xen.c 14 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577
  1. /*
  2. * Xen PCI - handle PCI (INTx) and MSI infrastructure calls for PV, HVM and
  3. * initial domain support. We also handle the DSDT _PRT callbacks for GSI's
  4. * used in HVM and initial domain mode (PV does not parse ACPI, so it has no
  5. * concept of GSIs). Under PV we hook under the pnbbios API for IRQs and
  6. * 0xcf8 PCI configuration read/write.
  7. *
  8. * Author: Ryan Wilson <hap9@epoch.ncsc.mil>
  9. * Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
  10. * Stefano Stabellini <stefano.stabellini@eu.citrix.com>
  11. */
  12. #include <linux/export.h>
  13. #include <linux/init.h>
  14. #include <linux/pci.h>
  15. #include <linux/acpi.h>
  16. #include <linux/io.h>
  17. #include <asm/io_apic.h>
  18. #include <asm/pci_x86.h>
  19. #include <asm/xen/hypervisor.h>
  20. #include <xen/features.h>
  21. #include <xen/events.h>
  22. #include <asm/xen/pci.h>
  23. #include <asm/xen/cpuid.h>
  24. #include <asm/apic.h>
  25. #include <asm/acpi.h>
  26. #include <asm/i8259.h>
  27. static int xen_pcifront_enable_irq(struct pci_dev *dev)
  28. {
  29. int rc;
  30. int share = 1;
  31. int pirq;
  32. u8 gsi;
  33. rc = pci_read_config_byte(dev, PCI_INTERRUPT_LINE, &gsi);
  34. if (rc < 0) {
  35. dev_warn(&dev->dev, "Xen PCI: failed to read interrupt line: %d\n",
  36. rc);
  37. return rc;
  38. }
  39. /* In PV DomU the Xen PCI backend puts the PIRQ in the interrupt line.*/
  40. pirq = gsi;
  41. if (gsi < nr_legacy_irqs())
  42. share = 0;
  43. rc = xen_bind_pirq_gsi_to_irq(gsi, pirq, share, "pcifront");
  44. if (rc < 0) {
  45. dev_warn(&dev->dev, "Xen PCI: failed to bind GSI%d (PIRQ%d) to IRQ: %d\n",
  46. gsi, pirq, rc);
  47. return rc;
  48. }
  49. dev->irq = rc;
  50. dev_info(&dev->dev, "Xen PCI mapped GSI%d to IRQ%d\n", gsi, dev->irq);
  51. return 0;
  52. }
  53. #ifdef CONFIG_ACPI
  54. static int xen_register_pirq(u32 gsi, int gsi_override, int triggering,
  55. bool set_pirq)
  56. {
  57. int rc, pirq = -1, irq = -1;
  58. struct physdev_map_pirq map_irq;
  59. int shareable = 0;
  60. char *name;
  61. irq = xen_irq_from_gsi(gsi);
  62. if (irq > 0)
  63. return irq;
  64. if (set_pirq)
  65. pirq = gsi;
  66. map_irq.domid = DOMID_SELF;
  67. map_irq.type = MAP_PIRQ_TYPE_GSI;
  68. map_irq.index = gsi;
  69. map_irq.pirq = pirq;
  70. rc = HYPERVISOR_physdev_op(PHYSDEVOP_map_pirq, &map_irq);
  71. if (rc) {
  72. printk(KERN_WARNING "xen map irq failed %d\n", rc);
  73. return -1;
  74. }
  75. if (triggering == ACPI_EDGE_SENSITIVE) {
  76. shareable = 0;
  77. name = "ioapic-edge";
  78. } else {
  79. shareable = 1;
  80. name = "ioapic-level";
  81. }
  82. if (gsi_override >= 0)
  83. gsi = gsi_override;
  84. irq = xen_bind_pirq_gsi_to_irq(gsi, map_irq.pirq, shareable, name);
  85. if (irq < 0)
  86. goto out;
  87. printk(KERN_DEBUG "xen: --> pirq=%d -> irq=%d (gsi=%d)\n", map_irq.pirq, irq, gsi);
  88. out:
  89. return irq;
  90. }
  91. static int acpi_register_gsi_xen_hvm(struct device *dev, u32 gsi,
