relocs.c 26 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110
  1. // SPDX-License-Identifier: GPL-2.0
  2. /* This is included from relocs_32/64.c */
  3. #define ElfW(type) _ElfW(ELF_BITS, type)
  4. #define _ElfW(bits, type) __ElfW(bits, type)
  5. #define __ElfW(bits, type) Elf##bits##_##type
  6. #define Elf_Addr ElfW(Addr)
  7. #define Elf_Ehdr ElfW(Ehdr)
  8. #define Elf_Phdr ElfW(Phdr)
  9. #define Elf_Shdr ElfW(Shdr)
  10. #define Elf_Sym ElfW(Sym)
  11. static Elf_Ehdr ehdr;
  12. struct relocs {
  13. uint32_t *offset;
  14. unsigned long count;
  15. unsigned long size;
  16. };
  17. static struct relocs relocs16;
  18. static struct relocs relocs32;
  19. #if ELF_BITS == 64
  20. static struct relocs relocs32neg;
  21. static struct relocs relocs64;
  22. #endif
  23. struct section {
  24. Elf_Shdr shdr;
  25. struct section *link;
  26. Elf_Sym *symtab;
  27. Elf_Rel *reltab;
  28. char *strtab;
  29. };
  30. static struct section *secs;
  31. static const char * const sym_regex_kernel[S_NSYMTYPES] = {
  32. /*
  33. * Following symbols have been audited. There values are constant and do
  34. * not change if bzImage is loaded at a different physical address than
  35. * the address for which it has been compiled. Don't warn user about
  36. * absolute relocations present w.r.t these symbols.
  37. */
  38. [S_ABS] =
  39. "^(xen_irq_disable_direct_reloc$|"
  40. "xen_save_fl_direct_reloc$|"
  41. "VDSO|"
  42. "__crc_)",
  43. /*
  44. * These symbols are known to be relative, even if the linker marks them
  45. * as absolute (typically defined outside any section in the linker script.)
  46. */
  47. [S_REL] =
  48. "^(__init_(begin|end)|"
  49. "__x86_cpu_dev_(start|end)|"
  50. "(__parainstructions|__alt_instructions)(|_end)|"
  51. "(__iommu_table|__apicdrivers|__smp_locks)(|_end)|"
  52. "__(start|end)_pci_.*|"
  53. "__(start|end)_builtin_fw|"
  54. "__(start|stop)___ksymtab(|_gpl|_unused|_unused_gpl|_gpl_future)|"
  55. "__(start|stop)___kcrctab(|_gpl|_unused|_unused_gpl|_gpl_future)|"
  56. "__(start|stop)___param|"
  57. "__(start|stop)___modver|"
  58. "__(start|stop)___bug_table|"
  59. "__tracedata_(start|end)|"
  60. "__(start|stop)_notes|"
  61. "__end_rodata|"
  62. "__end_rodata_aligned|"
  63. "__initramfs_start|"
  64. "(jiffies|jiffies_64)|"
  65. #if ELF_BITS == 64
  66. "__per_cpu_load|"
  67. "init_per_cpu__.*|"
  68. "__end_rodata_hpage_align|"
  69. #endif
  70. "__vvar_page|"
  71. "_end)$"
  72. };
  73. static const char * const sym_regex_realmode[S_NSYMTYPES] = {
  74. /*
  75. * These symbols are known to be relative, even if the linker marks them
  76. * as absolute (typically defined outside any section in the linker script.)
  77. */
  78. [S_REL] =
  79. "^pa_",
  80. /*
  81. * These are 16-bit segment symbols when compiling 16-bit code.
  82. */
  83. [S_SEG] =
  84. "^real_mode_seg$",
  85. /*
  86. * These are offsets belonging to segments, as opposed to linear addresses,
  87. * when compiling 16-bit code.
