vgic-mmio-v3.c 29 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042
  1. /*
  2. * VGICv3 MMIO handling functions
  3. *
  4. * This program is free software; you can redistribute it and/or modify
  5. * it under the terms of the GNU General Public License version 2 as
  6. * published by the Free Software Foundation.
  7. *
  8. * This program is distributed in the hope that it will be useful,
  9. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  10. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  11. * GNU General Public License for more details.
  12. */
  13. #include <linux/irqchip/arm-gic-v3.h>
  14. #include <linux/kvm.h>
  15. #include <linux/kvm_host.h>
  16. #include <kvm/iodev.h>
  17. #include <kvm/arm_vgic.h>
  18. #include <asm/kvm_emulate.h>
  19. #include <asm/kvm_arm.h>
  20. #include <asm/kvm_mmu.h>
  21. #include "vgic.h"
  22. #include "vgic-mmio.h"
  23. /* extract @num bytes at @offset bytes offset in data */
  24. unsigned long extract_bytes(u64 data, unsigned int offset,
  25. unsigned int num)
  26. {
  27. return (data >> (offset * 8)) & GENMASK_ULL(num * 8 - 1, 0);
  28. }
  29. /* allows updates of any half of a 64-bit register (or the whole thing) */
  30. u64 update_64bit_reg(u64 reg, unsigned int offset, unsigned int len,
  31. unsigned long val)
  32. {
  33. int lower = (offset & 4) * 8;
  34. int upper = lower + 8 * len - 1;
  35. reg &= ~GENMASK_ULL(upper, lower);
  36. val &= GENMASK_ULL(len * 8 - 1, 0);
  37. return reg | ((u64)val << lower);
  38. }
  39. bool vgic_has_its(struct kvm *kvm)
  40. {
  41. struct vgic_dist *dist = &kvm->arch.vgic;
  42. if (dist->vgic_model != KVM_DEV_TYPE_ARM_VGIC_V3)
  43. return false;
  44. return dist->has_its;
  45. }
  46. bool vgic_supports_direct_msis(struct kvm *kvm)
  47. {
  48. return kvm_vgic_global_state.has_gicv4 && vgic_has_its(kvm);
  49. }
  50. /*
  51. * The Revision field in the IIDR have the following meanings:
  52. *
  53. * Revision 2: Interrupt groups are guest-configurable and signaled using
  54. * their configured groups.
  55. */
  56. static unsigned long vgic_mmio_read_v3_misc(struct kvm_vcpu *vcpu,
  57. gpa_t addr, unsigned int len)
  58. {
  59. struct vgic_dist *vgic = &vcpu->kvm->arch.vgic;
  60. u32 value = 0;
  61. switch (addr & 0x0c) {
  62. case GICD_CTLR:
  63. if (vgic->enabled)
  64. value |= GICD_CTLR_ENABLE_SS_G1;
  65. value |= GICD_CTLR_ARE_NS | GICD_CTLR_DS;
  66. break;
  67. case GICD_TYPER:
  68. value = vgic->nr_spis + VGIC_NR_PRIVATE_IRQS;
  69. value = (value >> 5) - 1;
  70. if (vgic_has_its(vcpu->kvm)) {
  71. value |= (INTERRUPT_ID_BITS_ITS - 1) << 19;
  72. value |= GICD_TYPER_LPIS;
  73. } else {
  74. value |= (INTERRUPT_ID_BITS_SPIS - 1) << 19;
  75. }
  76. break;
  77. case GICD_IIDR:
  78. value = (PRODUCT_ID_KVM << GICD_IIDR_PRODUCT_ID_SHIFT) |
  79. (vgic->implementation_rev << GICD_IIDR_REVISION_SHIFT) |
  80. (IMPLEMENTER_ARM << GICD_IIDR_IMPLEMENTER_SHIFT);
  81. break;
  82. default:
  83. return 0;
  84. }
  85. return value;
  86. }
  87. static void vgic_mmio_write_v3_misc(struct kvm_vcpu *vcpu,
  88. gpa_t addr, unsigned int len,
  89. unsigned long val)
  90. {
  91. struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
  92. bool was_enabled = dist->enabled;
  93. switch (addr & 0x0c) {
  94. case GICD_CTLR:
  95. dist->enabled = val & GICD_CTLR_ENABLE_SS_G1;
  96. if (!was_enabled && dist->enabled)
  97. vgic_kick_vcpus(vcpu->kvm);
  98. break;
  99. case GICD_TYPER:
  100. case GICD_IIDR:
  101. return;
  102. }
  103. }
  104. static int vgic_mmio_uaccess_write_v3_misc(struct kvm_vcpu *vcpu,
  105. gpa_t addr, unsigned int len,
  106. unsigned long val)
  107. {
  108. switch (addr & 0x0c) {
  109. case GICD_IIDR:
  110. if (val != vgic_mmio_read_v3_misc(vcpu, addr, len))
  111. return -EINVAL;
  112. }
  113. vgic_mmio_write_v3_misc(vcpu, addr, len, val);
  114. return 0;
  115. }
  116. static unsigned long vgic_mmio_read_irouter(struct kvm_vcpu *vcpu,
  117. gpa_t addr, unsigned int len)
  118. {
  119. int intid = VGIC_ADDR_TO_INTID(addr, 64);
  120. struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, NULL, intid);
  121. unsigned long ret = 0;
  122. if (!irq)
  123. return 0;
  124. /* The upper word is RAZ for us. */
  125. if (!(addr & 4))
  126. ret = extract_bytes(READ_ONCE(irq->mpidr), addr & 7, len);
  127. vgic_put_irq(vcpu->kvm, irq);
  128. return ret;
  129. }
  130. static void vgic_mmio_write_irouter(struct kvm_vcpu *vcpu,
  131. gpa_t addr, unsigned int len,
