null_blk_main.c 46 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968
  1. /*
  2. * Add configfs and memory store: Kyungchan Koh <kkc6196@fb.com> and
  3. * Shaohua Li <shli@fb.com>
  4. */
  5. #include <linux/module.h>
  6. #include <linux/moduleparam.h>
  7. #include <linux/sched.h>
  8. #include <linux/fs.h>
  9. #include <linux/init.h>
  10. #include "null_blk.h"
  11. #define PAGE_SECTORS_SHIFT (PAGE_SHIFT - SECTOR_SHIFT)
  12. #define PAGE_SECTORS (1 << PAGE_SECTORS_SHIFT)
  13. #define SECTOR_MASK (PAGE_SECTORS - 1)
  14. #define FREE_BATCH 16
  15. #define TICKS_PER_SEC 50ULL
  16. #define TIMER_INTERVAL (NSEC_PER_SEC / TICKS_PER_SEC)
  17. #ifdef CONFIG_BLK_DEV_NULL_BLK_FAULT_INJECTION
  18. static DECLARE_FAULT_ATTR(null_timeout_attr);
  19. static DECLARE_FAULT_ATTR(null_requeue_attr);
  20. #endif
  21. static inline u64 mb_per_tick(int mbps)
  22. {
  23. return (1 << 20) / TICKS_PER_SEC * ((u64) mbps);
  24. }
  25. /*
  26. * Status flags for nullb_device.
  27. *
  28. * CONFIGURED: Device has been configured and turned on. Cannot reconfigure.
  29. * UP: Device is currently on and visible in userspace.
  30. * THROTTLED: Device is being throttled.
  31. * CACHE: Device is using a write-back cache.
  32. */
  33. enum nullb_device_flags {
  34. NULLB_DEV_FL_CONFIGURED = 0,
  35. NULLB_DEV_FL_UP = 1,
  36. NULLB_DEV_FL_THROTTLED = 2,
  37. NULLB_DEV_FL_CACHE = 3,
  38. };
  39. #define MAP_SZ ((PAGE_SIZE >> SECTOR_SHIFT) + 2)
  40. /*
  41. * nullb_page is a page in memory for nullb devices.
  42. *
  43. * @page: The page holding the data.
  44. * @bitmap: The bitmap represents which sector in the page has data.
  45. * Each bit represents one block size. For example, sector 8
  46. * will use the 7th bit
  47. * The highest 2 bits of bitmap are for special purpose. LOCK means the cache
  48. * page is being flushing to storage. FREE means the cache page is freed and
  49. * should be skipped from flushing to storage. Please see
  50. * null_make_cache_space
  51. */
  52. struct nullb_page {
  53. struct page *page;
  54. DECLARE_BITMAP(bitmap, MAP_SZ);
  55. };
  56. #define NULLB_PAGE_LOCK (MAP_SZ - 1)
  57. #define NULLB_PAGE_FREE (MAP_SZ - 2)
  58. static LIST_HEAD(nullb_list);
  59. static struct mutex lock;
  60. static int null_major;
  61. static DEFINE_IDA(nullb_indexes);
  62. static struct blk_mq_tag_set tag_set;
  63. enum {
  64. NULL_IRQ_NONE = 0,
  65. NULL_IRQ_SOFTIRQ = 1,
  66. NULL_IRQ_TIMER = 2,
  67. };
  68. enum {
  69. NULL_Q_BIO = 0,
  70. NULL_Q_RQ = 1,
  71. NULL_Q_MQ = 2,
  72. };
  73. static int g_no_sched;
  74. module_param_named(no_sched, g_no_sched, int, 0444);
  75. MODULE_PARM_DESC(no_sched, "No io scheduler");
  76. static int g_submit_queues = 1;
  77. module_param_named(submit_queues, g_submit_queues, int, 0444);
  78. MODULE_PARM_DESC(submit_queues, "Number of submission queues");
  79. static int g_home_node = NUMA_NO_NODE;
  80. module_param_named(home_node, g_home_node, int, 0444);
  81. MODULE_PARM_DESC(home_node, "Home node for the device");
  82. #ifdef CONFIG_BLK_DEV_NULL_BLK_FAULT_INJECTION
  83. static char g_timeout_str[80];
  84. module_param_string(timeout, g_timeout_str, sizeof(g_timeout_str), 0444);
  85. static char g_requeue_str[80];
  86. module_param_string(requeue, g_requeue_str, sizeof(g_requeue_str), 0444);
  87. #endif
  88. static int g_queue_mode = NULL_Q_MQ;
  89. static int null_param_store_val(const char *str, int *val, int min, int max)
  90. {
  91. int ret, new_val;
  92. ret = kstrtoint(str, 10, &new_val);
  93. if (ret)
  94. return -EINVAL;
  95. if (new_val < min || new_val > max)
  96. return -EINVAL;
  97. *val = new_val;
  98. return 0;
  99. }
  100. static int null_set_queue_mode(const char *str, const struct kernel_param *kp)
  101. {
  102. return null_param_store_val(str, &g_queue_mode, NULL_Q_BIO, NULL_Q_MQ);
  103. }
  104. static const struct kernel_param_ops null_queue_mode_param_ops = {
  105. .set = null_set_queue_mode,
  106. .get = param_get_int,
  107. };
  108. device_param_cb(queue_mode, &null_queue_mode_param_ops, &g_queue_mode, 0444);
  109. MODULE_PARM_DESC(queue_mode, "Block interface to use (0=bio,1=rq,2=multiqueue)");
  110. static int g_gb = 250;
  111. module_param_named(gb, g_gb, int, 0444);
  112. MODULE_PARM_DESC(gb, "Size in GB");
  113. static int g_bs = 512;
  114. module_param_named(bs, g_bs, int, 0444);
  115. MODULE_PARM_DESC(bs, "Block size (in bytes)");
  116. static int nr_devices = 1;
  117. module_param(nr_devices, int, 0444);
  118. MODULE_PARM_DESC(nr_devices, "Number of devices to register");
  119. static bool g_blocking;
  120. module_param_named(blocking, g_blocking, bool, 0444);
  121. MODULE_PARM_DESC(blocking, "Register as a blocking blk-mq driver device");
  122. static bool shared_tags;
  123. module_param(shared_tags, bool, 0444);
  124. MODULE_PARM_DESC(shared_tags, "Share tag set between devices for blk-mq");
  125. static int g_irqmode = NULL_IRQ_SOFTIRQ;
  126. static int null_set_irqmode(const char *str, const struct kernel_param *kp)
  127. {
  128. return null_param_store_val(str, &g_irqmode, NULL_IRQ_NONE,
  129. NULL_IRQ_TIMER);
  130. }
  131. static const struct kernel_param_ops null_irqmode_param_ops = {
  132. .set = null_set_irqmode,
  133. .get = param_get_int,
  134. };
  135. device_param_cb(irqmode, &null_irqmode_param_ops, &g_irqmode, 0444);
  136. MODULE_PARM_DESC(irqmode, "IRQ completion handler. 0-none, 1-softirq, 2-timer");
  137. static unsigned long g_completion_nsec = 10000;
  138. module_param_named(completion_nsec, g_completion_nsec, ulong, 0444);
  139. MODULE_PARM_DESC(completion_nsec, "Time in ns to complete a request in hardware. Default: 10,000ns");
  140. static int g_hw_queue_depth = 64;
  141. module_param_named(hw_queue_depth, g_hw_queue_depth, int, 0444);
  142. MODULE_PARM_DESC(hw_queue_depth, "Queue depth for each hardware queue. Default: 64");
  143. static bool g_use_per_node_hctx;
  144. module_param_named(use_per_node_hctx, g_use_per_node_hctx, bool, 0444);
  145. MODULE_PARM_DESC(use_per_node_hctx, "Use per-node allocation for hardware context queues. Default: false");
  146. static bool g_zoned;
  147. module_param_named(zoned, g_zoned, bool, S_IRUGO);
  148. MODULE_PARM_DESC(zoned, "Make device as a host-managed zoned block device. Default: false");
  149. static unsigned long g_zone_size = 256;
  150. module_param_named(zone_size, g_zone_size, ulong, S_IRUGO);
  151. MODULE_PARM_DESC(zone_size, "Zone size in MB when block device is zoned. Must be power-of-two: Default: 256");
  152. static struct nullb_device *null_alloc_dev(void);
  153. static void null_free_dev(struct nullb_device *dev);
  154. static void null_del_dev(struct nullb *nullb);
  155. static int null_add_dev(struct nullb_device *dev);
  156. static void null_free_device_storage(struct nullb_device *dev, bool is_cache);
  157. static inline struct nullb_device *to_nullb_device(struct config_item *item)
  158. {
  159. return item ? container_of(item, struct nullb_device, item) : NULL;
  160. }
  161. static inline ssize_t nullb_device_uint_attr_show(unsigned int val, char *page)
  162. {
  163. return snprintf(page, PAGE_SIZE, "%u\n", val);
  164. }
  165. static inline ssize_t nullb_device_ulong_attr_show(unsigned long val,
  166. char *page)
  167. {
  168. return snprintf(page, PAGE_SIZE, "%lu\n", val);
  169. }
