tls_device.c 26 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052
  1. /* Copyright (c) 2018, Mellanox Technologies All rights reserved.
  2. *
  3. * This software is available to you under a choice of one of two
  4. * licenses. You may choose to be licensed under the terms of the GNU
  5. * General Public License (GPL) Version 2, available from the file
  6. * COPYING in the main directory of this source tree, or the
  7. * OpenIB.org BSD license below:
  8. *
  9. * Redistribution and use in source and binary forms, with or
  10. * without modification, are permitted provided that the following
  11. * conditions are met:
  12. *
  13. * - Redistributions of source code must retain the above
  14. * copyright notice, this list of conditions and the following
  15. * disclaimer.
  16. *
  17. * - Redistributions in binary form must reproduce the above
  18. * copyright notice, this list of conditions and the following
  19. * disclaimer in the documentation and/or other materials
  20. * provided with the distribution.
  21. *
  22. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
  23. * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
  24. * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
  25. * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
  26. * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
  27. * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
  28. * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
  29. * SOFTWARE.
  30. */
  31. #include <crypto/aead.h>
  32. #include <linux/highmem.h>
  33. #include <linux/module.h>
  34. #include <linux/netdevice.h>
  35. #include <net/dst.h>
  36. #include <net/inet_connection_sock.h>
  37. #include <net/tcp.h>
  38. #include <net/tls.h>
  39. /* device_offload_lock is used to synchronize tls_dev_add
  40. * against NETDEV_DOWN notifications.
  41. */
  42. static DECLARE_RWSEM(device_offload_lock);
  43. static void tls_device_gc_task(struct work_struct *work);
  44. static DECLARE_WORK(tls_device_gc_work, tls_device_gc_task);
  45. static LIST_HEAD(tls_device_gc_list);
  46. static LIST_HEAD(tls_device_list);
  47. static DEFINE_SPINLOCK(tls_device_lock);
  48. static void tls_device_free_ctx(struct tls_context *ctx)
  49. {
  50. if (ctx->tx_conf == TLS_HW) {
  51. kfree(tls_offload_ctx_tx(ctx));
  52. kfree(ctx->tx.rec_seq);
  53. kfree(ctx->tx.iv);
  54. }
  55. if (ctx->rx_conf == TLS_HW)
  56. kfree(tls_offload_ctx_rx(ctx));
  57. tls_ctx_free(ctx);
  58. }
  59. static void tls_device_gc_task(struct work_struct *work)
  60. {
  61. struct tls_context *ctx, *tmp;
  62. unsigned long flags;
  63. LIST_HEAD(gc_list);
  64. spin_lock_irqsave(&tls_device_lock, flags);
  65. list_splice_init(&tls_device_gc_list, &gc_list);
  66. spin_unlock_irqrestore(&tls_device_lock, flags);
  67. list_for_each_entry_safe(ctx, tmp, &gc_list, list) {
  68. struct net_device *netdev = ctx->netdev;
  69. if (netdev && ctx->tx_conf == TLS_HW) {
  70. netdev->tlsdev_ops->tls_dev_del(netdev, ctx,
  71. TLS_OFFLOAD_CTX_DIR_TX);
  72. dev_put(netdev);
  73. ctx->netdev = NULL;
  74. }
  75. list_del(&ctx->list);
  76. tls_device_free_ctx(ctx);
  77. }
  78. }
  79. static void tls_device_attach(struct tls_context *ctx, struct sock *sk,
  80. struct net_device *netdev)
  81. {
  82. if (sk->sk_destruct != tls_device_sk_destruct) {
  83. refcount_set(&ctx->refcount, 1);
  84. dev_hold(netdev);
  85. ctx->netdev = netdev;
  86. spin_lock_irq(&tls_device_lock);
  87. list_add_tail(&ctx->list, &tls_device_list);
  88. spin_unlock_irq(&tls_device_lock);
  89. ctx->sk_destruct = sk->sk_destruct;
  90. sk->sk_destruct = tls_device_sk_destruct;
  91. }
  92. }
  93. static void tls_device_queue_ctx_destruction(struct tls_context *ctx)
  94. {
  95. unsigned long flags;
  96. spin_lock_irqsave(&tls_device_lock, flags);
  97. list_move_tail(&ctx->list, &tls_device_gc_list);
  98. /* schedule_work inside the spinlock
  99. * to make sure tls_device_down waits for that work.