  132. unsigned long val)
  133. {
  134. int intid = VGIC_ADDR_TO_INTID(addr, 64);
  135. struct vgic_irq *irq;
  136. unsigned long flags;
  137. /* The upper word is WI for us since we don't implement Aff3. */
  138. if (addr & 4)
  139. return;
  140. irq = vgic_get_irq(vcpu->kvm, NULL, intid);
  141. if (!irq)
  142. return;
  143. spin_lock_irqsave(&irq->irq_lock, flags);
  144. /* We only care about and preserve Aff0, Aff1 and Aff2. */
  145. irq->mpidr = val & GENMASK(23, 0);
  146. irq->target_vcpu = kvm_mpidr_to_vcpu(vcpu->kvm, irq->mpidr);
  147. spin_unlock_irqrestore(&irq->irq_lock, flags);
  148. vgic_put_irq(vcpu->kvm, irq);
  149. }
  150. static unsigned long vgic_mmio_read_v3r_ctlr(struct kvm_vcpu *vcpu,
  151. gpa_t addr, unsigned int len)
  152. {
  153. struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
  154. return vgic_cpu->lpis_enabled ? GICR_CTLR_ENABLE_LPIS : 0;
  155. }
  156. static void vgic_mmio_write_v3r_ctlr(struct kvm_vcpu *vcpu,
  157. gpa_t addr, unsigned int len,
  158. unsigned long val)
  159. {
  160. struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
  161. bool was_enabled = vgic_cpu->lpis_enabled;
  162. if (!vgic_has_its(vcpu->kvm))
  163. return;
  164. vgic_cpu->lpis_enabled = val & GICR_CTLR_ENABLE_LPIS;
  165. if (!was_enabled && vgic_cpu->lpis_enabled)
  166. vgic_enable_lpis(vcpu);
  167. }
  168. static unsigned long vgic_mmio_read_v3r_typer(struct kvm_vcpu *vcpu,
  169. gpa_t addr, unsigned int len)
  170. {
  171. unsigned long mpidr = kvm_vcpu_get_mpidr_aff(vcpu);
  172. struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
  173. struct vgic_redist_region *rdreg = vgic_cpu->rdreg;
  174. int target_vcpu_id = vcpu->vcpu_id;
  175. gpa_t last_rdist_typer = rdreg->base + GICR_TYPER +
  176. (rdreg->free_index - 1) * KVM_VGIC_V3_REDIST_SIZE;
  177. u64 value;
  178. value = (u64)(mpidr & GENMASK(23, 0)) << 32;
  179. value |= ((target_vcpu_id & 0xffff) << 8);
  180. if (addr == last_rdist_typer)
  181. value |= GICR_TYPER_LAST;
  182. if (vgic_has_its(vcpu->kvm))
  183. value |= GICR_TYPER_PLPIS;
  184. return extract_bytes(value, addr & 7, len);
  185. }
  186. static unsigned long vgic_uaccess_read_v3r_typer(struct kvm_vcpu *vcpu,
  187. gpa_t addr, unsigned int len)
  188. {
  189. unsigned long mpidr = kvm_vcpu_get_mpidr_aff(vcpu);
  190. int target_vcpu_id = vcpu->vcpu_id;
  191. u64 value;
  192. value = (u64)(mpidr & GENMASK(23, 0)) << 32;
  193. value |= ((target_vcpu_id & 0xffff) << 8);
  194. if (vgic_has_its(vcpu->kvm))
  195. value |= GICR_TYPER_PLPIS;
  196. /* reporting of the Last bit is not supported for userspace */
  197. return extract_bytes(value, addr & 7, len);
  198. }
  199. static unsigned long vgic_mmio_read_v3r_iidr(struct kvm_vcpu *vcpu,
  200. gpa_t addr, unsigned int len)
  201. {
  202. return (PRODUCT_ID_KVM << 24) | (IMPLEMENTER_ARM << 0);
  203. }
  204. static unsigned long vgic_mmio_read_v3_idregs(struct kvm_vcpu *vcpu,
  205. gpa_t addr, unsigned int len)
  206. {
  207. switch (addr & 0xffff) {
  208. case GICD_PIDR2:
  209. /* report a GICv3 compliant implementation */
  210. return 0x3b;
  211. }
  212. return 0;
  213. }
  214. static unsigned long vgic_v3_uaccess_read_pending(struct kvm_vcpu *vcpu,
  215. gpa_t addr, unsigned int len)
  216. {
  217. u32 intid = VGIC_ADDR_TO_INTID(addr, 1);
  218. u32 value = 0;
  219. int i;
  220. /*
  221. * pending state of interrupt is latched in pending_latch variable.
  222. * Userspace will save and restore pending state and line_level
  223. * separately.
  224. * Refer to Documentation/virtual/kvm/devices/arm-vgic-v3.txt
  225. * for handling of ISPENDR and ICPENDR.
  226. */
  227. for (i = 0; i < len * 8; i++) {
  228. struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
  229. if (irq->pending_latch)
  230. value |= (1U << i);
  231. vgic_put_irq(vcpu->kvm, irq);
  232. }
  233. return value;
  234. }
  235. static int vgic_v3_uaccess_write_pending(struct kvm_vcpu *vcpu,
  236. gpa_t addr, unsigned int len,
  237. unsigned long val)
  238. {
  239. u32 intid = VGIC_ADDR_TO_INTID(addr, 1);
  240. int i;
  241. unsigned long flags;
  242. for (i = 0; i < len * 8; i++) {
  243. struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
  244. spin_lock_irqsave(&irq->irq_lock, flags);
  245. if (test_bit(i, &val)) {
  246. /*
  247. * pending_latch is set irrespective of irq type
  248. * (level or edge) to avoid dependency that VM should
  249. * restore irq config before pending info.
