gss_krb5_crypto.c 27 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083
  1. /*
  2. * linux/net/sunrpc/gss_krb5_crypto.c
  3. *
  4. * Copyright (c) 2000-2008 The Regents of the University of Michigan.
  5. * All rights reserved.
  6. *
  7. * Andy Adamson <andros@umich.edu>
  8. * Bruce Fields <bfields@umich.edu>
  9. */
  10. /*
  11. * Copyright (C) 1998 by the FundsXpress, INC.
  12. *
  13. * All rights reserved.
  14. *
  15. * Export of this software from the United States of America may require
  16. * a specific license from the United States Government. It is the
  17. * responsibility of any person or organization contemplating export to
  18. * obtain such a license before exporting.
  19. *
  20. * WITHIN THAT CONSTRAINT, permission to use, copy, modify, and
  21. * distribute this software and its documentation for any purpose and
  22. * without fee is hereby granted, provided that the above copyright
  23. * notice appear in all copies and that both that copyright notice and
  24. * this permission notice appear in supporting documentation, and that
  25. * the name of FundsXpress. not be used in advertising or publicity pertaining
  26. * to distribution of the software without specific, written prior
  27. * permission. FundsXpress makes no representations about the suitability of
  28. * this software for any purpose. It is provided "as is" without express
  29. * or implied warranty.
  30. *
  31. * THIS SOFTWARE IS PROVIDED ``AS IS'' AND WITHOUT ANY EXPRESS OR
  32. * IMPLIED WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED
  33. * WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR A PARTICULAR PURPOSE.
  34. */
  35. #include <crypto/algapi.h>
  36. #include <crypto/hash.h>
  37. #include <crypto/skcipher.h>
  38. #include <linux/err.h>
  39. #include <linux/types.h>
  40. #include <linux/mm.h>
  41. #include <linux/scatterlist.h>
  42. #include <linux/highmem.h>
  43. #include <linux/pagemap.h>
  44. #include <linux/random.h>
  45. #include <linux/sunrpc/gss_krb5.h>
  46. #include <linux/sunrpc/xdr.h>
  47. #if IS_ENABLED(CONFIG_SUNRPC_DEBUG)
  48. # define RPCDBG_FACILITY RPCDBG_AUTH
  49. #endif
  50. u32
  51. krb5_encrypt(
  52. struct crypto_skcipher *tfm,
  53. void * iv,
  54. void * in,
  55. void * out,
  56. int length)
  57. {
  58. u32 ret = -EINVAL;
  59. struct scatterlist sg[1];
  60. u8 local_iv[GSS_KRB5_MAX_BLOCKSIZE] = {0};
  61. SKCIPHER_REQUEST_ON_STACK(req, tfm);
  62. if (length % crypto_skcipher_blocksize(tfm) != 0)
  63. goto out;
  64. if (crypto_skcipher_ivsize(tfm) > GSS_KRB5_MAX_BLOCKSIZE) {
  65. dprintk("RPC: gss_k5encrypt: tfm iv size too large %d\n",
  66. crypto_skcipher_ivsize(tfm));
  67. goto out;
  68. }
  69. if (iv)
  70. memcpy(local_iv, iv, crypto_skcipher_ivsize(tfm));
  71. memcpy(out, in, length);
  72. sg_init_one(sg, out, length);
  73. skcipher_request_set_tfm(req, tfm);
  74. skcipher_request_set_callback(req, 0, NULL, NULL);
  75. skcipher_request_set_crypt(req, sg, sg, length, local_iv);
  76. ret = crypto_skcipher_encrypt(req);
  77. skcipher_request_zero(req);
  78. out:
  79. dprintk("RPC: krb5_encrypt returns %d\n", ret);
  80. return ret;
  81. }
  82. u32
  83. krb5_decrypt(
  84. struct crypto_skcipher *tfm,
  85. void * iv,
  86. void * in,
  87. void * out,
  88. int length)
  89. {
  90. u32 ret = -EINVAL;
  91. struct scatterlist sg[1];
  92. u8 local_iv[GSS_KRB5_MAX_BLOCKSIZE] = {0};
  93. SKCIPHER_REQUEST_ON_STACK(req, tfm);
  94. if (length % crypto_skcipher_blocksize(tfm) != 0)
  95. goto out;
  96. if (crypto_skcipher_ivsize(tfm) > GSS_KRB5_MAX_BLOCKSIZE) {
  97. dprintk("RPC: gss_k5decrypt: tfm iv size too large %d\n",
  98. crypto_skcipher_ivsize(tfm));
  99. goto out;
  100. }
  101. if (iv)
