mmu.c 33 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261
  1. /*
  2. * This file is subject to the terms and conditions of the GNU General Public
  3. * License. See the file "COPYING" in the main directory of this archive
  4. * for more details.
  5. *
  6. * KVM/MIPS MMU handling in the KVM module.
  7. *
  8. * Copyright (C) 2012 MIPS Technologies, Inc. All rights reserved.
  9. * Authors: Sanjay Lal <sanjayl@kymasys.com>
  10. */
  11. #include <linux/highmem.h>
  12. #include <linux/kvm_host.h>
  13. #include <linux/uaccess.h>
  14. #include <asm/mmu_context.h>
  15. #include <asm/pgalloc.h>
  16. /*
  17. * KVM_MMU_CACHE_MIN_PAGES is the number of GPA page table translation levels
  18. * for which pages need to be cached.
  19. */
  20. #if defined(__PAGETABLE_PMD_FOLDED)
  21. #define KVM_MMU_CACHE_MIN_PAGES 1
  22. #else
  23. #define KVM_MMU_CACHE_MIN_PAGES 2
  24. #endif
  25. static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
  26. int min, int max)
  27. {
  28. void *page;
  29. BUG_ON(max > KVM_NR_MEM_OBJS);
  30. if (cache->nobjs >= min)
  31. return 0;
  32. while (cache->nobjs < max) {
  33. page = (void *)__get_free_page(GFP_KERNEL);
  34. if (!page)
  35. return -ENOMEM;
  36. cache->objects[cache->nobjs++] = page;
  37. }
  38. return 0;
  39. }
  40. static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc)
  41. {
  42. while (mc->nobjs)
  43. free_page((unsigned long)mc->objects[--mc->nobjs]);
  44. }
  45. static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc)
  46. {
  47. void *p;
  48. BUG_ON(!mc || !mc->nobjs);
  49. p = mc->objects[--mc->nobjs];
  50. return p;
  51. }
  52. void kvm_mmu_free_memory_caches(struct kvm_vcpu *vcpu)
  53. {
  54. mmu_free_memory_cache(&vcpu->arch.mmu_page_cache);
  55. }
  56. /**
  57. * kvm_pgd_init() - Initialise KVM GPA page directory.
  58. * @page: Pointer to page directory (PGD) for KVM GPA.
  59. *
  60. * Initialise a KVM GPA page directory with pointers to the invalid table, i.e.
  61. * representing no mappings. This is similar to pgd_init(), however it
  62. * initialises all the page directory pointers, not just the ones corresponding
  63. * to the userland address space (since it is for the guest physical address
  64. * space rather than a virtual address space).
  65. */
  66. static void kvm_pgd_init(void *page)
  67. {
  68. unsigned long *p, *end;
  69. unsigned long entry;
  70. #ifdef __PAGETABLE_PMD_FOLDED
  71. entry = (unsigned long)invalid_pte_table;
  72. #else
  73. entry = (unsigned long)invalid_pmd_table;
  74. #endif
  75. p = (unsigned long *)page;
  76. end = p + PTRS_PER_PGD;
  77. do {
  78. p[0] = entry;
  79. p[1] = entry;
  80. p[2] = entry;
  81. p[3] = entry;
  82. p[4] = entry;
  83. p += 8;
  84. p[-3] = entry;
  85. p[-2] = entry;
  86. p[-1] = entry;
  87. } while (p != end);
  88. }
  89. /**
  90. * kvm_pgd_alloc() - Allocate and initialise a KVM GPA page directory.
  91. *
  92. * Allocate a blank KVM GPA page directory (PGD) for representing guest physical
  93. * to host physical page mappings.
  94. *
  95. * Returns: Pointer to new KVM GPA page directory.
  96. * NULL on allocation failure.
  97. */
  98. pgd_t *kvm_pgd_alloc(void)
  99. {
  100. pgd_t *ret;
  101. ret = (pgd_t *)__get_free_pages(GFP_KERNEL, PGD_ORDER);
  102. if (ret)
  103. kvm_pgd_init(ret);
  104. return ret;
  105. }
  106. /**
  107. * kvm_mips_walk_pgd() - Walk page table with optional allocation.
  108. * @pgd: Page directory pointer.
  109. * @addr: Address to index page table using.
  110. * @cache: MMU page cache to allocate new page tables from, or NULL.
  111. *
  112. * Walk the page tables pointed to by @pgd to find the PTE corresponding to the
  113. * address @addr. If page tables don't exist for @addr, they will be created
  114. * from the MMU cache if @cache is not NULL.
  115. *
  116. * Returns: Pointer to pte_t corresponding to @addr.
  117. * NULL if a page table doesn't exist for @addr and !@cache.
  118. * NULL if a page table allocation failed.
  119. */
  120. static pte_t *kvm_mips_walk_pgd(pgd_t *pgd, struct kvm_mmu_memory_cache *cache,
  121. unsigned long addr)
  122. {
  123. pud_t *pud;
  124. pmd_t *pmd;
  125. pgd += pgd_index(addr);
  126. if (pgd_none(*pgd)) {
  127. /* Not used on MIPS yet */
  128. BUG();
  129. return NULL;
  130. }
  131. pud = pud_offset(pgd, addr);
  132. if (pud_none(*pud)) {
  133. pmd_t *new_pmd;
  134. if (!cache)
  135. return NULL;
  136. new_pmd = mmu_memory_cache_alloc(cache);
  137. pmd_init((unsigned long)new_pmd,
  138. (unsigned long)invalid_pte_table);
  139. pud_populate(NULL, pud, new_pmd);
  140. }
  141. pmd = pmd_offset(pud, addr);
  142. if (pmd_none(*pmd)) {
  143. pte_t *new_pte;
  144. if (!cache)
  145. return NULL;
  146. new_pte = mmu_memory_cache_alloc(cache);
  147. clear_page(new_pte);
  148. pmd_populate_kernel(NULL, pmd, new_pte);
  149. }
  150. return pte_offset(pmd, addr);
  151. }
  152. /* Caller must hold kvm->mm_lock */
  153. static pte_t *kvm_mips_pte_for_gpa(struct kvm *kvm,
  154. struct kvm_mmu_memory_cache *cache,
  155. unsigned long addr)
  156. {
  157. return kvm_mips_walk_pgd(kvm->arch.gpa_mm.pgd, cache, addr);
  158. }
  159. /*
  160. * kvm_mips_flush_gpa_{pte,pmd,pud,pgd,pt}.