  250. */
  251. irq->pending_latch = true;
  252. vgic_queue_irq_unlock(vcpu->kvm, irq, flags);
  253. } else {
  254. irq->pending_latch = false;
  255. spin_unlock_irqrestore(&irq->irq_lock, flags);
  256. }
  257. vgic_put_irq(vcpu->kvm, irq);
  258. }
  259. return 0;
  260. }
  261. /* We want to avoid outer shareable. */
  262. u64 vgic_sanitise_shareability(u64 field)
  263. {
  264. switch (field) {
  265. case GIC_BASER_OuterShareable:
  266. return GIC_BASER_InnerShareable;
  267. default:
  268. return field;
  269. }
  270. }
  271. /* Avoid any inner non-cacheable mapping. */
  272. u64 vgic_sanitise_inner_cacheability(u64 field)
  273. {
  274. switch (field) {
  275. case GIC_BASER_CACHE_nCnB:
  276. case GIC_BASER_CACHE_nC:
  277. return GIC_BASER_CACHE_RaWb;
  278. default:
  279. return field;
  280. }
  281. }
  282. /* Non-cacheable or same-as-inner are OK. */
  283. u64 vgic_sanitise_outer_cacheability(u64 field)
  284. {
  285. switch (field) {
  286. case GIC_BASER_CACHE_SameAsInner:
  287. case GIC_BASER_CACHE_nC:
  288. return field;
  289. default:
  290. return GIC_BASER_CACHE_nC;
  291. }
  292. }
  293. u64 vgic_sanitise_field(u64 reg, u64 field_mask, int field_shift,
  294. u64 (*sanitise_fn)(u64))
  295. {
  296. u64 field = (reg & field_mask) >> field_shift;
  297. field = sanitise_fn(field) << field_shift;
  298. return (reg & ~field_mask) | field;
  299. }
  300. #define PROPBASER_RES0_MASK \
  301. (GENMASK_ULL(63, 59) | GENMASK_ULL(55, 52) | GENMASK_ULL(6, 5))
  302. #define PENDBASER_RES0_MASK \
  303. (BIT_ULL(63) | GENMASK_ULL(61, 59) | GENMASK_ULL(55, 52) | \
  304. GENMASK_ULL(15, 12) | GENMASK_ULL(6, 0))
  305. static u64 vgic_sanitise_pendbaser(u64 reg)
  306. {
  307. reg = vgic_sanitise_field(reg, GICR_PENDBASER_SHAREABILITY_MASK,
  308. GICR_PENDBASER_SHAREABILITY_SHIFT,
  309. vgic_sanitise_shareability);
  310. reg = vgic_sanitise_field(reg, GICR_PENDBASER_INNER_CACHEABILITY_MASK,
  311. GICR_PENDBASER_INNER_CACHEABILITY_SHIFT,
  312. vgic_sanitise_inner_cacheability);
  313. reg = vgic_sanitise_field(reg, GICR_PENDBASER_OUTER_CACHEABILITY_MASK,
  314. GICR_PENDBASER_OUTER_CACHEABILITY_SHIFT,
  315. vgic_sanitise_outer_cacheability);
  316. reg &= ~PENDBASER_RES0_MASK;
  317. reg &= ~GENMASK_ULL(51, 48);
  318. return reg;
  319. }
  320. static u64 vgic_sanitise_propbaser(u64 reg)
  321. {
  322. reg = vgic_sanitise_field(reg, GICR_PROPBASER_SHAREABILITY_MASK,
  323. GICR_PROPBASER_SHAREABILITY_SHIFT,
  324. vgic_sanitise_shareability);
  325. reg = vgic_sanitise_field(reg, GICR_PROPBASER_INNER_CACHEABILITY_MASK,
  326. GICR_PROPBASER_INNER_CACHEABILITY_SHIFT,
  327. vgic_sanitise_inner_cacheability);
  328. reg = vgic_sanitise_field(reg, GICR_PROPBASER_OUTER_CACHEABILITY_MASK,
  329. GICR_PROPBASER_OUTER_CACHEABILITY_SHIFT,
  330. vgic_sanitise_outer_cacheability);
  331. reg &= ~PROPBASER_RES0_MASK;
  332. reg &= ~GENMASK_ULL(51, 48);
  333. return reg;
  334. }
  335. static unsigned long vgic_mmio_read_propbase(struct kvm_vcpu *vcpu,
  336. gpa_t addr, unsigned int len)
  337. {
  338. struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
  339. return extract_bytes(dist->propbaser, addr & 7, len);
  340. }
  341. static void vgic_mmio_write_propbase(struct kvm_vcpu *vcpu,
  342. gpa_t addr, unsigned int len,
  343. unsigned long val)
  344. {
  345. struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
  346. struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
  347. u64 old_propbaser, propbaser;
  348. /* Storing a value with LPIs already enabled is undefined */
  349. if (vgic_cpu->lpis_enabled)
  350. return;
  351. do {
  352. old_propbaser = READ_ONCE(dist->propbaser);
  353. propbaser = old_propbaser;
  354. propbaser = update_64bit_reg(propbaser, addr & 4, len, val);
  355. propbaser = vgic_sanitise_propbaser(propbaser);
  356. } while (cmpxchg64(&dist->propbaser, old_propbaser,
  357. propbaser) != old_propbaser);
  358. }
  359. static unsigned long vgic_mmio_read_pendbase(struct kvm_vcpu *vcpu,
  360. gpa_t addr, unsigned int len)
  361. {
  362. struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
  363. return extract_bytes(vgic_cpu->pendbaser, addr & 7, len);
  364. }
  365. static void vgic_mmio_write_pendbase(struct kvm_vcpu *vcpu,
  366. gpa_t addr, unsigned int len,
  367. unsigned long val)
  368. {
  369. struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
  370. u64 old_pendbaser, pendbaser;
  371. /* Storing a value with LPIs already enabled is undefined */
  372. if (vgic_cpu->lpis_enabled)
  373. return;
  374. do {
  375. old_pendbaser = READ_ONCE(vgic_cpu->pendbaser);
  376. pendbaser = old_pendbaser;
  377. pendbaser = update_64bit_reg(pendbaser, addr & 4, len, val);
  378. pendbaser = vgic_sanitise_pendbaser(pendbaser);
  379. } while (cmpxchg64(&vgic_cpu->pendbaser, old_pendbaser,
  380. pendbaser) != old_pendbaser);
  381. }
  382. /*
  383. * The GICv3 per-IRQ registers are split to control PPIs and SGIs in the
  384. * redistributors, while SPIs are covered by registers in the distributor
  385. * block. Trying to set private IRQs in this block gets ignored.