  170. static inline ssize_t nullb_device_bool_attr_show(bool val, char *page)
  171. {
  172. return snprintf(page, PAGE_SIZE, "%u\n", val);
  173. }
  174. static ssize_t nullb_device_uint_attr_store(unsigned int *val,
  175. const char *page, size_t count)
  176. {
  177. unsigned int tmp;
  178. int result;
  179. result = kstrtouint(page, 0, &tmp);
  180. if (result)
  181. return result;
  182. *val = tmp;
  183. return count;
  184. }
  185. static ssize_t nullb_device_ulong_attr_store(unsigned long *val,
  186. const char *page, size_t count)
  187. {
  188. int result;
  189. unsigned long tmp;
  190. result = kstrtoul(page, 0, &tmp);
  191. if (result)
  192. return result;
  193. *val = tmp;
  194. return count;
  195. }
  196. static ssize_t nullb_device_bool_attr_store(bool *val, const char *page,
  197. size_t count)
  198. {
  199. bool tmp;
  200. int result;
  201. result = kstrtobool(page, &tmp);
  202. if (result)
  203. return result;
  204. *val = tmp;
  205. return count;
  206. }
  207. /* The following macro should only be used with TYPE = {uint, ulong, bool}. */
  208. #define NULLB_DEVICE_ATTR(NAME, TYPE) \
  209. static ssize_t \
  210. nullb_device_##NAME##_show(struct config_item *item, char *page) \
  211. { \
  212. return nullb_device_##TYPE##_attr_show( \
  213. to_nullb_device(item)->NAME, page); \
  214. } \
  215. static ssize_t \
  216. nullb_device_##NAME##_store(struct config_item *item, const char *page, \
  217. size_t count) \
  218. { \
  219. if (test_bit(NULLB_DEV_FL_CONFIGURED, &to_nullb_device(item)->flags)) \
  220. return -EBUSY; \
  221. return nullb_device_##TYPE##_attr_store( \
  222. &to_nullb_device(item)->NAME, page, count); \
  223. } \
  224. CONFIGFS_ATTR(nullb_device_, NAME);
  225. NULLB_DEVICE_ATTR(size, ulong);
  226. NULLB_DEVICE_ATTR(completion_nsec, ulong);
  227. NULLB_DEVICE_ATTR(submit_queues, uint);
  228. NULLB_DEVICE_ATTR(home_node, uint);
  229. NULLB_DEVICE_ATTR(queue_mode, uint);
  230. NULLB_DEVICE_ATTR(blocksize, uint);
  231. NULLB_DEVICE_ATTR(irqmode, uint);
  232. NULLB_DEVICE_ATTR(hw_queue_depth, uint);
  233. NULLB_DEVICE_ATTR(index, uint);
  234. NULLB_DEVICE_ATTR(blocking, bool);
  235. NULLB_DEVICE_ATTR(use_per_node_hctx, bool);
  236. NULLB_DEVICE_ATTR(memory_backed, bool);
  237. NULLB_DEVICE_ATTR(discard, bool);
  238. NULLB_DEVICE_ATTR(mbps, uint);
  239. NULLB_DEVICE_ATTR(cache_size, ulong);
  240. NULLB_DEVICE_ATTR(zoned, bool);
  241. NULLB_DEVICE_ATTR(zone_size, ulong);
  242. static ssize_t nullb_device_power_show(struct config_item *item, char *page)
  243. {
  244. return nullb_device_bool_attr_show(to_nullb_device(item)->power, page);
  245. }
  246. static ssize_t nullb_device_power_store(struct config_item *item,
  247. const char *page, size_t count)
  248. {
  249. struct nullb_device *dev = to_nullb_device(item);
  250. bool newp = false;
  251. ssize_t ret;
  252. ret = nullb_device_bool_attr_store(&newp, page, count);
  253. if (ret < 0)
  254. return ret;
  255. if (!dev->power && newp) {
  256. if (test_and_set_bit(NULLB_DEV_FL_UP, &dev->flags))
  257. return count;
  258. if (null_add_dev(dev)) {
  259. clear_bit(NULLB_DEV_FL_UP, &dev->flags);
  260. return -ENOMEM;
  261. }
  262. set_bit(NULLB_DEV_FL_CONFIGURED, &dev->flags);
  263. dev->power = newp;
  264. } else if (dev->power && !newp) {
  265. if (test_and_clear_bit(NULLB_DEV_FL_UP, &dev->flags)) {
  266. mutex_lock(&lock);
  267. dev->power = newp;
  268. null_del_dev(dev->nullb);
  269. mutex_unlock(&lock);
  270. }
  271. clear_bit(NULLB_DEV_FL_CONFIGURED, &dev->flags);
  272. }
  273. return count;
  274. }
  275. CONFIGFS_ATTR(nullb_device_, power);
  276. static ssize_t nullb_device_badblocks_show(struct config_item *item, char *page)
  277. {
  278. struct nullb_device *t_dev = to_nullb_device(item);
  279. return badblocks_show(&t_dev->badblocks, page, 0);
  280. }
  281. static ssize_t nullb_device_badblocks_store(struct config_item *item,
  282. const char *page, size_t count)
  283. {
  284. struct nullb_device *t_dev = to_nullb_device(item);
  285. char *orig, *buf, *tmp;
  286. u64 start, end;
  287. int ret;
  288. orig = kstrndup(page, count, GFP_KERNEL);
  289. if (!orig)
  290. return -ENOMEM;
  291. buf = strstrip(orig);
  292. ret = -EINVAL;
  293. if (buf[0] != '+' && buf[0] != '-')
  294. goto out;
  295. tmp = strchr(&buf[1], '-');
  296. if (!tmp)
  297. goto out;
  298. *tmp = '\0';
  299. ret = kstrtoull(buf + 1, 0, &start);
  300. if (ret)
  301. goto out;
  302. ret = kstrtoull(tmp + 1, 0, &end);
  303. if (ret)
  304. goto out;
  305. ret = -EINVAL;
  306. if (start > end)
  307. goto out;
  308. /* enable badblocks */
  309. cmpxchg(&t_dev->badblocks.shift, -1, 0);
  310. if (buf[0] == '+')
  311. ret = badblocks_set(&t_dev->badblocks, start,
  312. end - start + 1, 1);
  313. else
  314. ret = badblocks_clear(&t_dev->badblocks, start,
  315. end - start + 1);
  316. if (ret == 0)
  317. ret = count;
  318. out:
  319. kfree(orig);
  320. return ret;
  321. }
  322. CONFIGFS_ATTR(nullb_device_, badblocks);
  323. static struct configfs_attribute *nullb_device_attrs[] = {
  324. &nullb_device_attr_size,
  325. &nullb_device_attr_completion_nsec,
  326. &nullb_device_attr_submit_queues,
  327. &nullb_device_attr_home_node,
  328. &nullb_device_attr_queue_mode,
  329. &nullb_device_attr_blocksize,
  330. &nullb_device_attr_irqmode,
  331. &nullb_device_attr_hw_queue_depth,
  332. &nullb_device_attr_index,
  333. &nullb_device_attr_blocking,
  334. &nullb_device_attr_use_per_node_hctx,
  335. &nullb_device_attr_power,
  336. &nullb_device_attr_memory_backed,
  337. &nullb_device_attr_discard,
  338. &nullb_device_attr_mbps,
  339. &nullb_device_attr_cache_size,
  340. &nullb_device_attr_badblocks,
  341. &nullb_device_attr_zoned,
  342. &nullb_device_attr_zone_size,
  343. NULL,
  344. };
  345. static void nullb_device_release(struct config_item *item)
  346. {
  347. struct nullb_device *dev = to_nullb_device(item);
  348. null_free_device_storage(dev, false);
  349. null_free_dev(dev);
  350. }
  351. static struct configfs_item_operations nullb_device_ops = {
  352. .release = nullb_device_release,
  353. };
  354. static const struct config_item_type nullb_device_type = {
  355. .ct_item_ops = &nullb_device_ops,
  356. .ct_attrs = nullb_device_attrs,
  357. .ct_owner = THIS_MODULE,
  358. };
  359. static struct
  360. config_item *nullb_group_make_item(struct config_group *group, const char *name)
  361. {
  362. struct nullb_device *dev;
  363. dev = null_alloc_dev();
  364. if (!dev)
  365. return ERR_PTR(-ENOMEM);
  366. config_item_init_type_name(&dev->item, name, &nullb_device_type);
  367. return &dev->item;
  368. }
  369. static void
  370. nullb_group_drop_item(struct config_group *group, struct config_item *item)
  371. {
  372. struct nullb_device *dev = to_nullb_device(item);
  373. if (test_and_clear_bit(NULLB_DEV_FL_UP, &dev->flags)) {
  374. mutex_lock(&lock);
  375. dev->power = false;
  376. null_del_dev(dev->nullb);
  377. mutex_unlock(&lock);
  378. }
  379. config_item_put(item);
  380. }
  381. static ssize_t memb_group_features_show(struct config_item *item, char *page)
  382. {
  383. return snprintf(page, PAGE_SIZE, "memory_backed,discard,bandwidth,cache,badblocks,zoned,zone_size\n");
  384. }
  385. CONFIGFS_ATTR_RO(memb_group_, features);
  386. static struct configfs_attribute *nullb_group_attrs[] = {