  88. */
  89. [S_LIN] =
  90. "^pa_",
  91. };
  92. static const char * const *sym_regex;
  93. static regex_t sym_regex_c[S_NSYMTYPES];
  94. static int is_reloc(enum symtype type, const char *sym_name)
  95. {
  96. return sym_regex[type] &&
  97. !regexec(&sym_regex_c[type], sym_name, 0, NULL, 0);
  98. }
  99. static void regex_init(int use_real_mode)
  100. {
  101. char errbuf[128];
  102. int err;
  103. int i;
  104. if (use_real_mode)
  105. sym_regex = sym_regex_realmode;
  106. else
  107. sym_regex = sym_regex_kernel;
  108. for (i = 0; i < S_NSYMTYPES; i++) {
  109. if (!sym_regex[i])
  110. continue;
  111. err = regcomp(&sym_regex_c[i], sym_regex[i],
  112. REG_EXTENDED|REG_NOSUB);
  113. if (err) {
  114. regerror(err, &sym_regex_c[i], errbuf, sizeof errbuf);
  115. die("%s", errbuf);
  116. }
  117. }
  118. }
  119. static const char *sym_type(unsigned type)
  120. {
  121. static const char *type_name[] = {
  122. #define SYM_TYPE(X) [X] = #X
  123. SYM_TYPE(STT_NOTYPE),
  124. SYM_TYPE(STT_OBJECT),
  125. SYM_TYPE(STT_FUNC),
  126. SYM_TYPE(STT_SECTION),
  127. SYM_TYPE(STT_FILE),
  128. SYM_TYPE(STT_COMMON),
  129. SYM_TYPE(STT_TLS),
  130. #undef SYM_TYPE
  131. };
  132. const char *name = "unknown sym type name";
  133. if (type < ARRAY_SIZE(type_name)) {
  134. name = type_name[type];
  135. }
  136. return name;
  137. }
  138. static const char *sym_bind(unsigned bind)
  139. {
  140. static const char *bind_name[] = {
  141. #define SYM_BIND(X) [X] = #X
  142. SYM_BIND(STB_LOCAL),
  143. SYM_BIND(STB_GLOBAL),
  144. SYM_BIND(STB_WEAK),
  145. #undef SYM_BIND
  146. };
  147. const char *name = "unknown sym bind name";
  148. if (bind < ARRAY_SIZE(bind_name)) {
  149. name = bind_name[bind];
  150. }
  151. return name;
  152. }
  153. static const char *sym_visibility(unsigned visibility)
  154. {
  155. static const char *visibility_name[] = {
  156. #define SYM_VISIBILITY(X) [X] = #X
  157. SYM_VISIBILITY(STV_DEFAULT),
  158. SYM_VISIBILITY(STV_INTERNAL),
  159. SYM_VISIBILITY(STV_HIDDEN),
  160. SYM_VISIBILITY(STV_PROTECTED),
  161. #undef SYM_VISIBILITY
  162. };
  163. const char *name = "unknown sym visibility name";
  164. if (visibility < ARRAY_SIZE(visibility_name)) {
  165. name = visibility_name[visibility];
  166. }
  167. return name;
  168. }
  169. static const char *rel_type(unsigned type)
  170. {
  171. static const char *type_name[] = {
  172. #define REL_TYPE(X) [X] = #X
  173. #if ELF_BITS == 64
  174. REL_TYPE(R_X86_64_NONE),
  175. REL_TYPE(R_X86_64_64),
  176. REL_TYPE(R_X86_64_PC32),
  177. REL_TYPE(R_X86_64_GOT32),
  178. REL_TYPE(R_X86_64_PLT32),
  179. REL_TYPE(R_X86_64_COPY),
  180. REL_TYPE(R_X86_64_GLOB_DAT),
  181. REL_TYPE(R_X86_64_JUMP_SLOT),
  182. REL_TYPE(R_X86_64_RELATIVE),
  183. REL_TYPE(R_X86_64_GOTPCREL),
  184. REL_TYPE(R_X86_64_32),
  185. REL_TYPE(R_X86_64_32S),
  186. REL_TYPE(R_X86_64_16),
  187. REL_TYPE(R_X86_64_PC16),
  188. REL_TYPE(R_X86_64_8),
  189. REL_TYPE(R_X86_64_PC8),
  190. #else
  191. REL_TYPE(R_386_NONE),
  192. REL_TYPE(R_386_32),
  193. REL_TYPE(R_386_PC32),
  194. REL_TYPE(R_386_GOT32),
  195. REL_TYPE(R_386_PLT32),
  196. REL_TYPE(R_386_COPY),
  197. REL_TYPE(R_386_GLOB_DAT),
  198. REL_TYPE(R_386_JMP_SLOT),
  199. REL_TYPE(R_386_RELATIVE),
  200. REL_TYPE(R_386_GOTOFF),
  201. REL_TYPE(R_386_GOTPC),
  202. REL_TYPE(R_386_8),
  203. REL_TYPE(R_386_PC8),
  204. REL_TYPE(R_386_16),
  205. REL_TYPE(R_386_PC16),
  206. #endif
  207. #undef REL_TYPE
  208. };
  209. const char *name = "unknown type rel type name";
  210. if (type < ARRAY_SIZE(type_name) && type_name[type]) {
  211. name = type_name[type];
  212. }
  213. return name;
  214. }
  215. static const char *sec_name(unsigned shndx)
  216. {
  217. const char *sec_strtab;