  386. * We take some special care here to fix the calculation of the register
  387. * offset.
  388. */
  389. #define REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(off, rd, wr, ur, uw, bpi, acc) \
  390. { \
  391. .reg_offset = off, \
  392. .bits_per_irq = bpi, \
  393. .len = (bpi * VGIC_NR_PRIVATE_IRQS) / 8, \
  394. .access_flags = acc, \
  395. .read = vgic_mmio_read_raz, \
  396. .write = vgic_mmio_write_wi, \
  397. }, { \
  398. .reg_offset = off + (bpi * VGIC_NR_PRIVATE_IRQS) / 8, \
  399. .bits_per_irq = bpi, \
  400. .len = (bpi * (1024 - VGIC_NR_PRIVATE_IRQS)) / 8, \
  401. .access_flags = acc, \
  402. .read = rd, \
  403. .write = wr, \
  404. .uaccess_read = ur, \
  405. .uaccess_write = uw, \
  406. }
  407. static const struct vgic_register_region vgic_v3_dist_registers[] = {
  408. REGISTER_DESC_WITH_LENGTH_UACCESS(GICD_CTLR,
  409. vgic_mmio_read_v3_misc, vgic_mmio_write_v3_misc,
  410. NULL, vgic_mmio_uaccess_write_v3_misc,
  411. 16, VGIC_ACCESS_32bit),
  412. REGISTER_DESC_WITH_LENGTH(GICD_STATUSR,
  413. vgic_mmio_read_rao, vgic_mmio_write_wi, 4,
  414. VGIC_ACCESS_32bit),
  415. REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_IGROUPR,
  416. vgic_mmio_read_group, vgic_mmio_write_group, NULL, NULL, 1,
  417. VGIC_ACCESS_32bit),
  418. REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_ISENABLER,
  419. vgic_mmio_read_enable, vgic_mmio_write_senable, NULL, NULL, 1,
  420. VGIC_ACCESS_32bit),
  421. REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_ICENABLER,
  422. vgic_mmio_read_enable, vgic_mmio_write_cenable, NULL, NULL, 1,
  423. VGIC_ACCESS_32bit),
  424. REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_ISPENDR,
  425. vgic_mmio_read_pending, vgic_mmio_write_spending,
  426. vgic_v3_uaccess_read_pending, vgic_v3_uaccess_write_pending, 1,
  427. VGIC_ACCESS_32bit),
  428. REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_ICPENDR,
  429. vgic_mmio_read_pending, vgic_mmio_write_cpending,
  430. vgic_mmio_read_raz, vgic_mmio_uaccess_write_wi, 1,
  431. VGIC_ACCESS_32bit),
  432. REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_ISACTIVER,
  433. vgic_mmio_read_active, vgic_mmio_write_sactive,
  434. NULL, vgic_mmio_uaccess_write_sactive, 1,
  435. VGIC_ACCESS_32bit),
  436. REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_ICACTIVER,
  437. vgic_mmio_read_active, vgic_mmio_write_cactive,
  438. NULL, vgic_mmio_uaccess_write_cactive,
  439. 1, VGIC_ACCESS_32bit),
  440. REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_IPRIORITYR,
  441. vgic_mmio_read_priority, vgic_mmio_write_priority, NULL, NULL,
  442. 8, VGIC_ACCESS_32bit | VGIC_ACCESS_8bit),
  443. REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_ITARGETSR,
  444. vgic_mmio_read_raz, vgic_mmio_write_wi, NULL, NULL, 8,
  445. VGIC_ACCESS_32bit | VGIC_ACCESS_8bit),
  446. REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_ICFGR,
  447. vgic_mmio_read_config, vgic_mmio_write_config, NULL, NULL, 2,
  448. VGIC_ACCESS_32bit),
  449. REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_IGRPMODR,
  450. vgic_mmio_read_raz, vgic_mmio_write_wi, NULL, NULL, 1,
  451. VGIC_ACCESS_32bit),
  452. REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_IROUTER,
  453. vgic_mmio_read_irouter, vgic_mmio_write_irouter, NULL, NULL, 64,
  454. VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
  455. REGISTER_DESC_WITH_LENGTH(GICD_IDREGS,
  456. vgic_mmio_read_v3_idregs, vgic_mmio_write_wi, 48,
  457. VGIC_ACCESS_32bit),
  458. };
  459. static const struct vgic_register_region vgic_v3_rdbase_registers[] = {