  102. memcpy(local_iv,iv, crypto_skcipher_ivsize(tfm));
  103. memcpy(out, in, length);
  104. sg_init_one(sg, out, length);
  105. skcipher_request_set_tfm(req, tfm);
  106. skcipher_request_set_callback(req, 0, NULL, NULL);
  107. skcipher_request_set_crypt(req, sg, sg, length, local_iv);
  108. ret = crypto_skcipher_decrypt(req);
  109. skcipher_request_zero(req);
  110. out:
  111. dprintk("RPC: gss_k5decrypt returns %d\n",ret);
  112. return ret;
  113. }
  114. static int
  115. checksummer(struct scatterlist *sg, void *data)
  116. {
  117. struct ahash_request *req = data;
  118. ahash_request_set_crypt(req, sg, NULL, sg->length);
  119. return crypto_ahash_update(req);
  120. }
  121. static int
  122. arcfour_hmac_md5_usage_to_salt(unsigned int usage, u8 salt[4])
  123. {
  124. unsigned int ms_usage;
  125. switch (usage) {
  126. case KG_USAGE_SIGN:
  127. ms_usage = 15;
  128. break;
  129. case KG_USAGE_SEAL:
  130. ms_usage = 13;
  131. break;
  132. default:
  133. return -EINVAL;
  134. }
  135. salt[0] = (ms_usage >> 0) & 0xff;
  136. salt[1] = (ms_usage >> 8) & 0xff;
  137. salt[2] = (ms_usage >> 16) & 0xff;
  138. salt[3] = (ms_usage >> 24) & 0xff;
  139. return 0;
  140. }
  141. static u32
  142. make_checksum_hmac_md5(struct krb5_ctx *kctx, char *header, int hdrlen,
  143. struct xdr_buf *body, int body_offset, u8 *cksumkey,
  144. unsigned int usage, struct xdr_netobj *cksumout)
  145. {
  146. struct scatterlist sg[1];
  147. int err = -1;
  148. u8 *checksumdata;
  149. u8 *rc4salt;
  150. struct crypto_ahash *md5;
  151. struct crypto_ahash *hmac_md5;
  152. struct ahash_request *req;
  153. if (cksumkey == NULL)
  154. return GSS_S_FAILURE;
  155. if (cksumout->len < kctx->gk5e->cksumlength) {
  156. dprintk("%s: checksum buffer length, %u, too small for %s\n",
  157. __func__, cksumout->len, kctx->gk5e->name);
  158. return GSS_S_FAILURE;
  159. }
  160. rc4salt = kmalloc_array(4, sizeof(*rc4salt), GFP_NOFS);
  161. if (!rc4salt)
  162. return GSS_S_FAILURE;
  163. if (arcfour_hmac_md5_usage_to_salt(usage, rc4salt)) {
  164. dprintk("%s: invalid usage value %u\n", __func__, usage);
  165. goto out_free_rc4salt;
  166. }
  167. checksumdata = kmalloc(GSS_KRB5_MAX_CKSUM_LEN, GFP_NOFS);
  168. if (!checksumdata)
  169. goto out_free_rc4salt;
  170. md5 = crypto_alloc_ahash("md5", 0, CRYPTO_ALG_ASYNC);
  171. if (IS_ERR(md5))
  172. goto out_free_cksum;
  173. hmac_md5 = crypto_alloc_ahash(kctx->gk5e->cksum_name, 0,
  174. CRYPTO_ALG_ASYNC);
  175. if (IS_ERR(hmac_md5))
  176. goto out_free_md5;
  177. req = ahash_request_alloc(md5, GFP_NOFS);
  178. if (!req)
  179. goto out_free_hmac_md5;
  180. ahash_request_set_callback(req, CRYPTO_TFM_REQ_MAY_SLEEP, NULL, NULL);
  181. err = crypto_ahash_init(req);
  182. if (err)
  183. goto out;
  184. sg_init_one(sg, rc4salt, 4);
  185. ahash_request_set_crypt(req, sg, NULL, 4);
  186. err = crypto_ahash_update(req);
  187. if (err)
  188. goto out;
  189. sg_init_one(sg, header, hdrlen);
  190. ahash_request_set_crypt(req, sg, NULL, hdrlen);
  191. err = crypto_ahash_update(req);
  192. if (err)
  193. goto out;
  194. err = xdr_process_buf(body, body_offset, body->len - body_offset,
  195. checksummer, req);
  196. if (err)
  197. goto out;
  198. ahash_request_set_crypt(req, NULL, checksumdata, 0);
  199. err = crypto_ahash_final(req);
  200. if (err)
  201. goto out;
  202. ahash_request_free(req);
  203. req = ahash_request_alloc(hmac_md5, GFP_NOFS);
  204. if (!req)
  205. goto out_free_hmac_md5;
  206. ahash_request_set_callback(req, CRYPTO_TFM_REQ_MAY_SLEEP, NULL, NULL);
  207. err = crypto_ahash_setkey(hmac_md5, cksumkey, kctx->gk5e->keylength);
  208. if (err)
  209. goto out;
  210. sg_init_one(sg, checksumdata, crypto_ahash_digestsize(md5));