  92. int trigger, int polarity)
  93. {
  94. if (!xen_hvm_domain())
  95. return -1;
  96. return xen_register_pirq(gsi, -1 /* no GSI override */, trigger,
  97. false /* no mapping of GSI to PIRQ */);
  98. }
  99. #ifdef CONFIG_XEN_DOM0
  100. static int xen_register_gsi(u32 gsi, int gsi_override, int triggering, int polarity)
  101. {
  102. int rc, irq;
  103. struct physdev_setup_gsi setup_gsi;
  104. if (!xen_pv_domain())
  105. return -1;
  106. printk(KERN_DEBUG "xen: registering gsi %u triggering %d polarity %d\n",
  107. gsi, triggering, polarity);
  108. irq = xen_register_pirq(gsi, gsi_override, triggering, true);
  109. setup_gsi.gsi = gsi;
  110. setup_gsi.triggering = (triggering == ACPI_EDGE_SENSITIVE ? 0 : 1);
  111. setup_gsi.polarity = (polarity == ACPI_ACTIVE_HIGH ? 0 : 1);
  112. rc = HYPERVISOR_physdev_op(PHYSDEVOP_setup_gsi, &setup_gsi);
  113. if (rc == -EEXIST)
  114. printk(KERN_INFO "Already setup the GSI :%d\n", gsi);
  115. else if (rc) {
  116. printk(KERN_ERR "Failed to setup GSI :%d, err_code:%d\n",
  117. gsi, rc);
  118. }
  119. return irq;
  120. }
  121. static int acpi_register_gsi_xen(struct device *dev, u32 gsi,
  122. int trigger, int polarity)
  123. {
  124. return xen_register_gsi(gsi, -1 /* no GSI override */, trigger, polarity);
  125. }
  126. #endif
  127. #endif
  128. #if defined(CONFIG_PCI_MSI)
  129. #include <linux/msi.h>
  130. #include <asm/msidef.h>
  131. struct xen_pci_frontend_ops *xen_pci_frontend;
  132. EXPORT_SYMBOL_GPL(xen_pci_frontend);
  133. static int xen_setup_msi_irqs(struct pci_dev *dev, int nvec, int type)
  134. {
  135. int irq, ret, i;
  136. struct msi_desc *msidesc;
  137. int *v;
  138. if (type == PCI_CAP_ID_MSI && nvec > 1)
  139. return 1;
  140. v = kcalloc(max(1, nvec), sizeof(int), GFP_KERNEL);
  141. if (!v)
  142. return -ENOMEM;
  143. if (type == PCI_CAP_ID_MSIX)
  144. ret = xen_pci_frontend_enable_msix(dev, v, nvec);
  145. else
  146. ret = xen_pci_frontend_enable_msi(dev, v);
  147. if (ret)
  148. goto error;
  149. i = 0;
  150. for_each_pci_msi_entry(msidesc, dev) {
  151. irq = xen_bind_pirq_msi_to_irq(dev, msidesc, v[i],
  152. (type == PCI_CAP_ID_MSI) ? nvec : 1,
  153. (type == PCI_CAP_ID_MSIX) ?
  154. "pcifront-msi-x" :
  155. "pcifront-msi",
  156. DOMID_SELF);
  157. if (irq < 0) {
  158. ret = irq;
  159. goto free;
  160. }
  161. i++;
  162. }
  163. kfree(v);
  164. return 0;
  165. error:
  166. if (ret == -ENOSYS)
  167. dev_err(&dev->dev, "Xen PCI frontend has not registered MSI/MSI-X support!\n");
  168. else if (ret)
  169. dev_err(&dev->dev, "Xen PCI frontend error: %d!\n", ret);
  170. free:
  171. kfree(v);
  172. return ret;
  173. }
  174. #define XEN_PIRQ_MSI_DATA (MSI_DATA_TRIGGER_EDGE | \
  175. MSI_DATA_LEVEL_ASSERT | (3 << 8) | MSI_DATA_VECTOR(0))
  176. static void xen_msi_compose_msg(struct pci_dev *pdev, unsigned int pirq,
  177. struct msi_msg *msg)
  178. {
  179. /* We set vector == 0 to tell the hypervisor we don't care about it,
  180. * but we want a pirq setup instead.