  161. * Flush a range of guest physical address space from the VM's GPA page tables.
  162. */
  163. static bool kvm_mips_flush_gpa_pte(pte_t *pte, unsigned long start_gpa,
  164. unsigned long end_gpa)
  165. {
  166. int i_min = __pte_offset(start_gpa);
  167. int i_max = __pte_offset(end_gpa);
  168. bool safe_to_remove = (i_min == 0 && i_max == PTRS_PER_PTE - 1);
  169. int i;
  170. for (i = i_min; i <= i_max; ++i) {
  171. if (!pte_present(pte[i]))
  172. continue;
  173. set_pte(pte + i, __pte(0));
  174. }
  175. return safe_to_remove;
  176. }
  177. static bool kvm_mips_flush_gpa_pmd(pmd_t *pmd, unsigned long start_gpa,
  178. unsigned long end_gpa)
  179. {
  180. pte_t *pte;
  181. unsigned long end = ~0ul;
  182. int i_min = __pmd_offset(start_gpa);
  183. int i_max = __pmd_offset(end_gpa);
  184. bool safe_to_remove = (i_min == 0 && i_max == PTRS_PER_PMD - 1);
  185. int i;
  186. for (i = i_min; i <= i_max; ++i, start_gpa = 0) {
  187. if (!pmd_present(pmd[i]))
  188. continue;
  189. pte = pte_offset(pmd + i, 0);
  190. if (i == i_max)
  191. end = end_gpa;
  192. if (kvm_mips_flush_gpa_pte(pte, start_gpa, end)) {
  193. pmd_clear(pmd + i);
  194. pte_free_kernel(NULL, pte);
  195. } else {
  196. safe_to_remove = false;
  197. }
  198. }
  199. return safe_to_remove;
  200. }
  201. static bool kvm_mips_flush_gpa_pud(pud_t *pud, unsigned long start_gpa,
  202. unsigned long end_gpa)
  203. {
  204. pmd_t *pmd;
  205. unsigned long end = ~0ul;
  206. int i_min = __pud_offset(start_gpa);
  207. int i_max = __pud_offset(end_gpa);
  208. bool safe_to_remove = (i_min == 0 && i_max == PTRS_PER_PUD - 1);
  209. int i;
  210. for (i = i_min; i <= i_max; ++i, start_gpa = 0) {
  211. if (!pud_present(pud[i]))
  212. continue;
  213. pmd = pmd_offset(pud + i, 0);
  214. if (i == i_max)
  215. end = end_gpa;
  216. if (kvm_mips_flush_gpa_pmd(pmd, start_gpa, end)) {
  217. pud_clear(pud + i);
  218. pmd_free(NULL, pmd);
  219. } else {
  220. safe_to_remove = false;
  221. }
  222. }
  223. return safe_to_remove;
  224. }
  225. static bool kvm_mips_flush_gpa_pgd(pgd_t *pgd, unsigned long start_gpa,
  226. unsigned long end_gpa)
  227. {
  228. pud_t *pud;
  229. unsigned long end = ~0ul;
  230. int i_min = pgd_index(start_gpa);
  231. int i_max = pgd_index(end_gpa);
  232. bool safe_to_remove = (i_min == 0 && i_max == PTRS_PER_PGD - 1);
  233. int i;
  234. for (i = i_min; i <= i_max; ++i, start_gpa = 0) {
  235. if (!pgd_present(pgd[i]))
  236. continue;
  237. pud = pud_offset(pgd + i, 0);
  238. if (i == i_max)
  239. end = end_gpa;
  240. if (kvm_mips_flush_gpa_pud(pud, start_gpa, end)) {
  241. pgd_clear(pgd + i);
  242. pud_free(NULL, pud);
  243. } else {
  244. safe_to_remove = false;
  245. }
  246. }
  247. return safe_to_remove;
  248. }
  249. /**
  250. * kvm_mips_flush_gpa_pt() - Flush a range of guest physical addresses.
  251. * @kvm: KVM pointer.
  252. * @start_gfn: Guest frame number of first page in GPA range to flush.
  253. * @end_gfn: Guest frame number of last page in GPA range to flush.
  254. *
  255. * Flushes a range of GPA mappings from the GPA page tables.
  256. *
  257. * The caller must hold the @kvm->mmu_lock spinlock.
  258. *
  259. * Returns: Whether its safe to remove the top level page directory because
  260. * all lower levels have been removed.
  261. */
  262. bool kvm_mips_flush_gpa_pt(struct kvm *kvm, gfn_t start_gfn, gfn_t end_gfn)
  263. {
  264. return kvm_mips_flush_gpa_pgd(kvm->arch.gpa_mm.pgd,
  265. start_gfn << PAGE_SHIFT,
  266. end_gfn << PAGE_SHIFT);
  267. }
  268. #define BUILD_PTE_RANGE_OP(name, op) \
  269. static int kvm_mips_##name##_pte(pte_t *pte, unsigned long start, \
  270. unsigned long end) \
  271. { \
  272. int ret = 0; \
  273. int i_min = __pte_offset(start); \
  274. int i_max = __pte_offset(end); \
  275. int i; \
  276. pte_t old, new; \
  277. \
  278. for (i = i_min; i <= i_max; ++i) { \
  279. if (!pte_present(pte[i])) \
  280. continue; \
  281. \
  282. old = pte[i]; \
  283. new = op(old); \
  284. if (pte_val(new) == pte_val(old)) \
  285. continue; \
  286. set_pte(pte + i, new); \
  287. ret = 1; \
  288. } \
  289. return ret; \
  290. } \
  291. \
  292. /* returns true if anything was done */ \
  293. static int kvm_mips_##name##_pmd(pmd_t *pmd, unsigned long start, \
  294. unsigned long end) \
  295. { \
  296. int ret = 0; \
  297. pte_t *pte; \
  298. unsigned long cur_end = ~0ul; \
  299. int i_min = __pmd_offset(start); \
  300. int i_max = __pmd_offset(end); \
  301. int i; \
  302. \
  303. for (i = i_min; i <= i_max; ++i, start = 0) { \
  304. if (!pmd_present(pmd[i])) \
  305. continue; \
  306. \
  307. pte = pte_offset(pmd + i, 0); \
  308. if (i == i_max) \
  309. cur_end = end; \
  310. \
  311. ret |= kvm_mips_##name##_pte(pte, start, cur_end); \
  312. } \
  313. return ret; \
  314. } \
  315. \
  316. static int kvm_mips_##name##_pud(pud_t *pud, unsigned long start, \
  317. unsigned long end) \
  318. { \
  319. int ret = 0; \
  320. pmd_t *pmd; \
  321. unsigned long cur_end = ~0ul; \
  322. int i_min = __pud_offset(start); \
  323. int i_max = __pud_offset(end); \
  324. int i; \
  325. \
  326. for (i = i_min; i <= i_max; ++i, start = 0) { \
  327. if (!pud_present(pud[i])) \
  328. continue; \
  329. \
  330. pmd = pmd_offset(pud + i, 0); \
  331. if (i == i_max) \
  332. cur_end = end; \
  333. \
  334. ret |= kvm_mips_##name##_pmd(pmd, start, cur_end); \
  335. } \
  336. return ret; \
  337. } \
  338. \
  339. static int kvm_mips_##name##_pgd(pgd_t *pgd, unsigned long start, \
  340. unsigned long end) \
  341. { \
  342. int ret = 0; \
  343. pud_t *pud; \
  344. unsigned long cur_end = ~0ul; \
  345. int i_min = pgd_index(start); \
  346. int i_max = pgd_index(end); \
  347. int i; \
  348. \
  349. for (i = i_min; i <= i_max; ++i, start = 0) { \
  350. if (!pgd_present(pgd[i])) \
  351. continue; \
  352. \
  353. pud = pud_offset(pgd + i, 0); \
  354. if (i == i_max) \
  355. cur_end = end; \
  356. \
  357. ret |= kvm_mips_##name##_pud(pud, start, cur_end); \
  358. } \
  359. return ret; \
  360. }
  361. /*
  362. * kvm_mips_mkclean_gpa_pt.