  100. */
  101. schedule_work(&tls_device_gc_work);
  102. spin_unlock_irqrestore(&tls_device_lock, flags);
  103. }
  104. /* We assume that the socket is already connected */
  105. static struct net_device *get_netdev_for_sock(struct sock *sk)
  106. {
  107. struct dst_entry *dst = sk_dst_get(sk);
  108. struct net_device *netdev = NULL;
  109. if (likely(dst)) {
  110. netdev = dst->dev;
  111. dev_hold(netdev);
  112. }
  113. dst_release(dst);
  114. return netdev;
  115. }
  116. static void destroy_record(struct tls_record_info *record)
  117. {
  118. int nr_frags = record->num_frags;
  119. skb_frag_t *frag;
  120. while (nr_frags-- > 0) {
  121. frag = &record->frags[nr_frags];
  122. __skb_frag_unref(frag);
  123. }
  124. kfree(record);
  125. }
  126. static void delete_all_records(struct tls_offload_context_tx *offload_ctx)
  127. {
  128. struct tls_record_info *info, *temp;
  129. list_for_each_entry_safe(info, temp, &offload_ctx->records_list, list) {
  130. list_del(&info->list);
  131. destroy_record(info);
  132. }
  133. offload_ctx->retransmit_hint = NULL;
  134. }
  135. static void tls_icsk_clean_acked(struct sock *sk, u32 acked_seq)
  136. {
  137. struct tls_context *tls_ctx = tls_get_ctx(sk);
  138. struct tls_record_info *info, *temp;
  139. struct tls_offload_context_tx *ctx;
  140. u64 deleted_records = 0;
  141. unsigned long flags;
  142. if (!tls_ctx)
  143. return;
  144. ctx = tls_offload_ctx_tx(tls_ctx);
  145. spin_lock_irqsave(&ctx->lock, flags);
  146. info = ctx->retransmit_hint;
  147. if (info && !before(acked_seq, info->end_seq)) {
  148. ctx->retransmit_hint = NULL;
  149. list_del(&info->list);
  150. destroy_record(info);
  151. deleted_records++;
  152. }
  153. list_for_each_entry_safe(info, temp, &ctx->records_list, list) {
  154. if (before(acked_seq, info->end_seq))
  155. break;
  156. list_del(&info->list);
  157. destroy_record(info);
  158. deleted_records++;
  159. }
  160. ctx->unacked_record_sn += deleted_records;
  161. spin_unlock_irqrestore(&ctx->lock, flags);
  162. }
  163. /* At this point, there should be no references on this
  164. * socket and no in-flight SKBs associated with this
  165. * socket, so it is safe to free all the resources.
  166. */
  167. void tls_device_sk_destruct(struct sock *sk)
  168. {
  169. struct tls_context *tls_ctx = tls_get_ctx(sk);
  170. struct tls_offload_context_tx *ctx = tls_offload_ctx_tx(tls_ctx);
  171. tls_ctx->sk_destruct(sk);
  172. if (tls_ctx->tx_conf == TLS_HW) {
  173. if (ctx->open_record)
  174. destroy_record(ctx->open_record);
  175. delete_all_records(ctx);
  176. crypto_free_aead(ctx->aead_send);
  177. clean_acked_data_disable(inet_csk(sk));
  178. }
  179. if (refcount_dec_and_test(&tls_ctx->refcount))
  180. tls_device_queue_ctx_destruction(tls_ctx);
  181. }
  182. EXPORT_SYMBOL(tls_device_sk_destruct);
  183. static void tls_append_frag(struct tls_record_info *record,
  184. struct page_frag *pfrag,
  185. int size)
  186. {
  187. skb_frag_t *frag;
  188. frag = &record->frags[record->num_frags - 1];
  189. if (frag->page.p == pfrag->page &&
  190. frag->page_offset + frag->size == pfrag->offset) {
  191. frag->size += size;
  192. } else {
  193. ++frag;
  194. frag->page.p = pfrag->page;
  195. frag->page_offset = pfrag->offset;
  196. frag->size = size;
  197. ++record->num_frags;
  198. get_page(pfrag->page);
  199. }
  200. pfrag->offset += size;
  201. record->len += size;
  202. }
  203. static int tls_push_record(struct sock *sk,
  204. struct tls_context *ctx,
  205. struct tls_offload_context_tx *offload_ctx,
  206. struct tls_record_info *record,
  207. struct page_frag *pfrag,
  208. int flags,
  209. unsigned char record_type)
  210. {
  211. struct tcp_sock *tp = tcp_sk(sk);
  212. struct page_frag dummy_tag_frag;