  181. * We use the dest_id field to pass the pirq that we want. */
  182. msg->address_hi = MSI_ADDR_BASE_HI | MSI_ADDR_EXT_DEST_ID(pirq);
  183. msg->address_lo =
  184. MSI_ADDR_BASE_LO |
  185. MSI_ADDR_DEST_MODE_PHYSICAL |
  186. MSI_ADDR_REDIRECTION_CPU |
  187. MSI_ADDR_DEST_ID(pirq);
  188. msg->data = XEN_PIRQ_MSI_DATA;
  189. }
  190. static int xen_hvm_setup_msi_irqs(struct pci_dev *dev, int nvec, int type)
  191. {
  192. int irq, pirq;
  193. struct msi_desc *msidesc;
  194. struct msi_msg msg;
  195. if (type == PCI_CAP_ID_MSI && nvec > 1)
  196. return 1;
  197. for_each_pci_msi_entry(msidesc, dev) {
  198. pirq = xen_allocate_pirq_msi(dev, msidesc);
  199. if (pirq < 0) {
  200. irq = -ENODEV;
  201. goto error;
  202. }
  203. xen_msi_compose_msg(dev, pirq, &msg);
  204. __pci_write_msi_msg(msidesc, &msg);
  205. dev_dbg(&dev->dev, "xen: msi bound to pirq=%d\n", pirq);
  206. irq = xen_bind_pirq_msi_to_irq(dev, msidesc, pirq,
  207. (type == PCI_CAP_ID_MSI) ? nvec : 1,
  208. (type == PCI_CAP_ID_MSIX) ?
  209. "msi-x" : "msi",
  210. DOMID_SELF);
  211. if (irq < 0)
  212. goto error;
  213. dev_dbg(&dev->dev,
  214. "xen: msi --> pirq=%d --> irq=%d\n", pirq, irq);
  215. }
  216. return 0;
  217. error:
  218. dev_err(&dev->dev, "Failed to create MSI%s! ret=%d!\n",
  219. type == PCI_CAP_ID_MSI ? "" : "-X", irq);
  220. return irq;
  221. }
  222. #ifdef CONFIG_XEN_DOM0
  223. static bool __read_mostly pci_seg_supported = true;
  224. static int xen_initdom_setup_msi_irqs(struct pci_dev *dev, int nvec, int type)
  225. {
  226. int ret = 0;
  227. struct msi_desc *msidesc;
  228. for_each_pci_msi_entry(msidesc, dev) {
  229. struct physdev_map_pirq map_irq;
  230. domid_t domid;
  231. domid = ret = xen_find_device_domain_owner(dev);
  232. /* N.B. Casting int's -ENODEV to uint16_t results in 0xFFED,
  233. * hence check ret value for < 0. */
  234. if (ret < 0)
  235. domid = DOMID_SELF;
  236. memset(&map_irq, 0, sizeof(map_irq));
  237. map_irq.domid = domid;
  238. map_irq.type = MAP_PIRQ_TYPE_MSI_SEG;
  239. map_irq.index = -1;
  240. map_irq.pirq = -1;
  241. map_irq.bus = dev->bus->number |
  242. (pci_domain_nr(dev->bus) << 16);
  243. map_irq.devfn = dev->devfn;
  244. if (type == PCI_CAP_ID_MSI && nvec > 1) {
  245. map_irq.type = MAP_PIRQ_TYPE_MULTI_MSI;
  246. map_irq.entry_nr = nvec;
  247. } else if (type == PCI_CAP_ID_MSIX) {
  248. int pos;
  249. unsigned long flags;
  250. u32 table_offset, bir;
  251. pos = dev->msix_cap;
  252. pci_read_config_dword(dev, pos + PCI_MSIX_TABLE,
  253. &table_offset);
  254. bir = (u8)(table_offset & PCI_MSIX_TABLE_BIR);
  255. flags = pci_resource_flags(dev, bir);
  256. if (!flags || (flags & IORESOURCE_UNSET))
  257. return -EINVAL;
  258. map_irq.table_base = pci_resource_start(dev, bir);
  259. map_irq.entry_nr = msidesc->msi_attrib.entry_nr;
  260. }
  261. ret = -EINVAL;
  262. if (pci_seg_supported)
  263. ret = HYPERVISOR_physdev_op(PHYSDEVOP_map_pirq,
  264. &map_irq);
  265. if (type == PCI_CAP_ID_MSI && nvec > 1 && ret) {
  266. /*
  267. * If MAP_PIRQ_TYPE_MULTI_MSI is not available
  268. * there's nothing else we can do in this case.
  269. * Just set ret > 0 so driver can retry with
  270. * single MSI.