  363. * Mark a range of guest physical address space clean (writes fault) in the VM's
  364. * GPA page table to allow dirty page tracking.
  365. */
  366. BUILD_PTE_RANGE_OP(mkclean, pte_mkclean)
  367. /**
  368. * kvm_mips_mkclean_gpa_pt() - Make a range of guest physical addresses clean.
  369. * @kvm: KVM pointer.
  370. * @start_gfn: Guest frame number of first page in GPA range to flush.
  371. * @end_gfn: Guest frame number of last page in GPA range to flush.
  372. *
  373. * Make a range of GPA mappings clean so that guest writes will fault and
  374. * trigger dirty page logging.
  375. *
  376. * The caller must hold the @kvm->mmu_lock spinlock.
  377. *
  378. * Returns: Whether any GPA mappings were modified, which would require
  379. * derived mappings (GVA page tables & TLB enties) to be
  380. * invalidated.
  381. */
  382. int kvm_mips_mkclean_gpa_pt(struct kvm *kvm, gfn_t start_gfn, gfn_t end_gfn)
  383. {
  384. return kvm_mips_mkclean_pgd(kvm->arch.gpa_mm.pgd,
  385. start_gfn << PAGE_SHIFT,
  386. end_gfn << PAGE_SHIFT);
  387. }
  388. /**
  389. * kvm_arch_mmu_enable_log_dirty_pt_masked() - write protect dirty pages
  390. * @kvm: The KVM pointer
  391. * @slot: The memory slot associated with mask
  392. * @gfn_offset: The gfn offset in memory slot
  393. * @mask: The mask of dirty pages at offset 'gfn_offset' in this memory
  394. * slot to be write protected
  395. *
  396. * Walks bits set in mask write protects the associated pte's. Caller must
  397. * acquire @kvm->mmu_lock.
  398. */
  399. void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm,
  400. struct kvm_memory_slot *slot,
  401. gfn_t gfn_offset, unsigned long mask)
  402. {
  403. gfn_t base_gfn = slot->base_gfn + gfn_offset;
  404. gfn_t start = base_gfn + __ffs(mask);
  405. gfn_t end = base_gfn + __fls(mask);
  406. kvm_mips_mkclean_gpa_pt(kvm, start, end);
  407. }
  408. /*
  409. * kvm_mips_mkold_gpa_pt.
  410. * Mark a range of guest physical address space old (all accesses fault) in the
  411. * VM's GPA page table to allow detection of commonly used pages.
  412. */
  413. BUILD_PTE_RANGE_OP(mkold, pte_mkold)
  414. static int kvm_mips_mkold_gpa_pt(struct kvm *kvm, gfn_t start_gfn,
  415. gfn_t end_gfn)
  416. {
  417. return kvm_mips_mkold_pgd(kvm->arch.gpa_mm.pgd,
  418. start_gfn << PAGE_SHIFT,
  419. end_gfn << PAGE_SHIFT);
  420. }
  421. static int handle_hva_to_gpa(struct kvm *kvm,
  422. unsigned long start,
  423. unsigned long end,
  424. int (*handler)(struct kvm *kvm, gfn_t gfn,
  425. gpa_t gfn_end,
  426. struct kvm_memory_slot *memslot,
  427. void *data),
  428. void *data)
  429. {
  430. struct kvm_memslots *slots;
  431. struct kvm_memory_slot *memslot;
  432. int ret = 0;
  433. slots = kvm_memslots(kvm);
  434. /* we only care about the pages that the guest sees */
  435. kvm_for_each_memslot(memslot, slots) {
  436. unsigned long hva_start, hva_end;
  437. gfn_t gfn, gfn_end;
  438. hva_start = max(start, memslot->userspace_addr);
  439. hva_end = min(end, memslot->userspace_addr +
  440. (memslot->npages << PAGE_SHIFT));
  441. if (hva_start >= hva_end)
  442. continue;
  443. /*
  444. * {gfn(page) | page intersects with [hva_start, hva_end)} =
  445. * {gfn_start, gfn_start+1, ..., gfn_end-1}.
