btree.c 19 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803
  1. /*
  2. * lib/btree.c - Simple In-memory B+Tree
  3. *
  4. * As should be obvious for Linux kernel code, license is GPLv2
  5. *
  6. * Copyright (c) 2007-2008 Joern Engel <joern@purestorage.com>
  7. * Bits and pieces stolen from Peter Zijlstra's code, which is
  8. * Copyright 2007, Red Hat Inc. Peter Zijlstra
  9. * GPLv2
  10. *
  11. * see http://programming.kicks-ass.net/kernel-patches/vma_lookup/btree.patch
  12. *
  13. * A relatively simple B+Tree implementation. I have written it as a learning
  14. * exercise to understand how B+Trees work. Turned out to be useful as well.
  15. *
  16. * B+Trees can be used similar to Linux radix trees (which don't have anything
  17. * in common with textbook radix trees, beware). Prerequisite for them working
  18. * well is that access to a random tree node is much faster than a large number
  19. * of operations within each node.
  20. *
  21. * Disks have fulfilled the prerequisite for a long time. More recently DRAM
  22. * has gained similar properties, as memory access times, when measured in cpu
  23. * cycles, have increased. Cacheline sizes have increased as well, which also
  24. * helps B+Trees.
  25. *
  26. * Compared to radix trees, B+Trees are more efficient when dealing with a
  27. * sparsely populated address space. Between 25% and 50% of the memory is
  28. * occupied with valid pointers. When densely populated, radix trees contain
  29. * ~98% pointers - hard to beat. Very sparse radix trees contain only ~2%
  30. * pointers.
  31. *
  32. * This particular implementation stores pointers identified by a long value.
  33. * Storing NULL pointers is illegal, lookup will return NULL when no entry
  34. * was found.
  35. *
  36. * A tricks was used that is not commonly found in textbooks. The lowest
  37. * values are to the right, not to the left. All used slots within a node
  38. * are on the left, all unused slots contain NUL values. Most operations
  39. * simply loop once over all slots and terminate on the first NUL.
  40. */
  41. #include <linux/btree.h>
  42. #include <linux/cache.h>
  43. #include <linux/kernel.h>
  44. #include <linux/slab.h>
  45. #include <linux/module.h>
  46. #define MAX(a, b) ((a) > (b) ? (a) : (b))
  47. #define NODESIZE MAX(L1_CACHE_BYTES, 128)
  48. struct btree_geo {
  49. int keylen;
  50. int no_pairs;
  51. int no_longs;
  52. };
  53. struct btree_geo btree_geo32 = {
  54. .keylen = 1,
  55. .no_pairs = NODESIZE / sizeof(long) / 2,
  56. .no_longs = NODESIZE / sizeof(long) / 2,
  57. };
  58. EXPORT_SYMBOL_GPL(btree_geo32);
  59. #define LONG_PER_U64 (64 / BITS_PER_LONG)
  60. struct btree_geo btree_geo64 = {
  61. .keylen = LONG_PER_U64,
  62. .no_pairs = NODESIZE / sizeof(long) / (1 + LONG_PER_U64),
  63. .no_longs = LONG_PER_U64 * (NODESIZE / sizeof(long) / (1 + LONG_PER_U64)),
  64. };
  65. EXPORT_SYMBOL_GPL(btree_geo64);
  66. struct btree_geo btree_geo128 = {
  67. .keylen = 2 * LONG_PER_U64,
  68. .no_pairs = NODESIZE / sizeof(long) / (1 + 2 * LONG_PER_U64),