  271. */
  272. ret = 1;
  273. goto out;
  274. }
  275. if (ret == -EINVAL && !pci_domain_nr(dev->bus)) {
  276. map_irq.type = MAP_PIRQ_TYPE_MSI;
  277. map_irq.index = -1;
  278. map_irq.pirq = -1;
  279. map_irq.bus = dev->bus->number;
  280. ret = HYPERVISOR_physdev_op(PHYSDEVOP_map_pirq,
  281. &map_irq);
  282. if (ret != -EINVAL)
  283. pci_seg_supported = false;
  284. }
  285. if (ret) {
  286. dev_warn(&dev->dev, "xen map irq failed %d for %d domain\n",
  287. ret, domid);
  288. goto out;
  289. }
  290. ret = xen_bind_pirq_msi_to_irq(dev, msidesc, map_irq.pirq,
  291. (type == PCI_CAP_ID_MSI) ? nvec : 1,
  292. (type == PCI_CAP_ID_MSIX) ? "msi-x" : "msi",
  293. domid);
  294. if (ret < 0)
  295. goto out;
  296. }
  297. ret = 0;
  298. out:
  299. return ret;
  300. }
  301. static void xen_initdom_restore_msi_irqs(struct pci_dev *dev)
  302. {
  303. int ret = 0;
  304. if (pci_seg_supported) {
  305. struct physdev_pci_device restore_ext;
  306. restore_ext.seg = pci_domain_nr(dev->bus);
  307. restore_ext.bus = dev->bus->number;
  308. restore_ext.devfn = dev->devfn;
  309. ret = HYPERVISOR_physdev_op(PHYSDEVOP_restore_msi_ext,
  310. &restore_ext);
  311. if (ret == -ENOSYS)
  312. pci_seg_supported = false;
  313. WARN(ret && ret != -ENOSYS, "restore_msi_ext -> %d\n", ret);
  314. }
  315. if (!pci_seg_supported) {
  316. struct physdev_restore_msi restore;
  317. restore.bus = dev->bus->number;
  318. restore.devfn = dev->devfn;
  319. ret = HYPERVISOR_physdev_op(PHYSDEVOP_restore_msi, &restore);
  320. WARN(ret && ret != -ENOSYS, "restore_msi -> %d\n", ret);
  321. }
  322. }
  323. #endif
  324. static void xen_teardown_msi_irqs(struct pci_dev *dev)
  325. {
  326. struct msi_desc *msidesc;
  327. msidesc = first_pci_msi_entry(dev);
  328. if (msidesc->msi_attrib.is_msix)
  329. xen_pci_frontend_disable_msix(dev);
  330. else
  331. xen_pci_frontend_disable_msi(dev);
  332. /* Free the IRQ's and the msidesc using the generic code. */
  333. default_teardown_msi_irqs(dev);
  334. }
  335. static void xen_teardown_msi_irq(unsigned int irq)
  336. {
  337. xen_destroy_irq(irq);
  338. }
  339. #endif
  340. int __init pci_xen_init(void)
  341. {
  342. if (!xen_pv_domain() || xen_initial_domain())
  343. return -ENODEV;
  344. printk(KERN_INFO "PCI: setting up Xen PCI frontend stub\n");
  345. pcibios_set_cache_line_size();
  346. pcibios_enable_irq = xen_pcifront_enable_irq;
  347. pcibios_disable_irq = NULL;
  348. /* Keep ACPI out of the picture */
  349. acpi_noirq_set();
  350. #ifdef CONFIG_PCI_MSI
  351. x86_msi.setup_msi_irqs = xen_setup_msi_irqs;
  352. x86_msi.teardown_msi_irq = xen_teardown_msi_irq;
  353. x86_msi.teardown_msi_irqs = xen_teardown_msi_irqs;
  354. pci_msi_ignore_mask = 1;
  355. #endif
  356. return 0;
  357. }
  358. #ifdef CONFIG_PCI_MSI
  359. void __init xen_msi_init(void)
  360. {
  361. if (!disable_apic) {
  362. /*
  363. * If hardware supports (x2)APIC virtualization (as indicated
  364. * by hypervisor's leaf 4) then we don't need to use pirqs/
  365. * event channels for MSI handling and instead use regular
  366. * APIC processing
  367. */
  368. uint32_t eax = cpuid_eax(xen_cpuid_base() + 4);
  369. if (((eax & XEN_HVM_CPUID_X2APIC_VIRT) && x2apic_mode) ||
  370. ((eax & XEN_HVM_CPUID_APIC_ACCESS_VIRT) && boot_cpu_has(X86_FEATURE_APIC)))
  371. return;
  372. }
  373. x86_msi.setup_msi_irqs = xen_hvm_setup_msi_irqs;
  374. x86_msi.teardown_msi_irq = xen_teardown_msi_irq;
  375. }
  376. #endif
  377. int __init pci_xen_hvm_init(void)
  378. {
  379. if (!xen_have_vector_callback || !xen_feature(XENFEAT_hvm_pirqs))
  380. return 0;
  381. #ifdef CONFIG_ACPI
  382. /*
  383. * We don't want to change the actual ACPI delivery model,
  384. * just how GSIs get registered.