  446. */
  447. gfn = hva_to_gfn_memslot(hva_start, memslot);
  448. gfn_end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, memslot);
  449. ret |= handler(kvm, gfn, gfn_end, memslot, data);
  450. }
  451. return ret;
  452. }
  453. static int kvm_unmap_hva_handler(struct kvm *kvm, gfn_t gfn, gfn_t gfn_end,
  454. struct kvm_memory_slot *memslot, void *data)
  455. {
  456. kvm_mips_flush_gpa_pt(kvm, gfn, gfn_end);
  457. return 1;
  458. }
  459. int kvm_unmap_hva_range(struct kvm *kvm, unsigned long start, unsigned long end,
  460. bool blockable)
  461. {
  462. handle_hva_to_gpa(kvm, start, end, &kvm_unmap_hva_handler, NULL);
  463. kvm_mips_callbacks->flush_shadow_all(kvm);
  464. return 0;
  465. }
  466. static int kvm_set_spte_handler(struct kvm *kvm, gfn_t gfn, gfn_t gfn_end,
  467. struct kvm_memory_slot *memslot, void *data)
  468. {
  469. gpa_t gpa = gfn << PAGE_SHIFT;
  470. pte_t hva_pte = *(pte_t *)data;
  471. pte_t *gpa_pte = kvm_mips_pte_for_gpa(kvm, NULL, gpa);
  472. pte_t old_pte;
  473. if (!gpa_pte)
  474. return 0;
  475. /* Mapping may need adjusting depending on memslot flags */
  476. old_pte = *gpa_pte;
  477. if (memslot->flags & KVM_MEM_LOG_DIRTY_PAGES && !pte_dirty(old_pte))
  478. hva_pte = pte_mkclean(hva_pte);
  479. else if (memslot->flags & KVM_MEM_READONLY)
  480. hva_pte = pte_wrprotect(hva_pte);
  481. set_pte(gpa_pte, hva_pte);
  482. /* Replacing an absent or old page doesn't need flushes */
  483. if (!pte_present(old_pte) || !pte_young(old_pte))
  484. return 0;
  485. /* Pages swapped, aged, moved, or cleaned require flushes */
  486. return !pte_present(hva_pte) ||
  487. !pte_young(hva_pte) ||
  488. pte_pfn(old_pte) != pte_pfn(hva_pte) ||
  489. (pte_dirty(old_pte) && !pte_dirty(hva_pte));
  490. }
  491. void kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
  492. {
  493. unsigned long end = hva + PAGE_SIZE;
  494. int ret;
  495. ret = handle_hva_to_gpa(kvm, hva, end, &kvm_set_spte_handler, &pte);
  496. if (ret)
  497. kvm_mips_callbacks->flush_shadow_all(kvm);
  498. }
  499. static int kvm_age_hva_handler(struct kvm *kvm, gfn_t gfn, gfn_t gfn_end,
  500. struct kvm_memory_slot *memslot, void *data)
  501. {
  502. return kvm_mips_mkold_gpa_pt(kvm, gfn, gfn_end);
  503. }
  504. static int kvm_test_age_hva_handler(struct kvm *kvm, gfn_t gfn, gfn_t gfn_end,
  505. struct kvm_memory_slot *memslot, void *data)
  506. {
  507. gpa_t gpa = gfn << PAGE_SHIFT;
  508. pte_t *gpa_pte = kvm_mips_pte_for_gpa(kvm, NULL, gpa);
  509. if (!gpa_pte)
  510. return 0;
  511. return pte_young(*gpa_pte);
  512. }
  513. int kvm_age_hva(struct kvm *kvm, unsigned long start, unsigned long end)
  514. {
  515. return handle_hva_to_gpa(kvm, start, end, kvm_age_hva_handler, NULL);
  516. }
  517. int kvm_test_age_hva(struct kvm *kvm, unsigned long hva)
  518. {
  519. return handle_hva_to_gpa(kvm, hva, hva, kvm_test_age_hva_handler, NULL);
  520. }
  521. /**
  522. * _kvm_mips_map_page_fast() - Fast path GPA fault handler.
  523. * @vcpu: VCPU pointer.
  524. * @gpa: Guest physical address of fault.
  525. * @write_fault: Whether the fault was due to a write.
  526. * @out_entry: New PTE for @gpa (written on success unless NULL).
  527. * @out_buddy: New PTE for @gpa's buddy (written on success unless
  528. * NULL).
  529. *
  530. * Perform fast path GPA fault handling, doing all that can be done without
  531. * calling into KVM. This handles marking old pages young (for idle page
  532. * tracking), and dirtying of clean pages (for dirty page logging).
  533. *
  534. * Returns: 0 on success, in which case we can update derived mappings and
  535. * resume guest execution.
  536. * -EFAULT on failure due to absent GPA mapping or write to
  537. * read-only page, in which case KVM must be consulted.
  538. */
  539. static int _kvm_mips_map_page_fast(struct kvm_vcpu *vcpu, unsigned long gpa,
  540. bool write_fault,
  541. pte_t *out_entry, pte_t *out_buddy)
  542. {
  543. struct kvm *kvm = vcpu->kvm;
  544. gfn_t gfn = gpa >> PAGE_SHIFT;
  545. pte_t *ptep;
  546. kvm_pfn_t pfn = 0; /* silence bogus GCC warning */
  547. bool pfn_valid = false;
  548. int ret = 0;
  549. spin_lock(&kvm->mmu_lock);
  550. /* Fast path - just check GPA page table for an existing entry */
  551. ptep = kvm_mips_pte_for_gpa(kvm, NULL, gpa);
  552. if (!ptep || !pte_present(*ptep)) {
  553. ret = -EFAULT;
  554. goto out;
  555. }
  556. /* Track access to pages marked old */
  557. if (!pte_young(*ptep)) {
  558. set_pte(ptep, pte_mkyoung(*ptep));
  559. pfn = pte_pfn(*ptep);
  560. pfn_valid = true;
  561. /* call kvm_set_pfn_accessed() after unlock */
  562. }
  563. if (write_fault && !pte_dirty(*ptep)) {
  564. if (!pte_write(*ptep)) {
  565. ret = -EFAULT;
  566. goto out;
  567. }
  568. /* Track dirtying of writeable pages */
  569. set_pte(ptep, pte_mkdirty(*ptep));
  570. pfn = pte_pfn(*ptep);
  571. mark_page_dirty(kvm, gfn);
  572. kvm_set_pfn_dirty(pfn);
  573. }
  574. if (out_entry)
  575. *out_entry = *ptep;
  576. if (out_buddy)
  577. *out_buddy = *ptep_buddy(ptep);
  578. out:
  579. spin_unlock(&kvm->mmu_lock);
  580. if (pfn_valid)
  581. kvm_set_pfn_accessed(pfn);
  582. return ret;
  583. }
  584. /**
  585. * kvm_mips_map_page() - Map a guest physical page.