  218. const char *name;
  219. sec_strtab = secs[ehdr.e_shstrndx].strtab;
  220. name = "<noname>";
  221. if (shndx < ehdr.e_shnum) {
  222. name = sec_strtab + secs[shndx].shdr.sh_name;
  223. }
  224. else if (shndx == SHN_ABS) {
  225. name = "ABSOLUTE";
  226. }
  227. else if (shndx == SHN_COMMON) {
  228. name = "COMMON";
  229. }
  230. return name;
  231. }
  232. static const char *sym_name(const char *sym_strtab, Elf_Sym *sym)
  233. {
  234. const char *name;
  235. name = "<noname>";
  236. if (sym->st_name) {
  237. name = sym_strtab + sym->st_name;
  238. }
  239. else {
  240. name = sec_name(sym->st_shndx);
  241. }
  242. return name;
  243. }
  244. static Elf_Sym *sym_lookup(const char *symname)
  245. {
  246. int i;
  247. for (i = 0; i < ehdr.e_shnum; i++) {
  248. struct section *sec = &secs[i];
  249. long nsyms;
  250. char *strtab;
  251. Elf_Sym *symtab;
  252. Elf_Sym *sym;
  253. if (sec->shdr.sh_type != SHT_SYMTAB)
  254. continue;
  255. nsyms = sec->shdr.sh_size/sizeof(Elf_Sym);
  256. symtab = sec->symtab;
  257. strtab = sec->link->strtab;
  258. for (sym = symtab; --nsyms >= 0; sym++) {
  259. if (!sym->st_name)
  260. continue;
  261. if (strcmp(symname, strtab + sym->st_name) == 0)
  262. return sym;
  263. }
  264. }
  265. return 0;
  266. }
  267. #if BYTE_ORDER == LITTLE_ENDIAN
  268. #define le16_to_cpu(val) (val)
  269. #define le32_to_cpu(val) (val)
  270. #define le64_to_cpu(val) (val)
  271. #endif
  272. #if BYTE_ORDER == BIG_ENDIAN
  273. #define le16_to_cpu(val) bswap_16(val)
  274. #define le32_to_cpu(val) bswap_32(val)
  275. #define le64_to_cpu(val) bswap_64(val)
  276. #endif
  277. static uint16_t elf16_to_cpu(uint16_t val)
  278. {
  279. return le16_to_cpu(val);
  280. }
  281. static uint32_t elf32_to_cpu(uint32_t val)
  282. {
  283. return le32_to_cpu(val);
  284. }
  285. #define elf_half_to_cpu(x) elf16_to_cpu(x)
  286. #define elf_word_to_cpu(x) elf32_to_cpu(x)
  287. #if ELF_BITS == 64
  288. static uint64_t elf64_to_cpu(uint64_t val)
  289. {
  290. return le64_to_cpu(val);
  291. }
  292. #define elf_addr_to_cpu(x) elf64_to_cpu(x)
  293. #define elf_off_to_cpu(x) elf64_to_cpu(x)
  294. #define elf_xword_to_cpu(x) elf64_to_cpu(x)
  295. #else
  296. #define elf_addr_to_cpu(x) elf32_to_cpu(x)
  297. #define elf_off_to_cpu(x) elf32_to_cpu(x)
  298. #define elf_xword_to_cpu(x) elf32_to_cpu(x)
  299. #endif
  300. static void read_ehdr(FILE *fp)
  301. {
  302. if (fread(&ehdr, sizeof(ehdr), 1, fp) != 1) {
  303. die("Cannot read ELF header: %s\n",
  304. strerror(errno));
  305. }
  306. if (memcmp(ehdr.e_ident, ELFMAG, SELFMAG) != 0) {
  307. die("No ELF magic\n");
  308. }
  309. if (ehdr.e_ident[EI_CLASS] != ELF_CLASS) {
  310. die("Not a %d bit executable\n", ELF_BITS);
  311. }
  312. if (ehdr.e_ident[EI_DATA] != ELFDATA2LSB) {
  313. die("Not a LSB ELF executable\n");
  314. }
  315. if (ehdr.e_ident[EI_VERSION] != EV_CURRENT) {
  316. die("Unknown ELF version\n");
  317. }
  318. /* Convert the fields to native endian */
  319. ehdr.e_type = elf_half_to_cpu(ehdr.e_type);
  320. ehdr.e_machine = elf_half_to_cpu(ehdr.e_machine);
  321. ehdr.e_version = elf_word_to_cpu(ehdr.e_version);
  322. ehdr.e_entry = elf_addr_to_cpu(ehdr.e_entry);
  323. ehdr.e_phoff = elf_off_to_cpu(ehdr.e_phoff);
  324. ehdr.e_shoff = elf_off_to_cpu(ehdr.e_shoff);
  325. ehdr.e_flags = elf_word_to_cpu(ehdr.e_flags);
  326. ehdr.e_ehsize = elf_half_to_cpu(ehdr.e_ehsize);
  327. ehdr.e_phentsize = elf_half_to_cpu(ehdr.e_phentsize);
  328. ehdr.e_phnum = elf_half_to_cpu(ehdr.e_phnum);
  329. ehdr.e_shentsize = elf_half_to_cpu(ehdr.e_shentsize);
  330. ehdr.e_shnum = elf_half_to_cpu(ehdr.e_shnum);
  331. ehdr.e_shstrndx = elf_half_to_cpu(ehdr.e_shstrndx);
  332. if ((ehdr.e_type != ET_EXEC) && (ehdr.e_type != ET_DYN)) {