  213. skb_frag_t *frag;
  214. int i;
  215. /* fill prepend */
  216. frag = &record->frags[0];
  217. tls_fill_prepend(ctx,
  218. skb_frag_address(frag),
  219. record->len - ctx->tx.prepend_size,
  220. record_type);
  221. /* HW doesn't care about the data in the tag, because it fills it. */
  222. dummy_tag_frag.page = skb_frag_page(frag);
  223. dummy_tag_frag.offset = 0;
  224. tls_append_frag(record, &dummy_tag_frag, ctx->tx.tag_size);
  225. record->end_seq = tp->write_seq + record->len;
  226. spin_lock_irq(&offload_ctx->lock);
  227. list_add_tail(&record->list, &offload_ctx->records_list);
  228. spin_unlock_irq(&offload_ctx->lock);
  229. offload_ctx->open_record = NULL;
  230. set_bit(TLS_PENDING_CLOSED_RECORD, &ctx->flags);
  231. tls_advance_record_sn(sk, &ctx->tx);
  232. for (i = 0; i < record->num_frags; i++) {
  233. frag = &record->frags[i];
  234. sg_unmark_end(&offload_ctx->sg_tx_data[i]);
  235. sg_set_page(&offload_ctx->sg_tx_data[i], skb_frag_page(frag),
  236. frag->size, frag->page_offset);
  237. sk_mem_charge(sk, frag->size);
  238. get_page(skb_frag_page(frag));
  239. }
  240. sg_mark_end(&offload_ctx->sg_tx_data[record->num_frags - 1]);
  241. /* all ready, send */
  242. return tls_push_sg(sk, ctx, offload_ctx->sg_tx_data, 0, flags);
  243. }
  244. static int tls_create_new_record(struct tls_offload_context_tx *offload_ctx,
  245. struct page_frag *pfrag,
  246. size_t prepend_size)
  247. {
  248. struct tls_record_info *record;
  249. skb_frag_t *frag;
  250. record = kmalloc(sizeof(*record), GFP_KERNEL);
  251. if (!record)
  252. return -ENOMEM;
  253. frag = &record->frags[0];
  254. __skb_frag_set_page(frag, pfrag->page);
  255. frag->page_offset = pfrag->offset;
  256. skb_frag_size_set(frag, prepend_size);
  257. get_page(pfrag->page);
  258. pfrag->offset += prepend_size;
  259. record->num_frags = 1;
  260. record->len = prepend_size;
  261. offload_ctx->open_record = record;
  262. return 0;
  263. }
  264. static int tls_do_allocation(struct sock *sk,
  265. struct tls_offload_context_tx *offload_ctx,
  266. struct page_frag *pfrag,
  267. size_t prepend_size)
  268. {
  269. int ret;
  270. if (!offload_ctx->open_record) {
  271. if (unlikely(!skb_page_frag_refill(prepend_size, pfrag,
  272. sk->sk_allocation))) {
  273. sk->sk_prot->enter_memory_pressure(sk);
  274. sk_stream_moderate_sndbuf(sk);
  275. return -ENOMEM;
  276. }
  277. ret = tls_create_new_record(offload_ctx, pfrag, prepend_size);
  278. if (ret)
  279. return ret;
  280. if (pfrag->size > pfrag->offset)
  281. return 0;
  282. }
  283. if (!sk_page_frag_refill(sk, pfrag))
  284. return -ENOMEM;
  285. return 0;
  286. }
  287. static int tls_push_data(struct sock *sk,
  288. struct iov_iter *msg_iter,
  289. size_t size, int flags,
  290. unsigned char record_type)
  291. {
  292. struct tls_context *tls_ctx = tls_get_ctx(sk);
  293. struct tls_offload_context_tx *ctx = tls_offload_ctx_tx(tls_ctx);
  294. int tls_push_record_flags = flags | MSG_SENDPAGE_NOTLAST;
  295. struct tls_record_info *record = ctx->open_record;
  296. struct page_frag *pfrag;
  297. size_t orig_size = size;
  298. u32 max_open_record_len;
  299. bool more = false;
  300. bool done = false;
  301. int copy, rc = 0;
  302. long timeo;
  303. if (flags &
  304. ~(MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL | MSG_SENDPAGE_NOTLAST))
  305. return -ENOTSUPP;
  306. if (sk->sk_err)
  307. return -sk->sk_err;
  308. timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
  309. rc = tls_complete_pending_work(sk, tls_ctx, flags, &timeo);
  310. if (rc < 0)
  311. return rc;
  312. pfrag = sk_page_frag(sk);
  313. /* TLS_HEADER_SIZE is not counted as part of the TLS record, and
  314. * we need to leave room for an authentication tag.