  69. .no_longs = 2 * LONG_PER_U64 * (NODESIZE / sizeof(long) / (1 + 2 * LONG_PER_U64)),
  70. };
  71. EXPORT_SYMBOL_GPL(btree_geo128);
  72. #define MAX_KEYLEN (2 * LONG_PER_U64)
  73. static struct kmem_cache *btree_cachep;
  74. void *btree_alloc(gfp_t gfp_mask, void *pool_data)
  75. {
  76. return kmem_cache_alloc(btree_cachep, gfp_mask);
  77. }
  78. EXPORT_SYMBOL_GPL(btree_alloc);
  79. void btree_free(void *element, void *pool_data)
  80. {
  81. kmem_cache_free(btree_cachep, element);
  82. }
  83. EXPORT_SYMBOL_GPL(btree_free);
  84. static unsigned long *btree_node_alloc(struct btree_head *head, gfp_t gfp)
  85. {
  86. unsigned long *node;
  87. node = mempool_alloc(head->mempool, gfp);
  88. if (likely(node))
  89. memset(node, 0, NODESIZE);
  90. return node;
  91. }
  92. static int longcmp(const unsigned long *l1, const unsigned long *l2, size_t n)
  93. {
  94. size_t i;
  95. for (i = 0; i < n; i++) {
  96. if (l1[i] < l2[i])
  97. return -1;
  98. if (l1[i] > l2[i])
  99. return 1;
  100. }
  101. return 0;
  102. }
  103. static unsigned long *longcpy(unsigned long *dest, const unsigned long *src,
  104. size_t n)
  105. {
  106. size_t i;
  107. for (i = 0; i < n; i++)
  108. dest[i] = src[i];
  109. return dest;
  110. }
  111. static unsigned long *longset(unsigned long *s, unsigned long c, size_t n)
  112. {
  113. size_t i;
  114. for (i = 0; i < n; i++)
  115. s[i] = c;
  116. return s;
  117. }
  118. static void dec_key(struct btree_geo *geo, unsigned long *key)
  119. {
  120. unsigned long val;
  121. int i;
  122. for (i = geo->keylen - 1; i >= 0; i--) {
  123. val = key[i];
  124. key[i] = val - 1;
  125. if (val)
  126. break;
  127. }
  128. }
  129. static unsigned long *bkey(struct btree_geo *geo, unsigned long *node, int n)
  130. {
  131. return &node[n * geo->keylen];
  132. }
  133. static void *bval(struct btree_geo *geo, unsigned long *node, int n)
  134. {
  135. return (void *)node[geo->no_longs + n];
  136. }
  137. static void setkey(struct btree_geo *geo, unsigned long *node, int n,
  138. unsigned long *key)
  139. {
  140. longcpy(bkey(geo, node, n), key, geo->keylen);
  141. }
  142. static void setval(struct btree_geo *geo, unsigned long *node, int n,
  143. void *val)
  144. {
  145. node[geo->no_longs + n] = (unsigned long) val;
  146. }
  147. static void clearpair(struct btree_geo *geo, unsigned long *node, int n)
  148. {
  149. longset(bkey(geo, node, n), 0, geo->keylen);
  150. node[geo->no_longs + n] = 0;
  151. }
  152. static inline void __btree_init(struct btree_head *head)
  153. {
  154. head->node = NULL;
  155. head->height = 0;
  156. }
  157. void btree_init_mempool(struct btree_head *head, mempool_t *mempool)
  158. {
  159. __btree_init(head);
  160. head->mempool = mempool;
  161. }
  162. EXPORT_SYMBOL_GPL(btree_init_mempool);
  163. int btree_init(struct btree_head *head)
  164. {
  165. __btree_init(head);
  166. head->mempool = mempool_create(0, btree_alloc, btree_free, NULL);
  167. if (!head->mempool)
  168. return -ENOMEM;
  169. return 0;