  387. &memb_group_attr_features,
  388. NULL,
  389. };
  390. static struct configfs_group_operations nullb_group_ops = {
  391. .make_item = nullb_group_make_item,
  392. .drop_item = nullb_group_drop_item,
  393. };
  394. static const struct config_item_type nullb_group_type = {
  395. .ct_group_ops = &nullb_group_ops,
  396. .ct_attrs = nullb_group_attrs,
  397. .ct_owner = THIS_MODULE,
  398. };
  399. static struct configfs_subsystem nullb_subsys = {
  400. .su_group = {
  401. .cg_item = {
  402. .ci_namebuf = "nullb",
  403. .ci_type = &nullb_group_type,
  404. },
  405. },
  406. };
  407. static inline int null_cache_active(struct nullb *nullb)
  408. {
  409. return test_bit(NULLB_DEV_FL_CACHE, &nullb->dev->flags);
  410. }
  411. static struct nullb_device *null_alloc_dev(void)
  412. {
  413. struct nullb_device *dev;
  414. dev = kzalloc(sizeof(*dev), GFP_KERNEL);
  415. if (!dev)
  416. return NULL;
  417. INIT_RADIX_TREE(&dev->data, GFP_ATOMIC);
  418. INIT_RADIX_TREE(&dev->cache, GFP_ATOMIC);
  419. if (badblocks_init(&dev->badblocks, 0)) {
  420. kfree(dev);
  421. return NULL;
  422. }
  423. dev->size = g_gb * 1024;
  424. dev->completion_nsec = g_completion_nsec;
  425. dev->submit_queues = g_submit_queues;
  426. dev->home_node = g_home_node;
  427. dev->queue_mode = g_queue_mode;
  428. dev->blocksize = g_bs;
  429. dev->irqmode = g_irqmode;
  430. dev->hw_queue_depth = g_hw_queue_depth;
  431. dev->blocking = g_blocking;
  432. dev->use_per_node_hctx = g_use_per_node_hctx;
  433. dev->zoned = g_zoned;
  434. dev->zone_size = g_zone_size;
  435. return dev;
  436. }
  437. static void null_free_dev(struct nullb_device *dev)
  438. {
  439. if (!dev)
  440. return;
  441. null_zone_exit(dev);
  442. badblocks_exit(&dev->badblocks);
  443. kfree(dev);
  444. }
  445. static void put_tag(struct nullb_queue *nq, unsigned int tag)
  446. {
  447. clear_bit_unlock(tag, nq->tag_map);
  448. if (waitqueue_active(&nq->wait))
  449. wake_up(&nq->wait);
  450. }
  451. static unsigned int get_tag(struct nullb_queue *nq)
  452. {
  453. unsigned int tag;
  454. do {
  455. tag = find_first_zero_bit(nq->tag_map, nq->queue_depth);
  456. if (tag >= nq->queue_depth)
  457. return -1U;
  458. } while (test_and_set_bit_lock(tag, nq->tag_map));
  459. return tag;
  460. }
  461. static void free_cmd(struct nullb_cmd *cmd)
  462. {
  463. put_tag(cmd->nq, cmd->tag);
  464. }
  465. static enum hrtimer_restart null_cmd_timer_expired(struct hrtimer *timer);
  466. static struct nullb_cmd *__alloc_cmd(struct nullb_queue *nq)
  467. {
  468. struct nullb_cmd *cmd;
  469. unsigned int tag;
  470. tag = get_tag(nq);
  471. if (tag != -1U) {
  472. cmd = &nq->cmds[tag];
  473. cmd->tag = tag;
  474. cmd->error = BLK_STS_OK;
  475. cmd->nq = nq;
  476. if (nq->dev->irqmode == NULL_IRQ_TIMER) {
  477. hrtimer_init(&cmd->timer, CLOCK_MONOTONIC,
  478. HRTIMER_MODE_REL);
  479. cmd->timer.function = null_cmd_timer_expired;
  480. }
  481. return cmd;
  482. }
  483. return NULL;
  484. }
  485. static struct nullb_cmd *alloc_cmd(struct nullb_queue *nq, int can_wait)
  486. {
  487. struct nullb_cmd *cmd;
  488. DEFINE_WAIT(wait);
  489. cmd = __alloc_cmd(nq);
  490. if (cmd || !can_wait)
  491. return cmd;
  492. do {
  493. prepare_to_wait(&nq->wait, &wait, TASK_UNINTERRUPTIBLE);
  494. cmd = __alloc_cmd(nq);
  495. if (cmd)
  496. break;
  497. io_schedule();
  498. } while (1);
  499. finish_wait(&nq->wait, &wait);
  500. return cmd;
  501. }
  502. static void end_cmd(struct nullb_cmd *cmd)
  503. {
  504. struct request_queue *q = NULL;
  505. int queue_mode = cmd->nq->dev->queue_mode;
  506. if (cmd->rq)
  507. q = cmd->rq->q;
  508. switch (queue_mode) {
  509. case NULL_Q_MQ:
  510. blk_mq_end_request(cmd->rq, cmd->error);
  511. return;
  512. case NULL_Q_RQ:
  513. INIT_LIST_HEAD(&cmd->rq->queuelist);
  514. blk_end_request_all(cmd->rq, cmd->error);
  515. break;
  516. case NULL_Q_BIO:
  517. cmd->bio->bi_status = cmd->error;
  518. bio_endio(cmd->bio);
  519. break;
  520. }
  521. free_cmd(cmd);
  522. /* Restart queue if needed, as we are freeing a tag */
  523. if (queue_mode == NULL_Q_RQ && blk_queue_stopped(q)) {
  524. unsigned long flags;
  525. spin_lock_irqsave(q->queue_lock, flags);
  526. blk_start_queue_async(q);
  527. spin_unlock_irqrestore(q->queue_lock, flags);
  528. }
  529. }
  530. static enum hrtimer_restart null_cmd_timer_expired(struct hrtimer *timer)
  531. {
  532. end_cmd(container_of(timer, struct nullb_cmd, timer));
  533. return HRTIMER_NORESTART;
  534. }
  535. static void null_cmd_end_timer(struct nullb_cmd *cmd)
  536. {
  537. ktime_t kt = cmd->nq->dev->completion_nsec;
  538. hrtimer_start(&cmd->timer, kt, HRTIMER_MODE_REL);
  539. }
  540. static void null_softirq_done_fn(struct request *rq)
  541. {
  542. struct nullb *nullb = rq->q->queuedata;
  543. if (nullb->dev->queue_mode == NULL_Q_MQ)
  544. end_cmd(blk_mq_rq_to_pdu(rq));
  545. else
  546. end_cmd(rq->special);
  547. }
  548. static struct nullb_page *null_alloc_page(gfp_t gfp_flags)
  549. {
  550. struct nullb_page *t_page;
  551. t_page = kmalloc(sizeof(struct nullb_page), gfp_flags);
  552. if (!t_page)
  553. goto out;
  554. t_page->page = alloc_pages(gfp_flags, 0);
  555. if (!t_page->page)
  556. goto out_freepage;
  557. memset(t_page->bitmap, 0, sizeof(t_page->bitmap));
  558. return t_page;
  559. out_freepage:
  560. kfree(t_page);
  561. out:
  562. return NULL;
  563. }
  564. static void null_free_page(struct nullb_page *t_page)
  565. {
  566. __set_bit(NULLB_PAGE_FREE, t_page->bitmap);
  567. if (test_bit(NULLB_PAGE_LOCK, t_page->bitmap))
  568. return;
  569. __free_page(t_page->page);
  570. kfree(t_page);
  571. }
  572. static bool null_page_empty(struct nullb_page *page)
  573. {
  574. int size = MAP_SZ - 2;
  575. return find_first_bit(page->bitmap, size) == size;
  576. }
  577. static void null_free_sector(struct nullb *nullb, sector_t sector,
  578. bool is_cache)
  579. {
  580. unsigned int sector_bit;
  581. u64 idx;
  582. struct nullb_page *t_page, *ret;
  583. struct radix_tree_root *root;
  584. root = is_cache ? &nullb->dev->cache : &nullb->dev->data;
  585. idx = sector >> PAGE_SECTORS_SHIFT;
  586. sector_bit = (sector & SECTOR_MASK);
  587. t_page = radix_tree_lookup(root, idx);
  588. if (t_page) {
  589. __clear_bit(sector_bit, t_page->bitmap);
  590. if (null_page_empty(t_page)) {
  591. ret = radix_tree_delete_item(root, idx, t_page);
  592. WARN_ON(ret != t_page);
  593. null_free_page(ret);
  594. if (is_cache)
  595. nullb->dev->curr_cache -= PAGE_SIZE;
  596. }
  597. }
  598. }
  599. static struct nullb_page *null_radix_tree_insert(struct nullb *nullb, u64 idx,
  600. struct nullb_page *t_page, bool is_cache)
  601. {
  602. struct radix_tree_root *root;
  603. root = is_cache ? &nullb->dev->cache : &nullb->dev->data;
  604. if (radix_tree_insert(root, idx, t_page)) {
  605. null_free_page(t_page);
  606. t_page = radix_tree_lookup(root, idx);
  607. WARN_ON(!t_page || t_page->page->index != idx);
  608. } else if (is_cache)
  609. nullb->dev->curr_cache += PAGE_SIZE;
  610. return t_page;
  611. }
  612. static void null_free_device_storage(struct nullb_device *dev, bool is_cache)
  613. {
  614. unsigned long pos = 0;
  615. int nr_pages;
  616. struct nullb_page *ret, *t_pages[FREE_BATCH];
  617. struct radix_tree_root *root;