  460. REGISTER_DESC_WITH_LENGTH(GICR_CTLR,
  461. vgic_mmio_read_v3r_ctlr, vgic_mmio_write_v3r_ctlr, 4,
  462. VGIC_ACCESS_32bit),
  463. REGISTER_DESC_WITH_LENGTH(GICR_STATUSR,
  464. vgic_mmio_read_raz, vgic_mmio_write_wi, 4,
  465. VGIC_ACCESS_32bit),
  466. REGISTER_DESC_WITH_LENGTH(GICR_IIDR,
  467. vgic_mmio_read_v3r_iidr, vgic_mmio_write_wi, 4,
  468. VGIC_ACCESS_32bit),
  469. REGISTER_DESC_WITH_LENGTH_UACCESS(GICR_TYPER,
  470. vgic_mmio_read_v3r_typer, vgic_mmio_write_wi,
  471. vgic_uaccess_read_v3r_typer, vgic_mmio_uaccess_write_wi, 8,
  472. VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
  473. REGISTER_DESC_WITH_LENGTH(GICR_WAKER,
  474. vgic_mmio_read_raz, vgic_mmio_write_wi, 4,
  475. VGIC_ACCESS_32bit),
  476. REGISTER_DESC_WITH_LENGTH(GICR_PROPBASER,
  477. vgic_mmio_read_propbase, vgic_mmio_write_propbase, 8,
  478. VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
  479. REGISTER_DESC_WITH_LENGTH(GICR_PENDBASER,
  480. vgic_mmio_read_pendbase, vgic_mmio_write_pendbase, 8,
  481. VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
  482. REGISTER_DESC_WITH_LENGTH(GICR_IDREGS,
  483. vgic_mmio_read_v3_idregs, vgic_mmio_write_wi, 48,
  484. VGIC_ACCESS_32bit),
  485. };
  486. static const struct vgic_register_region vgic_v3_sgibase_registers[] = {
  487. REGISTER_DESC_WITH_LENGTH(GICR_IGROUPR0,
  488. vgic_mmio_read_group, vgic_mmio_write_group, 4,
  489. VGIC_ACCESS_32bit),
  490. REGISTER_DESC_WITH_LENGTH(GICR_ISENABLER0,
  491. vgic_mmio_read_enable, vgic_mmio_write_senable, 4,
  492. VGIC_ACCESS_32bit),
  493. REGISTER_DESC_WITH_LENGTH(GICR_ICENABLER0,
  494. vgic_mmio_read_enable, vgic_mmio_write_cenable, 4,
  495. VGIC_ACCESS_32bit),
  496. REGISTER_DESC_WITH_LENGTH_UACCESS(GICR_ISPENDR0,
  497. vgic_mmio_read_pending, vgic_mmio_write_spending,
  498. vgic_v3_uaccess_read_pending, vgic_v3_uaccess_write_pending, 4,
  499. VGIC_ACCESS_32bit),
  500. REGISTER_DESC_WITH_LENGTH_UACCESS(GICR_ICPENDR0,
  501. vgic_mmio_read_pending, vgic_mmio_write_cpending,
  502. vgic_mmio_read_raz, vgic_mmio_uaccess_write_wi, 4,
  503. VGIC_ACCESS_32bit),
  504. REGISTER_DESC_WITH_LENGTH_UACCESS(GICR_ISACTIVER0,
  505. vgic_mmio_read_active, vgic_mmio_write_sactive,
  506. NULL, vgic_mmio_uaccess_write_sactive,
  507. 4, VGIC_ACCESS_32bit),
  508. REGISTER_DESC_WITH_LENGTH_UACCESS(GICR_ICACTIVER0,
  509. vgic_mmio_read_active, vgic_mmio_write_cactive,
  510. NULL, vgic_mmio_uaccess_write_cactive,
  511. 4, VGIC_ACCESS_32bit),
  512. REGISTER_DESC_WITH_LENGTH(GICR_IPRIORITYR0,
  513. vgic_mmio_read_priority, vgic_mmio_write_priority, 32,
  514. VGIC_ACCESS_32bit | VGIC_ACCESS_8bit),
  515. REGISTER_DESC_WITH_LENGTH(GICR_ICFGR0,
  516. vgic_mmio_read_config, vgic_mmio_write_config, 8,
  517. VGIC_ACCESS_32bit),
  518. REGISTER_DESC_WITH_LENGTH(GICR_IGRPMODR0,
  519. vgic_mmio_read_raz, vgic_mmio_write_wi, 4,
  520. VGIC_ACCESS_32bit),
  521. REGISTER_DESC_WITH_LENGTH(GICR_NSACR,
  522. vgic_mmio_read_raz, vgic_mmio_write_wi, 4,
  523. VGIC_ACCESS_32bit),
  524. };
  525. unsigned int vgic_v3_init_dist_iodev(struct vgic_io_device *dev)
  526. {
  527. dev->regions = vgic_v3_dist_registers;
  528. dev->nr_regions = ARRAY_SIZE(vgic_v3_dist_registers);
  529. kvm_iodevice_init(&dev->dev, &kvm_io_gic_ops);
  530. return SZ_64K;
  531. }
  532. /**
  533. * vgic_register_redist_iodev - register a single redist iodev
  534. * @vcpu: The VCPU to which the redistributor belongs
  535. *
  536. * Register a KVM iodev for this VCPU's redistributor using the address
  537. * provided.