  586. * @vcpu: VCPU pointer.
  587. * @gpa: Guest physical address of fault.
  588. * @write_fault: Whether the fault was due to a write.
  589. * @out_entry: New PTE for @gpa (written on success unless NULL).
  590. * @out_buddy: New PTE for @gpa's buddy (written on success unless
  591. * NULL).
  592. *
  593. * Handle GPA faults by creating a new GPA mapping (or updating an existing
  594. * one).
  595. *
  596. * This takes care of marking pages young or dirty (idle/dirty page tracking),
  597. * asking KVM for the corresponding PFN, and creating a mapping in the GPA page
  598. * tables. Derived mappings (GVA page tables and TLBs) must be handled by the
  599. * caller.
  600. *
  601. * Returns: 0 on success, in which case the caller may use the @out_entry
  602. * and @out_buddy PTEs to update derived mappings and resume guest
  603. * execution.
  604. * -EFAULT if there is no memory region at @gpa or a write was
  605. * attempted to a read-only memory region. This is usually handled
  606. * as an MMIO access.
  607. */
  608. static int kvm_mips_map_page(struct kvm_vcpu *vcpu, unsigned long gpa,
  609. bool write_fault,
  610. pte_t *out_entry, pte_t *out_buddy)
  611. {
  612. struct kvm *kvm = vcpu->kvm;
  613. struct kvm_mmu_memory_cache *memcache = &vcpu->arch.mmu_page_cache;
  614. gfn_t gfn = gpa >> PAGE_SHIFT;
  615. int srcu_idx, err;
  616. kvm_pfn_t pfn;
  617. pte_t *ptep, entry, old_pte;
  618. bool writeable;
  619. unsigned long prot_bits;
  620. unsigned long mmu_seq;
  621. /* Try the fast path to handle old / clean pages */
  622. srcu_idx = srcu_read_lock(&kvm->srcu);
  623. err = _kvm_mips_map_page_fast(vcpu, gpa, write_fault, out_entry,
  624. out_buddy);
  625. if (!err)
  626. goto out;
  627. /* We need a minimum of cached pages ready for page table creation */
  628. err = mmu_topup_memory_cache(memcache, KVM_MMU_CACHE_MIN_PAGES,
  629. KVM_NR_MEM_OBJS);
  630. if (err)
  631. goto out;
  632. retry:
  633. /*
  634. * Used to check for invalidations in progress, of the pfn that is
  635. * returned by pfn_to_pfn_prot below.
  636. */
  637. mmu_seq = kvm->mmu_notifier_seq;
  638. /*
  639. * Ensure the read of mmu_notifier_seq isn't reordered with PTE reads in
  640. * gfn_to_pfn_prot() (which calls get_user_pages()), so that we don't
  641. * risk the page we get a reference to getting unmapped before we have a
  642. * chance to grab the mmu_lock without mmu_notifier_retry() noticing.
  643. *
  644. * This smp_rmb() pairs with the effective smp_wmb() of the combination
  645. * of the pte_unmap_unlock() after the PTE is zapped, and the
  646. * spin_lock() in kvm_mmu_notifier_invalidate_<page|range_end>() before
  647. * mmu_notifier_seq is incremented.
  648. */
  649. smp_rmb();
  650. /* Slow path - ask KVM core whether we can access this GPA */
  651. pfn = gfn_to_pfn_prot(kvm, gfn, write_fault, &writeable);
  652. if (is_error_noslot_pfn(pfn)) {
  653. err = -EFAULT;
  654. goto out;
  655. }
  656. spin_lock(&kvm->mmu_lock);
  657. /* Check if an invalidation has taken place since we got pfn */
  658. if (mmu_notifier_retry(kvm, mmu_seq)) {
  659. /*
  660. * This can happen when mappings are changed asynchronously, but
  661. * also synchronously if a COW is triggered by
  662. * gfn_to_pfn_prot().
  663. */
  664. spin_unlock(&kvm->mmu_lock);
  665. kvm_release_pfn_clean(pfn);
  666. goto retry;
  667. }
  668. /* Ensure page tables are allocated */
  669. ptep = kvm_mips_pte_for_gpa(kvm, memcache, gpa);
  670. /* Set up the PTE */
  671. prot_bits = _PAGE_PRESENT | __READABLE | _page_cachable_default;
  672. if (writeable) {
  673. prot_bits |= _PAGE_WRITE;
  674. if (write_fault) {
  675. prot_bits |= __WRITEABLE;
  676. mark_page_dirty(kvm, gfn);
  677. kvm_set_pfn_dirty(pfn);
  678. }
  679. }
  680. entry = pfn_pte(pfn, __pgprot(prot_bits));
  681. /* Write the PTE */
  682. old_pte = *ptep;
  683. set_pte(ptep, entry);
  684. err = 0;
  685. if (out_entry)
  686. *out_entry = *ptep;
  687. if (out_buddy)
  688. *out_buddy = *ptep_buddy(ptep);
  689. spin_unlock(&kvm->mmu_lock);
  690. kvm_release_pfn_clean(pfn);
  691. kvm_set_pfn_accessed(pfn);
  692. out:
  693. srcu_read_unlock(&kvm->srcu, srcu_idx);
  694. return err;
  695. }
  696. static pte_t *kvm_trap_emul_pte_for_gva(struct kvm_vcpu *vcpu,
  697. unsigned long addr)
  698. {
  699. struct kvm_mmu_memory_cache *memcache = &vcpu->arch.mmu_page_cache;
  700. pgd_t *pgdp;
  701. int ret;
  702. /* We need a minimum of cached pages ready for page table creation */
  703. ret = mmu_topup_memory_cache(memcache, KVM_MMU_CACHE_MIN_PAGES,
  704. KVM_NR_MEM_OBJS);
  705. if (ret)
  706. return NULL;
  707. if (KVM_GUEST_KERNEL_MODE(vcpu))
  708. pgdp = vcpu->arch.guest_kernel_mm.pgd;
  709. else
  710. pgdp = vcpu->arch.guest_user_mm.pgd;
  711. return kvm_mips_walk_pgd(pgdp, memcache, addr);
  712. }
  713. void kvm_trap_emul_invalidate_gva(struct kvm_vcpu *vcpu, unsigned long addr,
  714. bool user)
  715. {
  716. pgd_t *pgdp;
  717. pte_t *ptep;
  718. addr &= PAGE_MASK << 1;
  719. pgdp = vcpu->arch.guest_kernel_mm.pgd;
  720. ptep = kvm_mips_walk_pgd(pgdp, NULL, addr);
  721. if (ptep) {
  722. ptep[0] = pfn_pte(0, __pgprot(0));
  723. ptep[1] = pfn_pte(0, __pgprot(0));
  724. }
  725. if (user) {
  726. pgdp = vcpu->arch.guest_user_mm.pgd;
  727. ptep = kvm_mips_walk_pgd(pgdp, NULL, addr);
  728. if (ptep) {
  729. ptep[0] = pfn_pte(0, __pgprot(0));
  730. ptep[1] = pfn_pte(0, __pgprot(0));
  731. }
  732. }
  733. }
  734. /*
  735. * kvm_mips_flush_gva_{pte,pmd,pud,pgd,pt}.