  333. die("Unsupported ELF header type\n");
  334. }
  335. if (ehdr.e_machine != ELF_MACHINE) {
  336. die("Not for %s\n", ELF_MACHINE_NAME);
  337. }
  338. if (ehdr.e_version != EV_CURRENT) {
  339. die("Unknown ELF version\n");
  340. }
  341. if (ehdr.e_ehsize != sizeof(Elf_Ehdr)) {
  342. die("Bad Elf header size\n");
  343. }
  344. if (ehdr.e_phentsize != sizeof(Elf_Phdr)) {
  345. die("Bad program header entry\n");
  346. }
  347. if (ehdr.e_shentsize != sizeof(Elf_Shdr)) {
  348. die("Bad section header entry\n");
  349. }
  350. if (ehdr.e_shstrndx >= ehdr.e_shnum) {
  351. die("String table index out of bounds\n");
  352. }
  353. }
  354. static void read_shdrs(FILE *fp)
  355. {
  356. int i;
  357. Elf_Shdr shdr;
  358. secs = calloc(ehdr.e_shnum, sizeof(struct section));
  359. if (!secs) {
  360. die("Unable to allocate %d section headers\n",
  361. ehdr.e_shnum);
  362. }
  363. if (fseek(fp, ehdr.e_shoff, SEEK_SET) < 0) {
  364. die("Seek to %d failed: %s\n",
  365. ehdr.e_shoff, strerror(errno));
  366. }
  367. for (i = 0; i < ehdr.e_shnum; i++) {
  368. struct section *sec = &secs[i];
  369. if (fread(&shdr, sizeof shdr, 1, fp) != 1)
  370. die("Cannot read ELF section headers %d/%d: %s\n",
  371. i, ehdr.e_shnum, strerror(errno));
  372. sec->shdr.sh_name = elf_word_to_cpu(shdr.sh_name);
  373. sec->shdr.sh_type = elf_word_to_cpu(shdr.sh_type);
  374. sec->shdr.sh_flags = elf_xword_to_cpu(shdr.sh_flags);
  375. sec->shdr.sh_addr = elf_addr_to_cpu(shdr.sh_addr);
  376. sec->shdr.sh_offset = elf_off_to_cpu(shdr.sh_offset);
  377. sec->shdr.sh_size = elf_xword_to_cpu(shdr.sh_size);
  378. sec->shdr.sh_link = elf_word_to_cpu(shdr.sh_link);
  379. sec->shdr.sh_info = elf_word_to_cpu(shdr.sh_info);
  380. sec->shdr.sh_addralign = elf_xword_to_cpu(shdr.sh_addralign);
  381. sec->shdr.sh_entsize = elf_xword_to_cpu(shdr.sh_entsize);
  382. if (sec->shdr.sh_link < ehdr.e_shnum)
  383. sec->link = &secs[sec->shdr.sh_link];
  384. }
  385. }
  386. static void read_strtabs(FILE *fp)
  387. {
  388. int i;
  389. for (i = 0; i < ehdr.e_shnum; i++) {
  390. struct section *sec = &secs[i];
  391. if (sec->shdr.sh_type != SHT_STRTAB) {
  392. continue;
  393. }
  394. sec->strtab = malloc(sec->shdr.sh_size);
  395. if (!sec->strtab) {
  396. die("malloc of %d bytes for strtab failed\n",
  397. sec->shdr.sh_size);
  398. }
  399. if (fseek(fp, sec->shdr.sh_offset, SEEK_SET) < 0) {
  400. die("Seek to %d failed: %s\n",
  401. sec->shdr.sh_offset, strerror(errno));
  402. }
  403. if (fread(sec->strtab, 1, sec->shdr.sh_size, fp)
  404. != sec->shdr.sh_size) {
  405. die("Cannot read symbol table: %s\n",
  406. strerror(errno));
  407. }
  408. }
  409. }
  410. static void read_symtabs(FILE *fp)
  411. {
  412. int i,j;
  413. for (i = 0; i < ehdr.e_shnum; i++) {
  414. struct section *sec = &secs[i];
  415. if (sec->shdr.sh_type != SHT_SYMTAB) {
  416. continue;
  417. }
  418. sec->symtab = malloc(sec->shdr.sh_size);
  419. if (!sec->symtab) {
  420. die("malloc of %d bytes for symtab failed\n",
  421. sec->shdr.sh_size);
  422. }
  423. if (fseek(fp, sec->shdr.sh_offset, SEEK_SET) < 0) {
  424. die("Seek to %d failed: %s\n",
  425. sec->shdr.sh_offset, strerror(errno));
  426. }
  427. if (fread(sec->symtab, 1, sec->shdr.sh_size, fp)
  428. != sec->shdr.sh_size) {
  429. die("Cannot read symbol table: %s\n",
  430. strerror(errno));
  431. }
  432. for (j = 0; j < sec->shdr.sh_size/sizeof(Elf_Sym); j++) {
  433. Elf_Sym *sym = &sec->symtab[j];
  434. sym->st_name = elf_word_to_cpu(sym->st_name);
  435. sym->st_value = elf_addr_to_cpu(sym->st_value);
  436. sym->st_size = elf_xword_to_cpu(sym->st_size);
  437. sym->st_shndx = elf_half_to_cpu(sym->st_shndx);
  438. }
  439. }
  440. }