  538. *
  539. * Return 0 on success, -ERRNO otherwise.
  540. */
  541. int vgic_register_redist_iodev(struct kvm_vcpu *vcpu)
  542. {
  543. struct kvm *kvm = vcpu->kvm;
  544. struct vgic_dist *vgic = &kvm->arch.vgic;
  545. struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
  546. struct vgic_io_device *rd_dev = &vcpu->arch.vgic_cpu.rd_iodev;
  547. struct vgic_io_device *sgi_dev = &vcpu->arch.vgic_cpu.sgi_iodev;
  548. struct vgic_redist_region *rdreg;
  549. gpa_t rd_base, sgi_base;
  550. int ret;
  551. if (!IS_VGIC_ADDR_UNDEF(vgic_cpu->rd_iodev.base_addr))
  552. return 0;
  553. /*
  554. * We may be creating VCPUs before having set the base address for the
  555. * redistributor region, in which case we will come back to this
  556. * function for all VCPUs when the base address is set. Just return
  557. * without doing any work for now.
  558. */
  559. rdreg = vgic_v3_rdist_free_slot(&vgic->rd_regions);
  560. if (!rdreg)
  561. return 0;
  562. if (!vgic_v3_check_base(kvm))
  563. return -EINVAL;
  564. vgic_cpu->rdreg = rdreg;
  565. rd_base = rdreg->base + rdreg->free_index * KVM_VGIC_V3_REDIST_SIZE;
  566. sgi_base = rd_base + SZ_64K;
  567. kvm_iodevice_init(&rd_dev->dev, &kvm_io_gic_ops);
  568. rd_dev->base_addr = rd_base;
  569. rd_dev->iodev_type = IODEV_REDIST;
  570. rd_dev->regions = vgic_v3_rdbase_registers;
  571. rd_dev->nr_regions = ARRAY_SIZE(vgic_v3_rdbase_registers);
  572. rd_dev->redist_vcpu = vcpu;
  573. mutex_lock(&kvm->slots_lock);
  574. ret = kvm_io_bus_register_dev(kvm, KVM_MMIO_BUS, rd_base,
  575. SZ_64K, &rd_dev->dev);
  576. mutex_unlock(&kvm->slots_lock);
  577. if (ret)
  578. return ret;
  579. kvm_iodevice_init(&sgi_dev->dev, &kvm_io_gic_ops);
  580. sgi_dev->base_addr = sgi_base;
  581. sgi_dev->iodev_type = IODEV_REDIST;
  582. sgi_dev->regions = vgic_v3_sgibase_registers;
  583. sgi_dev->nr_regions = ARRAY_SIZE(vgic_v3_sgibase_registers);
  584. sgi_dev->redist_vcpu = vcpu;
  585. mutex_lock(&kvm->slots_lock);
  586. ret = kvm_io_bus_register_dev(kvm, KVM_MMIO_BUS, sgi_base,
  587. SZ_64K, &sgi_dev->dev);
  588. if (ret) {
  589. kvm_io_bus_unregister_dev(kvm, KVM_MMIO_BUS,
  590. &rd_dev->dev);
  591. goto out;
  592. }
  593. rdreg->free_index++;
  594. out:
  595. mutex_unlock(&kvm->slots_lock);
  596. return ret;
  597. }
  598. static void vgic_unregister_redist_iodev(struct kvm_vcpu *vcpu)
  599. {
  600. struct vgic_io_device *rd_dev = &vcpu->arch.vgic_cpu.rd_iodev;
  601. struct vgic_io_device *sgi_dev = &vcpu->arch.vgic_cpu.sgi_iodev;
  602. kvm_io_bus_unregister_dev(vcpu->kvm, KVM_MMIO_BUS, &rd_dev->dev);
  603. kvm_io_bus_unregister_dev(vcpu->kvm, KVM_MMIO_BUS, &sgi_dev->dev);
  604. }
  605. static int vgic_register_all_redist_iodevs(struct kvm *kvm)
  606. {
  607. struct kvm_vcpu *vcpu;
  608. int c, ret = 0;
  609. kvm_for_each_vcpu(c, vcpu, kvm) {
  610. ret = vgic_register_redist_iodev(vcpu);
  611. if (ret)
  612. break;
  613. }
  614. if (ret) {
  615. /* The current c failed, so we start with the previous one. */
  616. mutex_lock(&kvm->slots_lock);
  617. for (c--; c >= 0; c--) {
  618. vcpu = kvm_get_vcpu(kvm, c);
  619. vgic_unregister_redist_iodev(vcpu);
  620. }
  621. mutex_unlock(&kvm->slots_lock);
  622. }
  623. return ret;
  624. }
  625. /**
  626. * vgic_v3_insert_redist_region - Insert a new redistributor region
  627. *
  628. * Performs various checks before inserting the rdist region in the list.
  629. * Those tests depend on whether the size of the rdist region is known
  630. * (ie. count != 0). The list is sorted by rdist region index.
