clock.c 21 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792
  1. // SPDX-License-Identifier: GPL-2.0+
  2. /*
  3. * Copyright 2017 NXP
  4. *
  5. * Peng Fan <peng.fan@nxp.com>
  6. */
  7. #include <common.h>
  8. #include <asm/arch/clock.h>
  9. #include <asm/arch/imx-regs.h>
  10. #include <asm/io.h>
  11. #include <asm/arch/sys_proto.h>
  12. #include <errno.h>
  13. #include <linux/iopoll.h>
  14. static struct anamix_pll *ana_pll = (struct anamix_pll *)ANATOP_BASE_ADDR;
  15. static u32 decode_frac_pll(enum clk_root_src frac_pll)
  16. {
  17. u32 pll_cfg0, pll_cfg1, pllout;
  18. u32 pll_refclk_sel, pll_refclk;
  19. u32 divr_val, divq_val, divf_val, divff, divfi;
  20. u32 pllout_div_shift, pllout_div_mask, pllout_div;
  21. switch (frac_pll) {
  22. case ARM_PLL_CLK:
  23. pll_cfg0 = readl(&ana_pll->arm_pll_cfg0);
  24. pll_cfg1 = readl(&ana_pll->arm_pll_cfg1);
  25. pllout_div_shift = HW_FRAC_ARM_PLL_DIV_SHIFT;
  26. pllout_div_mask = HW_FRAC_ARM_PLL_DIV_MASK;
  27. break;
  28. default:
  29. printf("Frac PLL %d not supporte\n", frac_pll);
  30. return 0;
  31. }
  32. pllout_div = readl(&ana_pll->frac_pllout_div_cfg);
  33. pllout_div = (pllout_div & pllout_div_mask) >> pllout_div_shift;
  34. /* Power down */
  35. if (pll_cfg0 & FRAC_PLL_PD_MASK)
  36. return 0;
  37. /* output not enabled */
  38. if ((pll_cfg0 & FRAC_PLL_CLKE_MASK) == 0)
  39. return 0;
  40. pll_refclk_sel = pll_cfg0 & FRAC_PLL_REFCLK_SEL_MASK;
  41. if (pll_refclk_sel == FRAC_PLL_REFCLK_SEL_OSC_25M)
  42. pll_refclk = 25000000u;
  43. else if (pll_refclk_sel == FRAC_PLL_REFCLK_SEL_OSC_27M)
  44. pll_refclk = 27000000u;
  45. else if (pll_refclk_sel == FRAC_PLL_REFCLK_SEL_HDMI_PHY_27M)
  46. pll_refclk = 27000000u;
  47. else
  48. pll_refclk = 0;
  49. if (pll_cfg0 & FRAC_PLL_BYPASS_MASK)
  50. return pll_refclk;
  51. divr_val = (pll_cfg0 & FRAC_PLL_REFCLK_DIV_VAL_MASK) >>
  52. FRAC_PLL_REFCLK_DIV_VAL_SHIFT;
  53. divq_val = pll_cfg0 & FRAC_PLL_OUTPUT_DIV_VAL_MASK;
  54. divff = (pll_cfg1 & FRAC_PLL_FRAC_DIV_CTL_MASK) >>
  55. FRAC_PLL_FRAC_DIV_CTL_SHIFT;
  56. divfi = pll_cfg1 & FRAC_PLL_INT_DIV_CTL_MASK;
  57. divf_val = 1 + divfi + divff / (1 << 24);
  58. pllout = pll_refclk / (divr_val + 1) * 8 * divf_val /
  59. ((divq_val + 1) * 2);
  60. return pllout / (pllout_div + 1);
  61. }
  62. static u32 decode_sscg_pll(enum clk_root_src sscg_pll)
  63. {
  64. u32 pll_cfg0, pll_cfg1, pll_cfg2;
  65. u32 pll_refclk_sel, pll_refclk;
  66. u32 divr1, divr2, divf1, divf2, divq, div;
  67. u32 sse;
  68. u32 pll_clke;
  69. u32 pllout_div_shift, pllout_div_mask, pllout_div;
  70. u32 pllout;
  71. switch (sscg_pll) {
  72. case SYSTEM_PLL1_800M_CLK:
  73. case SYSTEM_PLL1_400M_CLK:
  74. case SYSTEM_PLL1_266M_CLK:
  75. case SYSTEM_PLL1_200M_CLK:
  76. case SYSTEM_PLL1_160M_CLK:
  77. case SYSTEM_PLL1_133M_CLK:
  78. case SYSTEM_PLL1_100M_CLK:
  79. case SYSTEM_PLL1_80M_CLK:
  80. case SYSTEM_PLL1_40M_CLK:
  81. pll_cfg0 = readl(&ana_pll->sys_pll1_cfg0);
  82. pll_cfg1 = readl(&ana_pll->sys_pll1_cfg1);
  83. pll_cfg2 = readl(&ana_pll->sys_pll1_cfg2);
  84. pllout_div_shift = HW_SSCG_SYSTEM_PLL1_DIV_SHIFT;