  170. }
  171. EXPORT_SYMBOL_GPL(btree_init);
  172. void btree_destroy(struct btree_head *head)
  173. {
  174. mempool_free(head->node, head->mempool);
  175. mempool_destroy(head->mempool);
  176. head->mempool = NULL;
  177. }
  178. EXPORT_SYMBOL_GPL(btree_destroy);
  179. void *btree_last(struct btree_head *head, struct btree_geo *geo,
  180. unsigned long *key)
  181. {
  182. int height = head->height;
  183. unsigned long *node = head->node;
  184. if (height == 0)
  185. return NULL;
  186. for ( ; height > 1; height--)
  187. node = bval(geo, node, 0);
  188. longcpy(key, bkey(geo, node, 0), geo->keylen);
  189. return bval(geo, node, 0);
  190. }
  191. EXPORT_SYMBOL_GPL(btree_last);
  192. static int keycmp(struct btree_geo *geo, unsigned long *node, int pos,
  193. unsigned long *key)
  194. {
  195. return longcmp(bkey(geo, node, pos), key, geo->keylen);
  196. }
  197. static int keyzero(struct btree_geo *geo, unsigned long *key)
  198. {
  199. int i;
  200. for (i = 0; i < geo->keylen; i++)
  201. if (key[i])
  202. return 0;
  203. return 1;
  204. }
  205. void *btree_lookup(struct btree_head *head, struct btree_geo *geo,
  206. unsigned long *key)
  207. {
  208. int i, height = head->height;
  209. unsigned long *node = head->node;
  210. if (height == 0)
  211. return NULL;
  212. for ( ; height > 1; height--) {
  213. for (i = 0; i < geo->no_pairs; i++)
  214. if (keycmp(geo, node, i, key) <= 0)
  215. break;
  216. if (i == geo->no_pairs)
  217. return NULL;
  218. node = bval(geo, node, i);
  219. if (!node)
  220. return NULL;
  221. }
  222. if (!node)
  223. return NULL;
  224. for (i = 0; i < geo->no_pairs; i++)
  225. if (keycmp(geo, node, i, key) == 0)
  226. return bval(geo, node, i);
  227. return NULL;
  228. }
  229. EXPORT_SYMBOL_GPL(btree_lookup);
  230. int btree_update(struct btree_head *head, struct btree_geo *geo,
  231. unsigned long *key, void *val)
  232. {
  233. int i, height = head->height;
  234. unsigned long *node = head->node;
  235. if (height == 0)
  236. return -ENOENT;
  237. for ( ; height > 1; height--) {
  238. for (i = 0; i < geo->no_pairs; i++)
  239. if (keycmp(geo, node, i, key) <= 0)
  240. break;
  241. if (i == geo->no_pairs)
  242. return -ENOENT;
  243. node = bval(geo, node, i);
  244. if (!node)
  245. return -ENOENT;
  246. }
  247. if (!node)
  248. return -ENOENT;
  249. for (i = 0; i < geo->no_pairs; i++)
  250. if (keycmp(geo, node, i, key) == 0) {
  251. setval(geo, node, i, val);
  252. return 0;
  253. }
  254. return -ENOENT;
  255. }
  256. EXPORT_SYMBOL_GPL(btree_update);
  257. /*
  258. * Usually this function is quite similar to normal lookup. But the key of
  259. * a parent node may be smaller than the smallest key of all its siblings.
  260. * In such a case we cannot just return NULL, as we have only proven that no
  261. * key smaller than __key, but larger than this parent key exists.
  262. * So we set __key to the parent key and retry. We have to use the smallest
  263. * such parent key, which is the last parent key we encountered.