  618. root = is_cache ? &dev->cache : &dev->data;
  619. do {
  620. int i;
  621. nr_pages = radix_tree_gang_lookup(root,
  622. (void **)t_pages, pos, FREE_BATCH);
  623. for (i = 0; i < nr_pages; i++) {
  624. pos = t_pages[i]->page->index;
  625. ret = radix_tree_delete_item(root, pos, t_pages[i]);
  626. WARN_ON(ret != t_pages[i]);
  627. null_free_page(ret);
  628. }
  629. pos++;
  630. } while (nr_pages == FREE_BATCH);
  631. if (is_cache)
  632. dev->curr_cache = 0;
  633. }
  634. static struct nullb_page *__null_lookup_page(struct nullb *nullb,
  635. sector_t sector, bool for_write, bool is_cache)
  636. {
  637. unsigned int sector_bit;
  638. u64 idx;
  639. struct nullb_page *t_page;
  640. struct radix_tree_root *root;
  641. idx = sector >> PAGE_SECTORS_SHIFT;
  642. sector_bit = (sector & SECTOR_MASK);
  643. root = is_cache ? &nullb->dev->cache : &nullb->dev->data;
  644. t_page = radix_tree_lookup(root, idx);
  645. WARN_ON(t_page && t_page->page->index != idx);
  646. if (t_page && (for_write || test_bit(sector_bit, t_page->bitmap)))
  647. return t_page;
  648. return NULL;
  649. }
  650. static struct nullb_page *null_lookup_page(struct nullb *nullb,
  651. sector_t sector, bool for_write, bool ignore_cache)
  652. {
  653. struct nullb_page *page = NULL;
  654. if (!ignore_cache)
  655. page = __null_lookup_page(nullb, sector, for_write, true);
  656. if (page)
  657. return page;
  658. return __null_lookup_page(nullb, sector, for_write, false);
  659. }
  660. static struct nullb_page *null_insert_page(struct nullb *nullb,
  661. sector_t sector, bool ignore_cache)
  662. __releases(&nullb->lock)
  663. __acquires(&nullb->lock)
  664. {
  665. u64 idx;
  666. struct nullb_page *t_page;
  667. t_page = null_lookup_page(nullb, sector, true, ignore_cache);
  668. if (t_page)
  669. return t_page;
  670. spin_unlock_irq(&nullb->lock);
  671. t_page = null_alloc_page(GFP_NOIO);
  672. if (!t_page)
  673. goto out_lock;
  674. if (radix_tree_preload(GFP_NOIO))
  675. goto out_freepage;
  676. spin_lock_irq(&nullb->lock);
  677. idx = sector >> PAGE_SECTORS_SHIFT;
  678. t_page->page->index = idx;
  679. t_page = null_radix_tree_insert(nullb, idx, t_page, !ignore_cache);
  680. radix_tree_preload_end();
  681. return t_page;
  682. out_freepage:
  683. null_free_page(t_page);
  684. out_lock:
  685. spin_lock_irq(&nullb->lock);
  686. return null_lookup_page(nullb, sector, true, ignore_cache);
  687. }
  688. static int null_flush_cache_page(struct nullb *nullb, struct nullb_page *c_page)
  689. {
  690. int i;
  691. unsigned int offset;
  692. u64 idx;
  693. struct nullb_page *t_page, *ret;
  694. void *dst, *src;
  695. idx = c_page->page->index;
  696. t_page = null_insert_page(nullb, idx << PAGE_SECTORS_SHIFT, true);
  697. __clear_bit(NULLB_PAGE_LOCK, c_page->bitmap);
  698. if (test_bit(NULLB_PAGE_FREE, c_page->bitmap)) {
  699. null_free_page(c_page);
  700. if (t_page && null_page_empty(t_page)) {
  701. ret = radix_tree_delete_item(&nullb->dev->data,
  702. idx, t_page);
  703. null_free_page(t_page);
  704. }
  705. return 0;
  706. }
  707. if (!t_page)
  708. return -ENOMEM;
  709. src = kmap_atomic(c_page->page);
  710. dst = kmap_atomic(t_page->page);
  711. for (i = 0; i < PAGE_SECTORS;
  712. i += (nullb->dev->blocksize >> SECTOR_SHIFT)) {
  713. if (test_bit(i, c_page->bitmap)) {
  714. offset = (i << SECTOR_SHIFT);
  715. memcpy(dst + offset, src + offset,
  716. nullb->dev->blocksize);
  717. __set_bit(i, t_page->bitmap);
  718. }
  719. }
  720. kunmap_atomic(dst);
  721. kunmap_atomic(src);
  722. ret = radix_tree_delete_item(&nullb->dev->cache, idx, c_page);
  723. null_free_page(ret);
  724. nullb->dev->curr_cache -= PAGE_SIZE;
  725. return 0;
  726. }
  727. static int null_make_cache_space(struct nullb *nullb, unsigned long n)
  728. {
  729. int i, err, nr_pages;
  730. struct nullb_page *c_pages[FREE_BATCH];
  731. unsigned long flushed = 0, one_round;
  732. again:
  733. if ((nullb->dev->cache_size * 1024 * 1024) >
  734. nullb->dev->curr_cache + n || nullb->dev->curr_cache == 0)
  735. return 0;
  736. nr_pages = radix_tree_gang_lookup(&nullb->dev->cache,
  737. (void **)c_pages, nullb->cache_flush_pos, FREE_BATCH);
  738. /*
  739. * nullb_flush_cache_page could unlock before using the c_pages. To
  740. * avoid race, we don't allow page free
  741. */
  742. for (i = 0; i < nr_pages; i++) {
  743. nullb->cache_flush_pos = c_pages[i]->page->index;
  744. /*
  745. * We found the page which is being flushed to disk by other
  746. * threads
  747. */
  748. if (test_bit(NULLB_PAGE_LOCK, c_pages[i]->bitmap))
  749. c_pages[i] = NULL;
  750. else
  751. __set_bit(NULLB_PAGE_LOCK, c_pages[i]->bitmap);
  752. }
  753. one_round = 0;
  754. for (i = 0; i < nr_pages; i++) {
  755. if (c_pages[i] == NULL)
  756. continue;
  757. err = null_flush_cache_page(nullb, c_pages[i]);
  758. if (err)
  759. return err;
  760. one_round++;
  761. }
  762. flushed += one_round << PAGE_SHIFT;
  763. if (n > flushed) {
  764. if (nr_pages == 0)
  765. nullb->cache_flush_pos = 0;
  766. if (one_round == 0) {
  767. /* give other threads a chance */
  768. spin_unlock_irq(&nullb->lock);
  769. spin_lock_irq(&nullb->lock);
  770. }
  771. goto again;
  772. }
  773. return 0;
  774. }
  775. static int copy_to_nullb(struct nullb *nullb, struct page *source,
  776. unsigned int off, sector_t sector, size_t n, bool is_fua)
  777. {
  778. size_t temp, count = 0;
  779. unsigned int offset;
  780. struct nullb_page *t_page;
  781. void *dst, *src;
  782. while (count < n) {
  783. temp = min_t(size_t, nullb->dev->blocksize, n - count);
  784. if (null_cache_active(nullb) && !is_fua)
  785. null_make_cache_space(nullb, PAGE_SIZE);
  786. offset = (sector & SECTOR_MASK) << SECTOR_SHIFT;
  787. t_page = null_insert_page(nullb, sector,
  788. !null_cache_active(nullb) || is_fua);
  789. if (!t_page)
  790. return -ENOSPC;
  791. src = kmap_atomic(source);
  792. dst = kmap_atomic(t_page->page);
  793. memcpy(dst + offset, src + off + count, temp);
  794. kunmap_atomic(dst);
  795. kunmap_atomic(src);
  796. __set_bit(sector & SECTOR_MASK, t_page->bitmap);
  797. if (is_fua)
  798. null_free_sector(nullb, sector, true);
  799. count += temp;
  800. sector += temp >> SECTOR_SHIFT;
  801. }
  802. return 0;
  803. }
  804. static int copy_from_nullb(struct nullb *nullb, struct page *dest,
  805. unsigned int off, sector_t sector, size_t n)
  806. {
  807. size_t temp, count = 0;
  808. unsigned int offset;
  809. struct nullb_page *t_page;
  810. void *dst, *src;
  811. while (count < n) {
  812. temp = min_t(size_t, nullb->dev->blocksize, n - count);
  813. offset = (sector & SECTOR_MASK) << SECTOR_SHIFT;
  814. t_page = null_lookup_page(nullb, sector, false,
  815. !null_cache_active(nullb));
  816. dst = kmap_atomic(dest);
  817. if (!t_page) {
  818. memset(dst + off + count, 0, temp);
  819. goto next;
  820. }
  821. src = kmap_atomic(t_page->page);
  822. memcpy(dst + off + count, src + offset, temp);
  823. kunmap_atomic(src);
  824. next:
  825. kunmap_atomic(dst);
  826. count += temp;
  827. sector += temp >> SECTOR_SHIFT;
  828. }
  829. return 0;
  830. }
  831. static void null_handle_discard(struct nullb *nullb, sector_t sector, size_t n)
  832. {
  833. size_t temp;
  834. spin_lock_irq(&nullb->lock);
  835. while (n > 0) {
  836. temp = min_t(size_t, n, nullb->dev->blocksize);
