SDMMC1, CLOCK_TYPE_PC2CC3M_T),
  175. TYPE(PERIPHC_SDMMC2, CLOCK_TYPE_PC2CC3M_T),
  176. TYPE(PERIPHC_16h, CLOCK_TYPE_NONE),
  177. TYPE(PERIPHC_17h, CLOCK_TYPE_NONE),
  178. /* 0x18 */
  179. TYPE(PERIPHC_18h, CLOCK_TYPE_NONE),
  180. TYPE(PERIPHC_SDMMC4, CLOCK_TYPE_PC2CC3M_T),
  181. TYPE(PERIPHC_VFIR, CLOCK_TYPE_PC2CC3M_T),
  182. TYPE(PERIPHC_1Bh, CLOCK_TYPE_NONE),
  183. TYPE(PERIPHC_1Ch, CLOCK_TYPE_NONE),
  184. TYPE(PERIPHC_HSI, CLOCK_TYPE_PC2CC3M_T),
  185. TYPE(PERIPHC_UART1, CLOCK_TYPE_PC2CC3M_T),
  186. TYPE(PERIPHC_UART2, CLOCK_TYPE_PC2CC3M_T),
  187. /* 0x20 */
  188. TYPE(PERIPHC_HOST1X, CLOCK_TYPE_MC2CC3P_A),
  189. TYPE(PERIPHC_21h, CLOCK_TYPE_NONE),
  190. TYPE(PERIPHC_22h, CLOCK_TYPE_NONE),
  191. TYPE(PERIPHC_23h, CLOCK_TYPE_NONE),
  192. TYPE(PERIPHC_24h, CLOCK_TYPE_NONE),
  193. TYPE(PERIPHC_25h, CLOCK_TYPE_NONE),
  194. TYPE(PERIPHC_I2C2, CLOCK_TYPE_PC2CC3M_T16),
  195. TYPE(PERIPHC_EMC, CLOCK_TYPE_MCPTM2C2C3),
  196. /* 0x28 */
  197. TYPE(PERIPHC_UART3, CLOCK_TYPE_PC2CC3M_T),
  198. TYPE(PERIPHC_29h, CLOCK_TYPE_NONE),
  199. TYPE(PERIPHC_VI_SENSOR, CLOCK_TYPE_MC2CC3P_A),
  200. TYPE(PERIPHC_2bh, CLOCK_TYPE_NONE),
  201. TYPE(PERIPHC_2ch, CLOCK_TYPE_NONE),
  202. TYPE(PERIPHC_SBC4, CLOCK_TYPE_PC2CC3M_T),
  203. TYPE(PERIPHC_I2C3, CLOCK_TYPE_PC2CC3M_T16),
  204. TYPE(PERIPHC_SDMMC3, CLOCK_TYPE_PC2CC3M_T),
  205. /* 0x30 */
  206. TYPE(PERIPHC_UART4, CLOCK_TYPE_PC2CC3M_T),
  207. TYPE(PERIPHC_UART5, CLOCK_TYPE_PC2CC3M_T),
  208. TYPE(PERIPHC_VDE, CLOCK_TYPE_PC2CC3M_T),
  209. TYPE(PERIPHC_OWR, CLOCK_TYPE_PC2CC3M_T),
  210. TYPE(PERIPHC_NOR, CLOCK_TYPE_PC2CC3M_T),
  211. TYPE(PERIPHC_CSITE, CLOCK_TYPE_PC2CC3M_T),
  212. TYPE(PERIPHC_I2S1, CLOCK_TYPE_AXPT),
  213. TYPE(PERIPHC_DTV, CLOCK_TYPE_NONE),
  214. /* 0x38 */
  215. TYPE(PERIPHC_38h, CLOCK_TYPE_NONE),
  216. TYPE(PERIPHC_39h, CLOCK_TYPE_NONE),
  217. TYPE(PERIPHC_3ah, CLOCK_TYPE_NONE),
  218. TYPE(PERIPHC_3bh, CLOCK_TYPE_NONE),
  219. TYPE(PERIPHC_MSENC, CLOCK_TYPE_MC2CC3P_A),
  220. TYPE(PERIPHC_TSEC, CLOCK_TYPE_PC2CC3M_T),
  221. TYPE(PERIPHC_3eh, CLOCK_TYPE_NONE),
  222. TYPE(PERIPHC_OSC, CLOCK_TYPE_NONE),
  223. /* 0x40 */
  224. TYPE(PERIPHC_40h, CLOCK_TYPE_NONE), /* start with 0x3b0 */
  225. TYPE(PERIPHC_MSELECT, CLOCK_TYPE_PC2CC3M_T),
  226. TYPE(PERIPHC_TSENSOR, CLOCK_TYPE_PC2CC3T_S),
  227. TYPE(PERIPHC_I2S4, CLOCK_TYPE_AXPT),
  228. TYPE(PERIPHC_I2S5, CLOCK_TYPE_AXPT),
  229. TYPE(PERIPHC_I2C4, CLOCK_TYPE_PC2CC3M_T16),
  230. TYPE(PERIPHC_SBC5, CLOCK_TYPE_PC2CC3M_T),
  231. TYPE(PERIPHC_SBC6, CLOCK_TYPE_PC2CC3M_T),
  232. /* 0x48 */
  233. TYPE(PERIPHC_AUDIO, CLOCK_TYPE_AC2CC3P_TS2),
  234. TYPE(PERIPHC_49h, CLOCK_TYPE_NONE),
  235. TYPE(PERIPHC_4ah, CLOCK_TYPE_NONE),
  236. TYPE(PERIPHC_4bh, CLOCK_TYPE_NONE),
  237. TYPE(PERIPHC_4ch, CLOCK_TYPE_NONE),
  238. TYPE(PERIPHC_HDA2CODEC2X, CLOCK_TYPE_PC2CC3M_T),
  239. TYPE(PERIPHC_ACTMON, CLOCK_TYPE_PC2CC3S_T),
  240. TYPE(PERIPHC_EXTPERIPH1, CLOCK_TYPE_ASPTE),
  241. /* 0x50 */
  242. TYPE(PERIPHC_EXTPERIPH2, CLOCK_TYPE_ASPTE),
  243. TYPE(PERIPHC_EXTPERIPH3, CLOCK_TYPE_ASPTE),
  244. TYPE(PERIPHC_52h, CLOCK_TYPE_NONE),
  245. TYPE(PERIPHC_I2CSLOW, CLOCK_TYPE_PC2CC3S_T),
  246. TYPE(PERIPHC_SYS, CLOCK_TYPE_NONE),
  247. TYPE(PERIPHC_55h, CLOCK_TYPE_NONE),
  248. TYPE(PERIPHC_56h, CLOCK_TYPE_NONE),
  249. TYPE(PERIPHC_57h, CLOCK_TYPE_NONE),
  250. /* 0x58 */
  251. TYPE(PERIPHC_58h, CLOCK_TYPE_NONE),
  252. TYPE(PERIPHC_59h, CLOCK_TYPE_NONE),
  253. TYPE(PERIPHC_5ah, CLOCK_TYPE_NONE),
  254. TYPE(PERIPHC_5bh, CLOCK_TYPE_NONE),
  255. TYPE(PERIPHC_SATAOOB, CLOCK_TYPE_PCMT),
  256. TYPE(PERIPHC_SATA, CLOCK_TYPE_PCMT),
  257. TYPE(PERIPHC_HDA, CLOCK_TYPE_PC2CC3M_T),
  258. TYPE(PERIPHC_5fh, CLOCK_TYPE_NONE),
  259. /* 0x60 */
  260. TYPE(PERIPHC_XUSB_CORE_HOST, CLOCK_TYPE_NONE),
  261. TYPE(PERIPHC_XUSB_FALCON, CLOCK_TYPE_NONE),
  262. TYPE(PERIPHC_XUSB_FS, CLOCK_TYPE_NONE),
  263. TYPE(PERIPHC_XUSB_CORE_DEV, CLOCK_TYPE_NONE),
  264. TYPE(PERIPHC_XUSB_SS, CLOCK_TYPE_NONE),
  265. TYPE(PERIPHC_CILAB, CLOCK_TYPE_NONE),
  266. TYPE(PERIPHC_CILCD, CLOCK_TYPE_NONE),
  267. TYPE(PERIPHC_CILE, CLOCK_TYPE_NONE),
  268. /* 0x68 */
  269. TYPE(PERIPHC_DSIA_LP, CLOCK_TYPE_NONE),