  736. * Flush a range of guest physical address space from the VM's GPA page tables.
  737. */
  738. static bool kvm_mips_flush_gva_pte(pte_t *pte, unsigned long start_gva,
  739. unsigned long end_gva)
  740. {
  741. int i_min = __pte_offset(start_gva);
  742. int i_max = __pte_offset(end_gva);
  743. bool safe_to_remove = (i_min == 0 && i_max == PTRS_PER_PTE - 1);
  744. int i;
  745. /*
  746. * There's no freeing to do, so there's no point clearing individual
  747. * entries unless only part of the last level page table needs flushing.
  748. */
  749. if (safe_to_remove)
  750. return true;
  751. for (i = i_min; i <= i_max; ++i) {
  752. if (!pte_present(pte[i]))
  753. continue;
  754. set_pte(pte + i, __pte(0));
  755. }
  756. return false;
  757. }
  758. static bool kvm_mips_flush_gva_pmd(pmd_t *pmd, unsigned long start_gva,
  759. unsigned long end_gva)
  760. {
  761. pte_t *pte;
  762. unsigned long end = ~0ul;
  763. int i_min = __pmd_offset(start_gva);
  764. int i_max = __pmd_offset(end_gva);
  765. bool safe_to_remove = (i_min == 0 && i_max == PTRS_PER_PMD - 1);
  766. int i;
  767. for (i = i_min; i <= i_max; ++i, start_gva = 0) {
  768. if (!pmd_present(pmd[i]))
  769. continue;
  770. pte = pte_offset(pmd + i, 0);
  771. if (i == i_max)
  772. end = end_gva;
  773. if (kvm_mips_flush_gva_pte(pte, start_gva, end)) {
  774. pmd_clear(pmd + i);
  775. pte_free_kernel(NULL, pte);
  776. } else {
  777. safe_to_remove = false;
  778. }
  779. }
  780. return safe_to_remove;
  781. }
  782. static bool kvm_mips_flush_gva_pud(pud_t *pud, unsigned long start_gva,
  783. unsigned long end_gva)
  784. {
  785. pmd_t *pmd;
  786. unsigned long end = ~0ul;
  787. int i_min = __pud_offset(start_gva);
  788. int i_max = __pud_offset(end_gva);
  789. bool safe_to_remove = (i_min == 0 && i_max == PTRS_PER_PUD - 1);
  790. int i;
  791. for (i = i_min; i <= i_max; ++i, start_gva = 0) {
  792. if (!pud_present(pud[i]))
  793. continue;
  794. pmd = pmd_offset(pud + i, 0);
  795. if (i == i_max)
  796. end = end_gva;
  797. if (kvm_mips_flush_gva_pmd(pmd, start_gva, end)) {
  798. pud_clear(pud + i);
  799. pmd_free(NULL, pmd);
  800. } else {
  801. safe_to_remove = false;
  802. }
  803. }
  804. return safe_to_remove;
  805. }
  806. static bool kvm_mips_flush_gva_pgd(pgd_t *pgd, unsigned long start_gva,
  807. unsigned long end_gva)
  808. {
  809. pud_t *pud;
  810. unsigned long end = ~0ul;
  811. int i_min = pgd_index(start_gva);
  812. int i_max = pgd_index(end_gva);
  813. bool safe_to_remove = (i_min == 0 && i_max == PTRS_PER_PGD - 1);
  814. int i;
  815. for (i = i_min; i <= i_max; ++i, start_gva = 0) {
  816. if (!pgd_present(pgd[i]))
  817. continue;
  818. pud = pud_offset(pgd + i, 0);
  819. if (i == i_max)
  820. end = end_gva;
  821. if (kvm_mips_flush_gva_pud(pud, start_gva, end)) {
  822. pgd_clear(pgd + i);
  823. pud_free(NULL, pud);
  824. } else {
  825. safe_to_remove = false;
  826. }
  827. }
  828. return safe_to_remove;
  829. }
  830. void kvm_mips_flush_gva_pt(pgd_t *pgd, enum kvm_mips_flush flags)
  831. {
  832. if (flags & KMF_GPA) {
  833. /* all of guest virtual address space could be affected */
  834. if (flags & KMF_KERN)
  835. /* useg, kseg0, seg2/3 */
  836. kvm_mips_flush_gva_pgd(pgd, 0, 0x7fffffff);
  837. else
  838. /* useg */
  839. kvm_mips_flush_gva_pgd(pgd, 0, 0x3fffffff);
  840. } else {
  841. /* useg */
  842. kvm_mips_flush_gva_pgd(pgd, 0, 0x3fffffff);
  843. /* kseg2/3 */
  844. if (flags & KMF_KERN)
  845. kvm_mips_flush_gva_pgd(pgd, 0x60000000, 0x7fffffff);
  846. }
  847. }
  848. static pte_t kvm_mips_gpa_pte_to_gva_unmapped(pte_t pte)
  849. {
  850. /*
  851. * Don't leak writeable but clean entries from GPA page tables. We don't
  852. * want the normal Linux tlbmod handler to handle dirtying when KVM
  853. * accesses guest memory.