  441. static void read_relocs(FILE *fp)
  442. {
  443. int i,j;
  444. for (i = 0; i < ehdr.e_shnum; i++) {
  445. struct section *sec = &secs[i];
  446. if (sec->shdr.sh_type != SHT_REL_TYPE) {
  447. continue;
  448. }
  449. sec->reltab = malloc(sec->shdr.sh_size);
  450. if (!sec->reltab) {
  451. die("malloc of %d bytes for relocs failed\n",
  452. sec->shdr.sh_size);
  453. }
  454. if (fseek(fp, sec->shdr.sh_offset, SEEK_SET) < 0) {
  455. die("Seek to %d failed: %s\n",
  456. sec->shdr.sh_offset, strerror(errno));
  457. }
  458. if (fread(sec->reltab, 1, sec->shdr.sh_size, fp)
  459. != sec->shdr.sh_size) {
  460. die("Cannot read symbol table: %s\n",
  461. strerror(errno));
  462. }
  463. for (j = 0; j < sec->shdr.sh_size/sizeof(Elf_Rel); j++) {
  464. Elf_Rel *rel = &sec->reltab[j];
  465. rel->r_offset = elf_addr_to_cpu(rel->r_offset);
  466. rel->r_info = elf_xword_to_cpu(rel->r_info);
  467. #if (SHT_REL_TYPE == SHT_RELA)
  468. rel->r_addend = elf_xword_to_cpu(rel->r_addend);
  469. #endif
  470. }
  471. }
  472. }
  473. static void print_absolute_symbols(void)
  474. {
  475. int i;
  476. const char *format;
  477. if (ELF_BITS == 64)
  478. format = "%5d %016"PRIx64" %5"PRId64" %10s %10s %12s %s\n";
  479. else
  480. format = "%5d %08"PRIx32" %5"PRId32" %10s %10s %12s %s\n";
  481. printf("Absolute symbols\n");
  482. printf(" Num: Value Size Type Bind Visibility Name\n");
  483. for (i = 0; i < ehdr.e_shnum; i++) {
  484. struct section *sec = &secs[i];
  485. char *sym_strtab;
  486. int j;
  487. if (sec->shdr.sh_type != SHT_SYMTAB) {
  488. continue;
  489. }
  490. sym_strtab = sec->link->strtab;
  491. for (j = 0; j < sec->shdr.sh_size/sizeof(Elf_Sym); j++) {
  492. Elf_Sym *sym;
  493. const char *name;
  494. sym = &sec->symtab[j];
  495. name = sym_name(sym_strtab, sym);
  496. if (sym->st_shndx != SHN_ABS) {
  497. continue;
  498. }
  499. printf(format,
  500. j, sym->st_value, sym->st_size,
  501. sym_type(ELF_ST_TYPE(sym->st_info)),
  502. sym_bind(ELF_ST_BIND(sym->st_info)),
  503. sym_visibility(ELF_ST_VISIBILITY(sym->st_other)),
  504. name);
  505. }
  506. }
  507. printf("\n");
  508. }
  509. static void print_absolute_relocs(void)
  510. {
  511. int i, printed = 0;
  512. const char *format;
  513. if (ELF_BITS == 64)
  514. format = "%016"PRIx64" %016"PRIx64" %10s %016"PRIx64" %s\n";
  515. else
  516. format = "%08"PRIx32" %08"PRIx32" %10s %08"PRIx32" %s\n";
  517. for (i = 0; i < ehdr.e_shnum; i++) {
  518. struct section *sec = &secs[i];
  519. struct section *sec_applies, *sec_symtab;
  520. char *sym_strtab;
  521. Elf_Sym *sh_symtab;
  522. int j;
  523. if (sec->shdr.sh_type != SHT_REL_TYPE) {
  524. continue;
  525. }
  526. sec_symtab = sec->link;
  527. sec_applies = &secs[sec->shdr.sh_info];
  528. if (!(sec_applies->shdr.sh_flags & SHF_ALLOC)) {
  529. continue;
  530. }
  531. sh_symtab = sec_symtab->symtab;
  532. sym_strtab = sec_symtab->link->strtab;
  533. for (j = 0; j < sec->shdr.sh_size/sizeof(Elf_Rel); j++) {
  534. Elf_Rel *rel;
  535. Elf_Sym *sym;
  536. const char *name;
  537. rel = &sec->reltab[j];
  538. sym = &sh_symtab[ELF_R_SYM(rel->r_info)];
  539. name = sym_name(sym_strtab, sym);
  540. if (sym->st_shndx != SHN_ABS) {
  541. continue;
  542. }
  543. /* Absolute symbols are not relocated if bzImage is
  544. * loaded at a non-compiled address. Display a warning
  545. * to user at compile time about the absolute
  546. * relocations present.
  547. *
  548. * User need to audit the code to make sure
  549. * some symbols which should have been section
  550. * relative have not become absolute because of some
  551. * linker optimization or wrong programming usage.
  552. *
  553. * Before warning check if this absolute symbol
  554. * relocation is harmless.