  315. */
  316. max_open_record_len = TLS_MAX_PAYLOAD_SIZE +
  317. tls_ctx->tx.prepend_size;
  318. do {
  319. rc = tls_do_allocation(sk, ctx, pfrag,
  320. tls_ctx->tx.prepend_size);
  321. if (rc) {
  322. rc = sk_stream_wait_memory(sk, &timeo);
  323. if (!rc)
  324. continue;
  325. record = ctx->open_record;
  326. if (!record)
  327. break;
  328. handle_error:
  329. if (record_type != TLS_RECORD_TYPE_DATA) {
  330. /* avoid sending partial
  331. * record with type !=
  332. * application_data
  333. */
  334. size = orig_size;
  335. destroy_record(record);
  336. ctx->open_record = NULL;
  337. } else if (record->len > tls_ctx->tx.prepend_size) {
  338. goto last_record;
  339. }
  340. break;
  341. }
  342. record = ctx->open_record;
  343. copy = min_t(size_t, size, (pfrag->size - pfrag->offset));
  344. copy = min_t(size_t, copy, (max_open_record_len - record->len));
  345. if (copy_from_iter_nocache(page_address(pfrag->page) +
  346. pfrag->offset,
  347. copy, msg_iter) != copy) {
  348. rc = -EFAULT;
  349. goto handle_error;
  350. }
  351. tls_append_frag(record, pfrag, copy);
  352. size -= copy;
  353. if (!size) {
  354. last_record:
  355. tls_push_record_flags = flags;
  356. if (flags & (MSG_SENDPAGE_NOTLAST | MSG_MORE)) {
  357. more = true;
  358. break;
  359. }
  360. done = true;
  361. }
  362. if (done || record->len >= max_open_record_len ||
  363. (record->num_frags >= MAX_SKB_FRAGS - 1)) {
  364. rc = tls_push_record(sk,
  365. tls_ctx,
  366. ctx,
  367. record,
  368. pfrag,
  369. tls_push_record_flags,
  370. record_type);
  371. if (rc < 0)
  372. break;
  373. }
  374. } while (!done);
  375. tls_ctx->pending_open_record_frags = more;
  376. if (orig_size - size > 0)
  377. rc = orig_size - size;
  378. return rc;
  379. }
  380. int tls_device_sendmsg(struct sock *sk, struct msghdr *msg, size_t size)
  381. {
  382. unsigned char record_type = TLS_RECORD_TYPE_DATA;
  383. int rc;
  384. lock_sock(sk);
  385. if (unlikely(msg->msg_controllen)) {
  386. rc = tls_proccess_cmsg(sk, msg, &record_type);
  387. if (rc)
  388. goto out;
  389. }
  390. rc = tls_push_data(sk, &msg->msg_iter, size,
  391. msg->msg_flags, record_type);
  392. out:
  393. release_sock(sk);
  394. return rc;
  395. }
  396. int tls_device_sendpage(struct sock *sk, struct page *page,
  397. int offset, size_t size, int flags)
  398. {
  399. struct iov_iter msg_iter;
  400. char *kaddr;
  401. struct kvec iov;
  402. int rc;
  403. if (flags & MSG_SENDPAGE_NOTLAST)
  404. flags |= MSG_MORE;
  405. lock_sock(sk);
  406. if (flags & MSG_OOB) {
  407. rc = -ENOTSUPP;
  408. goto out;
  409. }
  410. kaddr = kmap(page);
  411. iov.iov_base = kaddr + offset;
  412. iov.iov_len = size;
  413. iov_iter_kvec(&msg_iter, WRITE | ITER_KVEC, &iov, 1, size);
  414. rc = tls_push_data(sk, &msg_iter, size,
  415. flags, TLS_RECORD_TYPE_DATA);
  416. kunmap(page);
  417. out:
  418. release_sock(sk);
  419. return rc;
  420. }
  421. struct tls_record_info *tls_get_record(struct tls_offload_context_tx *context,
  422. u32 seq, u64 *p_record_sn)
  423. {
  424. u64 record_sn = context->hint_record_sn;
  425. struct tls_record_info *info, *last;
  426. info = context->retransmit_hint;
  427. if (!info ||
  428. before(seq, info->end_seq - info->len)) {
  429. /* if retransmit_hint is irrelevant start
  430. * from the beggining of the list
  431. */
  432. info = list_first_entry(&context->records_list,
  433. struct tls_record_info, list);
  434. /* send the start_marker record if seq number is before the
  435. * tls offload start marker sequence number. This record is
  436. * required to handle TCP packets which are before TLS offload
  437. * started.
  438. * And if it's not start marker, look if this seq number
  439. * belongs to the list.
  440. */
  441. if (likely(!tls_record_is_start_marker(info))) {
  442. /* we have the first record, get the last record to see
  443. * if this seq number belongs to the list.