  854. */
  855. if (!pte_dirty(pte))
  856. pte = pte_wrprotect(pte);
  857. return pte;
  858. }
  859. static pte_t kvm_mips_gpa_pte_to_gva_mapped(pte_t pte, long entrylo)
  860. {
  861. /* Guest EntryLo overrides host EntryLo */
  862. if (!(entrylo & ENTRYLO_D))
  863. pte = pte_mkclean(pte);
  864. return kvm_mips_gpa_pte_to_gva_unmapped(pte);
  865. }
  866. #ifdef CONFIG_KVM_MIPS_VZ
  867. int kvm_mips_handle_vz_root_tlb_fault(unsigned long badvaddr,
  868. struct kvm_vcpu *vcpu,
  869. bool write_fault)
  870. {
  871. int ret;
  872. ret = kvm_mips_map_page(vcpu, badvaddr, write_fault, NULL, NULL);
  873. if (ret)
  874. return ret;
  875. /* Invalidate this entry in the TLB */
  876. return kvm_vz_host_tlb_inv(vcpu, badvaddr);
  877. }
  878. #endif
  879. /* XXXKYMA: Must be called with interrupts disabled */
  880. int kvm_mips_handle_kseg0_tlb_fault(unsigned long badvaddr,
  881. struct kvm_vcpu *vcpu,
  882. bool write_fault)
  883. {
  884. unsigned long gpa;
  885. pte_t pte_gpa[2], *ptep_gva;
  886. int idx;
  887. if (KVM_GUEST_KSEGX(badvaddr) != KVM_GUEST_KSEG0) {
  888. kvm_err("%s: Invalid BadVaddr: %#lx\n", __func__, badvaddr);
  889. kvm_mips_dump_host_tlbs();
  890. return -1;
  891. }
  892. /* Get the GPA page table entry */
  893. gpa = KVM_GUEST_CPHYSADDR(badvaddr);
  894. idx = (badvaddr >> PAGE_SHIFT) & 1;
  895. if (kvm_mips_map_page(vcpu, gpa, write_fault, &pte_gpa[idx],
  896. &pte_gpa[!idx]) < 0)
  897. return -1;
  898. /* Get the GVA page table entry */
  899. ptep_gva = kvm_trap_emul_pte_for_gva(vcpu, badvaddr & ~PAGE_SIZE);
  900. if (!ptep_gva) {
  901. kvm_err("No ptep for gva %lx\n", badvaddr);
  902. return -1;
  903. }
  904. /* Copy a pair of entries from GPA page table to GVA page table */
  905. ptep_gva[0] = kvm_mips_gpa_pte_to_gva_unmapped(pte_gpa[0]);
  906. ptep_gva[1] = kvm_mips_gpa_pte_to_gva_unmapped(pte_gpa[1]);
  907. /* Invalidate this entry in the TLB, guest kernel ASID only */
  908. kvm_mips_host_tlb_inv(vcpu, badvaddr, false, true);
  909. return 0;
  910. }
  911. int kvm_mips_handle_mapped_seg_tlb_fault(struct kvm_vcpu *vcpu,
  912. struct kvm_mips_tlb *tlb,
  913. unsigned long gva,
  914. bool write_fault)
  915. {
  916. struct kvm *kvm = vcpu->kvm;
  917. long tlb_lo[2];
  918. pte_t pte_gpa[2], *ptep_buddy, *ptep_gva;
  919. unsigned int idx = TLB_LO_IDX(*tlb, gva);
  920. bool kernel = KVM_GUEST_KERNEL_MODE(vcpu);
  921. tlb_lo[0] = tlb->tlb_lo[0];
  922. tlb_lo[1] = tlb->tlb_lo[1];
  923. /*
  924. * The commpage address must not be mapped to anything else if the guest
  925. * TLB contains entries nearby, or commpage accesses will break.
  926. */
  927. if (!((gva ^ KVM_GUEST_COMMPAGE_ADDR) & VPN2_MASK & (PAGE_MASK << 1)))
  928. tlb_lo[TLB_LO_IDX(*tlb, KVM_GUEST_COMMPAGE_ADDR)] = 0;
  929. /* Get the GPA page table entry */
  930. if (kvm_mips_map_page(vcpu, mips3_tlbpfn_to_paddr(tlb_lo[idx]),
  931. write_fault, &pte_gpa[idx], NULL) < 0)
  932. return -1;
  933. /* And its GVA buddy's GPA page table entry if it also exists */
  934. pte_gpa[!idx] = pfn_pte(0, __pgprot(0));
  935. if (tlb_lo[!idx] & ENTRYLO_V) {
  936. spin_lock(&kvm->mmu_lock);
  937. ptep_buddy = kvm_mips_pte_for_gpa(kvm, NULL,
  938. mips3_tlbpfn_to_paddr(tlb_lo[!idx]));
  939. if (ptep_buddy)
  940. pte_gpa[!idx] = *ptep_buddy;
  941. spin_unlock(&kvm->mmu_lock);
  942. }
  943. /* Get the GVA page table entry pair */
  944. ptep_gva = kvm_trap_emul_pte_for_gva(vcpu, gva & ~PAGE_SIZE);
  945. if (!ptep_gva) {
  946. kvm_err("No ptep for gva %lx\n", gva);
  947. return -1;
  948. }
  949. /* Copy a pair of entries from GPA page table to GVA page table */
  950. ptep_gva[0] = kvm_mips_gpa_pte_to_gva_mapped(pte_gpa[0], tlb_lo[0]);
  951. ptep_gva[1] = kvm_mips_gpa_pte_to_gva_mapped(pte_gpa[1], tlb_lo[1]);
  952. /* Invalidate this entry in the TLB, current guest mode ASID only */
  953. kvm_mips_host_tlb_inv(vcpu, gva, !kernel, kernel);
  954. kvm_debug("@ %#lx tlb_lo0: 0x%08lx tlb_lo1: 0x%08lx\n", vcpu->arch.pc,
  955. tlb->tlb_lo[0], tlb->tlb_lo[1]);
  956. return 0;
  957. }
  958. int kvm_mips_handle_commpage_tlb_fault(unsigned long badvaddr,
  959. struct kvm_vcpu *vcpu)
  960. {
  961. kvm_pfn_t pfn;
  962. pte_t *ptep;
  963. ptep = kvm_trap_emul_pte_for_gva(vcpu, badvaddr);
  964. if (!ptep) {
  965. kvm_err("No ptep for commpage %lx\n", badvaddr);
  966. return -1;
  967. }
  968. pfn = PFN_DOWN(virt_to_phys(vcpu->arch.kseg0_commpage));
  969. /* Also set valid and dirty, so refill handler doesn't have to */
  970. *ptep = pte_mkyoung(pte_mkdirty(pfn_pte(pfn, PAGE_SHARED)));
  971. /* Invalidate this entry in the TLB, guest kernel ASID only */
  972. kvm_mips_host_tlb_inv(vcpu, badvaddr, false, true);
  973. return 0;
  974. }
  975. /**
  976. * kvm_mips_migrate_count() - Migrate timer.