  85. pllout_div_mask = HW_SSCG_SYSTEM_PLL1_DIV_MASK;
  86. break;
  87. case SYSTEM_PLL2_1000M_CLK:
  88. case SYSTEM_PLL2_500M_CLK:
  89. case SYSTEM_PLL2_333M_CLK:
  90. case SYSTEM_PLL2_250M_CLK:
  91. case SYSTEM_PLL2_200M_CLK:
  92. case SYSTEM_PLL2_166M_CLK:
  93. case SYSTEM_PLL2_125M_CLK:
  94. case SYSTEM_PLL2_100M_CLK:
  95. case SYSTEM_PLL2_50M_CLK:
  96. pll_cfg0 = readl(&ana_pll->sys_pll2_cfg0);
  97. pll_cfg1 = readl(&ana_pll->sys_pll2_cfg1);
  98. pll_cfg2 = readl(&ana_pll->sys_pll2_cfg2);
  99. pllout_div_shift = HW_SSCG_SYSTEM_PLL2_DIV_SHIFT;
  100. pllout_div_mask = HW_SSCG_SYSTEM_PLL2_DIV_MASK;
  101. break;
  102. case SYSTEM_PLL3_CLK:
  103. pll_cfg0 = readl(&ana_pll->sys_pll3_cfg0);
  104. pll_cfg1 = readl(&ana_pll->sys_pll3_cfg1);
  105. pll_cfg2 = readl(&ana_pll->sys_pll3_cfg2);
  106. pllout_div_shift = HW_SSCG_SYSTEM_PLL3_DIV_SHIFT;
  107. pllout_div_mask = HW_SSCG_SYSTEM_PLL3_DIV_MASK;
  108. break;
  109. case DRAM_PLL1_CLK:
  110. pll_cfg0 = readl(&ana_pll->dram_pll_cfg0);
  111. pll_cfg1 = readl(&ana_pll->dram_pll_cfg1);
  112. pll_cfg2 = readl(&ana_pll->dram_pll_cfg2);
  113. pllout_div_shift = HW_SSCG_DRAM_PLL_DIV_SHIFT;
  114. pllout_div_mask = HW_SSCG_DRAM_PLL_DIV_MASK;
  115. break;
  116. default:
  117. printf("sscg pll %d not supporte\n", sscg_pll);
  118. return 0;
  119. }
  120. switch (sscg_pll) {
  121. case DRAM_PLL1_CLK:
  122. pll_clke = SSCG_PLL_DRAM_PLL_CLKE_MASK;
  123. div = 1;
  124. break;
  125. case SYSTEM_PLL3_CLK:
  126. pll_clke = SSCG_PLL_PLL3_CLKE_MASK;
  127. div = 1;
  128. break;
  129. case SYSTEM_PLL2_1000M_CLK:
  130. case SYSTEM_PLL1_800M_CLK:
  131. pll_clke = SSCG_PLL_CLKE_MASK;
  132. div = 1;
  133. break;
  134. case SYSTEM_PLL2_500M_CLK:
  135. case SYSTEM_PLL1_400M_CLK:
  136. pll_clke = SSCG_PLL_DIV2_CLKE_MASK;
  137. div = 2;
  138. break;
  139. case SYSTEM_PLL2_333M_CLK:
  140. case SYSTEM_PLL1_266M_CLK:
  141. pll_clke = SSCG_PLL_DIV3_CLKE_MASK;
  142. div = 3;
  143. break;
  144. case SYSTEM_PLL2_250M_CLK:
  145. case SYSTEM_PLL1_200M_CLK:
  146. pll_clke = SSCG_PLL_DIV4_CLKE_MASK;
  147. div = 4;
  148. break;
  149. case SYSTEM_PLL2_200M_CLK:
  150. case SYSTEM_PLL1_160M_CLK:
  151. pll_clke = SSCG_PLL_DIV5_CLKE_MASK;
  152. div = 5;
  153. break;
  154. case SYSTEM_PLL2_166M_CLK:
  155. case SYSTEM_PLL1_133M_CLK:
  156. pll_clke = SSCG_PLL_DIV6_CLKE_MASK;
  157. div = 6;
  158. break;
  159. case SYSTEM_PLL2_125M_CLK:
  160. case SYSTEM_PLL1_100M_CLK:
  161. pll_clke = SSCG_PLL_DIV8_CLKE_MASK;
  162. div = 8;
  163. break;
  164. case SYSTEM_PLL2_100M_CLK:
  165. case SYSTEM_PLL1_80M_CLK:
  166. pll_clke = SSCG_PLL_DIV10_CLKE_MASK;
  167. div = 10;
  168. break;
  169. case SYSTEM_PLL2_50M_CLK:
  170. case SYSTEM_PLL1_40M_CLK:
  171. pll_clke = SSCG_PLL_DIV20_CLKE_MASK;
  172. div = 20;
  173. break;
  174. default:
  175. printf("sscg pll %d not supporte\n", sscg_pll);
  176. return 0;
  177. }
  178. /* Power down */
  179. if (pll_cfg0 & SSCG_PLL_PD_MASK)
  180. return 0;
  181. /* output not enabled */
  182. if ((pll_cfg0 & pll_clke) == 0)
  183. return 0;
  184. pllout_div = readl(&ana_pll->sscg_pllout_div_cfg);