  631. *
  632. * @kvm: kvm handle
  633. * @index: redist region index
  634. * @base: base of the new rdist region
  635. * @count: number of redistributors the region is made of (0 in the old style
  636. * single region, whose size is induced from the number of vcpus)
  637. *
  638. * Return 0 on success, < 0 otherwise
  639. */
  640. static int vgic_v3_insert_redist_region(struct kvm *kvm, uint32_t index,
  641. gpa_t base, uint32_t count)
  642. {
  643. struct vgic_dist *d = &kvm->arch.vgic;
  644. struct vgic_redist_region *rdreg;
  645. struct list_head *rd_regions = &d->rd_regions;
  646. size_t size = count * KVM_VGIC_V3_REDIST_SIZE;
  647. int ret;
  648. /* single rdist region already set ?*/
  649. if (!count && !list_empty(rd_regions))
  650. return -EINVAL;
  651. /* cross the end of memory ? */
  652. if (base + size < base)
  653. return -EINVAL;
  654. if (list_empty(rd_regions)) {
  655. if (index != 0)
  656. return -EINVAL;
  657. } else {
  658. rdreg = list_last_entry(rd_regions,
  659. struct vgic_redist_region, list);
  660. if (index != rdreg->index + 1)
  661. return -EINVAL;
  662. /* Cannot add an explicitly sized regions after legacy region */
  663. if (!rdreg->count)
  664. return -EINVAL;
  665. }
  666. /*
  667. * For legacy single-region redistributor regions (!count),
  668. * check that the redistributor region does not overlap with the
  669. * distributor's address space.
  670. */
  671. if (!count && !IS_VGIC_ADDR_UNDEF(d->vgic_dist_base) &&
  672. vgic_dist_overlap(kvm, base, size))
  673. return -EINVAL;
  674. /* collision with any other rdist region? */
  675. if (vgic_v3_rdist_overlap(kvm, base, size))
  676. return -EINVAL;
  677. rdreg = kzalloc(sizeof(*rdreg), GFP_KERNEL);
  678. if (!rdreg)
  679. return -ENOMEM;
  680. rdreg->base = VGIC_ADDR_UNDEF;
  681. ret = vgic_check_ioaddr(kvm, &rdreg->base, base, SZ_64K);
  682. if (ret)
  683. goto free;
  684. rdreg->base = base;
  685. rdreg->count = count;
  686. rdreg->free_index = 0;
  687. rdreg->index = index;
  688. list_add_tail(&rdreg->list, rd_regions);
  689. return 0;
  690. free:
  691. kfree(rdreg);
  692. return ret;
  693. }
  694. int vgic_v3_set_redist_base(struct kvm *kvm, u32 index, u64 addr, u32 count)
  695. {
  696. int ret;
  697. ret = vgic_v3_insert_redist_region(kvm, index, addr, count);
  698. if (ret)
  699. return ret;
  700. /*
  701. * Register iodevs for each existing VCPU. Adding more VCPUs
  702. * afterwards will register the iodevs when needed.
  703. */
  704. ret = vgic_register_all_redist_iodevs(kvm);
  705. if (ret)
  706. return ret;
  707. return 0;
  708. }
  709. int vgic_v3_has_attr_regs(struct kvm_device *dev, struct kvm_device_attr *attr)
  710. {
  711. const struct vgic_register_region *region;
  712. struct vgic_io_device iodev;
  713. struct vgic_reg_attr reg_attr;
  714. struct kvm_vcpu *vcpu;
  715. gpa_t addr;
  716. int ret;
  717. ret = vgic_v3_parse_attr(dev, attr, &reg_attr);
  718. if (ret)
  719. return ret;
  720. vcpu = reg_attr.vcpu;
  721. addr = reg_attr.addr;
  722. switch (attr->group) {
  723. case KVM_DEV_ARM_VGIC_GRP_DIST_REGS:
  724. iodev.regions = vgic_v3_dist_registers;
  725. iodev.nr_regions = ARRAY_SIZE(vgic_v3_dist_registers);
  726. iodev.base_addr = 0;
  727. break;
  728. case KVM_DEV_ARM_VGIC_GRP_REDIST_REGS:{
  729. iodev.regions = vgic_v3_rdbase_registers;
  730. iodev.nr_regions = ARRAY_SIZE(vgic_v3_rdbase_registers);
  731. iodev.base_addr = 0;
  732. break;
  733. }
  734. case KVM_DEV_ARM_VGIC_GRP_CPU_SYSREGS: {
  735. u64 reg, id;
  736. id = (attr->attr & KVM_DEV_ARM_VGIC_SYSREG_INSTR_MASK);
  737. return vgic_v3_has_cpu_sysregs_attr(vcpu, 0, id, &reg);
  738. }
  739. default:
  740. return -ENXIO;
  741. }
  742. /* We only support aligned 32-bit accesses. */
  743. if (addr & 3)
  744. return -ENXIO;
  745. region = vgic_get_mmio_region(vcpu, &iodev, addr, sizeof(u32));
  746. if (!region)
  747. return -ENXIO;
  748. return 0;
  749. }
  750. /*
  751. * Compare a given affinity (level 1-3 and a level 0 mask, from the SGI
  752. * generation register ICC_SGI1R_EL1) with a given VCPU.
  753. * If the VCPU's MPIDR matches, return the level0 affinity, otherwise
  754. * return -1.
  755. */
  756. static int match_mpidr(u64 sgi_aff, u16 sgi_cpu_mask, struct kvm_vcpu *vcpu)
  757. {
  758. unsigned long affinity;
  759. int level0;
  760. /*
  761. * Split the current VCPU's MPIDR into affinity level 0 and the
  762. * rest as this is what we have to compare against.
  763. */
  764. affinity = kvm_vcpu_get_mpidr_aff(vcpu);
  765. level0 = MPIDR_AFFINITY_LEVEL(affinity, 0);
  766. affinity &= ~MPIDR_LEVEL_MASK;
  767. /* bail out if the upper three levels don't match */
  768. if (sgi_aff != affinity)
  769. return -1;
  770. /* Is this VCPU's bit set in the mask ? */
  771. if (!(sgi_cpu_mask & BIT(level0)))
  772. return -1;
  773. return level0;
  774. }
  775. /*
  776. * The ICC_SGI* registers encode the affinity differently from the MPIDR,
  777. * so provide a wrapper to use the existing defines to isolate a certain
  778. * affinity level.