  444. */
  445. last = list_last_entry(&context->records_list,
  446. struct tls_record_info, list);
  447. if (!between(seq, tls_record_start_seq(info),
  448. last->end_seq))
  449. return NULL;
  450. }
  451. record_sn = context->unacked_record_sn;
  452. }
  453. list_for_each_entry_from(info, &context->records_list, list) {
  454. if (before(seq, info->end_seq)) {
  455. if (!context->retransmit_hint ||
  456. after(info->end_seq,
  457. context->retransmit_hint->end_seq)) {
  458. context->hint_record_sn = record_sn;
  459. context->retransmit_hint = info;
  460. }
  461. *p_record_sn = record_sn;
  462. return info;
  463. }
  464. record_sn++;
  465. }
  466. return NULL;
  467. }
  468. EXPORT_SYMBOL(tls_get_record);
  469. static int tls_device_push_pending_record(struct sock *sk, int flags)
  470. {
  471. struct iov_iter msg_iter;
  472. iov_iter_kvec(&msg_iter, WRITE | ITER_KVEC, NULL, 0, 0);
  473. return tls_push_data(sk, &msg_iter, 0, flags, TLS_RECORD_TYPE_DATA);
  474. }
  475. static void tls_device_resync_rx(struct tls_context *tls_ctx,
  476. struct sock *sk, u32 seq, u64 rcd_sn)
  477. {
  478. struct net_device *netdev;
  479. if (WARN_ON(test_and_set_bit(TLS_RX_SYNC_RUNNING, &tls_ctx->flags)))
  480. return;
  481. netdev = READ_ONCE(tls_ctx->netdev);
  482. if (netdev)
  483. netdev->tlsdev_ops->tls_dev_resync_rx(netdev, sk, seq, rcd_sn);
  484. clear_bit_unlock(TLS_RX_SYNC_RUNNING, &tls_ctx->flags);
  485. }
  486. void handle_device_resync(struct sock *sk, u32 seq, u64 rcd_sn)
  487. {
  488. struct tls_context *tls_ctx = tls_get_ctx(sk);
  489. struct tls_offload_context_rx *rx_ctx;
  490. u32 is_req_pending;
  491. s64 resync_req;
  492. u32 req_seq;
  493. if (tls_ctx->rx_conf != TLS_HW)
  494. return;
  495. rx_ctx = tls_offload_ctx_rx(tls_ctx);
  496. resync_req = atomic64_read(&rx_ctx->resync_req);
  497. req_seq = ntohl(resync_req >> 32) - ((u32)TLS_HEADER_SIZE - 1);
  498. is_req_pending = resync_req;
  499. if (unlikely(is_req_pending) && req_seq == seq &&
  500. atomic64_try_cmpxchg(&rx_ctx->resync_req, &resync_req, 0)) {
  501. seq += TLS_HEADER_SIZE - 1;
  502. tls_device_resync_rx(tls_ctx, sk, seq, rcd_sn);
  503. }
  504. }
  505. static int tls_device_reencrypt(struct sock *sk, struct sk_buff *skb)
  506. {
  507. struct strp_msg *rxm = strp_msg(skb);
  508. int err = 0, offset = rxm->offset, copy, nsg, data_len, pos;
  509. struct sk_buff *skb_iter, *unused;
  510. struct scatterlist sg[1];
  511. char *orig_buf, *buf;
  512. orig_buf = kmalloc(rxm->full_len + TLS_HEADER_SIZE +
  513. TLS_CIPHER_AES_GCM_128_IV_SIZE, sk->sk_allocation);
  514. if (!orig_buf)
  515. return -ENOMEM;
  516. buf = orig_buf;
  517. nsg = skb_cow_data(skb, 0, &unused);
  518. if (unlikely(nsg < 0)) {
  519. err = nsg;
  520. goto free_buf;
  521. }
  522. sg_init_table(sg, 1);
  523. sg_set_buf(&sg[0], buf,
  524. rxm->full_len + TLS_HEADER_SIZE +
  525. TLS_CIPHER_AES_GCM_128_IV_SIZE);
  526. skb_copy_bits(skb, offset, buf,
  527. TLS_HEADER_SIZE + TLS_CIPHER_AES_GCM_128_IV_SIZE);
  528. /* We are interested only in the decrypted data not the auth */
  529. err = decrypt_skb(sk, skb, sg);
  530. if (err != -EBADMSG)
  531. goto free_buf;
  532. else
  533. err = 0;
  534. data_len = rxm->full_len - TLS_CIPHER_AES_GCM_128_TAG_SIZE;
  535. if (skb_pagelen(skb) > offset) {
  536. copy = min_t(int, skb_pagelen(skb) - offset, data_len);
  537. if (skb->decrypted)
  538. skb_store_bits(skb, offset, buf, copy);
  539. offset += copy;
  540. buf += copy;
  541. }
  542. pos = skb_pagelen(skb);
  543. skb_walk_frags(skb, skb_iter) {
  544. int frag_pos;
  545. /* Practically all frags must belong to msg if reencrypt
  546. * is needed with current strparser and coalescing logic,
  547. * but strparser may "get optimized", so let's be safe.
  548. */
  549. if (pos + skb_iter->len <= offset)
  550. goto done_with_frag;
  551. if (pos >= data_len + rxm->offset)
  552. break;
  553. frag_pos = offset - pos;
  554. copy = min_t(int, skb_iter->len - frag_pos,
  555. data_len + rxm->offset - offset);
  556. if (skb_iter->decrypted)
  557. skb_store_bits(skb_iter, frag_pos, buf, copy);
  558. offset += copy;
  559. buf += copy;
  560. done_with_frag:
  561. pos += skb_iter->len;
  562. }
  563. free_buf:
  564. kfree(orig_buf);
  565. return err;
  566. }
  567. int tls_device_decrypted(struct sock *sk, struct sk_buff *skb)
  568. {
  569. struct tls_context *tls_ctx = tls_get_ctx(sk);
  570. struct tls_offload_context_rx *ctx = tls_offload_ctx_rx(tls_ctx);
  571. int is_decrypted = skb->decrypted;
  572. int is_encrypted = !is_decrypted;
  573. struct sk_buff *skb_iter;
  574. /* Skip if it is already decrypted */
  575. if (ctx->sw.decrypted)
  576. return 0;
  577. /* Check if all the data is decrypted already */
  578. skb_walk_frags(skb, skb_iter) {
  579. is_decrypted &= skb_iter->decrypted;
  580. is_encrypted &= !skb_iter->decrypted;
  581. }
  582. ctx->sw.decrypted |= is_decrypted;
  583. /* Return immedeatly if the record is either entirely plaintext or
  584. * entirely ciphertext. Otherwise handle reencrypt partially decrypted
  585. * record.