  185. pllout_div = (pllout_div & pllout_div_mask) >> pllout_div_shift;
  186. pll_refclk_sel = pll_cfg0 & SSCG_PLL_REFCLK_SEL_MASK;
  187. if (pll_refclk_sel == SSCG_PLL_REFCLK_SEL_OSC_25M)
  188. pll_refclk = 25000000u;
  189. else if (pll_refclk_sel == SSCG_PLL_REFCLK_SEL_OSC_27M)
  190. pll_refclk = 27000000u;
  191. else if (pll_refclk_sel == SSCG_PLL_REFCLK_SEL_HDMI_PHY_27M)
  192. pll_refclk = 27000000u;
  193. else
  194. pll_refclk = 0;
  195. /* We assume bypass1/2 are the same value */
  196. if ((pll_cfg0 & SSCG_PLL_BYPASS1_MASK) ||
  197. (pll_cfg0 & SSCG_PLL_BYPASS2_MASK))
  198. return pll_refclk;
  199. divr1 = (pll_cfg2 & SSCG_PLL_REF_DIVR1_MASK) >>
  200. SSCG_PLL_REF_DIVR1_SHIFT;
  201. divr2 = (pll_cfg2 & SSCG_PLL_REF_DIVR2_MASK) >>
  202. SSCG_PLL_REF_DIVR2_SHIFT;
  203. divf1 = (pll_cfg2 & SSCG_PLL_FEEDBACK_DIV_F1_MASK) >>
  204. SSCG_PLL_FEEDBACK_DIV_F1_SHIFT;
  205. divf2 = (pll_cfg2 & SSCG_PLL_FEEDBACK_DIV_F2_MASK) >>
  206. SSCG_PLL_FEEDBACK_DIV_F2_SHIFT;
  207. divq = (pll_cfg2 & SSCG_PLL_OUTPUT_DIV_VAL_MASK) >>
  208. SSCG_PLL_OUTPUT_DIV_VAL_SHIFT;
  209. sse = pll_cfg1 & SSCG_PLL_SSE_MASK;
  210. if (sse)
  211. sse = 8;
  212. else
  213. sse = 2;
  214. pllout = pll_refclk / (divr1 + 1) * sse * (divf1 + 1) /
  215. (divr2 + 1) * (divf2 + 1) / (divq + 1);
  216. return pllout / (pllout_div + 1) / div;
  217. }
  218. static u32 get_root_src_clk(enum clk_root_src root_src)
  219. {
  220. switch (root_src) {
  221. case OSC_25M_CLK:
  222. return 25000000;
  223. case OSC_27M_CLK:
  224. return 25000000;
  225. case OSC_32K_CLK:
  226. return 32000;
  227. case ARM_PLL_CLK:
  228. return decode_frac_pll(root_src);
  229. case SYSTEM_PLL1_800M_CLK:
  230. case SYSTEM_PLL1_400M_CLK:
  231. case SYSTEM_PLL1_266M_CLK:
  232. case SYSTEM_PLL1_200M_CLK:
  233. case SYSTEM_PLL1_160M_CLK:
  234. case SYSTEM_PLL1_133M_CLK:
  235. case SYSTEM_PLL1_100M_CLK:
  236. case SYSTEM_PLL1_80M_CLK:
  237. case SYSTEM_PLL1_40M_CLK:
  238. case SYSTEM_PLL2_1000M_CLK:
  239. case SYSTEM_PLL2_500M_CLK:
  240. case SYSTEM_PLL2_333M_CLK:
  241. case SYSTEM_PLL2_250M_CLK:
  242. case SYSTEM_PLL2_200M_CLK:
  243. case SYSTEM_PLL2_166M_CLK:
  244. case SYSTEM_PLL2_125M_CLK:
  245. case SYSTEM_PLL2_100M_CLK:
  246. case SYSTEM_PLL2_50M_CLK:
  247. case SYSTEM_PLL3_CLK:
  248. return decode_sscg_pll(root_src);
  249. default:
  250. return 0;
  251. }
  252. return 0;
  253. }
  254. static u32 get_root_clk(enum clk_root_index clock_id)
  255. {
  256. enum clk_root_src root_src;
  257. u32 post_podf, pre_podf, root_src_clk;
  258. if (clock_root_enabled(clock_id) <= 0)
  259. return 0;
  260. if (clock_get_prediv(clock_id, &pre_podf) < 0)
  261. return 0;
  262. if (clock_get_postdiv(clock_id, &post_podf) < 0)
  263. return 0;
  264. if (clock_get_src(clock_id, &root_src) < 0)
  265. return 0;
  266. root_src_clk = get_root_src_clk(root_src);
  267. return root_src_clk / (post_podf + 1) / (pre_podf + 1);
  268. }
  269. #ifdef CONFIG_MXC_OCOTP
  270. void enable_ocotp_clk(unsigned char enable)
  271. {
  272. clock_enable(CCGR_OCOTP, !!enable);
  273. }
  274. #endif