  977. * @vcpu: Virtual CPU.
  978. *
  979. * Migrate CP0_Count hrtimer to the current CPU by cancelling and restarting it
  980. * if it was running prior to being cancelled.
  981. *
  982. * Must be called when the VCPU is migrated to a different CPU to ensure that
  983. * timer expiry during guest execution interrupts the guest and causes the
  984. * interrupt to be delivered in a timely manner.
  985. */
  986. static void kvm_mips_migrate_count(struct kvm_vcpu *vcpu)
  987. {
  988. if (hrtimer_cancel(&vcpu->arch.comparecount_timer))
  989. hrtimer_restart(&vcpu->arch.comparecount_timer);
  990. }
  991. /* Restore ASID once we are scheduled back after preemption */
  992. void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
  993. {
  994. unsigned long flags;
  995. kvm_debug("%s: vcpu %p, cpu: %d\n", __func__, vcpu, cpu);
  996. local_irq_save(flags);
  997. vcpu->cpu = cpu;
  998. if (vcpu->arch.last_sched_cpu != cpu) {
  999. kvm_debug("[%d->%d]KVM VCPU[%d] switch\n",
  1000. vcpu->arch.last_sched_cpu, cpu, vcpu->vcpu_id);
  1001. /*
  1002. * Migrate the timer interrupt to the current CPU so that it
  1003. * always interrupts the guest and synchronously triggers a
  1004. * guest timer interrupt.
  1005. */
  1006. kvm_mips_migrate_count(vcpu);
  1007. }
  1008. /* restore guest state to registers */
  1009. kvm_mips_callbacks->vcpu_load(vcpu, cpu);
  1010. local_irq_restore(flags);
  1011. }
  1012. /* ASID can change if another task is scheduled during preemption */
  1013. void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
  1014. {
  1015. unsigned long flags;
  1016. int cpu;
  1017. local_irq_save(flags);
  1018. cpu = smp_processor_id();
  1019. vcpu->arch.last_sched_cpu = cpu;
  1020. vcpu->cpu = -1;
  1021. /* save guest state in registers */
  1022. kvm_mips_callbacks->vcpu_put(vcpu, cpu);
  1023. local_irq_restore(flags);
  1024. }
  1025. /**
  1026. * kvm_trap_emul_gva_fault() - Safely attempt to handle a GVA access fault.
  1027. * @vcpu: Virtual CPU.
  1028. * @gva: Guest virtual address to be accessed.
  1029. * @write: True if write attempted (must be dirtied and made writable).
  1030. *
  1031. * Safely attempt to handle a GVA fault, mapping GVA pages if necessary, and
  1032. * dirtying the page if @write so that guest instructions can be modified.
  1033. *
  1034. * Returns: KVM_MIPS_MAPPED on success.
  1035. * KVM_MIPS_GVA if bad guest virtual address.
  1036. * KVM_MIPS_GPA if bad guest physical address.
  1037. * KVM_MIPS_TLB if guest TLB not present.
  1038. * KVM_MIPS_TLBINV if guest TLB present but not valid.
  1039. * KVM_MIPS_TLBMOD if guest TLB read only.
  1040. */
  1041. enum kvm_mips_fault_result kvm_trap_emul_gva_fault(struct kvm_vcpu *vcpu,
  1042. unsigned long gva,
  1043. bool write)
  1044. {
  1045. struct mips_coproc *cop0 = vcpu->arch.cop0;
  1046. struct kvm_mips_tlb *tlb;
  1047. int index;
  1048. if (KVM_GUEST_KSEGX(gva) == KVM_GUEST_KSEG0) {
  1049. if (kvm_mips_handle_kseg0_tlb_fault(gva, vcpu, write) < 0)
  1050. return KVM_MIPS_GPA;
  1051. } else if ((KVM_GUEST_KSEGX(gva) < KVM_GUEST_KSEG0) ||
  1052. KVM_GUEST_KSEGX(gva) == KVM_GUEST_KSEG23) {
  1053. /* Address should be in the guest TLB */
  1054. index = kvm_mips_guest_tlb_lookup(vcpu, (gva & VPN2_MASK) |
  1055. (kvm_read_c0_guest_entryhi(cop0) & KVM_ENTRYHI_ASID));
  1056. if (index < 0)
  1057. return KVM_MIPS_TLB;
  1058. tlb = &vcpu->arch.guest_tlb[index];
  1059. /* Entry should be valid, and dirty for writes */
  1060. if (!TLB_IS_VALID(*tlb, gva))
  1061. return KVM_MIPS_TLBINV;
  1062. if (write && !TLB_IS_DIRTY(*tlb, gva))
  1063. return KVM_MIPS_TLBMOD;
  1064. if (kvm_mips_handle_mapped_seg_tlb_fault(vcpu, tlb, gva, write))
  1065. return KVM_MIPS_GPA;
  1066. } else {
  1067. return KVM_MIPS_GVA;
  1068. }
  1069. return KVM_MIPS_MAPPED;
  1070. }
  1071. int kvm_get_inst(u32 *opc, struct kvm_vcpu *vcpu, u32 *out)
  1072. {
  1073. int err;
  1074. if (WARN(IS_ENABLED(CONFIG_KVM_MIPS_VZ),
  1075. "Expect BadInstr/BadInstrP registers to be used with VZ\n"))
  1076. return -EINVAL;
  1077. retry:
  1078. kvm_trap_emul_gva_lockless_begin(vcpu);
  1079. err = get_user(*out, opc);
  1080. kvm_trap_emul_gva_lockless_end(vcpu);
  1081. if (unlikely(err)) {
  1082. /*
  1083. * Try to handle the fault, maybe we just raced with a GVA
  1084. * invalidation.
  1085. */
  1086. err = kvm_trap_emul_gva_fault(vcpu, (unsigned long)opc,
  1087. false);
  1088. if (unlikely(err)) {
  1089. kvm_err("%s: illegal address: %p\n",
  1090. __func__, opc);
  1091. return -EFAULT;
  1092. }
  1093. /* Hopefully it'll work now */
  1094. goto retry;
  1095. }
  1096. return 0;
  1097. }