  586. */
  587. return (is_encrypted || is_decrypted) ? 0 :
  588. tls_device_reencrypt(sk, skb);
  589. }
  590. int tls_set_device_offload(struct sock *sk, struct tls_context *ctx)
  591. {
  592. u16 nonce_size, tag_size, iv_size, rec_seq_size;
  593. struct tls_record_info *start_marker_record;
  594. struct tls_offload_context_tx *offload_ctx;
  595. struct tls_crypto_info *crypto_info;
  596. struct net_device *netdev;
  597. char *iv, *rec_seq;
  598. struct sk_buff *skb;
  599. int rc = -EINVAL;
  600. __be64 rcd_sn;
  601. if (!ctx)
  602. goto out;
  603. if (ctx->priv_ctx_tx) {
  604. rc = -EEXIST;
  605. goto out;
  606. }
  607. start_marker_record = kmalloc(sizeof(*start_marker_record), GFP_KERNEL);
  608. if (!start_marker_record) {
  609. rc = -ENOMEM;
  610. goto out;
  611. }
  612. offload_ctx = kzalloc(TLS_OFFLOAD_CONTEXT_SIZE_TX, GFP_KERNEL);
  613. if (!offload_ctx) {
  614. rc = -ENOMEM;
  615. goto free_marker_record;
  616. }
  617. crypto_info = &ctx->crypto_send.info;
  618. switch (crypto_info->cipher_type) {
  619. case TLS_CIPHER_AES_GCM_128:
  620. nonce_size = TLS_CIPHER_AES_GCM_128_IV_SIZE;
  621. tag_size = TLS_CIPHER_AES_GCM_128_TAG_SIZE;
  622. iv_size = TLS_CIPHER_AES_GCM_128_IV_SIZE;
  623. iv = ((struct tls12_crypto_info_aes_gcm_128 *)crypto_info)->iv;
  624. rec_seq_size = TLS_CIPHER_AES_GCM_128_REC_SEQ_SIZE;
  625. rec_seq =
  626. ((struct tls12_crypto_info_aes_gcm_128 *)crypto_info)->rec_seq;
  627. break;
  628. default:
  629. rc = -EINVAL;
  630. goto free_offload_ctx;
  631. }
  632. ctx->tx.prepend_size = TLS_HEADER_SIZE + nonce_size;
  633. ctx->tx.tag_size = tag_size;
  634. ctx->tx.overhead_size = ctx->tx.prepend_size + ctx->tx.tag_size;
  635. ctx->tx.iv_size = iv_size;
  636. ctx->tx.iv = kmalloc(iv_size + TLS_CIPHER_AES_GCM_128_SALT_SIZE,
  637. GFP_KERNEL);
  638. if (!ctx->tx.iv) {
  639. rc = -ENOMEM;
  640. goto free_offload_ctx;
  641. }
  642. memcpy(ctx->tx.iv + TLS_CIPHER_AES_GCM_128_SALT_SIZE, iv, iv_size);
  643. ctx->tx.rec_seq_size = rec_seq_size;
  644. ctx->tx.rec_seq = kmemdup(rec_seq, rec_seq_size, GFP_KERNEL);
  645. if (!ctx->tx.rec_seq) {
  646. rc = -ENOMEM;
  647. goto free_iv;
  648. }
  649. rc = tls_sw_fallback_init(sk, offload_ctx, crypto_info);
  650. if (rc)
  651. goto free_rec_seq;
  652. /* start at rec_seq - 1 to account for the start marker record */
  653. memcpy(&rcd_sn, ctx->tx.rec_seq, sizeof(rcd_sn));
  654. offload_ctx->unacked_record_sn = be64_to_cpu(rcd_sn) - 1;
  655. start_marker_record->end_seq = tcp_sk(sk)->write_seq;
  656. start_marker_record->len = 0;
  657. start_marker_record->num_frags = 0;
  658. INIT_LIST_HEAD(&offload_ctx->records_list);
  659. list_add_tail(&start_marker_record->list, &offload_ctx->records_list);
  660. spin_lock_init(&offload_ctx->lock);
  661. sg_init_table(offload_ctx->sg_tx_data,
  662. ARRAY_SIZE(offload_ctx->sg_tx_data));
  663. clean_acked_data_enable(inet_csk(sk), &tls_icsk_clean_acked);
  664. ctx->push_pending_record = tls_device_push_pending_record;
  665. /* TLS offload is greatly simplified if we don't send
  666. * SKBs where only part of the payload needs to be encrypted.