  211. ahash_request_set_crypt(req, sg, checksumdata,
  212. crypto_ahash_digestsize(md5));
  213. err = crypto_ahash_digest(req);
  214. if (err)
  215. goto out;
  216. memcpy(cksumout->data, checksumdata, kctx->gk5e->cksumlength);
  217. cksumout->len = kctx->gk5e->cksumlength;
  218. out:
  219. ahash_request_free(req);
  220. out_free_hmac_md5:
  221. crypto_free_ahash(hmac_md5);
  222. out_free_md5:
  223. crypto_free_ahash(md5);
  224. out_free_cksum:
  225. kfree(checksumdata);
  226. out_free_rc4salt:
  227. kfree(rc4salt);
  228. return err ? GSS_S_FAILURE : 0;
  229. }
  230. /*
  231. * checksum the plaintext data and hdrlen bytes of the token header
  232. * The checksum is performed over the first 8 bytes of the
  233. * gss token header and then over the data body
  234. */
  235. u32
  236. make_checksum(struct krb5_ctx *kctx, char *header, int hdrlen,
  237. struct xdr_buf *body, int body_offset, u8 *cksumkey,
  238. unsigned int usage, struct xdr_netobj *cksumout)
  239. {
  240. struct crypto_ahash *tfm;
  241. struct ahash_request *req;
  242. struct scatterlist sg[1];
  243. int err = -1;
  244. u8 *checksumdata;
  245. unsigned int checksumlen;
  246. if (kctx->gk5e->ctype == CKSUMTYPE_HMAC_MD5_ARCFOUR)
  247. return make_checksum_hmac_md5(kctx, header, hdrlen,
  248. body, body_offset,
  249. cksumkey, usage, cksumout);
  250. if (cksumout->len < kctx->gk5e->cksumlength) {
  251. dprintk("%s: checksum buffer length, %u, too small for %s\n",
  252. __func__, cksumout->len, kctx->gk5e->name);
  253. return GSS_S_FAILURE;
  254. }
  255. checksumdata = kmalloc(GSS_KRB5_MAX_CKSUM_LEN, GFP_NOFS);
  256. if (checksumdata == NULL)
  257. return GSS_S_FAILURE;
  258. tfm = crypto_alloc_ahash(kctx->gk5e->cksum_name, 0, CRYPTO_ALG_ASYNC);
  259. if (IS_ERR(tfm))
  260. goto out_free_cksum;
  261. req = ahash_request_alloc(tfm, GFP_NOFS);
  262. if (!req)
  263. goto out_free_ahash;
  264. ahash_request_set_callback(req, CRYPTO_TFM_REQ_MAY_SLEEP, NULL, NULL);
  265. checksumlen = crypto_ahash_digestsize(tfm);
  266. if (cksumkey != NULL) {
  267. err = crypto_ahash_setkey(tfm, cksumkey,
  268. kctx->gk5e->keylength);
  269. if (err)
  270. goto out;
  271. }
  272. err = crypto_ahash_init(req);
  273. if (err)
  274. goto out;
  275. sg_init_one(sg, header, hdrlen);
  276. ahash_request_set_crypt(req, sg, NULL, hdrlen);
  277. err = crypto_ahash_update(req);
  278. if (err)
  279. goto out;
  280. err = xdr_process_buf(body, body_offset, body->len - body_offset,
  281. checksummer, req);
  282. if (err)
  283. goto out;
  284. ahash_request_set_crypt(req, NULL, checksumdata, 0);
  285. err = crypto_ahash_final(req);
  286. if (err)
  287. goto out;
  288. switch (kctx->gk5e->ctype) {
  289. case CKSUMTYPE_RSA_MD5:
  290. err = kctx->gk5e->encrypt(kctx->seq, NULL, checksumdata,
  291. checksumdata, checksumlen);
  292. if (err)
  293. goto out;
  294. memcpy(cksumout->data,
  295. checksumdata + checksumlen - kctx->gk5e->cksumlength,
  296. kctx->gk5e->cksumlength);
  297. break;
  298. case CKSUMTYPE_HMAC_SHA1_DES3:
  299. memcpy(cksumout->data, checksumdata, kctx->gk5e->cksumlength);
  300. break;
  301. default:
  302. BUG();
  303. break;
  304. }
  305. cksumout->len = kctx->gk5e->cksumlength;
  306. out:
  307. ahash_request_free(req);
  308. out_free_ahash:
  309. crypto_free_ahash(tfm);
  310. out_free_cksum:
  311. kfree(checksumdata);
  312. return err ? GSS_S_FAILURE : 0;
  313. }
  314. /*
  315. * checksum the plaintext data and hdrlen bytes of the token header
  316. * Per rfc4121, sec. 4.2.4, the checksum is performed over the data
  317. * body then over the first 16 octets of the MIC token
  318. * Inclusion of the header data in the calculation of the
  319. * checksum is optional.