  275. int enable_i2c_clk(unsigned char enable, unsigned int i2c_num)
  276. {
  277. /* 0 - 3 is valid i2c num */
  278. if (i2c_num > 3)
  279. return -EINVAL;
  280. clock_enable(CCGR_I2C1 + i2c_num, !!enable);
  281. return 0;
  282. }
  283. unsigned int mxc_get_clock(enum clk_root_index clk)
  284. {
  285. u32 val;
  286. if (clk >= CLK_ROOT_MAX)
  287. return 0;
  288. if (clk == MXC_ARM_CLK)
  289. return get_root_clk(ARM_A53_CLK_ROOT);
  290. if (clk == MXC_IPG_CLK) {
  291. clock_get_target_val(IPG_CLK_ROOT, &val);
  292. val = val & 0x3;
  293. return get_root_clk(AHB_CLK_ROOT) / (val + 1);
  294. }
  295. return get_root_clk(clk);
  296. }
  297. u32 imx_get_uartclk(void)
  298. {
  299. return mxc_get_clock(UART1_CLK_ROOT);
  300. }
  301. void mxs_set_lcdclk(u32 base_addr, u32 freq)
  302. {
  303. /*
  304. * LCDIF_PIXEL_CLK: select 800MHz root clock,
  305. * select pre divider 8, output is 100 MHz
  306. */
  307. clock_set_target_val(LCDIF_PIXEL_CLK_ROOT, CLK_ROOT_ON |
  308. CLK_ROOT_SOURCE_SEL(4) |
  309. CLK_ROOT_PRE_DIV(CLK_ROOT_PRE_DIV8));
  310. }
  311. void init_wdog_clk(void)
  312. {
  313. clock_enable(CCGR_WDOG1, 0);
  314. clock_enable(CCGR_WDOG2, 0);
  315. clock_enable(CCGR_WDOG3, 0);
  316. clock_set_target_val(WDOG_CLK_ROOT, CLK_ROOT_ON |
  317. CLK_ROOT_SOURCE_SEL(0));
  318. clock_set_target_val(WDOG_CLK_ROOT, CLK_ROOT_ON |
  319. CLK_ROOT_SOURCE_SEL(0));
  320. clock_set_target_val(WDOG_CLK_ROOT, CLK_ROOT_ON |
  321. CLK_ROOT_SOURCE_SEL(0));
  322. clock_enable(CCGR_WDOG1, 1);
  323. clock_enable(CCGR_WDOG2, 1);
  324. clock_enable(CCGR_WDOG3, 1);
  325. }
  326. void init_usb_clk(void)
  327. {
  328. if (!is_usb_boot()) {
  329. clock_enable(CCGR_USB_CTRL1, 0);
  330. clock_enable(CCGR_USB_CTRL2, 0);
  331. clock_enable(CCGR_USB_PHY1, 0);
  332. clock_enable(CCGR_USB_PHY2, 0);
  333. /* 500MHz */
  334. clock_set_target_val(USB_BUS_CLK_ROOT, CLK_ROOT_ON |
  335. CLK_ROOT_SOURCE_SEL(1));
  336. /* 100MHz */
  337. clock_set_target_val(USB_CORE_REF_CLK_ROOT, CLK_ROOT_ON |
  338. CLK_ROOT_SOURCE_SEL(1));
  339. /* 100MHz */
  340. clock_set_target_val(USB_PHY_REF_CLK_ROOT, CLK_ROOT_ON |
  341. CLK_ROOT_SOURCE_SEL(1));
  342. clock_enable(CCGR_USB_CTRL1, 1);
  343. clock_enable(CCGR_USB_CTRL2, 1);
  344. clock_enable(CCGR_USB_PHY1, 1);
  345. clock_enable(CCGR_USB_PHY2, 1);
  346. }
  347. }
  348. void init_uart_clk(u32 index)
  349. {
  350. /* Set uart clock root 25M OSC */
  351. switch (index) {
  352. case 0:
  353. clock_enable(CCGR_UART1, 0);
  354. clock_set_target_val(UART1_CLK_ROOT, CLK_ROOT_ON |
  355. CLK_ROOT_SOURCE_SEL(0));
  356. clock_enable(CCGR_UART1, 1);
  357. return;
  358. case 1:
  359. clock_enable(CCGR_UART2, 0);
  360. clock_set_target_val(UART2_CLK_ROOT, CLK_ROOT_ON |
  361. CLK_ROOT_SOURCE_SEL(0));
  362. clock_enable(CCGR_UART2, 1);
  363. return;
  364. case 2:
  365. clock_enable(CCGR_UART3, 0);
  366. clock_set_target_val(UART3_CLK_ROOT, CLK_ROOT_ON |
  367. CLK_ROOT_SOURCE_SEL(0));
  368. clock_enable(CCGR_UART3, 1);
  369. return;
  370. case 3:
  371. clock_enable(CCGR_UART4, 0);
  372. clock_set_target_val(UART4_CLK_ROOT, CLK_ROOT_ON |
  373. CLK_ROOT_SOURCE_SEL(0));