  270. TYPE(PERIPHC_DSIB_LP, CLOCK_TYPE_NONE),
  271. TYPE(PERIPHC_ENTROPY, CLOCK_TYPE_NONE),
  272. TYPE(PERIPHC_DVFS_REF, CLOCK_TYPE_NONE),
  273. TYPE(PERIPHC_DVFS_SOC, CLOCK_TYPE_NONE),
  274. TYPE(PERIPHC_TRACECLKIN, CLOCK_TYPE_NONE),
  275. TYPE(PERIPHC_6eh, CLOCK_TYPE_NONE),
  276. TYPE(PERIPHC_6fh, CLOCK_TYPE_NONE),
  277. /* 0x70 */
  278. TYPE(PERIPHC_EMC_LATENCY, CLOCK_TYPE_NONE),
  279. TYPE(PERIPHC_SOC_THERM, CLOCK_TYPE_NONE),
  280. TYPE(PERIPHC_72h, CLOCK_TYPE_NONE),
  281. TYPE(PERIPHC_73h, CLOCK_TYPE_NONE),
  282. TYPE(PERIPHC_74h, CLOCK_TYPE_NONE),
  283. TYPE(PERIPHC_75h, CLOCK_TYPE_NONE),
  284. TYPE(PERIPHC_VI_SENSOR2, CLOCK_TYPE_NONE),
  285. TYPE(PERIPHC_I2C6, CLOCK_TYPE_PC2CC3M_T16),
  286. /* 0x78 */
  287. TYPE(PERIPHC_78h, CLOCK_TYPE_NONE),
  288. TYPE(PERIPHC_EMC_DLL, CLOCK_TYPE_MCPTM2C2C3),
  289. TYPE(PERIPHC_7ah, CLOCK_TYPE_NONE),
  290. TYPE(PERIPHC_CLK72MHZ, CLOCK_TYPE_NONE),
  291. TYPE(PERIPHC_7ch, CLOCK_TYPE_NONE),
  292. TYPE(PERIPHC_7dh, CLOCK_TYPE_NONE),
  293. TYPE(PERIPHC_VIC, CLOCK_TYPE_NONE),
  294. TYPE(PERIPHC_7Fh, CLOCK_TYPE_NONE),
  295. /* 0x80 */
  296. TYPE(PERIPHC_SDMMC_LEGACY_TM, CLOCK_TYPE_NONE),
  297. TYPE(PERIPHC_NVDEC, CLOCK_TYPE_NONE),
  298. TYPE(PERIPHC_NVJPG, CLOCK_TYPE_NONE),
  299. TYPE(PERIPHC_NVENC, CLOCK_TYPE_NONE),
  300. TYPE(PERIPHC_84h, CLOCK_TYPE_NONE),
  301. TYPE(PERIPHC_85h, CLOCK_TYPE_NONE),
  302. TYPE(PERIPHC_86h, CLOCK_TYPE_NONE),
  303. TYPE(PERIPHC_87h, CLOCK_TYPE_NONE),
  304. /* 0x88 */
  305. TYPE(PERIPHC_88h, CLOCK_TYPE_NONE),
  306. TYPE(PERIPHC_89h, CLOCK_TYPE_NONE),
  307. TYPE(PERIPHC_DMIC3, CLOCK_TYPE_NONE),
  308. TYPE(PERIPHC_APE, CLOCK_TYPE_NONE),
  309. TYPE(PERIPHC_QSPI, CLOCK_TYPE_PC01C00_C42C41TC40),
  310. TYPE(PERIPHC_VI_I2C, CLOCK_TYPE_NONE),
  311. TYPE(PERIPHC_USB2_HSIC_TRK, CLOCK_TYPE_NONE),
  312. TYPE(PERIPHC_PEX_SATA_USB_RX_BYP, CLOCK_TYPE_NONE),
  313. /* 0x90 */
  314. TYPE(PERIPHC_MAUD, CLOCK_TYPE_NONE),
  315. TYPE(PERIPHC_TSECB, CLOCK_TYPE_NONE),
  316. };
  317. /*
  318. * This array translates a periph_id to a periphc_internal_id
  319. *
  320. * Not present/matched up:
  321. * uint vi_sensor; _VI_SENSOR_0, 0x1A8
  322. * SPDIF - which is both 0x08 and 0x0c
  323. *
  324. */
  325. #define NONE(name) (-1)
  326. #define OFFSET(name, value) PERIPHC_ ## name
  327. #define INTERNAL_ID(id) (id & 0x000000ff)
  328. static s8 periph_id_to_internal_id[PERIPH_ID_COUNT] = {
  329. /* Low word: 31:0 */
  330. NONE(CPU),
  331. NONE(COP),
  332. NONE(TRIGSYS),
  333. NONE(ISPB),
  334. NONE(RESERVED4),
  335. NONE(TMR),
  336. PERIPHC_UART1,
  337. PERIPHC_UART2, /* and vfir 0x68 */
  338. /* 8 */
  339. NONE(GPIO),
  340. PERIPHC_SDMMC2,
  341. PERIPHC_SPDIF_IN,
  342. PERIPHC_I2S2,
  343. PERIPHC_I2C1,
  344. NONE(RESERVED13),
  345. PERIPHC_SDMMC1,
  346. PERIPHC_SDMMC4,
  347. /* 16 */
  348. NONE(TCW),
  349. PERIPHC_PWM,
  350. PERIPHC_I2S3,
  351. NONE(RESERVED19),
  352. PERIPHC_VI,
  353. NONE(RESERVED21),
  354. NONE(USBD),
  355. NONE(ISP),
  356. /* 24 */
  357. NONE(RESERVED24),
  358. NONE(RESERVED25),
  359. PERIPHC_DISP2,
  360. PERIPHC_DISP1,
  361. PERIPHC_HOST1X,
  362. NONE(VCP),
  363. PERIPHC_I2S1,
  364. NONE(CACHE2),
  365. /* Middle word: 63:32 */
  366. NONE(MEM),
  367. NONE(AHBDMA),
  368. NONE(APBDMA),
  369. NONE(RESERVED35),
  370. NONE(RESERVED36),
  371. NONE(STAT_MON),
  372. NONE(RESERVED38),
  373. NONE(FUSE),
  374. /* 40 */
  375. NONE(KFUSE),
  376. PERIPHC_SBC1, /* SBCx = SPIx */
  377. PERIPHC_NOR,
  378. NONE(RESERVED43),
  379. PERIPHC_SBC2,
  380. NONE(XIO),
  381. PERIPHC_SBC3,
  382. PERIPHC_I2C5,
  383. /* 48 */
  384. NONE(DSI),
  385. NONE(RESERVED49),
  386. PERIPHC_HSI,
  387. NONE(RESERVED51),
  388. NONE(CSI),
  389. NONE(RESERVED53),
  390. PERIPHC_I2C2,
  391. PERIPHC_UART3,
  392. /* 56 */
  393. NONE(MIPI_CAL),
  394. PERIPHC_EMC,
  395. NONE(USB2),
  396. NONE(USB3),
  397. NONE(RESERVED60),
  398. PERIPHC_VDE,
  399. NONE(BSEA),
  400. NONE(BSEV),
  401. /* Upper word 95:64 */
  402. NONE(RESERVED64),
  403. PERIPHC_UART4,
  404. PERIPHC_UART5,
  405. PERIPHC_I2C3,
  406. PERIPHC_SBC4,
  407. PERIPHC_SDMMC3,
  408. NONE(PCIE),
  409. PERIPHC_OWR,
  410. /* 72 */
  411. NONE(AFI),