  555. */
  556. if (is_reloc(S_ABS, name) || is_reloc(S_REL, name))
  557. continue;
  558. if (!printed) {
  559. printf("WARNING: Absolute relocations"
  560. " present\n");
  561. printf("Offset Info Type Sym.Value "
  562. "Sym.Name\n");
  563. printed = 1;
  564. }
  565. printf(format,
  566. rel->r_offset,
  567. rel->r_info,
  568. rel_type(ELF_R_TYPE(rel->r_info)),
  569. sym->st_value,
  570. name);
  571. }
  572. }
  573. if (printed)
  574. printf("\n");
  575. }
  576. static void add_reloc(struct relocs *r, uint32_t offset)
  577. {
  578. if (r->count == r->size) {
  579. unsigned long newsize = r->size + 50000;
  580. void *mem = realloc(r->offset, newsize * sizeof(r->offset[0]));
  581. if (!mem)
  582. die("realloc of %ld entries for relocs failed\n",
  583. newsize);
  584. r->offset = mem;
  585. r->size = newsize;
  586. }
  587. r->offset[r->count++] = offset;
  588. }
  589. static void walk_relocs(int (*process)(struct section *sec, Elf_Rel *rel,
  590. Elf_Sym *sym, const char *symname))
  591. {
  592. int i;
  593. /* Walk through the relocations */
  594. for (i = 0; i < ehdr.e_shnum; i++) {
  595. char *sym_strtab;
  596. Elf_Sym *sh_symtab;
  597. struct section *sec_applies, *sec_symtab;
  598. int j;
  599. struct section *sec = &secs[i];
  600. if (sec->shdr.sh_type != SHT_REL_TYPE) {
  601. continue;
  602. }
  603. sec_symtab = sec->link;
  604. sec_applies = &secs[sec->shdr.sh_info];
  605. if (!(sec_applies->shdr.sh_flags & SHF_ALLOC)) {
  606. continue;
  607. }
  608. sh_symtab = sec_symtab->symtab;
  609. sym_strtab = sec_symtab->link->strtab;
  610. for (j = 0; j < sec->shdr.sh_size/sizeof(Elf_Rel); j++) {
  611. Elf_Rel *rel = &sec->reltab[j];
  612. Elf_Sym *sym = &sh_symtab[ELF_R_SYM(rel->r_info)];
  613. const char *symname = sym_name(sym_strtab, sym);
  614. process(sec, rel, sym, symname);
  615. }
  616. }
  617. }
  618. /*
  619. * The .data..percpu section is a special case for x86_64 SMP kernels.
  620. * It is used to initialize the actual per_cpu areas and to provide
  621. * definitions for the per_cpu variables that correspond to their offsets
  622. * within the percpu area. Since the values of all of the symbols need
  623. * to be offsets from the start of the per_cpu area the virtual address
  624. * (sh_addr) of .data..percpu is 0 in SMP kernels.
  625. *
  626. * This means that:
  627. *
  628. * Relocations that reference symbols in the per_cpu area do not
  629. * need further relocation (since the value is an offset relative
  630. * to the start of the per_cpu area that does not change).
  631. *
  632. * Relocations that apply to the per_cpu area need to have their
  633. * offset adjusted by by the value of __per_cpu_load to make them
  634. * point to the correct place in the loaded image (because the
  635. * virtual address of .data..percpu is 0).
  636. *
  637. * For non SMP kernels .data..percpu is linked as part of the normal
  638. * kernel data and does not require special treatment.
  639. *
  640. */
  641. static int per_cpu_shndx = -1;
  642. static Elf_Addr per_cpu_load_addr;
  643. static void percpu_init(void)
  644. {
  645. int i;
  646. for (i = 0; i < ehdr.e_shnum; i++) {
  647. ElfW(Sym) *sym;
  648. if (strcmp(sec_name(i), ".data..percpu"))
  649. continue;
  650. if (secs[i].shdr.sh_addr != 0) /* non SMP kernel */
  651. return;
  652. sym = sym_lookup("__per_cpu_load");
  653. if (!sym)
  654. die("can't find __per_cpu_load\n");
  655. per_cpu_shndx = i;
  656. per_cpu_load_addr = sym->st_value;
  657. return;
  658. }
  659. }
  660. #if ELF_BITS == 64
  661. /*
  662. * Check to see if a symbol lies in the .data..percpu section.
  663. *
  664. * The linker incorrectly associates some symbols with the
  665. * .data..percpu section so we also need to check the symbol
  666. * name to make sure that we classify the symbol correctly.
  667. *
  668. * The GNU linker incorrectly associates:
  669. * __init_begin
  670. * __per_cpu_load
  671. *
  672. * The "gold" linker incorrectly associates:
  673. * init_per_cpu__irq_stack_union
  674. * init_per_cpu__gdt_page
  675. */
  676. static int is_percpu_sym(ElfW(Sym) *sym, const char *symname)
  677. {
  678. return (sym->st_shndx == per_cpu_shndx) &&
  679. strcmp(symname, "__init_begin") &&
  680. strcmp(symname, "__per_cpu_load") &&
  681. strncmp(symname, "init_per_cpu_", 13);
  682. }
  683. static int do_reloc64(struct section *sec, Elf_Rel *rel, ElfW(Sym) *sym,
  684. const char *symname)
  685. {
  686. unsigned r_type = ELF64_R_TYPE(rel->r_info);
  687. ElfW(Addr) offset = rel->r_offset;
  688. int shn_abs = (sym->st_shndx == SHN_ABS) && !is_reloc(S_REL, symname);
  689. if (sym->st_shndx == SHN_UNDEF)
  690. return 0;
  691. /*
  692. * Adjust the offset if this reloc applies to the percpu section.
  693. */
  694. if (sec->shdr.sh_info == per_cpu_shndx)
  695. offset += per_cpu_load_addr;
  696. switch (r_type) {
  697. case R_X86_64_NONE:
  698. /* NONE can be ignored. */
  699. break;
  700. case R_X86_64_PC32:
  701. case R_X86_64_PLT32:
  702. /*
  703. * PC relative relocations don't need to be adjusted unless
  704. * referencing a percpu symbol.