  374. clock_enable(CCGR_UART4, 1);
  375. return;
  376. default:
  377. printf("Invalid uart index\n");
  378. return;
  379. }
  380. }
  381. void init_clk_usdhc(u32 index)
  382. {
  383. /*
  384. * set usdhc clock root
  385. * sys pll1 400M
  386. */
  387. switch (index) {
  388. case 0:
  389. clock_enable(CCGR_USDHC1, 0);
  390. clock_set_target_val(USDHC1_CLK_ROOT, CLK_ROOT_ON |
  391. CLK_ROOT_SOURCE_SEL(1) |
  392. CLK_ROOT_POST_DIV(CLK_ROOT_POST_DIV2));
  393. clock_enable(CCGR_USDHC1, 1);
  394. return;
  395. case 1:
  396. clock_enable(CCGR_USDHC2, 0);
  397. clock_set_target_val(USDHC2_CLK_ROOT, CLK_ROOT_ON |
  398. CLK_ROOT_SOURCE_SEL(1) |
  399. CLK_ROOT_POST_DIV(CLK_ROOT_POST_DIV2));
  400. clock_enable(CCGR_USDHC2, 1);
  401. return;
  402. default:
  403. printf("Invalid usdhc index\n");
  404. return;
  405. }
  406. }
  407. int set_clk_qspi(void)
  408. {
  409. /*
  410. * set qspi root
  411. * sys pll1 100M
  412. */
  413. clock_enable(CCGR_QSPI, 0);
  414. clock_set_target_val(QSPI_CLK_ROOT, CLK_ROOT_ON |
  415. CLK_ROOT_SOURCE_SEL(7));
  416. clock_enable(CCGR_QSPI, 1);
  417. return 0;
  418. }
  419. #ifdef CONFIG_FEC_MXC
  420. int set_clk_enet(enum enet_freq type)
  421. {
  422. u32 target;
  423. u32 enet1_ref;
  424. switch (type) {
  425. case ENET_125MHZ:
  426. enet1_ref = ENET1_REF_CLK_ROOT_FROM_PLL_ENET_MAIN_125M_CLK;
  427. break;
  428. case ENET_50MHZ:
  429. enet1_ref = ENET1_REF_CLK_ROOT_FROM_PLL_ENET_MAIN_50M_CLK;
  430. break;
  431. case ENET_25MHZ:
  432. enet1_ref = ENET1_REF_CLK_ROOT_FROM_PLL_ENET_MAIN_25M_CLK;
  433. break;
  434. default:
  435. return -EINVAL;
  436. }
  437. /* disable the clock first */
  438. clock_enable(CCGR_ENET1, 0);
  439. clock_enable(CCGR_SIM_ENET, 0);
  440. /* set enet axi clock 266Mhz */
  441. target = CLK_ROOT_ON | ENET_AXI_CLK_ROOT_FROM_SYS1_PLL_266M |
  442. CLK_ROOT_PRE_DIV(CLK_ROOT_PRE_DIV1) |
  443. CLK_ROOT_POST_DIV(CLK_ROOT_POST_DIV1);
  444. clock_set_target_val(ENET_AXI_CLK_ROOT, target);
  445. target = CLK_ROOT_ON | enet1_ref |
  446. CLK_ROOT_PRE_DIV(CLK_ROOT_PRE_DIV1) |
  447. CLK_ROOT_POST_DIV(CLK_ROOT_POST_DIV1);
  448. clock_set_target_val(ENET_REF_CLK_ROOT, target);
  449. target = CLK_ROOT_ON |
  450. ENET1_TIME_CLK_ROOT_FROM_PLL_ENET_MAIN_100M_CLK |
  451. CLK_ROOT_PRE_DIV(CLK_ROOT_PRE_DIV1) |
  452. CLK_ROOT_POST_DIV(CLK_ROOT_POST_DIV4);
  453. clock_set_target_val(ENET_TIMER_CLK_ROOT, target);
  454. /* enable clock */
  455. clock_enable(CCGR_SIM_ENET, 1);
  456. clock_enable(CCGR_ENET1, 1);
  457. return 0;
  458. }
  459. #endif
  460. u32 imx_get_fecclk(void)
  461. {
  462. return get_root_clk(ENET_AXI_CLK_ROOT);
  463. }
  464. #ifdef CONFIG_SPL_BUILD
  465. void dram_pll_init(void)
  466. {
  467. struct src *src = (struct src *)SRC_BASE_ADDR;
  468. void __iomem *pll_control_reg = &ana_pll->dram_pll_cfg0;
  469. u32 pwdn_mask = 0, pll_clke = 0, bypass1 = 0, bypass2 = 0;
  470. u32 val;
  471. int ret;
  472. setbits_le32(GPC_BASE_ADDR + 0xEC, BIT(7));
  473. setbits_le32(GPC_BASE_ADDR + 0xF8, BIT(5));
  474. pwdn_mask = SSCG_PLL_PD_MASK;
  475. pll_clke = SSCG_PLL_DRAM_PLL_CLKE_MASK;