  412. PERIPHC_CSITE,
  413. NONE(PCIEXCLK),
  414. NONE(AVPUCQ),
  415. NONE(LA),
  416. NONE(TRACECLKIN),
  417. NONE(SOC_THERM),
  418. NONE(DTV),
  419. /* 80 */
  420. NONE(RESERVED80),
  421. PERIPHC_I2CSLOW,
  422. NONE(DSIB),
  423. PERIPHC_TSEC,
  424. NONE(RESERVED84),
  425. NONE(RESERVED85),
  426. NONE(RESERVED86),
  427. NONE(EMUCIF),
  428. /* 88 */
  429. NONE(RESERVED88),
  430. NONE(XUSB_HOST),
  431. NONE(RESERVED90),
  432. PERIPHC_MSENC,
  433. NONE(RESERVED92),
  434. NONE(RESERVED93),
  435. NONE(RESERVED94),
  436. NONE(XUSB_DEV),
  437. /* V word: 31:0 */
  438. NONE(CPUG),
  439. NONE(CPULP),
  440. NONE(V_RESERVED2),
  441. PERIPHC_MSELECT,
  442. NONE(V_RESERVED4),
  443. PERIPHC_I2S4,
  444. PERIPHC_I2S5,
  445. PERIPHC_I2C4,
  446. /* 104 */
  447. PERIPHC_SBC5,
  448. PERIPHC_SBC6,
  449. PERIPHC_AUDIO,
  450. NONE(APBIF),
  451. NONE(V_RESERVED12),
  452. NONE(V_RESERVED13),
  453. NONE(V_RESERVED14),
  454. PERIPHC_HDA2CODEC2X,
  455. /* 112 */
  456. NONE(ATOMICS),
  457. NONE(V_RESERVED17),
  458. NONE(V_RESERVED18),
  459. NONE(V_RESERVED19),
  460. NONE(V_RESERVED20),
  461. NONE(V_RESERVED21),
  462. NONE(V_RESERVED22),
  463. PERIPHC_ACTMON,
  464. /* 120 */
  465. NONE(EXTPERIPH1),
  466. NONE(EXTPERIPH2),
  467. NONE(EXTPERIPH3),
  468. NONE(OOB),
  469. PERIPHC_SATA,
  470. PERIPHC_HDA,
  471. NONE(TZRAM),
  472. NONE(SE),
  473. /* W word: 31:0 */
  474. NONE(HDA2HDMICODEC),
  475. NONE(SATACOLD),
  476. NONE(W_RESERVED2),
  477. NONE(W_RESERVED3),
  478. NONE(W_RESERVED4),
  479. NONE(W_RESERVED5),
  480. NONE(W_RESERVED6),
  481. NONE(W_RESERVED7),
  482. /* 136 */
  483. NONE(CEC),
  484. NONE(W_RESERVED9),
  485. NONE(W_RESERVED10),
  486. NONE(W_RESERVED11),
  487. NONE(W_RESERVED12),
  488. NONE(W_RESERVED13),
  489. NONE(XUSB_PADCTL),
  490. NONE(W_RESERVED15),
  491. /* 144 */
  492. NONE(W_RESERVED16),
  493. NONE(W_RESERVED17),
  494. NONE(W_RESERVED18),
  495. NONE(W_RESERVED19),
  496. NONE(W_RESERVED20),
  497. NONE(ENTROPY),
  498. NONE(DDS),
  499. NONE(W_RESERVED23),
  500. /* 152 */
  501. NONE(W_RESERVED24),
  502. NONE(W_RESERVED25),
  503. NONE(W_RESERVED26),
  504. NONE(DVFS),
  505. NONE(XUSB_SS),
  506. NONE(W_RESERVED29),
  507. NONE(W_RESERVED30),
  508. NONE(W_RESERVED31),
  509. /* X word: 31:0 */
  510. NONE(SPARE),
  511. NONE(X_RESERVED1),
  512. NONE(X_RESERVED2),
  513. NONE(X_RESERVED3),
  514. NONE(CAM_MCLK),
  515. NONE(CAM_MCLK2),
  516. PERIPHC_I2C6,
  517. NONE(X_RESERVED7),
  518. /* 168 */
  519. NONE(X_RESERVED8),
  520. NONE(X_RESERVED9),
  521. NONE(X_RESERVED10),
  522. NONE(VIM2_CLK),
  523. NONE(X_RESERVED12),
  524. NONE(X_RESERVED13),
  525. NONE(EMC_DLL),
  526. NONE(X_RESERVED15),
  527. /* 176 */
  528. NONE(X_RESERVED16),
  529. NONE(CLK72MHZ),
  530. NONE(VIC),
  531. NONE(X_RESERVED19),
  532. NONE(X_RESERVED20),
  533. NONE(DPAUX),
  534. NONE(SOR0),
  535. NONE(X_RESERVED23),
  536. /* 184 */
  537. NONE(GPU),
  538. NONE(X_RESERVED25),
  539. NONE(X_RESERVED26),
  540. NONE(X_RESERVED27),
  541. NONE(X_RESERVED28),
  542. NONE(X_RESERVED29),
  543. NONE(X_RESERVED30),
  544. NONE(X_RESERVED31),
  545. /* Y: 192 (192 - 223) */
  546. NONE(Y_RESERVED0),
  547. PERIPHC_SDMMC_LEGACY_TM,
  548. PERIPHC_NVDEC,
  549. PERIPHC_NVJPG,
  550. NONE(Y_RESERVED4),
  551. PERIPHC_DMIC3, /* 197 */
  552. PERIPHC_APE, /* 198 */
  553. NONE(Y_RESERVED7),
  554. /* 200 */
  555. NONE(Y_RESERVED8),
  556. NONE(Y_RESERVED9),
  557. NONE(Y_RESERVED10),
  558. NONE(Y_RESERVED11),
  559. NONE(Y_RESERVED12),
  560. NONE(Y_RESERVED13),
  561. NONE(Y_RESERVED14),
  562. NONE(Y_RESERVED15),
  563. /* 208 */
  564. PERIPHC_VI_I2C, /* 208 */
  565. NONE(Y_RESERVED17),
  566. NONE(Y_RESERVED18),
  567. PERIPHC_QSPI, /* 211 */
  568. NONE(Y_RESERVED20),
  569. NONE(Y_RESERVED21),
  570. NONE(Y_RESERVED22),
  571. NONE(Y_RESERVED23),
  572. /* 216 */
  573. NONE(Y_RESERVED24),
  574. NONE(Y_RESERVED25),
  575. NONE(Y_RESERVED26),
  576. PERIPHC_NVENC, /* 219 */
  577. NONE(Y_RESERVED28),
  578. NONE(Y_RESERVED29),
  579. NONE(Y_RESERVED30),
  580. NONE(Y_RESERVED31),
  581. };
  582. /*
  583. * PLL divider shift/mask tables for all PLL IDs.