  320. */
  321. u32
  322. make_checksum_v2(struct krb5_ctx *kctx, char *header, int hdrlen,
  323. struct xdr_buf *body, int body_offset, u8 *cksumkey,
  324. unsigned int usage, struct xdr_netobj *cksumout)
  325. {
  326. struct crypto_ahash *tfm;
  327. struct ahash_request *req;
  328. struct scatterlist sg[1];
  329. int err = -1;
  330. u8 *checksumdata;
  331. if (kctx->gk5e->keyed_cksum == 0) {
  332. dprintk("%s: expected keyed hash for %s\n",
  333. __func__, kctx->gk5e->name);
  334. return GSS_S_FAILURE;
  335. }
  336. if (cksumkey == NULL) {
  337. dprintk("%s: no key supplied for %s\n",
  338. __func__, kctx->gk5e->name);
  339. return GSS_S_FAILURE;
  340. }
  341. checksumdata = kmalloc(GSS_KRB5_MAX_CKSUM_LEN, GFP_NOFS);
  342. if (!checksumdata)
  343. return GSS_S_FAILURE;
  344. tfm = crypto_alloc_ahash(kctx->gk5e->cksum_name, 0, CRYPTO_ALG_ASYNC);
  345. if (IS_ERR(tfm))
  346. goto out_free_cksum;
  347. req = ahash_request_alloc(tfm, GFP_NOFS);
  348. if (!req)
  349. goto out_free_ahash;
  350. ahash_request_set_callback(req, CRYPTO_TFM_REQ_MAY_SLEEP, NULL, NULL);
  351. err = crypto_ahash_setkey(tfm, cksumkey, kctx->gk5e->keylength);
  352. if (err)
  353. goto out;
  354. err = crypto_ahash_init(req);
  355. if (err)
  356. goto out;
  357. err = xdr_process_buf(body, body_offset, body->len - body_offset,
  358. checksummer, req);
  359. if (err)
  360. goto out;
  361. if (header != NULL) {
  362. sg_init_one(sg, header, hdrlen);
  363. ahash_request_set_crypt(req, sg, NULL, hdrlen);
  364. err = crypto_ahash_update(req);
  365. if (err)
  366. goto out;
  367. }
  368. ahash_request_set_crypt(req, NULL, checksumdata, 0);
  369. err = crypto_ahash_final(req);
  370. if (err)
  371. goto out;
  372. cksumout->len = kctx->gk5e->cksumlength;
  373. switch (kctx->gk5e->ctype) {
  374. case CKSUMTYPE_HMAC_SHA1_96_AES128:
  375. case CKSUMTYPE_HMAC_SHA1_96_AES256:
  376. /* note that this truncates the hash */
  377. memcpy(cksumout->data, checksumdata, kctx->gk5e->cksumlength);
  378. break;
  379. default:
  380. BUG();
  381. break;
  382. }
  383. out:
  384. ahash_request_free(req);
  385. out_free_ahash:
  386. crypto_free_ahash(tfm);
  387. out_free_cksum:
  388. kfree(checksumdata);
  389. return err ? GSS_S_FAILURE : 0;
  390. }
  391. struct encryptor_desc {
  392. u8 iv[GSS_KRB5_MAX_BLOCKSIZE];
  393. struct skcipher_request *req;
  394. int pos;
  395. struct xdr_buf *outbuf;
  396. struct page **pages;
  397. struct scatterlist infrags[4];
  398. struct scatterlist outfrags[4];
  399. int fragno;
  400. int fraglen;
  401. };
  402. static int
  403. encryptor(struct scatterlist *sg, void *data)
  404. {
  405. struct encryptor_desc *desc = data;
  406. struct xdr_buf *outbuf = desc->outbuf;
  407. struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(desc->req);
  408. struct page *in_page;
  409. int thislen = desc->fraglen + sg->length;
  410. int fraglen, ret;
  411. int page_pos;
  412. /* Worst case is 4 fragments: head, end of page 1, start
  413. * of page 2, tail. Anything more is a bug. */
  414. BUG_ON(desc->fragno > 3);
  415. page_pos = desc->pos - outbuf->head[0].iov_len;
  416. if (page_pos >= 0 && page_pos < outbuf->page_len) {
  417. /* pages are not in place: */
  418. int i = (page_pos + outbuf->page_base) >> PAGE_SHIFT;
  419. in_page = desc->pages[i];
  420. } else {
  421. in_page = sg_page(sg);
  422. }
  423. sg_set_page(&desc->infrags[desc->fragno], in_page, sg->length,
  424. sg->offset);
  425. sg_set_page(&desc->outfrags[desc->fragno], sg_page(sg), sg->length,
  426. sg->offset);
  427. desc->fragno++;
  428. desc->fraglen += sg->length;
  429. desc->pos += sg->length;
  430. fraglen = thislen & (crypto_skcipher_blocksize(tfm) - 1);
  431. thislen -= fraglen;
  432. if (thislen == 0)
  433. return 0;
  434. sg_mark_end(&desc->infrags[desc->fragno - 1]);
  435. sg_mark_end(&desc->outfrags[desc->fragno - 1]);
  436. skcipher_request_set_crypt(desc->req, desc->infrags, desc->outfrags,
  437. thislen, desc->iv);
  438. ret = crypto_skcipher_encrypt(desc->req);
  439. if (ret)
  440. return ret;
  441. sg_init_table(desc->infrags, 4);
  442. sg_init_table(desc->outfrags, 4);
  443. if (fraglen) {
  444. sg_set_page(&desc->outfrags[0], sg_page(sg), fraglen,
  445. sg->offset + sg->length - fraglen);
  446. desc->infrags[0] = desc->outfrags[0];
  447. sg_assign_page(&desc->infrags[0], in_page);
  448. desc->fragno = 1;
  449. desc->fraglen = fraglen;
  450. } else {
  451. desc->fragno = 0;
  452. desc->fraglen = 0;
  453. }
  454. return 0;
  455. }
  456. int
  457. gss_encrypt_xdr_buf(struct crypto_skcipher *tfm, struct xdr_buf *buf,
  458. int offset, struct page **pages)
  459. {
  460. int ret;
  461. struct encryptor_desc desc;