  476. bypass1 = SSCG_PLL_BYPASS1_MASK;
  477. bypass2 = SSCG_PLL_BYPASS2_MASK;
  478. /* Enable DDR1 and DDR2 domain */
  479. writel(SRC_DDR1_ENABLE_MASK, &src->ddr1_rcr);
  480. writel(SRC_DDR1_ENABLE_MASK, &src->ddr2_rcr);
  481. /* Clear power down bit */
  482. clrbits_le32(pll_control_reg, pwdn_mask);
  483. /* Eanble ARM_PLL/SYS_PLL */
  484. setbits_le32(pll_control_reg, pll_clke);
  485. /* Clear bypass */
  486. clrbits_le32(pll_control_reg, bypass1);
  487. __udelay(100);
  488. clrbits_le32(pll_control_reg, bypass2);
  489. /* Wait lock */
  490. ret = readl_poll_timeout(pll_control_reg, val,
  491. val & SSCG_PLL_LOCK_MASK, 1);
  492. if (ret)
  493. printf("%s timeout\n", __func__);
  494. }
  495. int frac_pll_init(u32 pll, enum frac_pll_out_val val)
  496. {
  497. void __iomem *pll_cfg0, __iomem *pll_cfg1;
  498. u32 val_cfg0, val_cfg1;
  499. int ret;
  500. switch (pll) {
  501. case ANATOP_ARM_PLL:
  502. pll_cfg0 = &ana_pll->arm_pll_cfg0;
  503. pll_cfg1 = &ana_pll->arm_pll_cfg1;
  504. if (val == FRAC_PLL_OUT_1000M)
  505. val_cfg1 = FRAC_PLL_INT_DIV_CTL_VAL(49);
  506. else
  507. val_cfg1 = FRAC_PLL_INT_DIV_CTL_VAL(79);
  508. val_cfg0 = FRAC_PLL_CLKE_MASK | FRAC_PLL_REFCLK_SEL_OSC_25M |
  509. FRAC_PLL_LOCK_SEL_MASK | FRAC_PLL_NEWDIV_VAL_MASK |
  510. FRAC_PLL_REFCLK_DIV_VAL(4) |
  511. FRAC_PLL_OUTPUT_DIV_VAL(0);
  512. break;
  513. default:
  514. return -EINVAL;
  515. }
  516. /* bypass the clock */
  517. setbits_le32(pll_cfg0, FRAC_PLL_BYPASS_MASK);
  518. /* Set the value */
  519. writel(val_cfg1, pll_cfg1);
  520. writel(val_cfg0 | FRAC_PLL_BYPASS_MASK, pll_cfg0);
  521. val_cfg0 = readl(pll_cfg0);
  522. /* unbypass the clock */
  523. clrbits_le32(pll_cfg0, FRAC_PLL_BYPASS_MASK);
  524. ret = readl_poll_timeout(pll_cfg0, val_cfg0,
  525. val_cfg0 & FRAC_PLL_LOCK_MASK, 1);
  526. if (ret)
  527. printf("%s timeout\n", __func__);
  528. clrbits_le32(pll_cfg0, FRAC_PLL_NEWDIV_VAL_MASK);
  529. return 0;
  530. }
  531. int sscg_pll_init(u32 pll)
  532. {
  533. void __iomem *pll_cfg0, __iomem *pll_cfg1, __iomem *pll_cfg2;
  534. u32 val_cfg0, val_cfg1, val_cfg2, val;
  535. u32 bypass1_mask = 0x20, bypass2_mask = 0x10;
  536. int ret;
  537. switch (pll) {
  538. case ANATOP_SYSTEM_PLL1:
  539. pll_cfg0 = &ana_pll->sys_pll1_cfg0;
  540. pll_cfg1 = &ana_pll->sys_pll1_cfg1;
  541. pll_cfg2 = &ana_pll->sys_pll1_cfg2;
  542. /* 800MHz */
  543. val_cfg2 = SSCG_PLL_FEEDBACK_DIV_F1_VAL(3) |
  544. SSCG_PLL_FEEDBACK_DIV_F2_VAL(3);
  545. val_cfg1 = 0;
  546. val_cfg0 = SSCG_PLL_CLKE_MASK | SSCG_PLL_DIV2_CLKE_MASK |
  547. SSCG_PLL_DIV3_CLKE_MASK | SSCG_PLL_DIV4_CLKE_MASK |
  548. SSCG_PLL_DIV5_CLKE_MASK | SSCG_PLL_DIV6_CLKE_MASK |
  549. SSCG_PLL_DIV8_CLKE_MASK | SSCG_PLL_DIV10_CLKE_MASK |
  550. SSCG_PLL_DIV20_CLKE_MASK | SSCG_PLL_LOCK_SEL_MASK |
  551. SSCG_PLL_REFCLK_SEL_OSC_25M;
  552. break;
  553. case ANATOP_SYSTEM_PLL2:
  554. pll_cfg0 = &ana_pll->sys_pll2_cfg0;
  555. pll_cfg1 = &ana_pll->sys_pll2_cfg1;
  556. pll_cfg2 = &ana_pll->sys_pll2_cfg2;
  557. /* 1000MHz */
  558. val_cfg2 = SSCG_PLL_FEEDBACK_DIV_F1_VAL(3) |
  559. SSCG_PLL_FEEDBACK_DIV_F2_VAL(4);