  584. */
  585. struct clk_pll_info tegra_pll_info_table[CLOCK_ID_PLL_COUNT] = {
  586. /*
  587. * NOTE: If kcp_mask/kvco_mask == 0, they're not used in that PLL (PLLC, etc.)
  588. * If lock_ena or lock_det are >31, they're not used in that PLL (PLLC, etc.)
  589. */
  590. { .m_shift = 0, .m_mask = 0xFF, .n_shift = 10, .n_mask = 0xFF, .p_shift = 20, .p_mask = 0x1F,
  591. .lock_ena = 32, .lock_det = 27, .kcp_shift = 0, .kcp_mask = 0, .kvco_shift = 0, .kvco_mask = 0 }, /* PLLC */
  592. { .m_shift = 0, .m_mask = 0xFF, .n_shift = 8, .n_mask = 0xFF, .p_shift = 20, .p_mask = 0x1F,
  593. .lock_ena = 4, .lock_det = 27, .kcp_shift = 1, .kcp_mask = 3, .kvco_shift = 0, .kvco_mask = 1 }, /* PLLM */
  594. { .m_shift = 0, .m_mask = 0xFF, .n_shift = 10, .n_mask = 0xFF, .p_shift = 20, .p_mask = 0x1F,
  595. .lock_ena = 18, .lock_det = 27, .kcp_shift = 0, .kcp_mask = 3, .kvco_shift = 2, .kvco_mask = 1 }, /* PLLP */
  596. { .m_shift = 0, .m_mask = 0xFF, .n_shift = 8, .n_mask = 0xFF, .p_shift = 20, .p_mask = 0x1F,
  597. .lock_ena = 28, .lock_det = 27, .kcp_shift = 25, .kcp_mask = 3, .kvco_shift = 24, .kvco_mask = 1 }, /* PLLA */
  598. { .m_shift = 0, .m_mask = 0xFF, .n_shift = 8, .n_mask = 0xFF, .p_shift = 16, .p_mask = 0x1F,
  599. .lock_ena = 29, .lock_det = 27, .kcp_shift = 25, .kcp_mask = 3, .kvco_shift = 24, .kvco_mask = 1 }, /* PLLU */
  600. { .m_shift = 0, .m_mask = 0xFF, .n_shift = 11, .n_mask = 0xFF, .p_shift = 20, .p_mask = 0x07,
  601. .lock_ena = 18, .lock_det = 27, .kcp_shift = 23, .kcp_mask = 3, .kvco_shift = 22, .kvco_mask = 1 }, /* PLLD */
  602. { .m_shift = 0, .m_mask = 0xFF, .n_shift = 8, .n_mask = 0xFF, .p_shift = 20, .p_mask = 0x1F,
  603. .lock_ena = 18, .lock_det = 27, .kcp_shift = 1, .kcp_mask = 3, .kvco_shift = 0, .kvco_mask = 1 }, /* PLLX */
  604. { .m_shift = 0, .m_mask = 0xFF, .n_shift = 8, .n_mask = 0xFF, .p_shift = 0, .p_mask = 0,
  605. .lock_ena = 9, .lock_det = 11, .kcp_shift = 6, .kcp_mask = 3, .kvco_shift = 0, .kvco_mask = 1 }, /* PLLE */
  606. { .m_shift = 0, .m_mask = 0, .n_shift = 0, .n_mask = 0, .p_shift = 0, .p_mask = 0,
  607. .lock_ena = 0, .lock_det = 0, .kcp_shift = 0, .kcp_mask = 0, .kvco_shift = 0, .kvco_mask = 0 }, /* PLLS (gone)*/
  608. { .m_shift = 0, .m_mask = 0xFF, .n_shift = 8, .n_mask = 0xFF, .p_shift = 19, .p_mask = 0x1F,
  609. .lock_ena = 30, .lock_det = 27, .kcp_shift = 25, .kcp_mask = 3, .kvco_shift = 24, .kvco_mask = 1 }, /* PLLDP */
  610. };
  611. /*
  612. * Get the oscillator frequency, from the corresponding hardware configuration
  613. * field. Note that Tegra30+ support 3 new higher freqs, but we map back
  614. * to the old T20 freqs. Support for the higher oscillators is TBD.