  462. SKCIPHER_REQUEST_ON_STACK(req, tfm);
  463. BUG_ON((buf->len - offset) % crypto_skcipher_blocksize(tfm) != 0);
  464. skcipher_request_set_tfm(req, tfm);
  465. skcipher_request_set_callback(req, 0, NULL, NULL);
  466. memset(desc.iv, 0, sizeof(desc.iv));
  467. desc.req = req;
  468. desc.pos = offset;
  469. desc.outbuf = buf;
  470. desc.pages = pages;
  471. desc.fragno = 0;
  472. desc.fraglen = 0;
  473. sg_init_table(desc.infrags, 4);
  474. sg_init_table(desc.outfrags, 4);
  475. ret = xdr_process_buf(buf, offset, buf->len - offset, encryptor, &desc);
  476. skcipher_request_zero(req);
  477. return ret;
  478. }
  479. struct decryptor_desc {
  480. u8 iv[GSS_KRB5_MAX_BLOCKSIZE];
  481. struct skcipher_request *req;
  482. struct scatterlist frags[4];
  483. int fragno;
  484. int fraglen;
  485. };
  486. static int
  487. decryptor(struct scatterlist *sg, void *data)
  488. {
  489. struct decryptor_desc *desc = data;
  490. int thislen = desc->fraglen + sg->length;
  491. struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(desc->req);
  492. int fraglen, ret;
  493. /* Worst case is 4 fragments: head, end of page 1, start
  494. * of page 2, tail. Anything more is a bug. */
  495. BUG_ON(desc->fragno > 3);
  496. sg_set_page(&desc->frags[desc->fragno], sg_page(sg), sg->length,
  497. sg->offset);
  498. desc->fragno++;
  499. desc->fraglen += sg->length;
  500. fraglen = thislen & (crypto_skcipher_blocksize(tfm) - 1);
  501. thislen -= fraglen;
  502. if (thislen == 0)
  503. return 0;
  504. sg_mark_end(&desc->frags[desc->fragno - 1]);
  505. skcipher_request_set_crypt(desc->req, desc->frags, desc->frags,
  506. thislen, desc->iv);
  507. ret = crypto_skcipher_decrypt(desc->req);
  508. if (ret)
  509. return ret;
  510. sg_init_table(desc->frags, 4);
  511. if (fraglen) {
  512. sg_set_page(&desc->frags[0], sg_page(sg), fraglen,
  513. sg->offset + sg->length - fraglen);
  514. desc->fragno = 1;
  515. desc->fraglen = fraglen;
  516. } else {
  517. desc->fragno = 0;
  518. desc->fraglen = 0;
  519. }
  520. return 0;
  521. }
  522. int
  523. gss_decrypt_xdr_buf(struct crypto_skcipher *tfm, struct xdr_buf *buf,
  524. int offset)
  525. {
  526. int ret;
  527. struct decryptor_desc desc;
  528. SKCIPHER_REQUEST_ON_STACK(req, tfm);
  529. /* XXXJBF: */
  530. BUG_ON((buf->len - offset) % crypto_skcipher_blocksize(tfm) != 0);
  531. skcipher_request_set_tfm(req, tfm);
  532. skcipher_request_set_callback(req, 0, NULL, NULL);
  533. memset(desc.iv, 0, sizeof(desc.iv));
  534. desc.req = req;
  535. desc.fragno = 0;
  536. desc.fraglen = 0;
  537. sg_init_table(desc.frags, 4);
  538. ret = xdr_process_buf(buf, offset, buf->len - offset, decryptor, &desc);
  539. skcipher_request_zero(req);
  540. return ret;
  541. }
  542. /*
  543. * This function makes the assumption that it was ultimately called
  544. * from gss_wrap().
  545. *
  546. * The client auth_gss code moves any existing tail data into a
  547. * separate page before calling gss_wrap.
  548. * The server svcauth_gss code ensures that both the head and the
  549. * tail have slack space of RPC_MAX_AUTH_SIZE before calling gss_wrap.
  550. *
  551. * Even with that guarantee, this function may be called more than
  552. * once in the processing of gss_wrap(). The best we can do is
  553. * verify at compile-time (see GSS_KRB5_SLACK_CHECK) that the
  554. * largest expected shift will fit within RPC_MAX_AUTH_SIZE.
  555. * At run-time we can verify that a single invocation of this
  556. * function doesn't attempt to use more the RPC_MAX_AUTH_SIZE.
  557. */
  558. int
  559. xdr_extend_head(struct xdr_buf *buf, unsigned int base, unsigned int shiftlen)
  560. {
  561. u8 *p;
  562. if (shiftlen == 0)
  563. return 0;
  564. BUILD_BUG_ON(GSS_KRB5_MAX_SLACK_NEEDED > RPC_MAX_AUTH_SIZE);
  565. BUG_ON(shiftlen > RPC_MAX_AUTH_SIZE);
  566. p = buf->head[0].iov_base + base;
  567. memmove(p + shiftlen, p, buf->head[0].iov_len - base);
  568. buf->head[0].iov_len += shiftlen;
  569. buf->len += shiftlen;
  570. return 0;
  571. }
  572. static u32
  573. gss_krb5_cts_crypt(struct crypto_skcipher *cipher, struct xdr_buf *buf,
  574. u32 offset, u8 *iv, struct page **pages, int encrypt)
  575. {
  576. u32 ret;
  577. struct scatterlist sg[1];
  578. SKCIPHER_REQUEST_ON_STACK(req, cipher);
  579. u8 *data;
  580. struct page **save_pages;
  581. u32 len = buf->len - offset;
  582. if (len > GSS_KRB5_MAX_BLOCKSIZE * 2) {
  583. WARN_ON(0);
  584. return -ENOMEM;
  585. }
  586. data = kmalloc(GSS_KRB5_MAX_BLOCKSIZE * 2, GFP_NOFS);
  587. if (!data)
  588. return -ENOMEM;
  589. /*
  590. * For encryption, we want to read from the cleartext
  591. * page cache pages, and write the encrypted data to
  592. * the supplied xdr_buf pages.