  264. */
  265. void *btree_get_prev(struct btree_head *head, struct btree_geo *geo,
  266. unsigned long *__key)
  267. {
  268. int i, height;
  269. unsigned long *node, *oldnode;
  270. unsigned long *retry_key = NULL, key[MAX_KEYLEN];
  271. if (keyzero(geo, __key))
  272. return NULL;
  273. if (head->height == 0)
  274. return NULL;
  275. longcpy(key, __key, geo->keylen);
  276. retry:
  277. dec_key(geo, key);
  278. node = head->node;
  279. for (height = head->height ; height > 1; height--) {
  280. for (i = 0; i < geo->no_pairs; i++)
  281. if (keycmp(geo, node, i, key) <= 0)
  282. break;
  283. if (i == geo->no_pairs)
  284. goto miss;
  285. oldnode = node;
  286. node = bval(geo, node, i);
  287. if (!node)
  288. goto miss;
  289. retry_key = bkey(geo, oldnode, i);
  290. }
  291. if (!node)
  292. goto miss;
  293. for (i = 0; i < geo->no_pairs; i++) {
  294. if (keycmp(geo, node, i, key) <= 0) {
  295. if (bval(geo, node, i)) {
  296. longcpy(__key, bkey(geo, node, i), geo->keylen);
  297. return bval(geo, node, i);
  298. } else
  299. goto miss;
  300. }
  301. }
  302. miss:
  303. if (retry_key) {
  304. longcpy(key, retry_key, geo->keylen);
  305. retry_key = NULL;
  306. goto retry;
  307. }
  308. return NULL;
  309. }
  310. EXPORT_SYMBOL_GPL(btree_get_prev);
  311. static int getpos(struct btree_geo *geo, unsigned long *node,
  312. unsigned long *key)
  313. {
  314. int i;
  315. for (i = 0; i < geo->no_pairs; i++) {
  316. if (keycmp(geo, node, i, key) <= 0)
  317. break;
  318. }
  319. return i;
  320. }
  321. static int getfill(struct btree_geo *geo, unsigned long *node, int start)
  322. {
  323. int i;
  324. for (i = start; i < geo->no_pairs; i++)
  325. if (!bval(geo, node, i))
  326. break;
  327. return i;
  328. }
  329. /*
  330. * locate the correct leaf node in the btree
  331. */
  332. static unsigned long *find_level(struct btree_head *head, struct btree_geo *geo,
  333. unsigned long *key, int level)
  334. {
  335. unsigned long *node = head->node;
  336. int i, height;
  337. for (height = head->height; height > level; height--) {
  338. for (i = 0; i < geo->no_pairs; i++)
  339. if (keycmp(geo, node, i, key) <= 0)
  340. break;
  341. if ((i == geo->no_pairs) || !bval(geo, node, i)) {
  342. /* right-most key is too large, update it */
  343. /* FIXME: If the right-most key on higher levels is
  344. * always zero, this wouldn't be necessary. */
  345. i--;
  346. setkey(geo, node, i, key);
  347. }
  348. BUG_ON(i < 0);
  349. node = bval(geo, node, i);
  350. }
  351. BUG_ON(!node);
  352. return node;
  353. }
  354. static int btree_grow(struct btree_head *head, struct btree_geo *geo,
  355. gfp_t gfp)
  356. {
  357. unsigned long *node;
  358. int fill;
  359. node = btree_node_alloc(head, gfp);
  360. if (!node)
  361. return -ENOMEM;
  362. if (head->node) {
  363. fill = getfill(geo, head->node, 0);
  364. setkey(geo, node, 0, bkey(geo, head->node, fill - 1));
  365. setval(geo, node, 0, head->node);
  366. }
  367. head->node = node;
  368. head->height++;
  369. return 0;
  370. }
  371. static void btree_shrink(struct btree_head *head, struct btree_geo *geo)
  372. {
  373. unsigned long *node;
  374. int fill;
  375. if (head->height <= 1)
  376. return;
  377. node = head->node;
  378. fill = getfill(geo, node, 0);
  379. BUG_ON(fill > 1);
  380. head->node = bval(geo, node, 0);
  381. head->height--;
  382. mempool_free(node, head->mempool);