  615. */
  616. enum clock_osc_freq clock_get_osc_freq(void)
  617. {
  618. struct clk_rst_ctlr *clkrst =
  619. (struct clk_rst_ctlr *)NV_PA_CLK_RST_BASE;
  620. u32 reg;
  621. reg = readl(&clkrst->crc_osc_ctrl);
  622. reg = (reg & OSC_FREQ_MASK) >> OSC_FREQ_SHIFT;
  623. /*
  624. * 0 = 13MHz, 1 = 16.8MHz, 4 = 19.2MHz, 5 = 38.4MHz,
  625. * 8 = 12MHz, 9 = 48MHz, 12 = 26MHz
  626. */
  627. if (reg == 5) {
  628. debug("OSC_FREQ is 38.4MHz (%d) ...\n", reg);
  629. /* Map it to the 5th CLOCK_OSC_ enum, i.e. 4 */
  630. return 4;
  631. }
  632. /*
  633. * Map to most common (T20) freqs (except 38.4, handled above):
  634. * 13/16.8 = 0, 19.2 = 1, 12/48 = 2, 26 = 3
  635. */
  636. return reg >> 2;
  637. }
  638. /* Returns a pointer to the clock source register for a peripheral */
  639. u32 *get_periph_source_reg(enum periph_id periph_id)
  640. {
  641. struct clk_rst_ctlr *clkrst =
  642. (struct clk_rst_ctlr *)NV_PA_CLK_RST_BASE;
  643. enum periphc_internal_id internal_id;
  644. /* Coresight is a special case */
  645. if (periph_id == PERIPH_ID_CSI)
  646. return &clkrst->crc_clk_src[PERIPH_ID_CSI+1];
  647. assert(periph_id >= PERIPH_ID_FIRST && periph_id < PERIPH_ID_COUNT);
  648. internal_id = INTERNAL_ID(periph_id_to_internal_id[periph_id]);
  649. assert(internal_id != -1);
  650. if (internal_id < PERIPHC_VW_FIRST)
  651. /* L, H, U */
  652. return &clkrst->crc_clk_src[internal_id];
  653. if (internal_id < PERIPHC_X_FIRST) {
  654. /* VW */
  655. internal_id -= PERIPHC_VW_FIRST;
  656. return &clkrst->crc_clk_src_vw[internal_id];
  657. }
  658. if (internal_id < PERIPHC_Y_FIRST) {
  659. /* X */
  660. internal_id -= PERIPHC_X_FIRST;
  661. return &clkrst->crc_clk_src_x[internal_id];
  662. }
  663. /* Y */
  664. internal_id -= PERIPHC_Y_FIRST;
  665. return &clkrst->crc_clk_src_y[internal_id];
  666. }
  667. int get_periph_clock_info(enum periph_id periph_id, int *mux_bits,
  668. int *divider_bits, int *type)
  669. {
  670. enum periphc_internal_id internal_id;
  671. if (!clock_periph_id_isvalid(periph_id))
  672. return -1;
  673. internal_id = periph_id_to_internal_id[periph_id];
  674. if (!periphc_internal_id_isvalid(internal_id))
  675. return -1;
  676. *type = clock_periph_type[internal_id];
  677. if (!clock_type_id_isvalid(*type))
  678. return -1;
  679. *mux_bits = clock_source[*type][CLOCK_MAX_MUX];
  680. if (*type == CLOCK_TYPE_PC2CC3M_T16)
  681. *divider_bits = 16;
  682. else
  683. *divider_bits = 8;
  684. return 0;
  685. }
  686. enum clock_id get_periph_clock_id(enum periph_id periph_id, int source)
  687. {
  688. enum periphc_internal_id internal_id;
  689. int type;
  690. if (!clock_periph_id_isvalid(periph_id))
  691. return CLOCK_ID_NONE;
  692. internal_id = periph_id_to_internal_id[periph_id];
  693. if (!periphc_internal_id_isvalid(internal_id))
  694. return CLOCK_ID_NONE;
  695. type = clock_periph_type[internal_id];
  696. if (!clock_type_id_isvalid(type))
  697. return CLOCK_ID_NONE;
  698. return clock_source[type][source];
  699. }
  700. /**
  701. * Given a peripheral ID and the required source clock, this returns which
  702. * value should be programmed into the source mux for that peripheral.
  703. *
  704. * There is special code here to handle the one source type with 5 sources.
  705. *
  706. * @param periph_id peripheral to start
  707. * @param source PLL id of required parent clock
  708. * @param mux_bits Set to number of bits in mux register: 2 or 4
  709. * @param divider_bits Set to number of divider bits (8 or 16)
  710. * @return mux value (0-4, or -1 if not found)
  711. */
  712. int get_periph_clock_source(enum periph_id periph_id,
  713. enum clock_id parent, int *mux_bits, int *divider_bits)
  714. {
  715. enum clock_type_id type;
  716. int mux, err;
  717. err = get_periph_clock_info(periph_id, mux_bits, divider_bits, &type);
  718. assert(!err);
  719. for (mux = 0; mux < CLOCK_MAX_MUX; mux++)
  720. if (clock_source[type][mux] == parent)
  721. return mux;
  722. /* if we get here, either us or the caller has made a mistake */
  723. printf("Caller requested bad clock: periph=%d, parent=%d\n", periph_id,
  724. parent);
  725. return -1;
  726. }
  727. void clock_set_enable(enum periph_id periph_id, int enable)
  728. {
  729. struct clk_rst_ctlr *clkrst =
  730. (struct clk_rst_ctlr *)NV_PA_CLK_RST_BASE;
  731. u32 *clk;
  732. u32 reg;
  733. /* Enable/disable the clock to this peripheral */
  734. assert(clock_periph_id_isvalid(periph_id));
  735. if ((int)periph_id < (int)PERIPH_ID_VW_FIRST)
  736. clk = &clkrst->crc_clk_out_enb[PERIPH_REG(periph_id)];
  737. else if ((int)periph_id < (int)PERIPH_ID_X_FIRST)
  738. clk = &clkrst->crc_clk_out_enb_vw[PERIPH_REG(periph_id)];
  739. else if ((int)periph_id < (int)PERIPH_ID_Y_FIRST)
  740. clk = &clkrst->crc_clk_out_enb_x;
  741. else
  742. clk = &clkrst->crc_clk_out_enb_y;
  743. reg = readl(clk);
  744. if (enable)
  745. reg |= PERIPH_MASK(periph_id);
  746. else
  747. reg &= ~PERIPH_MASK(periph_id);
  748. writel(reg, clk);
  749. }
  750. void reset_set_enable(enum periph_id periph_id, int enable)
  751. {
  752. struct clk_rst_ctlr *clkrst =
  753. (struct clk_rst_ctlr *)NV_PA_CLK_RST_BASE;
  754. u32 *reset;
  755. u32 reg;
  756. /* Enable/disable reset to the peripheral */
  757. assert(clock_periph_id_isvalid(periph_id));
  758. if (periph_id < PERIPH_ID_VW_FIRST)
  759. reset = &clkrst->crc_rst_dev[PERIPH_REG(periph_id)];
  760. else if ((int)periph_id < (int)PERIPH_ID_X_FIRST)
  761. reset = &clkrst->crc_rst_dev_vw[PERIPH_REG(periph_id)];
  762. else if ((int)periph_id < (int)PERIPH_ID_Y_FIRST)
  763. reset = &clkrst->crc_rst_devices_x;
  764. else
  765. reset = &clkrst->crc_rst_devices_y;
  766. reg = readl(reset);
  767. if (enable)
  768. reg |= PERIPH_MASK(periph_id);
  769. else
  770. reg &= ~PERIPH_MASK(periph_id);
  771. writel(reg, reset);
  772. }
  773. #ifdef CONFIG_OF_CONTROL
  774. /*
  775. * Convert a device tree clock ID to our peripheral ID. They are mostly
  776. * the same but we are very cautious so we check that a valid clock ID is
  777. * provided.