  593. */
  594. save_pages = buf->pages;
  595. if (encrypt)
  596. buf->pages = pages;
  597. ret = read_bytes_from_xdr_buf(buf, offset, data, len);
  598. buf->pages = save_pages;
  599. if (ret)
  600. goto out;
  601. sg_init_one(sg, data, len);
  602. skcipher_request_set_tfm(req, cipher);
  603. skcipher_request_set_callback(req, 0, NULL, NULL);
  604. skcipher_request_set_crypt(req, sg, sg, len, iv);
  605. if (encrypt)
  606. ret = crypto_skcipher_encrypt(req);
  607. else
  608. ret = crypto_skcipher_decrypt(req);
  609. skcipher_request_zero(req);
  610. if (ret)
  611. goto out;
  612. ret = write_bytes_to_xdr_buf(buf, offset, data, len);
  613. out:
  614. kfree(data);
  615. return ret;
  616. }
  617. u32
  618. gss_krb5_aes_encrypt(struct krb5_ctx *kctx, u32 offset,
  619. struct xdr_buf *buf, struct page **pages)
  620. {
  621. u32 err;
  622. struct xdr_netobj hmac;
  623. u8 *cksumkey;
  624. u8 *ecptr;
  625. struct crypto_skcipher *cipher, *aux_cipher;
  626. int blocksize;
  627. struct page **save_pages;
  628. int nblocks, nbytes;
  629. struct encryptor_desc desc;
  630. u32 cbcbytes;
  631. unsigned int usage;
  632. if (kctx->initiate) {
  633. cipher = kctx->initiator_enc;
  634. aux_cipher = kctx->initiator_enc_aux;
  635. cksumkey = kctx->initiator_integ;
  636. usage = KG_USAGE_INITIATOR_SEAL;
  637. } else {
  638. cipher = kctx->acceptor_enc;
  639. aux_cipher = kctx->acceptor_enc_aux;
  640. cksumkey = kctx->acceptor_integ;
  641. usage = KG_USAGE_ACCEPTOR_SEAL;
  642. }
  643. blocksize = crypto_skcipher_blocksize(cipher);
  644. /* hide the gss token header and insert the confounder */
  645. offset += GSS_KRB5_TOK_HDR_LEN;
  646. if (xdr_extend_head(buf, offset, kctx->gk5e->conflen))
  647. return GSS_S_FAILURE;
  648. gss_krb5_make_confounder(buf->head[0].iov_base + offset, kctx->gk5e->conflen);
  649. offset -= GSS_KRB5_TOK_HDR_LEN;
  650. if (buf->tail[0].iov_base != NULL) {
  651. ecptr = buf->tail[0].iov_base + buf->tail[0].iov_len;
  652. } else {
  653. buf->tail[0].iov_base = buf->head[0].iov_base
  654. + buf->head[0].iov_len;
  655. buf->tail[0].iov_len = 0;
  656. ecptr = buf->tail[0].iov_base;
  657. }
  658. /* copy plaintext gss token header after filler (if any) */
  659. memcpy(ecptr, buf->head[0].iov_base + offset, GSS_KRB5_TOK_HDR_LEN);
  660. buf->tail[0].iov_len += GSS_KRB5_TOK_HDR_LEN;
  661. buf->len += GSS_KRB5_TOK_HDR_LEN;
  662. /* Do the HMAC */
  663. hmac.len = GSS_KRB5_MAX_CKSUM_LEN;
  664. hmac.data = buf->tail[0].iov_base + buf->tail[0].iov_len;
  665. /*
  666. * When we are called, pages points to the real page cache
  667. * data -- which we can't go and encrypt! buf->pages points
  668. * to scratch pages which we are going to send off to the
  669. * client/server. Swap in the plaintext pages to calculate
  670. * the hmac.