  837. null_free_sector(nullb, sector, false);
  838. if (null_cache_active(nullb))
  839. null_free_sector(nullb, sector, true);
  840. sector += temp >> SECTOR_SHIFT;
  841. n -= temp;
  842. }
  843. spin_unlock_irq(&nullb->lock);
  844. }
  845. static int null_handle_flush(struct nullb *nullb)
  846. {
  847. int err;
  848. if (!null_cache_active(nullb))
  849. return 0;
  850. spin_lock_irq(&nullb->lock);
  851. while (true) {
  852. err = null_make_cache_space(nullb,
  853. nullb->dev->cache_size * 1024 * 1024);
  854. if (err || nullb->dev->curr_cache == 0)
  855. break;
  856. }
  857. WARN_ON(!radix_tree_empty(&nullb->dev->cache));
  858. spin_unlock_irq(&nullb->lock);
  859. return err;
  860. }
  861. static int null_transfer(struct nullb *nullb, struct page *page,
  862. unsigned int len, unsigned int off, bool is_write, sector_t sector,
  863. bool is_fua)
  864. {
  865. int err = 0;
  866. if (!is_write) {
  867. err = copy_from_nullb(nullb, page, off, sector, len);
  868. flush_dcache_page(page);
  869. } else {
  870. flush_dcache_page(page);
  871. err = copy_to_nullb(nullb, page, off, sector, len, is_fua);
  872. }
  873. return err;
  874. }
  875. static int null_handle_rq(struct nullb_cmd *cmd)
  876. {
  877. struct request *rq = cmd->rq;
  878. struct nullb *nullb = cmd->nq->dev->nullb;
  879. int err;
  880. unsigned int len;
  881. sector_t sector;
  882. struct req_iterator iter;
  883. struct bio_vec bvec;
  884. sector = blk_rq_pos(rq);
  885. if (req_op(rq) == REQ_OP_DISCARD) {
  886. null_handle_discard(nullb, sector, blk_rq_bytes(rq));
  887. return 0;
  888. }
  889. spin_lock_irq(&nullb->lock);
  890. rq_for_each_segment(bvec, rq, iter) {
  891. len = bvec.bv_len;
  892. err = null_transfer(nullb, bvec.bv_page, len, bvec.bv_offset,
  893. op_is_write(req_op(rq)), sector,
  894. rq->cmd_flags & REQ_FUA);
  895. if (err) {
  896. spin_unlock_irq(&nullb->lock);
  897. return err;
  898. }
  899. sector += len >> SECTOR_SHIFT;
  900. }
  901. spin_unlock_irq(&nullb->lock);
  902. return 0;
  903. }
  904. static int null_handle_bio(struct nullb_cmd *cmd)
  905. {
  906. struct bio *bio = cmd->bio;
  907. struct nullb *nullb = cmd->nq->dev->nullb;
  908. int err;
  909. unsigned int len;
  910. sector_t sector;
  911. struct bio_vec bvec;
  912. struct bvec_iter iter;
  913. sector = bio->bi_iter.bi_sector;
  914. if (bio_op(bio) == REQ_OP_DISCARD) {
  915. null_handle_discard(nullb, sector,
  916. bio_sectors(bio) << SECTOR_SHIFT);
  917. return 0;
  918. }
  919. spin_lock_irq(&nullb->lock);
  920. bio_for_each_segment(bvec, bio, iter) {
  921. len = bvec.bv_len;
  922. err = null_transfer(nullb, bvec.bv_page, len, bvec.bv_offset,
  923. op_is_write(bio_op(bio)), sector,
  924. bio_op(bio) & REQ_FUA);
  925. if (err) {
  926. spin_unlock_irq(&nullb->lock);
  927. return err;
  928. }
  929. sector += len >> SECTOR_SHIFT;
  930. }
  931. spin_unlock_irq(&nullb->lock);
  932. return 0;
  933. }
  934. static void null_stop_queue(struct nullb *nullb)
  935. {
  936. struct request_queue *q = nullb->q;
  937. if (nullb->dev->queue_mode == NULL_Q_MQ)
  938. blk_mq_stop_hw_queues(q);
  939. else {
  940. spin_lock_irq(q->queue_lock);
  941. blk_stop_queue(q);
  942. spin_unlock_irq(q->queue_lock);
  943. }
  944. }
  945. static void null_restart_queue_async(struct nullb *nullb)
  946. {
  947. struct request_queue *q = nullb->q;
  948. unsigned long flags;
  949. if (nullb->dev->queue_mode == NULL_Q_MQ)
  950. blk_mq_start_stopped_hw_queues(q, true);
  951. else {
  952. spin_lock_irqsave(q->queue_lock, flags);
  953. blk_start_queue_async(q);
  954. spin_unlock_irqrestore(q->queue_lock, flags);
  955. }
  956. }
  957. static bool cmd_report_zone(struct nullb *nullb, struct nullb_cmd *cmd)
  958. {
  959. struct nullb_device *dev = cmd->nq->dev;
  960. if (dev->queue_mode == NULL_Q_BIO) {
  961. if (bio_op(cmd->bio) == REQ_OP_ZONE_REPORT) {
  962. cmd->error = null_zone_report(nullb, cmd->bio);
  963. return true;
  964. }
  965. } else {
  966. if (req_op(cmd->rq) == REQ_OP_ZONE_REPORT) {
  967. cmd->error = null_zone_report(nullb, cmd->rq->bio);
  968. return true;
  969. }
  970. }
  971. return false;
  972. }
  973. static blk_status_t null_handle_cmd(struct nullb_cmd *cmd)
  974. {
  975. struct nullb_device *dev = cmd->nq->dev;
  976. struct nullb *nullb = dev->nullb;
  977. int err = 0;
  978. if (cmd_report_zone(nullb, cmd))
  979. goto out;
  980. if (test_bit(NULLB_DEV_FL_THROTTLED, &dev->flags)) {
  981. struct request *rq = cmd->rq;
  982. if (!hrtimer_active(&nullb->bw_timer))
  983. hrtimer_restart(&nullb->bw_timer);
  984. if (atomic_long_sub_return(blk_rq_bytes(rq),
  985. &nullb->cur_bytes) < 0) {
  986. null_stop_queue(nullb);
  987. /* race with timer */
  988. if (atomic_long_read(&nullb->cur_bytes) > 0)
  989. null_restart_queue_async(nullb);
  990. if (dev->queue_mode == NULL_Q_RQ) {
  991. struct request_queue *q = nullb->q;
  992. spin_lock_irq(q->queue_lock);
  993. rq->rq_flags |= RQF_DONTPREP;
  994. blk_requeue_request(q, rq);
  995. spin_unlock_irq(q->queue_lock);
  996. return BLK_STS_OK;
  997. } else
  998. /* requeue request */
  999. return BLK_STS_DEV_RESOURCE;
  1000. }
  1001. }
  1002. if (nullb->dev->badblocks.shift != -1) {
  1003. int bad_sectors;
  1004. sector_t sector, size, first_bad;
  1005. bool is_flush = true;
  1006. if (dev->queue_mode == NULL_Q_BIO &&
  1007. bio_op(cmd->bio) != REQ_OP_FLUSH) {
  1008. is_flush = false;
  1009. sector = cmd->bio->bi_iter.bi_sector;
  1010. size = bio_sectors(cmd->bio);
  1011. }
  1012. if (dev->queue_mode != NULL_Q_BIO &&
  1013. req_op(cmd->rq) != REQ_OP_FLUSH) {
  1014. is_flush = false;
  1015. sector = blk_rq_pos(cmd->rq);
  1016. size = blk_rq_sectors(cmd->rq);
  1017. }
  1018. if (!is_flush && badblocks_check(&nullb->dev->badblocks, sector,
  1019. size, &first_bad, &bad_sectors)) {
  1020. cmd->error = BLK_STS_IOERR;
  1021. goto out;
  1022. }
  1023. }
  1024. if (dev->memory_backed) {
  1025. if (dev->queue_mode == NULL_Q_BIO) {
  1026. if (bio_op(cmd->bio) == REQ_OP_FLUSH)
  1027. err = null_handle_flush(nullb);
  1028. else
  1029. err = null_handle_bio(cmd);
  1030. } else {
  1031. if (req_op(cmd->rq) == REQ_OP_FLUSH)
  1032. err = null_handle_flush(nullb);
  1033. else
  1034. err = null_handle_rq(cmd);
  1035. }
  1036. }
  1037. cmd->error = errno_to_blk_status(err);
  1038. if (!cmd->error && dev->zoned) {
  1039. sector_t sector;
  1040. unsigned int nr_sectors;
  1041. int op;
  1042. if (dev->queue_mode == NULL_Q_BIO) {
  1043. op = bio_op(cmd->bio);
  1044. sector = cmd->bio->bi_iter.bi_sector;
  1045. nr_sectors = cmd->bio->bi_iter.bi_size >> 9;
  1046. } else {
  1047. op = req_op(cmd->rq);
  1048. sector = blk_rq_pos(cmd->rq);
  1049. nr_sectors = blk_rq_sectors(cmd->rq);
  1050. }
  1051. if (op == REQ_OP_WRITE)
  1052. null_zone_write(cmd, sector, nr_sectors);
  1053. else if (op == REQ_OP_ZONE_RESET)
  1054. null_zone_reset(cmd, sector);
  1055. }
  1056. out:
  1057. /* Complete IO by inline, softirq or timer */
  1058. switch (dev->irqmode) {
  1059. case NULL_IRQ_SOFTIRQ:
  1060. switch (dev->queue_mode) {
  1061. case NULL_Q_MQ:
  1062. blk_mq_complete_request(cmd->rq);
  1063. break;
  1064. case NULL_Q_RQ:
  1065. blk_complete_request(cmd->rq);
  1066. break;
  1067. case NULL_Q_BIO:
  1068. /*
  1069. * XXX: no proper submitting cpu information available.
