ebi_onenand.c 4.6 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185
  1. // SPDX-License-Identifier: GPL-2.0+
  2. /*
  3. * (C) Copyright 2008 Stefan Roese <sr@denx.de>, DENX Software Engineering
  4. */
  5. #include <common.h>
  6. #include <asm/io.h>
  7. #include <linux/mtd/mtd.h>
  8. #include <linux/mtd/onenand.h>
  9. #include "vct.h"
  10. #define BURST_SIZE_WORDS 4
  11. static u16 ebi_nand_read_word(void __iomem *addr)
  12. {
  13. reg_write(EBI_CPU_IO_ACCS(EBI_BASE), (EXT_DEVICE_CHANNEL_2 | (u32)addr));
  14. ebi_wait();
  15. return reg_read(EBI_IO_ACCS_DATA(EBI_BASE)) >> 16;
  16. }
  17. static void ebi_nand_write_word(u16 data, void __iomem * addr)
  18. {
  19. ebi_wait();
  20. reg_write(EBI_IO_ACCS_DATA(EBI_BASE), (data << 16));
  21. reg_write(EBI_CPU_IO_ACCS(EBI_BASE),
  22. EXT_DEVICE_CHANNEL_2 | EBI_CPU_WRITE | (u32)addr);
  23. ebi_wait();
  24. }
  25. /*
  26. * EBI initialization for OneNAND FLASH access
  27. */
  28. int ebi_init_onenand(void)
  29. {
  30. reg_write(EBI_DEV1_CONFIG1(EBI_BASE), 0x83000);
  31. reg_write(EBI_DEV2_CONFIG1(EBI_BASE), 0x00403002);
  32. reg_write(EBI_DEV2_CONFIG2(EBI_BASE), 0x50);
  33. reg_write(EBI_DEV3_CONFIG1(EBI_BASE), 0x00403002);
  34. reg_write(EBI_DEV3_CONFIG2(EBI_BASE), 0x0); /* byte/word ordering */
  35. reg_write(EBI_DEV2_TIM1_RD1(EBI_BASE), 0x00504000);
  36. reg_write(EBI_DEV2_TIM1_RD2(EBI_BASE), 0x00001000);
  37. reg_write(EBI_DEV2_TIM1_WR1(EBI_BASE), 0x12002223);
  38. reg_write(EBI_DEV2_TIM1_WR2(EBI_BASE), 0x3FC02220);
  39. reg_write(EBI_DEV3_TIM1_RD1(EBI_BASE), 0x00504000);
  40. reg_write(EBI_DEV3_TIM1_RD2(EBI_BASE), 0x00001000);
  41. reg_write(EBI_DEV3_TIM1_WR1(EBI_BASE), 0x05001000);
  42. reg_write(EBI_DEV3_TIM1_WR2(EBI_BASE), 0x00010200);
  43. reg_write(EBI_DEV2_TIM_EXT(EBI_BASE), 0xFFF00000);
  44. reg_write(EBI_DEV2_EXT_ACC(EBI_BASE), 0x0FFFFFFF);
  45. reg_write(EBI_DEV3_TIM_EXT(EBI_BASE), 0xFFF00000);
  46. reg_write(EBI_DEV3_EXT_ACC(EBI_BASE), 0x0FFFFFFF);
  47. /* prepare DMA configuration for EBI */
  48. reg_write(EBI_DEV3_FIFO_CONFIG(EBI_BASE), 0x0101ff00);
  49. /* READ only no byte order change, TAG 1 used */
  50. reg_write(EBI_DEV3_DMA_CONFIG2(EBI_BASE), 0x00000004);
  51. reg_write(EBI_TAG1_SYS_ID(EBI_BASE), 0x0); /* SCC DMA channel 0 */
  52. reg_write(EBI_TAG2_SYS_ID(EBI_BASE), 0x1);
  53. reg_write(EBI_TAG3_SYS_ID(EBI_BASE), 0x2);
  54. reg_write(EBI_TAG4_SYS_ID(EBI_BASE), 0x3);
  55. return 0;
  56. }
  57. static void *memcpy_16_from_onenand(void *dst, const void *src, unsigned int len)
  58. {
  59. void *ret = dst;
  60. u16 *d = dst;
  61. u16 *s = (u16 *)src;
  62. len >>= 1;
  63. while (len-- > 0)
  64. *d++ = ebi_nand_read_word(s++);
  65. return ret;
  66. }