  671. */
  672. save_pages = buf->pages;
  673. buf->pages = pages;
  674. err = make_checksum_v2(kctx, NULL, 0, buf,
  675. offset + GSS_KRB5_TOK_HDR_LEN,
  676. cksumkey, usage, &hmac);
  677. buf->pages = save_pages;
  678. if (err)
  679. return GSS_S_FAILURE;
  680. nbytes = buf->len - offset - GSS_KRB5_TOK_HDR_LEN;
  681. nblocks = (nbytes + blocksize - 1) / blocksize;
  682. cbcbytes = 0;
  683. if (nblocks > 2)
  684. cbcbytes = (nblocks - 2) * blocksize;
  685. memset(desc.iv, 0, sizeof(desc.iv));
  686. if (cbcbytes) {
  687. SKCIPHER_REQUEST_ON_STACK(req, aux_cipher);
  688. desc.pos = offset + GSS_KRB5_TOK_HDR_LEN;
  689. desc.fragno = 0;
  690. desc.fraglen = 0;
  691. desc.pages = pages;
  692. desc.outbuf = buf;
  693. desc.req = req;
  694. skcipher_request_set_tfm(req, aux_cipher);
  695. skcipher_request_set_callback(req, 0, NULL, NULL);
  696. sg_init_table(desc.infrags, 4);
  697. sg_init_table(desc.outfrags, 4);
  698. err = xdr_process_buf(buf, offset + GSS_KRB5_TOK_HDR_LEN,
  699. cbcbytes, encryptor, &desc);
  700. skcipher_request_zero(req);
  701. if (err)
  702. goto out_err;
  703. }
  704. /* Make sure IV carries forward from any CBC results. */
  705. err = gss_krb5_cts_crypt(cipher, buf,
  706. offset + GSS_KRB5_TOK_HDR_LEN + cbcbytes,
  707. desc.iv, pages, 1);
  708. if (err) {
  709. err = GSS_S_FAILURE;
  710. goto out_err;
  711. }
  712. /* Now update buf to account for HMAC */
  713. buf->tail[0].iov_len += kctx->gk5e->cksumlength;
  714. buf->len += kctx->gk5e->cksumlength;
  715. out_err:
  716. if (err)
  717. err = GSS_S_FAILURE;
  718. return err;
  719. }
  720. u32
  721. gss_krb5_aes_decrypt(struct krb5_ctx *kctx, u32 offset, struct xdr_buf *buf,
  722. u32 *headskip, u32 *tailskip)
  723. {
  724. struct xdr_buf subbuf;
  725. u32 ret = 0;
  726. u8 *cksum_key;
  727. struct crypto_skcipher *cipher, *aux_cipher;
  728. struct xdr_netobj our_hmac_obj;
  729. u8 our_hmac[GSS_KRB5_MAX_CKSUM_LEN];
  730. u8 pkt_hmac[GSS_KRB5_MAX_CKSUM_LEN];
  731. int nblocks, blocksize, cbcbytes;
  732. struct decryptor_desc desc;
  733. unsigned int usage;
  734. if (kctx->initiate) {
  735. cipher = kctx->acceptor_enc;
  736. aux_cipher = kctx->acceptor_enc_aux;
  737. cksum_key = kctx->acceptor_integ;
  738. usage = KG_USAGE_ACCEPTOR_SEAL;
  739. } else {
  740. cipher = kctx->initiator_enc;
  741. aux_cipher = kctx->initiator_enc_aux;
  742. cksum_key = kctx->initiator_integ;
  743. usage = KG_USAGE_INITIATOR_SEAL;
  744. }
  745. blocksize = crypto_skcipher_blocksize(cipher);
  746. /* create a segment skipping the header and leaving out the checksum */
  747. xdr_buf_subsegment(buf, &subbuf, offset + GSS_KRB5_TOK_HDR_LEN,
  748. (buf->len - offset - GSS_KRB5_TOK_HDR_LEN -
  749. kctx->gk5e->cksumlength));
  750. nblocks = (subbuf.len + blocksize - 1) / blocksize;
  751. cbcbytes = 0;
  752. if (nblocks > 2)
  753. cbcbytes = (nblocks - 2) * blocksize;
  754. memset(desc.iv, 0, sizeof(desc.iv));
  755. if (cbcbytes) {
  756. SKCIPHER_REQUEST_ON_STACK(req, aux_cipher);
  757. desc.fragno = 0;
  758. desc.fraglen = 0;
  759. desc.req = req;
  760. skcipher_request_set_tfm(req, aux_cipher);
  761. skcipher_request_set_callback(req, 0, NULL, NULL);
  762. sg_init_table(desc.frags, 4);
  763. ret = xdr_process_buf(&subbuf, 0, cbcbytes, decryptor, &desc);
  764. skcipher_request_zero(req);
  765. if (ret)
  766. goto out_err;
  767. }
  768. /* Make sure IV carries forward from any CBC results. */
  769. ret = gss_krb5_cts_crypt(cipher, &subbuf, cbcbytes, desc.iv, NULL, 0);
  770. if (ret)
  771. goto out_err;
  772. /* Calculate our hmac over the plaintext data */
  773. our_hmac_obj.len = sizeof(our_hmac);
  774. our_hmac_obj.data = our_hmac;
  775. ret = make_checksum_v2(kctx, NULL, 0, &subbuf, 0,
  776. cksum_key, usage, &our_hmac_obj);
  777. if (ret)
  778. goto out_err;
  779. /* Get the packet's hmac value */
  780. ret = read_bytes_from_xdr_buf(buf, buf->len - kctx->gk5e->cksumlength,
  781. pkt_hmac, kctx->gk5e->cksumlength);
  782. if (ret)
  783. goto out_err;
  784. if (crypto_memneq(pkt_hmac, our_hmac, kctx->gk5e->cksumlength) != 0) {
  785. ret = GSS_S_BAD_SIG;
  786. goto out_err;
  787. }
  788. *headskip = kctx->gk5e->conflen;
  789. *tailskip = kctx->gk5e->cksumlength;
  790. out_err:
  791. if (ret && ret != GSS_S_BAD_SIG)
  792. ret = GSS_S_FAILURE;
  793. return ret;
  794. }
  795. /*
  796. * Compute Kseq given the initial session key and the checksum.
  797. * Set the key of the given cipher.