  1070. */
  1071. end_cmd(cmd);
  1072. break;
  1073. }
  1074. break;
  1075. case NULL_IRQ_NONE:
  1076. end_cmd(cmd);
  1077. break;
  1078. case NULL_IRQ_TIMER:
  1079. null_cmd_end_timer(cmd);
  1080. break;
  1081. }
  1082. return BLK_STS_OK;
  1083. }
  1084. static enum hrtimer_restart nullb_bwtimer_fn(struct hrtimer *timer)
  1085. {
  1086. struct nullb *nullb = container_of(timer, struct nullb, bw_timer);
  1087. ktime_t timer_interval = ktime_set(0, TIMER_INTERVAL);
  1088. unsigned int mbps = nullb->dev->mbps;
  1089. if (atomic_long_read(&nullb->cur_bytes) == mb_per_tick(mbps))
  1090. return HRTIMER_NORESTART;
  1091. atomic_long_set(&nullb->cur_bytes, mb_per_tick(mbps));
  1092. null_restart_queue_async(nullb);
  1093. hrtimer_forward_now(&nullb->bw_timer, timer_interval);
  1094. return HRTIMER_RESTART;
  1095. }
  1096. static void nullb_setup_bwtimer(struct nullb *nullb)
  1097. {
  1098. ktime_t timer_interval = ktime_set(0, TIMER_INTERVAL);
  1099. hrtimer_init(&nullb->bw_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
  1100. nullb->bw_timer.function = nullb_bwtimer_fn;
  1101. atomic_long_set(&nullb->cur_bytes, mb_per_tick(nullb->dev->mbps));
  1102. hrtimer_start(&nullb->bw_timer, timer_interval, HRTIMER_MODE_REL);
  1103. }
  1104. static struct nullb_queue *nullb_to_queue(struct nullb *nullb)
  1105. {
  1106. int index = 0;
  1107. if (nullb->nr_queues != 1)
  1108. index = raw_smp_processor_id() / ((nr_cpu_ids + nullb->nr_queues - 1) / nullb->nr_queues);
  1109. return &nullb->queues[index];
  1110. }
  1111. static blk_qc_t null_queue_bio(struct request_queue *q, struct bio *bio)
  1112. {
  1113. struct nullb *nullb = q->queuedata;
  1114. struct nullb_queue *nq = nullb_to_queue(nullb);
  1115. struct nullb_cmd *cmd;
  1116. cmd = alloc_cmd(nq, 1);
  1117. cmd->bio = bio;
  1118. null_handle_cmd(cmd);
  1119. return BLK_QC_T_NONE;
  1120. }
  1121. static enum blk_eh_timer_return null_rq_timed_out_fn(struct request *rq)
  1122. {
  1123. pr_info("null: rq %p timed out\n", rq);
  1124. __blk_complete_request(rq);
  1125. return BLK_EH_DONE;
  1126. }
  1127. static int null_rq_prep_fn(struct request_queue *q, struct request *req)
  1128. {
  1129. struct nullb *nullb = q->queuedata;
  1130. struct nullb_queue *nq = nullb_to_queue(nullb);
  1131. struct nullb_cmd *cmd;
  1132. cmd = alloc_cmd(nq, 0);
  1133. if (cmd) {
  1134. cmd->rq = req;
  1135. req->special = cmd;
  1136. return BLKPREP_OK;
  1137. }
  1138. blk_stop_queue(q);
  1139. return BLKPREP_DEFER;
  1140. }
  1141. static bool should_timeout_request(struct request *rq)
  1142. {
  1143. #ifdef CONFIG_BLK_DEV_NULL_BLK_FAULT_INJECTION
  1144. if (g_timeout_str[0])
  1145. return should_fail(&null_timeout_attr, 1);
  1146. #endif
  1147. return false;
  1148. }
  1149. static bool should_requeue_request(struct request *rq)
  1150. {
  1151. #ifdef CONFIG_BLK_DEV_NULL_BLK_FAULT_INJECTION
  1152. if (g_requeue_str[0])
  1153. return should_fail(&null_requeue_attr, 1);
  1154. #endif
  1155. return false;
  1156. }
  1157. static void null_request_fn(struct request_queue *q)
  1158. {
  1159. struct request *rq;
  1160. while ((rq = blk_fetch_request(q)) != NULL) {
  1161. struct nullb_cmd *cmd = rq->special;
  1162. /* just ignore the request */
  1163. if (should_timeout_request(rq))
  1164. continue;
  1165. if (should_requeue_request(rq)) {
  1166. blk_requeue_request(q, rq);
  1167. continue;
  1168. }
  1169. spin_unlock_irq(q->queue_lock);
  1170. null_handle_cmd(cmd);
  1171. spin_lock_irq(q->queue_lock);
  1172. }
  1173. }
  1174. static enum blk_eh_timer_return null_timeout_rq(struct request *rq, bool res)
  1175. {
  1176. pr_info("null: rq %p timed out\n", rq);
  1177. blk_mq_complete_request(rq);
  1178. return BLK_EH_DONE;
  1179. }
  1180. static blk_status_t null_queue_rq(struct blk_mq_hw_ctx *hctx,
  1181. const struct blk_mq_queue_data *bd)
  1182. {
  1183. struct nullb_cmd *cmd = blk_mq_rq_to_pdu(bd->rq);
  1184. struct nullb_queue *nq = hctx->driver_data;
  1185. might_sleep_if(hctx->flags & BLK_MQ_F_BLOCKING);
  1186. if (nq->dev->irqmode == NULL_IRQ_TIMER) {
  1187. hrtimer_init(&cmd->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
  1188. cmd->timer.function = null_cmd_timer_expired;
  1189. }
  1190. cmd->rq = bd->rq;
  1191. cmd->error = BLK_STS_OK;
  1192. cmd->nq = nq;
  1193. blk_mq_start_request(bd->rq);
  1194. if (should_requeue_request(bd->rq)) {
  1195. /*
  1196. * Alternate between hitting the core BUSY path, and the
  1197. * driver driven requeue path
  1198. */
  1199. nq->requeue_selection++;
  1200. if (nq->requeue_selection & 1)
  1201. return BLK_STS_RESOURCE;
  1202. else {
  1203. blk_mq_requeue_request(bd->rq, true);
  1204. return BLK_STS_OK;
  1205. }
  1206. }
  1207. if (should_timeout_request(bd->rq))
  1208. return BLK_STS_OK;
  1209. return null_handle_cmd(cmd);
  1210. }
  1211. static const struct blk_mq_ops null_mq_ops = {
  1212. .queue_rq = null_queue_rq,
  1213. .complete = null_softirq_done_fn,
  1214. .timeout = null_timeout_rq,
  1215. };
  1216. static void cleanup_queue(struct nullb_queue *nq)
  1217. {
  1218. kfree(nq->tag_map);
  1219. kfree(nq->cmds);
  1220. }
  1221. static void cleanup_queues(struct nullb *nullb)
  1222. {
  1223. int i;
  1224. for (i = 0; i < nullb->nr_queues; i++)
  1225. cleanup_queue(&nullb->queues[i]);
  1226. kfree(nullb->queues);
  1227. }
  1228. static void null_del_dev(struct nullb *nullb)
  1229. {
  1230. struct nullb_device *dev;
  1231. if (!nullb)
  1232. return;
  1233. dev = nullb->dev;
  1234. ida_simple_remove(&nullb_indexes, nullb->index);
  1235. list_del_init(&nullb->list);
  1236. del_gendisk(nullb->disk);
  1237. if (test_bit(NULLB_DEV_FL_THROTTLED, &nullb->dev->flags)) {
  1238. hrtimer_cancel(&nullb->bw_timer);
  1239. atomic_long_set(&nullb->cur_bytes, LONG_MAX);
  1240. null_restart_queue_async(nullb);
  1241. }
  1242. blk_cleanup_queue(nullb->q);
  1243. if (dev->queue_mode == NULL_Q_MQ &&
  1244. nullb->tag_set == &nullb->__tag_set)
  1245. blk_mq_free_tag_set(nullb->tag_set);
  1246. put_disk(nullb->disk);
  1247. cleanup_queues(nullb);
  1248. if (null_cache_active(nullb))
  1249. null_free_device_storage(nullb->dev, true);
  1250. kfree(nullb);
  1251. dev->nullb = NULL;
  1252. }
  1253. static void null_config_discard(struct nullb *nullb)
  1254. {