  778. *
  779. * @param clk_id Clock ID according to tegra210 device tree binding
  780. * @return peripheral ID, or PERIPH_ID_NONE if the clock ID is invalid
  781. */
  782. enum periph_id clk_id_to_periph_id(int clk_id)
  783. {
  784. if (clk_id > PERIPH_ID_COUNT)
  785. return PERIPH_ID_NONE;
  786. switch (clk_id) {
  787. case PERIPH_ID_RESERVED4:
  788. case PERIPH_ID_RESERVED25:
  789. case PERIPH_ID_RESERVED35:
  790. case PERIPH_ID_RESERVED36:
  791. case PERIPH_ID_RESERVED38:
  792. case PERIPH_ID_RESERVED43:
  793. case PERIPH_ID_RESERVED49:
  794. case PERIPH_ID_RESERVED53:
  795. case PERIPH_ID_RESERVED64:
  796. case PERIPH_ID_RESERVED84:
  797. case PERIPH_ID_RESERVED85:
  798. case PERIPH_ID_RESERVED86:
  799. case PERIPH_ID_RESERVED88:
  800. case PERIPH_ID_RESERVED90:
  801. case PERIPH_ID_RESERVED92:
  802. case PERIPH_ID_RESERVED93:
  803. case PERIPH_ID_RESERVED94:
  804. case PERIPH_ID_V_RESERVED2:
  805. case PERIPH_ID_V_RESERVED4:
  806. case PERIPH_ID_V_RESERVED17:
  807. case PERIPH_ID_V_RESERVED18:
  808. case PERIPH_ID_V_RESERVED19:
  809. case PERIPH_ID_V_RESERVED20:
  810. case PERIPH_ID_V_RESERVED21:
  811. case PERIPH_ID_V_RESERVED22:
  812. case PERIPH_ID_W_RESERVED2:
  813. case PERIPH_ID_W_RESERVED3:
  814. case PERIPH_ID_W_RESERVED4:
  815. case PERIPH_ID_W_RESERVED5:
  816. case PERIPH_ID_W_RESERVED6:
  817. case PERIPH_ID_W_RESERVED7:
  818. case PERIPH_ID_W_RESERVED9:
  819. case PERIPH_ID_W_RESERVED10:
  820. case PERIPH_ID_W_RESERVED11:
  821. case PERIPH_ID_W_RESERVED12:
  822. case PERIPH_ID_W_RESERVED13:
  823. case PERIPH_ID_W_RESERVED15:
  824. case PERIPH_ID_W_RESERVED16:
  825. case PERIPH_ID_W_RESERVED17:
  826. case PERIPH_ID_W_RESERVED18:
  827. case PERIPH_ID_W_RESERVED19:
  828. case PERIPH_ID_W_RESERVED20:
  829. case PERIPH_ID_W_RESERVED23:
  830. case PERIPH_ID_W_RESERVED29:
  831. case PERIPH_ID_W_RESERVED30:
  832. case PERIPH_ID_W_RESERVED31:
  833. return PERIPH_ID_NONE;
  834. default:
  835. return clk_id;
  836. }
  837. }
  838. #endif /* CONFIG_OF_CONTROL */
  839. /*
  840. * T210 redefines PLLP_OUT2 as PLLP_VCO/DIVP, so do different OUT1-4 setup here.
  841. * PLLP_BASE/MISC/etc. is already set up for 408MHz in the BootROM.
  842. */
  843. void tegra210_setup_pllp(void)
  844. {
  845. struct clk_rst_ctlr *clkrst = (struct clk_rst_ctlr *)NV_PA_CLK_RST_BASE;
  846. u32 reg;
  847. /* Set PLLP_OUT1, 3 & 4 freqs to 9.6, 102 & 204MHz */
  848. /* OUT1 */
  849. /* Assert RSTN before enable */
  850. reg = PLLP_OUT1_RSTN_EN;
  851. writel(reg, &clkrst->crc_pll[CLOCK_ID_PERIPH].pll_out[0]);
  852. /* Set divisor and reenable */
  853. reg = (IN_408_OUT_9_6_DIVISOR << PLLP_OUT1_RATIO)
  854. | PLLP_OUT1_OVR | PLLP_OUT1_CLKEN | PLLP_OUT1_RSTN_DIS;
  855. writel(reg, &clkrst->crc_pll[CLOCK_ID_PERIPH].pll_out[0]);
  856. /* OUT3, 4 */
  857. /* Assert RSTN before enable */
  858. reg = PLLP_OUT4_RSTN_EN | PLLP_OUT3_RSTN_EN;
  859. writel(reg, &clkrst->crc_pll[CLOCK_ID_PERIPH].pll_out[1]);
  860. /* Set divisor and reenable */
  861. reg = (IN_408_OUT_204_DIVISOR << PLLP_OUT4_RATIO)
  862. | PLLP_OUT4_OVR | PLLP_OUT4_CLKEN | PLLP_OUT4_RSTN_DIS
  863. | (IN_408_OUT_102_DIVISOR << PLLP_OUT3_RATIO)
  864. | PLLP_OUT3_OVR | PLLP_OUT3_CLKEN | PLLP_OUT3_RSTN_DIS;
  865. writel(reg, &clkrst->crc_pll[CLOCK_ID_PERIPH].pll_out[1]);
  866. /*
  867. * NOTE: If you want to change PLLP_OUT2 away from 204MHz,
  868. * you can change PLLP_BASE DIVP here. Currently defaults
  869. * to 1, which is 2^1, or 2, so PLLP_OUT2 is 204MHz.
  870. * See Table 13 in section 5.1.4 in T210 TRM for more info.
  871. */
  872. }
  873. void clock_early_init(void)
  874. {
  875. struct clk_rst_ctlr *clkrst =
  876. (struct clk_rst_ctlr *)NV_PA_CLK_RST_BASE;
  877. struct clk_pll_info *pllinfo = &tegra_pll_info_table[CLOCK_ID_DISPLAY];
  878. u32 data;
  879. tegra210_setup_pllp();
  880. /*
  881. * PLLC output frequency set to 600Mhz
  882. * PLLD output frequency set to 925Mhz
  883. */
  884. switch (clock_get_osc_freq()) {
  885. case CLOCK_OSC_FREQ_12_0: /* OSC is 12Mhz */
  886. clock_set_rate(CLOCK_ID_CGENERAL, 600, 12, 0, 8);
  887. clock_set_rate(CLOCK_ID_DISPLAY, 925, 12, 0, 12);
  888. break;
  889. case CLOCK_OSC_FREQ_26_0: /* OSC is 26Mhz */
  890. clock_set_rate(CLOCK_ID_CGENERAL, 600, 26, 0, 8);
  891. clock_set_rate(CLOCK_ID_DISPLAY, 925, 26, 0, 12);
  892. break;
  893. case CLOCK_OSC_FREQ_13_0: /* OSC is 13Mhz */
  894. clock_set_rate(CLOCK_ID_CGENERAL, 600, 13, 0, 8);
  895. clock_set_rate(CLOCK_ID_DISPLAY, 925, 13, 0, 12);
  896. break;
  897. case CLOCK_OSC_FREQ_19_2:
  898. clock_set_rate(CLOCK_ID_CGENERAL, 125, 4, 0, 0);
  899. clock_set_rate(CLOCK_ID_DISPLAY, 96, 2, 0, 12);
  900. break;
  901. case CLOCK_OSC_FREQ_38_4:
  902. clock_set_rate(CLOCK_ID_CGENERAL, 125, 8, 0, 0);
  903. clock_set_rate(CLOCK_ID_DISPLAY, 96, 4, 0, 0);
  904. break;
  905. default:
  906. /*
  907. * These are not supported. It is too early to print a
  908. * message and the UART likely won't work anyway due to the
  909. * oscillator being wrong.