  67. static void *memcpy_32_from_onenand(void *dst, const void *src, unsigned int len)
  68. {
  69. void *ret = dst;
  70. u32 *d = (u32 *)dst;
  71. u32 s = (u32)src;
  72. u32 bytes_per_block = BURST_SIZE_WORDS * sizeof(int);
  73. u32 n_blocks = len / bytes_per_block;
  74. u32 block = 0;
  75. u32 burst_word;
  76. for (block = 0; block < n_blocks; block++) {
  77. /* Trigger read channel 3 */
  78. reg_write(EBI_CPU_IO_ACCS(EBI_BASE),
  79. (EXT_DEVICE_CHANNEL_3 | (s + (block * bytes_per_block))));
  80. /* Poll status to see whether read has finished */
  81. ebi_wait();
  82. /* Squirrel the data away in a safe place */
  83. for (burst_word = 0; burst_word < BURST_SIZE_WORDS; burst_word++)
  84. *d++ = reg_read(EBI_IO_ACCS_DATA(EBI_BASE));
  85. }
  86. return ret;
  87. }
  88. static void *memcpy_16_to_onenand(void *dst, const void *src, unsigned int len)
  89. {
  90. void *ret = dst;
  91. u16 *d = dst;
  92. u16 *s = (u16 *)src;
  93. len >>= 1;
  94. while (len-- > 0)
  95. ebi_nand_write_word(*s++, d++);
  96. return ret;
  97. }
  98. static inline int onenand_bufferram_offset(struct mtd_info *mtd, int area)
  99. {
  100. struct onenand_chip *this = mtd->priv;
  101. if (ONENAND_CURRENT_BUFFERRAM(this)) {
  102. if (area == ONENAND_DATARAM)
  103. return mtd->writesize;
  104. if (area == ONENAND_SPARERAM)
  105. return mtd->oobsize;
  106. }
  107. return 0;
  108. }
  109. static int ebi_read_bufferram(struct mtd_info *mtd, loff_t addr, int area,
  110. unsigned char *buffer, int offset,
  111. size_t count)
  112. {
  113. struct onenand_chip *this = mtd->priv;
  114. void __iomem *bufferram;
  115. bufferram = this->base + area;
  116. bufferram += onenand_bufferram_offset(mtd, area);
  117. if (count < 4)
  118. memcpy_16_from_onenand(buffer, bufferram + offset, count);
  119. else
  120. memcpy_32_from_onenand(buffer, bufferram + offset, count);
  121. return 0;
  122. }
  123. static int ebi_write_bufferram(struct mtd_info *mtd, loff_t addr, int area,
  124. const unsigned char *buffer, int offset,
  125. size_t count)
  126. {
  127. struct onenand_chip *this = mtd->priv;
  128. void __iomem *bufferram;
  129. bufferram = this->base + area;
  130. bufferram += onenand_bufferram_offset(mtd, area);
  131. memcpy_16_to_onenand(bufferram + offset, buffer, count);
  132. return 0;
  133. }
  134. int onenand_board_init(struct mtd_info *mtd)
  135. {
  136. struct onenand_chip *chip = mtd->priv;
  137. /*
  138. * Insert board specific OneNAND access functions
  139. */
  140. chip->read_word = ebi_nand_read_word;
  141. chip->write_word = ebi_nand_write_word;
  142. chip->read_bufferram = ebi_read_bufferram;
  143. chip->write_bufferram = ebi_write_bufferram;
  144. return 0;
  145. }