  1255. if (nullb->dev->discard == false)
  1256. return;
  1257. nullb->q->limits.discard_granularity = nullb->dev->blocksize;
  1258. nullb->q->limits.discard_alignment = nullb->dev->blocksize;
  1259. blk_queue_max_discard_sectors(nullb->q, UINT_MAX >> 9);
  1260. blk_queue_flag_set(QUEUE_FLAG_DISCARD, nullb->q);
  1261. }
  1262. static int null_open(struct block_device *bdev, fmode_t mode)
  1263. {
  1264. return 0;
  1265. }
  1266. static void null_release(struct gendisk *disk, fmode_t mode)
  1267. {
  1268. }
  1269. static const struct block_device_operations null_fops = {
  1270. .owner = THIS_MODULE,
  1271. .open = null_open,
  1272. .release = null_release,
  1273. };
  1274. static void null_init_queue(struct nullb *nullb, struct nullb_queue *nq)
  1275. {
  1276. BUG_ON(!nullb);
  1277. BUG_ON(!nq);
  1278. init_waitqueue_head(&nq->wait);
  1279. nq->queue_depth = nullb->queue_depth;
  1280. nq->dev = nullb->dev;
  1281. }
  1282. static void null_init_queues(struct nullb *nullb)
  1283. {
  1284. struct request_queue *q = nullb->q;
  1285. struct blk_mq_hw_ctx *hctx;
  1286. struct nullb_queue *nq;
  1287. int i;
  1288. queue_for_each_hw_ctx(q, hctx, i) {
  1289. if (!hctx->nr_ctx || !hctx->tags)
  1290. continue;
  1291. nq = &nullb->queues[i];
  1292. hctx->driver_data = nq;
  1293. null_init_queue(nullb, nq);
  1294. nullb->nr_queues++;
  1295. }
  1296. }
  1297. static int setup_commands(struct nullb_queue *nq)
  1298. {
  1299. struct nullb_cmd *cmd;
  1300. int i, tag_size;
  1301. nq->cmds = kcalloc(nq->queue_depth, sizeof(*cmd), GFP_KERNEL);
  1302. if (!nq->cmds)
  1303. return -ENOMEM;
  1304. tag_size = ALIGN(nq->queue_depth, BITS_PER_LONG) / BITS_PER_LONG;
  1305. nq->tag_map = kcalloc(tag_size, sizeof(unsigned long), GFP_KERNEL);
  1306. if (!nq->tag_map) {
  1307. kfree(nq->cmds);
  1308. return -ENOMEM;
  1309. }
  1310. for (i = 0; i < nq->queue_depth; i++) {
  1311. cmd = &nq->cmds[i];
  1312. INIT_LIST_HEAD(&cmd->list);
  1313. cmd->ll_list.next = NULL;
  1314. cmd->tag = -1U;
  1315. }
  1316. return 0;
  1317. }
  1318. static int setup_queues(struct nullb *nullb)
  1319. {
  1320. nullb->queues = kcalloc(nullb->dev->submit_queues,
  1321. sizeof(struct nullb_queue),
  1322. GFP_KERNEL);
  1323. if (!nullb->queues)
  1324. return -ENOMEM;
  1325. nullb->nr_queues = 0;
  1326. nullb->queue_depth = nullb->dev->hw_queue_depth;
  1327. return 0;
  1328. }
  1329. static int init_driver_queues(struct nullb *nullb)
  1330. {
  1331. struct nullb_queue *nq;
  1332. int i, ret = 0;
  1333. for (i = 0; i < nullb->dev->submit_queues; i++) {
  1334. nq = &nullb->queues[i];
  1335. null_init_queue(nullb, nq);
  1336. ret = setup_commands(nq);
  1337. if (ret)
  1338. return ret;
  1339. nullb->nr_queues++;
  1340. }
  1341. return 0;
  1342. }
  1343. static int null_gendisk_register(struct nullb *nullb)
  1344. {
  1345. struct gendisk *disk;
  1346. sector_t size;
  1347. disk = nullb->disk = alloc_disk_node(1, nullb->dev->home_node);
  1348. if (!disk)
  1349. return -ENOMEM;
  1350. size = (sector_t)nullb->dev->size * 1024 * 1024ULL;
  1351. set_capacity(disk, size >> 9);
  1352. disk->flags |= GENHD_FL_EXT_DEVT | GENHD_FL_SUPPRESS_PARTITION_INFO;
  1353. disk->major = null_major;
  1354. disk->first_minor = nullb->index;
  1355. disk->fops = &null_fops;
  1356. disk->private_data = nullb;
  1357. disk->queue = nullb->q;
  1358. strncpy(disk->disk_name, nullb->disk_name, DISK_NAME_LEN);
  1359. add_disk(disk);
  1360. return 0;
  1361. }
  1362. static int null_init_tag_set(struct nullb *nullb, struct blk_mq_tag_set *set)
  1363. {
  1364. set->ops = &null_mq_ops;
  1365. set->nr_hw_queues = nullb ? nullb->dev->submit_queues :
  1366. g_submit_queues;
  1367. set->queue_depth = nullb ? nullb->dev->hw_queue_depth :
  1368. g_hw_queue_depth;
  1369. set->numa_node = nullb ? nullb->dev->home_node : g_home_node;
  1370. set->cmd_size = sizeof(struct nullb_cmd);
  1371. set->flags = BLK_MQ_F_SHOULD_MERGE;
  1372. if (g_no_sched)
  1373. set->flags |= BLK_MQ_F_NO_SCHED;
  1374. set->driver_data = NULL;
  1375. if ((nullb && nullb->dev->blocking) || g_blocking)
  1376. set->flags |= BLK_MQ_F_BLOCKING;
  1377. return blk_mq_alloc_tag_set(set);
  1378. }
  1379. static void null_validate_conf(struct nullb_device *dev)
  1380. {
  1381. dev->blocksize = round_down(dev->blocksize, 512);
  1382. dev->blocksize = clamp_t(unsigned int, dev->blocksize, 512, 4096);
  1383. if (dev->queue_mode == NULL_Q_MQ && dev->use_per_node_hctx) {
  1384. if (dev->submit_queues != nr_online_nodes)
  1385. dev->submit_queues = nr_online_nodes;
  1386. } else if (dev->submit_queues > nr_cpu_ids)
  1387. dev->submit_queues = nr_cpu_ids;
  1388. else if (dev->submit_queues == 0)
  1389. dev->submit_queues = 1;
  1390. dev->queue_mode = min_t(unsigned int, dev->queue_mode, NULL_Q_MQ);
  1391. dev->irqmode = min_t(unsigned int, dev->irqmode, NULL_IRQ_TIMER);
  1392. /* Do memory allocation, so set blocking */
  1393. if (dev->memory_backed)
  1394. dev->blocking = true;
  1395. else /* cache is meaningless */
  1396. dev->cache_size = 0;
  1397. dev->cache_size = min_t(unsigned long, ULONG_MAX / 1024 / 1024,
  1398. dev->cache_size);
  1399. dev->mbps = min_t(unsigned int, 1024 * 40, dev->mbps);
  1400. /* can not stop a queue */
  1401. if (dev->queue_mode == NULL_Q_BIO)
  1402. dev->mbps = 0;
  1403. }
  1404. #ifdef CONFIG_BLK_DEV_NULL_BLK_FAULT_INJECTION
  1405. static bool __null_setup_fault(struct fault_attr *attr, char *str)
  1406. {
  1407. if (!str[0])
  1408. return true;
  1409. if (!setup_fault_attr(attr, str))
  1410. return false;
  1411. attr->verbose = 0;
  1412. return true;
  1413. }
  1414. #endif
  1415. static bool null_setup_fault(void)
  1416. {
  1417. #ifdef CONFIG_BLK_DEV_NULL_BLK_FAULT_INJECTION
  1418. if (!__null_setup_fault(&null_timeout_attr, g_timeout_str))
  1419. return false;
  1420. if (!__null_setup_fault(&null_requeue_attr, g_requeue_str))
  1421. return false;
  1422. #endif
  1423. return true;
  1424. }
  1425. static int null_add_dev(struct nullb_device *dev)
  1426. {
  1427. struct nullb *nullb;
  1428. int rv;
  1429. null_validate_conf(dev);
  1430. nullb = kzalloc_node(sizeof(*nullb), GFP_KERNEL, dev->home_node);
  1431. if (!nullb) {
  1432. rv = -ENOMEM;
  1433. goto out;
  1434. }
  1435. nullb->dev = dev;
  1436. dev->nullb = nullb;