  705. *
  706. * NB: R_X86_64_PLT32 can be treated as R_X86_64_PC32.
  707. */
  708. if (is_percpu_sym(sym, symname))
  709. add_reloc(&relocs32neg, offset);
  710. break;
  711. case R_X86_64_32:
  712. case R_X86_64_32S:
  713. case R_X86_64_64:
  714. /*
  715. * References to the percpu area don't need to be adjusted.
  716. */
  717. if (is_percpu_sym(sym, symname))
  718. break;
  719. if (shn_abs) {
  720. /*
  721. * Whitelisted absolute symbols do not require
  722. * relocation.
  723. */
  724. if (is_reloc(S_ABS, symname))
  725. break;
  726. die("Invalid absolute %s relocation: %s\n",
  727. rel_type(r_type), symname);
  728. break;
  729. }
  730. /*
  731. * Relocation offsets for 64 bit kernels are output
  732. * as 32 bits and sign extended back to 64 bits when
  733. * the relocations are processed.
  734. * Make sure that the offset will fit.
  735. */
  736. if ((int32_t)offset != (int64_t)offset)
  737. die("Relocation offset doesn't fit in 32 bits\n");
  738. if (r_type == R_X86_64_64)
  739. add_reloc(&relocs64, offset);
  740. else
  741. add_reloc(&relocs32, offset);
  742. break;
  743. default:
  744. die("Unsupported relocation type: %s (%d)\n",
  745. rel_type(r_type), r_type);
  746. break;
  747. }
  748. return 0;
  749. }
  750. #else
  751. static int do_reloc32(struct section *sec, Elf_Rel *rel, Elf_Sym *sym,
  752. const char *symname)
  753. {
  754. unsigned r_type = ELF32_R_TYPE(rel->r_info);
  755. int shn_abs = (sym->st_shndx == SHN_ABS) && !is_reloc(S_REL, symname);
  756. switch (r_type) {
  757. case R_386_NONE:
  758. case R_386_PC32:
  759. case R_386_PC16:
  760. case R_386_PC8:
  761. case R_386_PLT32:
  762. /*
  763. * NONE can be ignored and PC relative relocations don't need
  764. * to be adjusted. Because sym must be defined, R_386_PLT32 can
  765. * be treated the same way as R_386_PC32.
  766. */
  767. break;
  768. case R_386_32:
  769. if (shn_abs) {
  770. /*
  771. * Whitelisted absolute symbols do not require
  772. * relocation.
  773. */
  774. if (is_reloc(S_ABS, symname))
  775. break;
  776. die("Invalid absolute %s relocation: %s\n",
  777. rel_type(r_type), symname);
  778. break;
  779. }
  780. add_reloc(&relocs32, rel->r_offset);
  781. break;
  782. default:
  783. die("Unsupported relocation type: %s (%d)\n",
  784. rel_type(r_type), r_type);
  785. break;
  786. }
  787. return 0;
  788. }
  789. static int do_reloc_real(struct section *sec, Elf_Rel *rel, Elf_Sym *sym,
  790. const char *symname)
  791. {
  792. unsigned r_type = ELF32_R_TYPE(rel->r_info);
  793. int shn_abs = (sym->st_shndx == SHN_ABS) && !is_reloc(S_REL, symname);
  794. switch (r_type) {
  795. case R_386_NONE:
  796. case R_386_PC32:
  797. case R_386_PC16:
  798. case R_386_PC8:
  799. case R_386_PLT32:
  800. /*
  801. * NONE can be ignored and PC relative relocations don't need
  802. * to be adjusted. Because sym must be defined, R_386_PLT32 can
  803. * be treated the same way as R_386_PC32.
  804. */
  805. break;
  806. case R_386_16:
  807. if (shn_abs) {
  808. /*
  809. * Whitelisted absolute symbols do not require
  810. * relocation.
  811. */
  812. if (is_reloc(S_ABS, symname))
  813. break;
  814. if (is_reloc(S_SEG, symname)) {
  815. add_reloc(&relocs16, rel->r_offset);
  816. break;
  817. }
  818. } else {
  819. if (!is_reloc(S_LIN, symname))
  820. break;
  821. }
  822. die("Invalid %s %s relocation: %s\n",
  823. shn_abs ? "absolute" : "relative",
  824. rel_type(r_type), symname);
  825. break;
  826. case R_386_32:
  827. if (shn_abs) {
  828. /*
  829. * Whitelisted absolute symbols do not require
  830. * relocation.