  560. val_cfg1 = 0;
  561. val_cfg0 = SSCG_PLL_CLKE_MASK | SSCG_PLL_DIV2_CLKE_MASK |
  562. SSCG_PLL_DIV3_CLKE_MASK | SSCG_PLL_DIV4_CLKE_MASK |
  563. SSCG_PLL_DIV5_CLKE_MASK | SSCG_PLL_DIV6_CLKE_MASK |
  564. SSCG_PLL_DIV8_CLKE_MASK | SSCG_PLL_DIV10_CLKE_MASK |
  565. SSCG_PLL_DIV20_CLKE_MASK | SSCG_PLL_LOCK_SEL_MASK |
  566. SSCG_PLL_REFCLK_SEL_OSC_25M;
  567. break;
  568. case ANATOP_SYSTEM_PLL3:
  569. pll_cfg0 = &ana_pll->sys_pll3_cfg0;
  570. pll_cfg1 = &ana_pll->sys_pll3_cfg1;
  571. pll_cfg2 = &ana_pll->sys_pll3_cfg2;
  572. /* 800MHz */
  573. val_cfg2 = SSCG_PLL_FEEDBACK_DIV_F1_VAL(3) |
  574. SSCG_PLL_FEEDBACK_DIV_F2_VAL(3);
  575. val_cfg1 = 0;
  576. val_cfg0 = SSCG_PLL_PLL3_CLKE_MASK | SSCG_PLL_LOCK_SEL_MASK |
  577. SSCG_PLL_REFCLK_SEL_OSC_25M;
  578. break;
  579. default:
  580. return -EINVAL;
  581. }
  582. /*bypass*/
  583. setbits_le32(pll_cfg0, bypass1_mask | bypass2_mask);
  584. /* set value */
  585. writel(val_cfg2, pll_cfg2);
  586. writel(val_cfg1, pll_cfg1);
  587. /*unbypass1 and wait 70us */
  588. writel(val_cfg0 | bypass2_mask, pll_cfg1);
  589. __udelay(70);
  590. /* unbypass2 and wait lock */
  591. writel(val_cfg0, pll_cfg1);
  592. ret = readl_poll_timeout(pll_cfg0, val, val & SSCG_PLL_LOCK_MASK, 1);
  593. if (ret)
  594. printf("%s timeout\n", __func__);
  595. return ret;
  596. }
  597. int clock_init(void)
  598. {
  599. u32 grade;
  600. clock_set_target_val(ARM_A53_CLK_ROOT, CLK_ROOT_ON |
  601. CLK_ROOT_SOURCE_SEL(0));
  602. /*
  603. * 8MQ only supports two grades: consumer and industrial.
  604. * We set ARM clock to 1Ghz for consumer, 800Mhz for industrial
  605. */
  606. grade = get_cpu_temp_grade(NULL, NULL);
  607. if (!grade) {
  608. frac_pll_init(ANATOP_ARM_PLL, FRAC_PLL_OUT_1000M);
  609. clock_set_target_val(ARM_A53_CLK_ROOT, CLK_ROOT_ON |
  610. CLK_ROOT_SOURCE_SEL(1) |
  611. CLK_ROOT_POST_DIV(CLK_ROOT_POST_DIV1));
  612. } else {
  613. frac_pll_init(ANATOP_ARM_PLL, FRAC_PLL_OUT_1600M);
  614. clock_set_target_val(ARM_A53_CLK_ROOT, CLK_ROOT_ON |
  615. CLK_ROOT_SOURCE_SEL(1) |
  616. CLK_ROOT_POST_DIV(CLK_ROOT_POST_DIV2));
  617. }
  618. /*
  619. * According to ANAMIX SPEC
  620. * sys pll1 fixed at 800MHz
  621. * sys pll2 fixed at 1GHz
  622. * Here we only enable the outputs.
  623. */
  624. setbits_le32(&ana_pll->sys_pll1_cfg0, SSCG_PLL_CLKE_MASK |
  625. SSCG_PLL_DIV2_CLKE_MASK | SSCG_PLL_DIV3_CLKE_MASK |
  626. SSCG_PLL_DIV4_CLKE_MASK | SSCG_PLL_DIV5_CLKE_MASK |
  627. SSCG_PLL_DIV6_CLKE_MASK | SSCG_PLL_DIV8_CLKE_MASK |
  628. SSCG_PLL_DIV10_CLKE_MASK | SSCG_PLL_DIV20_CLKE_MASK);
  629. setbits_le32(&ana_pll->sys_pll2_cfg0, SSCG_PLL_CLKE_MASK |
  630. SSCG_PLL_DIV2_CLKE_MASK | SSCG_PLL_DIV3_CLKE_MASK |
  631. SSCG_PLL_DIV4_CLKE_MASK | SSCG_PLL_DIV5_CLKE_MASK |
  632. SSCG_PLL_DIV6_CLKE_MASK | SSCG_PLL_DIV8_CLKE_MASK |
  633. SSCG_PLL_DIV10_CLKE_MASK | SSCG_PLL_DIV20_CLKE_MASK);
  634. clock_set_target_val(NAND_USDHC_BUS_CLK_ROOT, CLK_ROOT_ON |
  635. CLK_ROOT_SOURCE_SEL(1));
  636. init_wdog_clk();
  637. clock_enable(CCGR_TSENSOR, 1);
  638. return 0;
  639. }
  640. #endif
  641. /*
  642. * Dump some clockes.