  383. }
  384. static int btree_insert_level(struct btree_head *head, struct btree_geo *geo,
  385. unsigned long *key, void *val, int level,
  386. gfp_t gfp)
  387. {
  388. unsigned long *node;
  389. int i, pos, fill, err;
  390. BUG_ON(!val);
  391. if (head->height < level) {
  392. err = btree_grow(head, geo, gfp);
  393. if (err)
  394. return err;
  395. }
  396. retry:
  397. node = find_level(head, geo, key, level);
  398. pos = getpos(geo, node, key);
  399. fill = getfill(geo, node, pos);
  400. /* two identical keys are not allowed */
  401. BUG_ON(pos < fill && keycmp(geo, node, pos, key) == 0);
  402. if (fill == geo->no_pairs) {
  403. /* need to split node */
  404. unsigned long *new;
  405. new = btree_node_alloc(head, gfp);
  406. if (!new)
  407. return -ENOMEM;
  408. err = btree_insert_level(head, geo,
  409. bkey(geo, node, fill / 2 - 1),
  410. new, level + 1, gfp);
  411. if (err) {
  412. mempool_free(new, head->mempool);
  413. return err;
  414. }
  415. for (i = 0; i < fill / 2; i++) {
  416. setkey(geo, new, i, bkey(geo, node, i));
  417. setval(geo, new, i, bval(geo, node, i));
  418. setkey(geo, node, i, bkey(geo, node, i + fill / 2));
  419. setval(geo, node, i, bval(geo, node, i + fill / 2));
  420. clearpair(geo, node, i + fill / 2);
  421. }
  422. if (fill & 1) {
  423. setkey(geo, node, i, bkey(geo, node, fill - 1));
  424. setval(geo, node, i, bval(geo, node, fill - 1));
  425. clearpair(geo, node, fill - 1);
  426. }
  427. goto retry;
  428. }
  429. BUG_ON(fill >= geo->no_pairs);
  430. /* shift and insert */
  431. for (i = fill; i > pos; i--) {
  432. setkey(geo, node, i, bkey(geo, node, i - 1));
  433. setval(geo, node, i, bval(geo, node, i - 1));
  434. }
  435. setkey(geo, node, pos, key);
  436. setval(geo, node, pos, val);
  437. return 0;
  438. }
  439. int btree_insert(struct btree_head *head, struct btree_geo *geo,
  440. unsigned long *key, void *val, gfp_t gfp)
  441. {
  442. BUG_ON(!val);
  443. return btree_insert_level(head, geo, key, val, 1, gfp);
  444. }
  445. EXPORT_SYMBOL_GPL(btree_insert);
  446. static void *btree_remove_level(struct btree_head *head, struct btree_geo *geo,
  447. unsigned long *key, int level);
  448. static void merge(struct btree_head *head, struct btree_geo *geo, int level,
  449. unsigned long *left, int lfill,
  450. unsigned long *right, int rfill,
  451. unsigned long *parent, int lpos)
  452. {
  453. int i;
  454. for (i = 0; i < rfill; i++) {
  455. /* Move all keys to the left */
  456. setkey(geo, left, lfill + i, bkey(geo, right, i));
  457. setval(geo, left, lfill + i, bval(geo, right, i));
  458. }
  459. /* Exchange left and right child in parent */
  460. setval(geo, parent, lpos, right);
  461. setval(geo, parent, lpos + 1, left);
  462. /* Remove left (formerly right) child from parent */
  463. btree_remove_level(head, geo, bkey(geo, parent, lpos), level + 1);
  464. mempool_free(right, head->mempool);
  465. }
  466. static void rebalance(struct btree_head *head, struct btree_geo *geo,
  467. unsigned long *key, int level, unsigned long *child, int fill)
  468. {
  469. unsigned long *parent, *left = NULL, *right = NULL;
  470. int i, no_left, no_right;
  471. if (fill == 0) {
  472. /* Because we don't steal entries from a neighbour, this case
  473. * can happen. Parent node contains a single child, this
  474. * node, so merging with a sibling never happens.