  831. */
  832. if (is_reloc(S_ABS, symname))
  833. break;
  834. if (is_reloc(S_REL, symname)) {
  835. add_reloc(&relocs32, rel->r_offset);
  836. break;
  837. }
  838. } else {
  839. if (is_reloc(S_LIN, symname))
  840. add_reloc(&relocs32, rel->r_offset);
  841. break;
  842. }
  843. die("Invalid %s %s relocation: %s\n",
  844. shn_abs ? "absolute" : "relative",
  845. rel_type(r_type), symname);
  846. break;
  847. default:
  848. die("Unsupported relocation type: %s (%d)\n",
  849. rel_type(r_type), r_type);
  850. break;
  851. }
  852. return 0;
  853. }
  854. #endif
  855. static int cmp_relocs(const void *va, const void *vb)
  856. {
  857. const uint32_t *a, *b;
  858. a = va; b = vb;
  859. return (*a == *b)? 0 : (*a > *b)? 1 : -1;
  860. }
  861. static void sort_relocs(struct relocs *r)
  862. {
  863. qsort(r->offset, r->count, sizeof(r->offset[0]), cmp_relocs);
  864. }
  865. static int write32(uint32_t v, FILE *f)
  866. {
  867. unsigned char buf[4];
  868. put_unaligned_le32(v, buf);
  869. return fwrite(buf, 1, 4, f) == 4 ? 0 : -1;
  870. }
  871. static int write32_as_text(uint32_t v, FILE *f)
  872. {
  873. return fprintf(f, "\t.long 0x%08"PRIx32"\n", v) > 0 ? 0 : -1;
  874. }
  875. static void emit_relocs(int as_text, int use_real_mode)
  876. {
  877. int i;
  878. int (*write_reloc)(uint32_t, FILE *) = write32;
  879. int (*do_reloc)(struct section *sec, Elf_Rel *rel, Elf_Sym *sym,
  880. const char *symname);
  881. #if ELF_BITS == 64
  882. if (!use_real_mode)
  883. do_reloc = do_reloc64;
  884. else
  885. die("--realmode not valid for a 64-bit ELF file");
  886. #else
  887. if (!use_real_mode)
  888. do_reloc = do_reloc32;
  889. else
  890. do_reloc = do_reloc_real;
  891. #endif
  892. /* Collect up the relocations */
  893. walk_relocs(do_reloc);
  894. if (relocs16.count && !use_real_mode)
  895. die("Segment relocations found but --realmode not specified\n");
  896. /* Order the relocations for more efficient processing */
  897. sort_relocs(&relocs32);
  898. #if ELF_BITS == 64
  899. sort_relocs(&relocs32neg);
  900. sort_relocs(&relocs64);
  901. #else
  902. sort_relocs(&relocs16);
  903. #endif
  904. /* Print the relocations */
  905. if (as_text) {
  906. /* Print the relocations in a form suitable that
  907. * gas will like.
  908. */
  909. printf(".section \".data.reloc\",\"a\"\n");
  910. printf(".balign 4\n");
  911. write_reloc = write32_as_text;
  912. }
  913. if (use_real_mode) {
  914. write_reloc(relocs16.count, stdout);
  915. for (i = 0; i < relocs16.count; i++)
  916. write_reloc(relocs16.offset[i], stdout);
  917. write_reloc(relocs32.count, stdout);
  918. for (i = 0; i < relocs32.count; i++)
  919. write_reloc(relocs32.offset[i], stdout);
  920. } else {
  921. #if ELF_BITS == 64
  922. /* Print a stop */
  923. write_reloc(0, stdout);
  924. /* Now print each relocation */
  925. for (i = 0; i < relocs64.count; i++)
  926. write_reloc(relocs64.offset[i], stdout);
  927. /* Print a stop */
  928. write_reloc(0, stdout);
  929. /* Now print each inverse 32-bit relocation */
  930. for (i = 0; i < relocs32neg.count; i++)
  931. write_reloc(relocs32neg.offset[i], stdout);
  932. #endif
  933. /* Print a stop */
  934. write_reloc(0, stdout);
  935. /* Now print each relocation */
  936. for (i = 0; i < relocs32.count; i++)
  937. write_reloc(relocs32.offset[i], stdout);
  938. }
  939. }
  940. /*
  941. * As an aid to debugging problems with different linkers
  942. * print summary information about the relocs.
  943. * Since different linkers tend to emit the sections in
  944. * different orders we use the section names in the output.
  945. */
  946. static int do_reloc_info(struct section *sec, Elf_Rel *rel, ElfW(Sym) *sym,
  947. const char *symname)
  948. {
  949. printf("%s\t%s\t%s\t%s\n",
  950. sec_name(sec->shdr.sh_info),
  951. rel_type(ELF_R_TYPE(rel->r_info)),
  952. symname,
  953. sec_name(sym->st_shndx));
  954. return 0;
  955. }
  956. static void print_reloc_info(void)
  957. {
  958. printf("reloc section\treloc type\tsymbol\tsymbol section\n");
  959. walk_relocs(do_reloc_info);
  960. }
  961. #if ELF_BITS == 64
  962. # define process process_64
  963. #else
  964. # define process process_32
  965. #endif
  966. void process(FILE *fp, int use_real_mode, int as_text,
  967. int show_absolute_syms, int show_absolute_relocs,
  968. int show_reloc_info)
  969. {
  970. regex_init(use_real_mode);
  971. read_ehdr(fp);
  972. read_shdrs(fp);
  973. read_strtabs(fp);
  974. read_symtabs(fp);
  975. read_relocs(fp);
  976. if (ELF_BITS == 64)
  977. percpu_init();
  978. if (show_absolute_syms) {
  979. print_absolute_symbols();
  980. return;
  981. }
  982. if (show_absolute_relocs) {
  983. print_absolute_relocs();
  984. return;
  985. }
  986. if (show_reloc_info) {
  987. print_reloc_info();
  988. return;
  989. }
  990. emit_relocs(as_text, use_real_mode);
  991. }