  643. */
  644. #ifndef CONFIG_SPL_BUILD
  645. int do_mx8m_showclocks(cmd_tbl_t *cmdtp, int flag, int argc,
  646. char * const argv[])
  647. {
  648. u32 freq;
  649. freq = decode_frac_pll(ARM_PLL_CLK);
  650. printf("ARM_PLL %8d MHz\n", freq / 1000000);
  651. freq = decode_sscg_pll(SYSTEM_PLL1_800M_CLK);
  652. printf("SYS_PLL1_800 %8d MHz\n", freq / 1000000);
  653. freq = decode_sscg_pll(SYSTEM_PLL1_400M_CLK);
  654. printf("SYS_PLL1_400 %8d MHz\n", freq / 1000000);
  655. freq = decode_sscg_pll(SYSTEM_PLL1_266M_CLK);
  656. printf("SYS_PLL1_266 %8d MHz\n", freq / 1000000);
  657. freq = decode_sscg_pll(SYSTEM_PLL1_200M_CLK);
  658. printf("SYS_PLL1_200 %8d MHz\n", freq / 1000000);
  659. freq = decode_sscg_pll(SYSTEM_PLL1_160M_CLK);
  660. printf("SYS_PLL1_160 %8d MHz\n", freq / 1000000);
  661. freq = decode_sscg_pll(SYSTEM_PLL1_133M_CLK);
  662. printf("SYS_PLL1_133 %8d MHz\n", freq / 1000000);
  663. freq = decode_sscg_pll(SYSTEM_PLL1_100M_CLK);
  664. printf("SYS_PLL1_100 %8d MHz\n", freq / 1000000);
  665. freq = decode_sscg_pll(SYSTEM_PLL1_80M_CLK);
  666. printf("SYS_PLL1_80 %8d MHz\n", freq / 1000000);
  667. freq = decode_sscg_pll(SYSTEM_PLL1_40M_CLK);
  668. printf("SYS_PLL1_40 %8d MHz\n", freq / 1000000);
  669. freq = decode_sscg_pll(SYSTEM_PLL2_1000M_CLK);
  670. printf("SYS_PLL2_1000 %8d MHz\n", freq / 1000000);
  671. freq = decode_sscg_pll(SYSTEM_PLL2_500M_CLK);
  672. printf("SYS_PLL2_500 %8d MHz\n", freq / 1000000);
  673. freq = decode_sscg_pll(SYSTEM_PLL2_333M_CLK);
  674. printf("SYS_PLL2_333 %8d MHz\n", freq / 1000000);
  675. freq = decode_sscg_pll(SYSTEM_PLL2_250M_CLK);
  676. printf("SYS_PLL2_250 %8d MHz\n", freq / 1000000);
  677. freq = decode_sscg_pll(SYSTEM_PLL2_200M_CLK);
  678. printf("SYS_PLL2_200 %8d MHz\n", freq / 1000000);
  679. freq = decode_sscg_pll(SYSTEM_PLL2_166M_CLK);
  680. printf("SYS_PLL2_166 %8d MHz\n", freq / 1000000);
  681. freq = decode_sscg_pll(SYSTEM_PLL2_125M_CLK);
  682. printf("SYS_PLL2_125 %8d MHz\n", freq / 1000000);
  683. freq = decode_sscg_pll(SYSTEM_PLL2_100M_CLK);
  684. printf("SYS_PLL2_100 %8d MHz\n", freq / 1000000);
  685. freq = decode_sscg_pll(SYSTEM_PLL2_50M_CLK);
  686. printf("SYS_PLL2_50 %8d MHz\n", freq / 1000000);
  687. freq = decode_sscg_pll(SYSTEM_PLL3_CLK);
  688. printf("SYS_PLL3 %8d MHz\n", freq / 1000000);
  689. freq = mxc_get_clock(UART1_CLK_ROOT);
  690. printf("UART1 %8d MHz\n", freq / 1000000);
  691. freq = mxc_get_clock(USDHC1_CLK_ROOT);
  692. printf("USDHC1 %8d MHz\n", freq / 1000000);
  693. freq = mxc_get_clock(QSPI_CLK_ROOT);
  694. printf("QSPI %8d MHz\n", freq / 1000000);
  695. return 0;
  696. }
  697. U_BOOT_CMD(
  698. clocks, CONFIG_SYS_MAXARGS, 1, do_mx8m_showclocks,
  699. "display clocks",
  700. ""
  701. );
  702. #endif