  475. */
  476. btree_remove_level(head, geo, key, level + 1);
  477. mempool_free(child, head->mempool);
  478. return;
  479. }
  480. parent = find_level(head, geo, key, level + 1);
  481. i = getpos(geo, parent, key);
  482. BUG_ON(bval(geo, parent, i) != child);
  483. if (i > 0) {
  484. left = bval(geo, parent, i - 1);
  485. no_left = getfill(geo, left, 0);
  486. if (fill + no_left <= geo->no_pairs) {
  487. merge(head, geo, level,
  488. left, no_left,
  489. child, fill,
  490. parent, i - 1);
  491. return;
  492. }
  493. }
  494. if (i + 1 < getfill(geo, parent, i)) {
  495. right = bval(geo, parent, i + 1);
  496. no_right = getfill(geo, right, 0);
  497. if (fill + no_right <= geo->no_pairs) {
  498. merge(head, geo, level,
  499. child, fill,
  500. right, no_right,
  501. parent, i);
  502. return;
  503. }
  504. }
  505. /*
  506. * We could also try to steal one entry from the left or right
  507. * neighbor. By not doing so we changed the invariant from
  508. * "all nodes are at least half full" to "no two neighboring
  509. * nodes can be merged". Which means that the average fill of
  510. * all nodes is still half or better.
  511. */
  512. }
  513. static void *btree_remove_level(struct btree_head *head, struct btree_geo *geo,
  514. unsigned long *key, int level)
  515. {
  516. unsigned long *node;
  517. int i, pos, fill;
  518. void *ret;
  519. if (level > head->height) {
  520. /* we recursed all the way up */
  521. head->height = 0;
  522. head->node = NULL;
  523. return NULL;
  524. }
  525. node = find_level(head, geo, key, level);
  526. pos = getpos(geo, node, key);
  527. fill = getfill(geo, node, pos);
  528. if ((level == 1) && (keycmp(geo, node, pos, key) != 0))
  529. return NULL;
  530. ret = bval(geo, node, pos);
  531. /* remove and shift */
  532. for (i = pos; i < fill - 1; i++) {
  533. setkey(geo, node, i, bkey(geo, node, i + 1));
  534. setval(geo, node, i, bval(geo, node, i + 1));
  535. }
  536. clearpair(geo, node, fill - 1);
  537. if (fill - 1 < geo->no_pairs / 2) {
  538. if (level < head->height)
  539. rebalance(head, geo, key, level, node, fill - 1);
  540. else if (fill - 1 == 1)
  541. btree_shrink(head, geo);
  542. }
  543. return ret;
  544. }
  545. void *btree_remove(struct btree_head *head, struct btree_geo *geo,
  546. unsigned long *key)
  547. {
  548. if (head->height == 0)
  549. return NULL;
  550. return btree_remove_level(head, geo, key, 1);
  551. }
  552. EXPORT_SYMBOL_GPL(btree_remove);
  553. int btree_merge(struct btree_head *target, struct btree_head *victim,
  554. struct btree_geo *geo, gfp_t gfp)
  555. {
  556. unsigned long key[MAX_KEYLEN];
  557. unsigned long dup[MAX_KEYLEN];
  558. void *val;
  559. int err;
  560. BUG_ON(target == victim);
  561. if (!(target->node)) {
  562. /* target is empty, just copy fields over */
  563. target->node = victim->node;
  564. target->height = victim->height;
  565. __btree_init(victim);
  566. return 0;
  567. }
  568. /* TODO: This needs some optimizations. Currently we do three tree
  569. * walks to remove a single object from the victim.