  1437. spin_lock_init(&nullb->lock);
  1438. rv = setup_queues(nullb);
  1439. if (rv)
  1440. goto out_free_nullb;
  1441. if (dev->queue_mode == NULL_Q_MQ) {
  1442. if (shared_tags) {
  1443. nullb->tag_set = &tag_set;
  1444. rv = 0;
  1445. } else {
  1446. nullb->tag_set = &nullb->__tag_set;
  1447. rv = null_init_tag_set(nullb, nullb->tag_set);
  1448. }
  1449. if (rv)
  1450. goto out_cleanup_queues;
  1451. if (!null_setup_fault())
  1452. goto out_cleanup_queues;
  1453. nullb->tag_set->timeout = 5 * HZ;
  1454. nullb->q = blk_mq_init_queue(nullb->tag_set);
  1455. if (IS_ERR(nullb->q)) {
  1456. rv = -ENOMEM;
  1457. goto out_cleanup_tags;
  1458. }
  1459. null_init_queues(nullb);
  1460. } else if (dev->queue_mode == NULL_Q_BIO) {
  1461. nullb->q = blk_alloc_queue_node(GFP_KERNEL, dev->home_node,
  1462. NULL);
  1463. if (!nullb->q) {
  1464. rv = -ENOMEM;
  1465. goto out_cleanup_queues;
  1466. }
  1467. blk_queue_make_request(nullb->q, null_queue_bio);
  1468. rv = init_driver_queues(nullb);
  1469. if (rv)
  1470. goto out_cleanup_blk_queue;
  1471. } else {
  1472. nullb->q = blk_init_queue_node(null_request_fn, &nullb->lock,
  1473. dev->home_node);
  1474. if (!nullb->q) {
  1475. rv = -ENOMEM;
  1476. goto out_cleanup_queues;
  1477. }
  1478. if (!null_setup_fault())
  1479. goto out_cleanup_blk_queue;
  1480. blk_queue_prep_rq(nullb->q, null_rq_prep_fn);
  1481. blk_queue_softirq_done(nullb->q, null_softirq_done_fn);
  1482. blk_queue_rq_timed_out(nullb->q, null_rq_timed_out_fn);
  1483. nullb->q->rq_timeout = 5 * HZ;
  1484. rv = init_driver_queues(nullb);
  1485. if (rv)
  1486. goto out_cleanup_blk_queue;
  1487. }
  1488. if (dev->mbps) {
  1489. set_bit(NULLB_DEV_FL_THROTTLED, &dev->flags);
  1490. nullb_setup_bwtimer(nullb);
  1491. }
  1492. if (dev->cache_size > 0) {
  1493. set_bit(NULLB_DEV_FL_CACHE, &nullb->dev->flags);
  1494. blk_queue_write_cache(nullb->q, true, true);
  1495. blk_queue_flush_queueable(nullb->q, true);
  1496. }
  1497. if (dev->zoned) {
  1498. rv = null_zone_init(dev);
  1499. if (rv)
  1500. goto out_cleanup_blk_queue;
  1501. blk_queue_chunk_sectors(nullb->q, dev->zone_size_sects);
  1502. nullb->q->limits.zoned = BLK_ZONED_HM;
  1503. }
  1504. nullb->q->queuedata = nullb;
  1505. blk_queue_flag_set(QUEUE_FLAG_NONROT, nullb->q);
  1506. blk_queue_flag_clear(QUEUE_FLAG_ADD_RANDOM, nullb->q);
  1507. mutex_lock(&lock);
  1508. nullb->index = ida_simple_get(&nullb_indexes, 0, 0, GFP_KERNEL);
  1509. dev->index = nullb->index;
  1510. mutex_unlock(&lock);
  1511. blk_queue_logical_block_size(nullb->q, dev->blocksize);
  1512. blk_queue_physical_block_size(nullb->q, dev->blocksize);
  1513. null_config_discard(nullb);
  1514. sprintf(nullb->disk_name, "nullb%d", nullb->index);
  1515. rv = null_gendisk_register(nullb);
  1516. if (rv)
  1517. goto out_cleanup_zone;
  1518. mutex_lock(&lock);
  1519. list_add_tail(&nullb->list, &nullb_list);
  1520. mutex_unlock(&lock);
  1521. return 0;
  1522. out_cleanup_zone:
  1523. if (dev->zoned)
  1524. null_zone_exit(dev);
  1525. out_cleanup_blk_queue:
  1526. blk_cleanup_queue(nullb->q);
  1527. out_cleanup_tags:
  1528. if (dev->queue_mode == NULL_Q_MQ && nullb->tag_set == &nullb->__tag_set)
  1529. blk_mq_free_tag_set(nullb->tag_set);
  1530. out_cleanup_queues:
  1531. cleanup_queues(nullb);
  1532. out_free_nullb:
  1533. kfree(nullb);
  1534. dev->nullb = NULL;
  1535. out:
  1536. return rv;
  1537. }
  1538. static int __init null_init(void)
  1539. {
  1540. int ret = 0;
  1541. unsigned int i;
  1542. struct nullb *nullb;
  1543. struct nullb_device *dev;
  1544. if (g_bs > PAGE_SIZE) {
  1545. pr_warn("null_blk: invalid block size\n");
  1546. pr_warn("null_blk: defaults block size to %lu\n", PAGE_SIZE);
  1547. g_bs = PAGE_SIZE;
  1548. }
  1549. if (!is_power_of_2(g_zone_size)) {
  1550. pr_err("null_blk: zone_size must be power-of-two\n");
  1551. return -EINVAL;
  1552. }
  1553. if (g_queue_mode == NULL_Q_MQ && g_use_per_node_hctx) {
  1554. if (g_submit_queues != nr_online_nodes) {
  1555. pr_warn("null_blk: submit_queues param is set to %u.\n",
  1556. nr_online_nodes);
  1557. g_submit_queues = nr_online_nodes;
  1558. }
  1559. } else if (g_submit_queues > nr_cpu_ids)
  1560. g_submit_queues = nr_cpu_ids;
  1561. else if (g_submit_queues <= 0)
  1562. g_submit_queues = 1;
  1563. if (g_queue_mode == NULL_Q_MQ && shared_tags) {
  1564. ret = null_init_tag_set(NULL, &tag_set);
  1565. if (ret)
  1566. return ret;
  1567. }
  1568. config_group_init(&nullb_subsys.su_group);
  1569. mutex_init(&nullb_subsys.su_mutex);
  1570. ret = configfs_register_subsystem(&nullb_subsys);
  1571. if (ret)
  1572. goto err_tagset;
  1573. mutex_init(&lock);
  1574. null_major = register_blkdev(0, "nullb");
  1575. if (null_major < 0) {
  1576. ret = null_major;
  1577. goto err_conf;
  1578. }
  1579. for (i = 0; i < nr_devices; i++) {
  1580. dev = null_alloc_dev();
  1581. if (!dev) {
  1582. ret = -ENOMEM;
  1583. goto err_dev;
  1584. }
  1585. ret = null_add_dev(dev);
  1586. if (ret) {
  1587. null_free_dev(dev);
  1588. goto err_dev;
  1589. }
  1590. }
  1591. pr_info("null: module loaded\n");
  1592. return 0;
  1593. err_dev:
  1594. while (!list_empty(&nullb_list)) {
  1595. nullb = list_entry(nullb_list.next, struct nullb, list);
  1596. dev = nullb->dev;
  1597. null_del_dev(nullb);
  1598. null_free_dev(dev);
  1599. }
  1600. unregister_blkdev(null_major, "nullb");
  1601. err_conf:
  1602. configfs_unregister_subsystem(&nullb_subsys);
  1603. err_tagset:
  1604. if (g_queue_mode == NULL_Q_MQ && shared_tags)
  1605. blk_mq_free_tag_set(&tag_set);
  1606. return ret;
  1607. }
  1608. static void __exit null_exit(void)
  1609. {
  1610. struct nullb *nullb;
  1611. configfs_unregister_subsystem(&nullb_subsys);
  1612. unregister_blkdev(null_major, "nullb");
  1613. mutex_lock(&lock);
  1614. while (!list_empty(&nullb_list)) {
  1615. struct nullb_device *dev;
  1616. nullb = list_entry(nullb_list.next, struct nullb, list);
  1617. dev = nullb->dev;
  1618. null_del_dev(nullb);
  1619. null_free_dev(dev);
  1620. }
  1621. mutex_unlock(&lock);
  1622. if (g_queue_mode == NULL_Q_MQ && shared_tags)
  1623. blk_mq_free_tag_set(&tag_set);
  1624. }
  1625. module_init(null_init);
  1626. module_exit(null_exit);
  1627. MODULE_AUTHOR("Jens Axboe <axboe@kernel.dk>");
  1628. MODULE_LICENSE("GPL");