  667. * So mark the last skb in the write queue as end of record.
  668. */
  669. skb = tcp_write_queue_tail(sk);
  670. if (skb)
  671. TCP_SKB_CB(skb)->eor = 1;
  672. /* We support starting offload on multiple sockets
  673. * concurrently, so we only need a read lock here.
  674. * This lock must precede get_netdev_for_sock to prevent races between
  675. * NETDEV_DOWN and setsockopt.
  676. */
  677. down_read(&device_offload_lock);
  678. netdev = get_netdev_for_sock(sk);
  679. if (!netdev) {
  680. pr_err_ratelimited("%s: netdev not found\n", __func__);
  681. rc = -EINVAL;
  682. goto release_lock;
  683. }
  684. if (!(netdev->features & NETIF_F_HW_TLS_TX)) {
  685. rc = -ENOTSUPP;
  686. goto release_netdev;
  687. }
  688. /* Avoid offloading if the device is down
  689. * We don't want to offload new flows after
  690. * the NETDEV_DOWN event
  691. */
  692. if (!(netdev->flags & IFF_UP)) {
  693. rc = -EINVAL;
  694. goto release_netdev;
  695. }
  696. ctx->priv_ctx_tx = offload_ctx;
  697. rc = netdev->tlsdev_ops->tls_dev_add(netdev, sk, TLS_OFFLOAD_CTX_DIR_TX,
  698. &ctx->crypto_send.info,
  699. tcp_sk(sk)->write_seq);
  700. if (rc)
  701. goto release_netdev;
  702. tls_device_attach(ctx, sk, netdev);
  703. /* following this assignment tls_is_sk_tx_device_offloaded
  704. * will return true and the context might be accessed
  705. * by the netdev's xmit function.
  706. */
  707. smp_store_release(&sk->sk_validate_xmit_skb, tls_validate_xmit_skb);
  708. dev_put(netdev);
  709. up_read(&device_offload_lock);
  710. goto out;
  711. release_netdev:
  712. dev_put(netdev);
  713. release_lock:
  714. up_read(&device_offload_lock);
  715. clean_acked_data_disable(inet_csk(sk));
  716. crypto_free_aead(offload_ctx->aead_send);
  717. free_rec_seq:
  718. kfree(ctx->tx.rec_seq);
  719. free_iv:
  720. kfree(ctx->tx.iv);
  721. free_offload_ctx:
  722. kfree(offload_ctx);
  723. ctx->priv_ctx_tx = NULL;
  724. free_marker_record:
  725. kfree(start_marker_record);
  726. out:
  727. return rc;
  728. }
  729. int tls_set_device_offload_rx(struct sock *sk, struct tls_context *ctx)
  730. {
  731. struct tls_offload_context_rx *context;
  732. struct net_device *netdev;
  733. int rc = 0;
  734. /* We support starting offload on multiple sockets
  735. * concurrently, so we only need a read lock here.
  736. * This lock must precede get_netdev_for_sock to prevent races between
  737. * NETDEV_DOWN and setsockopt.
  738. */
  739. down_read(&device_offload_lock);
  740. netdev = get_netdev_for_sock(sk);
  741. if (!netdev) {
  742. pr_err_ratelimited("%s: netdev not found\n", __func__);
  743. rc = -EINVAL;
  744. goto release_lock;
  745. }
  746. if (!(netdev->features & NETIF_F_HW_TLS_RX)) {
  747. pr_err_ratelimited("%s: netdev %s with no TLS offload\n",
  748. __func__, netdev->name);
  749. rc = -ENOTSUPP;
  750. goto release_netdev;
  751. }
  752. /* Avoid offloading if the device is down
  753. * We don't want to offload new flows after
  754. * the NETDEV_DOWN event
  755. */
  756. if (!(netdev->flags & IFF_UP)) {
  757. rc = -EINVAL;
  758. goto release_netdev;
  759. }
  760. context = kzalloc(TLS_OFFLOAD_CONTEXT_SIZE_RX, GFP_KERNEL);
  761. if (!context) {
  762. rc = -ENOMEM;
  763. goto release_netdev;
  764. }
  765. ctx->priv_ctx_rx = context;
  766. rc = tls_set_sw_offload(sk, ctx, 0);
  767. if (rc)
  768. goto release_ctx;
  769. rc = netdev->tlsdev_ops->tls_dev_add(netdev, sk, TLS_OFFLOAD_CTX_DIR_RX,
  770. &ctx->crypto_recv.info,
  771. tcp_sk(sk)->copied_seq);
  772. if (rc) {
  773. pr_err_ratelimited("%s: The netdev has refused to offload this socket\n",