  798. */
  799. int
  800. krb5_rc4_setup_seq_key(struct krb5_ctx *kctx, struct crypto_skcipher *cipher,
  801. unsigned char *cksum)
  802. {
  803. struct crypto_shash *hmac;
  804. struct shash_desc *desc;
  805. u8 Kseq[GSS_KRB5_MAX_KEYLEN];
  806. u32 zeroconstant = 0;
  807. int err;
  808. dprintk("%s: entered\n", __func__);
  809. hmac = crypto_alloc_shash(kctx->gk5e->cksum_name, 0, 0);
  810. if (IS_ERR(hmac)) {
  811. dprintk("%s: error %ld, allocating hash '%s'\n",
  812. __func__, PTR_ERR(hmac), kctx->gk5e->cksum_name);
  813. return PTR_ERR(hmac);
  814. }
  815. desc = kmalloc(sizeof(*desc) + crypto_shash_descsize(hmac),
  816. GFP_NOFS);
  817. if (!desc) {
  818. dprintk("%s: failed to allocate shash descriptor for '%s'\n",
  819. __func__, kctx->gk5e->cksum_name);
  820. crypto_free_shash(hmac);
  821. return -ENOMEM;
  822. }
  823. desc->tfm = hmac;
  824. desc->flags = 0;
  825. /* Compute intermediate Kseq from session key */
  826. err = crypto_shash_setkey(hmac, kctx->Ksess, kctx->gk5e->keylength);
  827. if (err)
  828. goto out_err;
  829. err = crypto_shash_digest(desc, (u8 *)&zeroconstant, 4, Kseq);
  830. if (err)
  831. goto out_err;
  832. /* Compute final Kseq from the checksum and intermediate Kseq */
  833. err = crypto_shash_setkey(hmac, Kseq, kctx->gk5e->keylength);
  834. if (err)
  835. goto out_err;
  836. err = crypto_shash_digest(desc, cksum, 8, Kseq);
  837. if (err)
  838. goto out_err;
  839. err = crypto_skcipher_setkey(cipher, Kseq, kctx->gk5e->keylength);
  840. if (err)
  841. goto out_err;
  842. err = 0;
  843. out_err:
  844. kzfree(desc);
  845. crypto_free_shash(hmac);
  846. dprintk("%s: returning %d\n", __func__, err);
  847. return err;
  848. }
  849. /*
  850. * Compute Kcrypt given the initial session key and the plaintext seqnum.
  851. * Set the key of cipher kctx->enc.
  852. */
  853. int
  854. krb5_rc4_setup_enc_key(struct krb5_ctx *kctx, struct crypto_skcipher *cipher,
  855. s32 seqnum)
  856. {
  857. struct crypto_shash *hmac;
  858. struct shash_desc *desc;
  859. u8 Kcrypt[GSS_KRB5_MAX_KEYLEN];
  860. u8 zeroconstant[4] = {0};
  861. u8 seqnumarray[4];
  862. int err, i;
  863. dprintk("%s: entered, seqnum %u\n", __func__, seqnum);
  864. hmac = crypto_alloc_shash(kctx->gk5e->cksum_name, 0, 0);
  865. if (IS_ERR(hmac)) {
  866. dprintk("%s: error %ld, allocating hash '%s'\n",
  867. __func__, PTR_ERR(hmac), kctx->gk5e->cksum_name);
  868. return PTR_ERR(hmac);
  869. }
  870. desc = kmalloc(sizeof(*desc) + crypto_shash_descsize(hmac),
  871. GFP_NOFS);
  872. if (!desc) {
  873. dprintk("%s: failed to allocate shash descriptor for '%s'\n",
  874. __func__, kctx->gk5e->cksum_name);
  875. crypto_free_shash(hmac);
  876. return -ENOMEM;
  877. }
  878. desc->tfm = hmac;
  879. desc->flags = 0;
  880. /* Compute intermediate Kcrypt from session key */
  881. for (i = 0; i < kctx->gk5e->keylength; i++)
  882. Kcrypt[i] = kctx->Ksess[i] ^ 0xf0;
  883. err = crypto_shash_setkey(hmac, Kcrypt, kctx->gk5e->keylength);
  884. if (err)
  885. goto out_err;
  886. err = crypto_shash_digest(desc, zeroconstant, 4, Kcrypt);
  887. if (err)
  888. goto out_err;
  889. /* Compute final Kcrypt from the seqnum and intermediate Kcrypt */
  890. err = crypto_shash_setkey(hmac, Kcrypt, kctx->gk5e->keylength);
  891. if (err)
  892. goto out_err;
  893. seqnumarray[0] = (unsigned char) ((seqnum >> 24) & 0xff);
  894. seqnumarray[1] = (unsigned char) ((seqnum >> 16) & 0xff);
  895. seqnumarray[2] = (unsigned char) ((seqnum >> 8) & 0xff);
  896. seqnumarray[3] = (unsigned char) ((seqnum >> 0) & 0xff);
  897. err = crypto_shash_digest(desc, seqnumarray, 4, Kcrypt);
  898. if (err)
  899. goto out_err;
  900. err = crypto_skcipher_setkey(cipher, Kcrypt, kctx->gk5e->keylength);
  901. if (err)
  902. goto out_err;
  903. err = 0;
  904. out_err:
  905. kzfree(desc);
  906. crypto_free_shash(hmac);
  907. dprintk("%s: returning %d\n", __func__, err);
  908. return err;
  909. }