  385. */
  386. __acpi_register_gsi = acpi_register_gsi_xen_hvm;
  387. __acpi_unregister_gsi = NULL;
  388. #endif
  389. #ifdef CONFIG_PCI_MSI
  390. /*
  391. * We need to wait until after x2apic is initialized
  392. * before we can set MSI IRQ ops.
  393. */
  394. x86_platform.apic_post_init = xen_msi_init;
  395. #endif
  396. return 0;
  397. }
  398. #ifdef CONFIG_XEN_DOM0
  399. int __init pci_xen_initial_domain(void)
  400. {
  401. int irq;
  402. #ifdef CONFIG_PCI_MSI
  403. x86_msi.setup_msi_irqs = xen_initdom_setup_msi_irqs;
  404. x86_msi.teardown_msi_irq = xen_teardown_msi_irq;
  405. x86_msi.restore_msi_irqs = xen_initdom_restore_msi_irqs;
  406. pci_msi_ignore_mask = 1;
  407. #endif
  408. __acpi_register_gsi = acpi_register_gsi_xen;
  409. __acpi_unregister_gsi = NULL;
  410. /*
  411. * Pre-allocate the legacy IRQs. Use NR_LEGACY_IRQS here
  412. * because we don't have a PIC and thus nr_legacy_irqs() is zero.
  413. */
  414. for (irq = 0; irq < NR_IRQS_LEGACY; irq++) {
  415. int trigger, polarity;
  416. if (acpi_get_override_irq(irq, &trigger, &polarity) == -1)
  417. continue;
  418. xen_register_pirq(irq, -1 /* no GSI override */,
  419. trigger ? ACPI_LEVEL_SENSITIVE : ACPI_EDGE_SENSITIVE,
  420. true /* Map GSI to PIRQ */);
  421. }
  422. if (0 == nr_ioapics) {
  423. for (irq = 0; irq < nr_legacy_irqs(); irq++)
  424. xen_bind_pirq_gsi_to_irq(irq, irq, 0, "xt-pic");
  425. }
  426. return 0;
  427. }
  428. struct xen_device_domain_owner {
  429. domid_t domain;
  430. struct pci_dev *dev;
  431. struct list_head list;
  432. };
  433. static DEFINE_SPINLOCK(dev_domain_list_spinlock);
  434. static struct list_head dev_domain_list = LIST_HEAD_INIT(dev_domain_list);
  435. static struct xen_device_domain_owner *find_device(struct pci_dev *dev)
  436. {
  437. struct xen_device_domain_owner *owner;
  438. list_for_each_entry(owner, &dev_domain_list, list) {
  439. if (owner->dev == dev)
  440. return owner;
  441. }
  442. return NULL;
  443. }
  444. int xen_find_device_domain_owner(struct pci_dev *dev)
  445. {
  446. struct xen_device_domain_owner *owner;
  447. int domain = -ENODEV;
  448. spin_lock(&dev_domain_list_spinlock);
  449. owner = find_device(dev);
  450. if (owner)
  451. domain = owner->domain;
  452. spin_unlock(&dev_domain_list_spinlock);
  453. return domain;
  454. }
  455. EXPORT_SYMBOL_GPL(xen_find_device_domain_owner);
  456. int xen_register_device_domain_owner(struct pci_dev *dev, uint16_t domain)
  457. {
  458. struct xen_device_domain_owner *owner;
  459. owner = kzalloc(sizeof(struct xen_device_domain_owner), GFP_KERNEL);
  460. if (!owner)
  461. return -ENODEV;
  462. spin_lock(&dev_domain_list_spinlock);
  463. if (find_device(dev)) {
  464. spin_unlock(&dev_domain_list_spinlock);
  465. kfree(owner);
  466. return -EEXIST;
  467. }
  468. owner->domain = domain;
  469. owner->dev = dev;
  470. list_add_tail(&owner->list, &dev_domain_list);
  471. spin_unlock(&dev_domain_list_spinlock);
  472. return 0;
  473. }
  474. EXPORT_SYMBOL_GPL(xen_register_device_domain_owner);
  475. int xen_unregister_device_domain_owner(struct pci_dev *dev)
  476. {
  477. struct xen_device_domain_owner *owner;
  478. spin_lock(&dev_domain_list_spinlock);
  479. owner = find_device(dev);
  480. if (!owner) {
  481. spin_unlock(&dev_domain_list_spinlock);
  482. return -ENODEV;
  483. }
  484. list_del(&owner->list);
  485. spin_unlock(&dev_domain_list_spinlock);
  486. kfree(owner);
  487. return 0;
  488. }
  489. EXPORT_SYMBOL_GPL(xen_unregister_device_domain_owner);
  490. #endif