  910. */
  911. break;
  912. }
  913. /* PLLC_MISC1: Turn IDDQ off. NOTE: T210 PLLC_MISC_1 maps to pll_misc */
  914. clrbits_le32(&clkrst->crc_pll[CLOCK_ID_CGENERAL].pll_misc,
  915. (1 << PLLC_IDDQ));
  916. udelay(2);
  917. /*
  918. * PLLC_MISC: Take PLLC out of reset. NOTE: T210 PLLC_MISC maps
  919. * to pll_out[1]
  920. */
  921. clrbits_le32(&clkrst->crc_pll[CLOCK_ID_CGENERAL].pll_out[1],
  922. (1 << PLLC_RESET));
  923. udelay(2);
  924. /* PLLD_MISC: Set CLKENABLE and LOCK_DETECT bits */
  925. data = (1 << PLLD_ENABLE_CLK) | (1 << pllinfo->lock_ena);
  926. writel(data, &clkrst->crc_pll[CLOCK_ID_DISPLAY].pll_misc);
  927. udelay(2);
  928. }
  929. unsigned int clk_m_get_rate(unsigned parent_rate)
  930. {
  931. struct clk_rst_ctlr *clkrst = (struct clk_rst_ctlr *)NV_PA_CLK_RST_BASE;
  932. u32 value, div;
  933. value = readl(&clkrst->crc_spare_reg0);
  934. div = ((value >> 2) & 0x3) + 1;
  935. return parent_rate / div;
  936. }
  937. void arch_timer_init(void)
  938. {
  939. struct sysctr_ctlr *sysctr = (struct sysctr_ctlr *)NV_PA_TSC_BASE;
  940. u32 freq, val;
  941. freq = clock_get_rate(CLOCK_ID_CLK_M);
  942. debug("%s: clk_m freq is %dHz [0x%08X]\n", __func__, freq, freq);
  943. if (current_el() == 3)
  944. asm("msr cntfrq_el0, %0\n" : : "r" (freq));
  945. /* Only Tegra114+ has the System Counter regs */
  946. debug("%s: setting CNTFID0 to 0x%08X\n", __func__, freq);
  947. writel(freq, &sysctr->cntfid0);
  948. val = readl(&sysctr->cntcr);
  949. val |= TSC_CNTCR_ENABLE | TSC_CNTCR_HDBG;
  950. writel(val, &sysctr->cntcr);
  951. debug("%s: TSC CNTCR = 0x%08X\n", __func__, val);
  952. }
  953. #define PLLREFE_MISC 0x4c8
  954. #define PLLREFE_MISC_LOCK BIT(27)
  955. #define PLLREFE_MISC_IDDQ BIT(24)
  956. #define PLLREFE_BASE 0x4c4
  957. #define PLLREFE_BASE_BYPASS BIT(31)
  958. #define PLLREFE_BASE_ENABLE BIT(30)
  959. #define PLLREFE_BASE_REF_DIS BIT(29)
  960. #define PLLREFE_BASE_KCP(kcp) (((kcp) & 0x3) << 27)
  961. #define PLLREFE_BASE_KVCO BIT(26)
  962. #define PLLREFE_BASE_DIVP(p) (((p) & 0x1f) << 16)
  963. #define PLLREFE_BASE_DIVN(n) (((n) & 0xff) << 8)
  964. #define PLLREFE_BASE_DIVM(m) (((m) & 0xff) << 0)
  965. static int tegra_pllref_enable(void)
  966. {
  967. u32 value;
  968. unsigned long start;
  969. /*
  970. * This sequence comes from Tegra X1 TRM section "Cold Boot, with no
  971. * Recovery Mode or Boot from USB", sub-section "PLLREFE".
  972. */
  973. value = readl(NV_PA_CLK_RST_BASE + PLLREFE_MISC);
  974. value &= ~PLLREFE_MISC_IDDQ;
  975. writel(value, NV_PA_CLK_RST_BASE + PLLREFE_MISC);
  976. udelay(5);
  977. value = PLLREFE_BASE_ENABLE |
  978. PLLREFE_BASE_KCP(0) |
  979. PLLREFE_BASE_DIVP(0) |
  980. PLLREFE_BASE_DIVN(0x41) |
  981. PLLREFE_BASE_DIVM(4);
  982. writel(value, NV_PA_CLK_RST_BASE + PLLREFE_BASE);
  983. debug("waiting for pllrefe lock\n");
  984. start = get_timer(0);
  985. while (get_timer(start) < 250) {
  986. value = readl(NV_PA_CLK_RST_BASE + PLLREFE_MISC);
  987. if (value & PLLREFE_MISC_LOCK)
  988. break;
  989. }
  990. if (!(value & PLLREFE_MISC_LOCK)) {
  991. debug(" timeout\n");
  992. return -ETIMEDOUT;
  993. }
  994. debug(" done\n");
  995. return 0;
  996. }
  997. #define PLLE_SS_CNTL 0x68
  998. #define PLLE_SS_CNTL_SSCINCINTR(x) (((x) & 0x3f) << 24)
  999. #define PLLE_SS_CNTL_SSCINC(x) (((x) & 0xff) << 16)
  1000. #define PLLE_SS_CNTL_SSCINVERT (1 << 15)
  1001. #define PLLE_SS_CNTL_SSCCENTER (1 << 14)
  1002. #define PLLE_SS_CNTL_SSCBYP (1 << 12)
  1003. #define PLLE_SS_CNTL_INTERP_RESET (1 << 11)
  1004. #define PLLE_SS_CNTL_BYPASS_SS (1 << 10)
  1005. #define PLLE_SS_CNTL_SSCMAX(x) (((x) & 0x1ff) << 0)
  1006. #define PLLE_BASE 0x0e8
  1007. #define PLLE_BASE_ENABLE (1 << 31)
  1008. #define PLLE_BASE_PLDIV_CML(x) (((x) & 0x1f) << 24)
  1009. #define PLLE_BASE_NDIV(x) (((x) & 0xff) << 8)
  1010. #define PLLE_BASE_MDIV(x) (((x) & 0xff) << 0)
  1011. #define PLLE_MISC 0x0ec
  1012. #define PLLE_MISC_IDDQ_SWCTL (1 << 14)
  1013. #define PLLE_MISC_IDDQ_OVERRIDE_VALUE (1 << 13)
  1014. #define PLLE_MISC_LOCK (1 << 11)
  1015. #define PLLE_PTS (1 << 8)
  1016. #define PLLE_MISC_KCP(x) (((x) & 0x3) << 6)
  1017. #define PLLE_MISC_VREG_CTRL(x) (((x) & 0x3) << 2)
  1018. #define PLLE_MISC_KVCO (1 << 0)
  1019. #define PLLE_AUX 0x48c
  1020. #define PLLE_AUX_SS_SEQ_INCLUDE (1 << 31)
  1021. #define PLLE_AUX_REF_SEL_PLLREFE (1 << 28)
  1022. #define PLLE_AUX_SEQ_ENABLE (1 << 24)
  1023. #define PLLE_AUX_SS_SWCTL (1 << 6)
  1024. #define PLLE_AUX_ENABLE_SWCTL (1 << 4)
  1025. #define PLLE_AUX_USE_LOCKDET (1 << 3)
  1026. int tegra_plle_enable(void)
  1027. {
  1028. u32 value;
  1029. unsigned long start;
  1030. /* PLLREF feeds PLLE */
  1031. tegra_pllref_enable();
  1032. /*
  1033. * This sequence comes from Tegra X1 TRM section "Cold Boot, with no
  1034. * Recovery Mode or Boot from USB", sub-section "PLLEs".