  774. __func__);
  775. goto free_sw_resources;
  776. }
  777. tls_device_attach(ctx, sk, netdev);
  778. goto release_netdev;
  779. free_sw_resources:
  780. up_read(&device_offload_lock);
  781. tls_sw_free_resources_rx(sk);
  782. down_read(&device_offload_lock);
  783. release_ctx:
  784. ctx->priv_ctx_rx = NULL;
  785. release_netdev:
  786. dev_put(netdev);
  787. release_lock:
  788. up_read(&device_offload_lock);
  789. return rc;
  790. }
  791. void tls_device_offload_cleanup_rx(struct sock *sk)
  792. {
  793. struct tls_context *tls_ctx = tls_get_ctx(sk);
  794. struct net_device *netdev;
  795. down_read(&device_offload_lock);
  796. netdev = tls_ctx->netdev;
  797. if (!netdev)
  798. goto out;
  799. netdev->tlsdev_ops->tls_dev_del(netdev, tls_ctx,
  800. TLS_OFFLOAD_CTX_DIR_RX);
  801. if (tls_ctx->tx_conf != TLS_HW) {
  802. dev_put(netdev);
  803. tls_ctx->netdev = NULL;
  804. } else {
  805. set_bit(TLS_RX_DEV_CLOSED, &tls_ctx->flags);
  806. }
  807. out:
  808. up_read(&device_offload_lock);
  809. tls_sw_release_resources_rx(sk);
  810. }
  811. static int tls_device_down(struct net_device *netdev)
  812. {
  813. struct tls_context *ctx, *tmp;
  814. unsigned long flags;
  815. LIST_HEAD(list);
  816. /* Request a write lock to block new offload attempts */
  817. down_write(&device_offload_lock);
  818. spin_lock_irqsave(&tls_device_lock, flags);
  819. list_for_each_entry_safe(ctx, tmp, &tls_device_list, list) {
  820. if (ctx->netdev != netdev ||
  821. !refcount_inc_not_zero(&ctx->refcount))
  822. continue;
  823. list_move(&ctx->list, &list);
  824. }
  825. spin_unlock_irqrestore(&tls_device_lock, flags);
  826. list_for_each_entry_safe(ctx, tmp, &list, list) {
  827. if (ctx->tx_conf == TLS_HW)
  828. netdev->tlsdev_ops->tls_dev_del(netdev, ctx,
  829. TLS_OFFLOAD_CTX_DIR_TX);
  830. if (ctx->rx_conf == TLS_HW &&
  831. !test_bit(TLS_RX_DEV_CLOSED, &ctx->flags))
  832. netdev->tlsdev_ops->tls_dev_del(netdev, ctx,
  833. TLS_OFFLOAD_CTX_DIR_RX);
  834. WRITE_ONCE(ctx->netdev, NULL);
  835. smp_mb__before_atomic(); /* pairs with test_and_set_bit() */
  836. while (test_bit(TLS_RX_SYNC_RUNNING, &ctx->flags))
  837. usleep_range(10, 200);
  838. dev_put(netdev);
  839. list_del_init(&ctx->list);
  840. if (refcount_dec_and_test(&ctx->refcount))
  841. tls_device_free_ctx(ctx);
  842. }
  843. up_write(&device_offload_lock);
  844. flush_work(&tls_device_gc_work);
  845. return NOTIFY_DONE;
  846. }
  847. static int tls_dev_event(struct notifier_block *this, unsigned long event,
  848. void *ptr)
  849. {
  850. struct net_device *dev = netdev_notifier_info_to_dev(ptr);
  851. if (!dev->tlsdev_ops &&
  852. !(dev->features & (NETIF_F_HW_TLS_RX | NETIF_F_HW_TLS_TX)))
  853. return NOTIFY_DONE;
  854. switch (event) {
  855. case NETDEV_REGISTER:
  856. case NETDEV_FEAT_CHANGE:
  857. if ((dev->features & NETIF_F_HW_TLS_RX) &&
  858. !dev->tlsdev_ops->tls_dev_resync_rx)
  859. return NOTIFY_BAD;
  860. if (dev->tlsdev_ops &&
  861. dev->tlsdev_ops->tls_dev_add &&
  862. dev->tlsdev_ops->tls_dev_del)
  863. return NOTIFY_DONE;
  864. else
  865. return NOTIFY_BAD;
  866. case NETDEV_DOWN:
  867. return tls_device_down(dev);
  868. }
  869. return NOTIFY_DONE;
  870. }
  871. static struct notifier_block tls_dev_notifier = {
  872. .notifier_call = tls_dev_event,
  873. };
  874. void __init tls_device_init(void)
  875. {
  876. register_netdevice_notifier(&tls_dev_notifier);
  877. }
  878. void __exit tls_device_cleanup(void)
  879. {
  880. unregister_netdevice_notifier(&tls_dev_notifier);
  881. flush_work(&tls_device_gc_work);
  882. }