  570. */
  571. for (;;) {
  572. if (!btree_last(victim, geo, key))
  573. break;
  574. val = btree_lookup(victim, geo, key);
  575. err = btree_insert(target, geo, key, val, gfp);
  576. if (err)
  577. return err;
  578. /* We must make a copy of the key, as the original will get
  579. * mangled inside btree_remove. */
  580. longcpy(dup, key, geo->keylen);
  581. btree_remove(victim, geo, dup);
  582. }
  583. return 0;
  584. }
  585. EXPORT_SYMBOL_GPL(btree_merge);
  586. static size_t __btree_for_each(struct btree_head *head, struct btree_geo *geo,
  587. unsigned long *node, unsigned long opaque,
  588. void (*func)(void *elem, unsigned long opaque,
  589. unsigned long *key, size_t index,
  590. void *func2),
  591. void *func2, int reap, int height, size_t count)
  592. {
  593. int i;
  594. unsigned long *child;
  595. for (i = 0; i < geo->no_pairs; i++) {
  596. child = bval(geo, node, i);
  597. if (!child)
  598. break;
  599. if (height > 1)
  600. count = __btree_for_each(head, geo, child, opaque,
  601. func, func2, reap, height - 1, count);
  602. else
  603. func(child, opaque, bkey(geo, node, i), count++,
  604. func2);
  605. }
  606. if (reap)
  607. mempool_free(node, head->mempool);
  608. return count;
  609. }
  610. static void empty(void *elem, unsigned long opaque, unsigned long *key,
  611. size_t index, void *func2)
  612. {
  613. }
  614. void visitorl(void *elem, unsigned long opaque, unsigned long *key,
  615. size_t index, void *__func)
  616. {
  617. visitorl_t func = __func;
  618. func(elem, opaque, *key, index);
  619. }
  620. EXPORT_SYMBOL_GPL(visitorl);
  621. void visitor32(void *elem, unsigned long opaque, unsigned long *__key,
  622. size_t index, void *__func)
  623. {
  624. visitor32_t func = __func;
  625. u32 *key = (void *)__key;
  626. func(elem, opaque, *key, index);
  627. }
  628. EXPORT_SYMBOL_GPL(visitor32);
  629. void visitor64(void *elem, unsigned long opaque, unsigned long *__key,
  630. size_t index, void *__func)
  631. {
  632. visitor64_t func = __func;
  633. u64 *key = (void *)__key;
  634. func(elem, opaque, *key, index);
  635. }
  636. EXPORT_SYMBOL_GPL(visitor64);
  637. void visitor128(void *elem, unsigned long opaque, unsigned long *__key,
  638. size_t index, void *__func)
  639. {
  640. visitor128_t func = __func;
  641. u64 *key = (void *)__key;
  642. func(elem, opaque, key[0], key[1], index);
  643. }
  644. EXPORT_SYMBOL_GPL(visitor128);
  645. size_t btree_visitor(struct btree_head *head, struct btree_geo *geo,
  646. unsigned long opaque,
  647. void (*func)(void *elem, unsigned long opaque,
  648. unsigned long *key,
  649. size_t index, void *func2),
  650. void *func2)
  651. {
  652. size_t count = 0;
  653. if (!func2)
  654. func = empty;
  655. if (head->node)
  656. count = __btree_for_each(head, geo, head->node, opaque, func,
  657. func2, 0, head->height, 0);
  658. return count;
  659. }
  660. EXPORT_SYMBOL_GPL(btree_visitor);
  661. size_t btree_grim_visitor(struct btree_head *head, struct btree_geo *geo,
  662. unsigned long opaque,
  663. void (*func)(void *elem, unsigned long opaque,
  664. unsigned long *key,
  665. size_t index, void *func2),
  666. void *func2)
  667. {
  668. size_t count = 0;
  669. if (!func2)
  670. func = empty;
  671. if (head->node)
  672. count = __btree_for_each(head, geo, head->node, opaque, func,
  673. func2, 1, head->height, 0);
  674. __btree_init(head);
  675. return count;
  676. }
  677. EXPORT_SYMBOL_GPL(btree_grim_visitor);
  678. static int __init btree_module_init(void)
  679. {
  680. btree_cachep = kmem_cache_create("btree_node", NODESIZE, 0,
  681. SLAB_HWCACHE_ALIGN, NULL);
  682. return 0;
  683. }
  684. static void __exit btree_module_exit(void)
  685. {
  686. kmem_cache_destroy(btree_cachep);
  687. }
  688. /* If core code starts using btree, initialization should happen even earlier */
  689. module_init(btree_module_init);
  690. module_exit(btree_module_exit);
  691. MODULE_AUTHOR("Joern Engel <joern@logfs.org>");
  692. MODULE_AUTHOR("Johannes Berg <johannes@sipsolutions.net>");
  693. MODULE_LICENSE("GPL");