  1035. */
  1036. /* 1. Select XTAL as the source */
  1037. value = readl(NV_PA_CLK_RST_BASE + PLLE_AUX);
  1038. value &= ~PLLE_AUX_REF_SEL_PLLREFE;
  1039. writel(value, NV_PA_CLK_RST_BASE + PLLE_AUX);
  1040. value = readl(NV_PA_CLK_RST_BASE + PLLE_MISC);
  1041. value &= ~PLLE_MISC_IDDQ_OVERRIDE_VALUE;
  1042. writel(value, NV_PA_CLK_RST_BASE + PLLE_MISC);
  1043. /* 2. Wait 5 us */
  1044. udelay(5);
  1045. /*
  1046. * 3. Program the following registers to generate a low jitter 100MHz
  1047. * clock.
  1048. */
  1049. value = readl(NV_PA_CLK_RST_BASE + PLLE_BASE);
  1050. value &= ~PLLE_BASE_PLDIV_CML(0x1f);
  1051. value &= ~PLLE_BASE_NDIV(0xff);
  1052. value &= ~PLLE_BASE_MDIV(0xff);
  1053. value |= PLLE_BASE_PLDIV_CML(0xe);
  1054. value |= PLLE_BASE_NDIV(0x7d);
  1055. value |= PLLE_BASE_MDIV(2);
  1056. writel(value, NV_PA_CLK_RST_BASE + PLLE_BASE);
  1057. value = readl(NV_PA_CLK_RST_BASE + PLLE_MISC);
  1058. value |= PLLE_PTS;
  1059. value &= ~PLLE_MISC_KCP(3);
  1060. value &= ~PLLE_MISC_VREG_CTRL(3);
  1061. value &= ~PLLE_MISC_KVCO;
  1062. writel(value, NV_PA_CLK_RST_BASE + PLLE_MISC);
  1063. value = readl(NV_PA_CLK_RST_BASE + PLLE_BASE);
  1064. value |= PLLE_BASE_ENABLE;
  1065. writel(value, NV_PA_CLK_RST_BASE + PLLE_BASE);
  1066. /* 4. Wait for LOCK */
  1067. debug("waiting for plle lock\n");
  1068. start = get_timer(0);
  1069. while (get_timer(start) < 250) {
  1070. value = readl(NV_PA_CLK_RST_BASE + PLLE_MISC);
  1071. if (value & PLLE_MISC_LOCK)
  1072. break;
  1073. }
  1074. if (!(value & PLLE_MISC_LOCK)) {
  1075. debug(" timeout\n");
  1076. return -ETIMEDOUT;
  1077. }
  1078. debug(" done\n");
  1079. /* 5. Enable SSA */
  1080. value = readl(NV_PA_CLK_RST_BASE + PLLE_SS_CNTL);
  1081. value &= ~PLLE_SS_CNTL_SSCINC(0xff);
  1082. value |= PLLE_SS_CNTL_SSCINC(1);
  1083. value &= ~PLLE_SS_CNTL_SSCINCINTR(0x3f);
  1084. value |= PLLE_SS_CNTL_SSCINCINTR(0x23);
  1085. value &= ~PLLE_SS_CNTL_SSCMAX(0x1fff);
  1086. value |= PLLE_SS_CNTL_SSCMAX(0x21);
  1087. value &= ~PLLE_SS_CNTL_SSCINVERT;
  1088. value &= ~PLLE_SS_CNTL_SSCCENTER;
  1089. value &= ~PLLE_SS_CNTL_BYPASS_SS;
  1090. value &= ~PLLE_SS_CNTL_SSCBYP;
  1091. writel(value, NV_PA_CLK_RST_BASE + PLLE_SS_CNTL);
  1092. /* 6. Wait 300 ns */
  1093. udelay(1);
  1094. value &= ~PLLE_SS_CNTL_INTERP_RESET;
  1095. writel(value, NV_PA_CLK_RST_BASE + PLLE_SS_CNTL);
  1096. /* 7. Enable HW power sequencer for PLLE */
  1097. value = readl(NV_PA_CLK_RST_BASE + PLLE_MISC);
  1098. value &= ~PLLE_MISC_IDDQ_SWCTL;
  1099. writel(value, NV_PA_CLK_RST_BASE + PLLE_MISC);
  1100. value = readl(NV_PA_CLK_RST_BASE + PLLE_AUX);
  1101. value &= ~PLLE_AUX_SS_SWCTL;
  1102. value &= ~PLLE_AUX_ENABLE_SWCTL;
  1103. value |= PLLE_AUX_SS_SEQ_INCLUDE;
  1104. value |= PLLE_AUX_USE_LOCKDET;
  1105. writel(value, NV_PA_CLK_RST_BASE + PLLE_AUX);
  1106. /* 8. Wait 1 us */
  1107. udelay(1);
  1108. value |= PLLE_AUX_SEQ_ENABLE;
  1109. writel(value, NV_PA_CLK_RST_BASE + PLLE_AUX);
  1110. return 0;
  1111. }
  1112. struct periph_clk_init periph_clk_init_table[] = {
  1113. { PERIPH_ID_SBC1, CLOCK_ID_PERIPH },
  1114. { PERIPH_ID_SBC2, CLOCK_ID_PERIPH },
  1115. { PERIPH_ID_SBC3, CLOCK_ID_PERIPH },
  1116. { PERIPH_ID_SBC4, CLOCK_ID_PERIPH },
  1117. { PERIPH_ID_SBC5, CLOCK_ID_PERIPH },
  1118. { PERIPH_ID_SBC6, CLOCK_ID_PERIPH },
  1119. { PERIPH_ID_HOST1X, CLOCK_ID_PERIPH },
  1120. { PERIPH_ID_DISP1, CLOCK_ID_CGENERAL },
  1121. { PERIPH_ID_SDMMC1, CLOCK_ID_PERIPH },
  1122. { PERIPH_ID_SDMMC2, CLOCK_ID_PERIPH },
  1123. { PERIPH_ID_SDMMC3, CLOCK_ID_PERIPH },
  1124. { PERIPH_ID_SDMMC4, CLOCK_ID_PERIPH },
  1125. { PERIPH_ID_PWM, CLOCK_ID_SFROM32KHZ },
  1126. { PERIPH_ID_I2C1, CLOCK_ID_PERIPH },
  1127. { PERIPH_ID_I2C2, CLOCK_ID_PERIPH },
  1128. { PERIPH_ID_I2C3, CLOCK_ID_PERIPH },
  1129. { PERIPH_ID_I2C4, CLOCK_ID_PERIPH },
  1130. { PERIPH_ID_I2C5, CLOCK_ID_PERIPH },
  1131. { PERIPH_ID_I2C6, CLOCK_ID_PERIPH },
  1132. { -1, },
  1133. };