  779. */
  780. #define SGI_AFFINITY_LEVEL(reg, level) \
  781. ((((reg) & ICC_SGI1R_AFFINITY_## level ##_MASK) \
  782. >> ICC_SGI1R_AFFINITY_## level ##_SHIFT) << MPIDR_LEVEL_SHIFT(level))
  783. /**
  784. * vgic_v3_dispatch_sgi - handle SGI requests from VCPUs
  785. * @vcpu: The VCPU requesting a SGI
  786. * @reg: The value written into ICC_{ASGI1,SGI0,SGI1}R by that VCPU
  787. * @allow_group1: Does the sysreg access allow generation of G1 SGIs
  788. *
  789. * With GICv3 (and ARE=1) CPUs trigger SGIs by writing to a system register.
  790. * This will trap in sys_regs.c and call this function.
  791. * This ICC_SGI1R_EL1 register contains the upper three affinity levels of the
  792. * target processors as well as a bitmask of 16 Aff0 CPUs.
  793. * If the interrupt routing mode bit is not set, we iterate over all VCPUs to
  794. * check for matching ones. If this bit is set, we signal all, but not the
  795. * calling VCPU.
  796. */
  797. void vgic_v3_dispatch_sgi(struct kvm_vcpu *vcpu, u64 reg, bool allow_group1)
  798. {
  799. struct kvm *kvm = vcpu->kvm;
  800. struct kvm_vcpu *c_vcpu;
  801. u16 target_cpus;
  802. u64 mpidr;
  803. int sgi, c;
  804. int vcpu_id = vcpu->vcpu_id;
  805. bool broadcast;
  806. unsigned long flags;
  807. sgi = (reg & ICC_SGI1R_SGI_ID_MASK) >> ICC_SGI1R_SGI_ID_SHIFT;
  808. broadcast = reg & BIT_ULL(ICC_SGI1R_IRQ_ROUTING_MODE_BIT);
  809. target_cpus = (reg & ICC_SGI1R_TARGET_LIST_MASK) >> ICC_SGI1R_TARGET_LIST_SHIFT;
  810. mpidr = SGI_AFFINITY_LEVEL(reg, 3);
  811. mpidr |= SGI_AFFINITY_LEVEL(reg, 2);
  812. mpidr |= SGI_AFFINITY_LEVEL(reg, 1);
  813. /*
  814. * We iterate over all VCPUs to find the MPIDRs matching the request.
  815. * If we have handled one CPU, we clear its bit to detect early
  816. * if we are already finished. This avoids iterating through all
  817. * VCPUs when most of the times we just signal a single VCPU.
  818. */
  819. kvm_for_each_vcpu(c, c_vcpu, kvm) {
  820. struct vgic_irq *irq;
  821. /* Exit early if we have dealt with all requested CPUs */
  822. if (!broadcast && target_cpus == 0)
  823. break;
  824. /* Don't signal the calling VCPU */
  825. if (broadcast && c == vcpu_id)
  826. continue;
  827. if (!broadcast) {
  828. int level0;
  829. level0 = match_mpidr(mpidr, target_cpus, c_vcpu);
  830. if (level0 == -1)
  831. continue;
  832. /* remove this matching VCPU from the mask */
  833. target_cpus &= ~BIT(level0);
  834. }
  835. irq = vgic_get_irq(vcpu->kvm, c_vcpu, sgi);
  836. spin_lock_irqsave(&irq->irq_lock, flags);
  837. /*
  838. * An access targetting Group0 SGIs can only generate
  839. * those, while an access targetting Group1 SGIs can
  840. * generate interrupts of either group.
  841. */
  842. if (!irq->group || allow_group1) {
  843. irq->pending_latch = true;
  844. vgic_queue_irq_unlock(vcpu->kvm, irq, flags);
  845. } else {
  846. spin_unlock_irqrestore(&irq->irq_lock, flags);
  847. }
  848. vgic_put_irq(vcpu->kvm, irq);
  849. }
  850. }
  851. int vgic_v3_dist_uaccess(struct kvm_vcpu *vcpu, bool is_write,
  852. int offset, u32 *val)
  853. {
  854. struct vgic_io_device dev = {
  855. .regions = vgic_v3_dist_registers,
  856. .nr_regions = ARRAY_SIZE(vgic_v3_dist_registers),
  857. };
  858. return vgic_uaccess(vcpu, &dev, is_write, offset, val);
  859. }
  860. int vgic_v3_redist_uaccess(struct kvm_vcpu *vcpu, bool is_write,
  861. int offset, u32 *val)
  862. {
  863. struct vgic_io_device rd_dev = {
  864. .regions = vgic_v3_rdbase_registers,
  865. .nr_regions = ARRAY_SIZE(vgic_v3_rdbase_registers),
  866. };
  867. struct vgic_io_device sgi_dev = {
  868. .regions = vgic_v3_sgibase_registers,
  869. .nr_regions = ARRAY_SIZE(vgic_v3_sgibase_registers),
  870. };
  871. /* SGI_base is the next 64K frame after RD_base */
  872. if (offset >= SZ_64K)
  873. return vgic_uaccess(vcpu, &sgi_dev, is_write, offset - SZ_64K,
  874. val);
  875. else
  876. return vgic_uaccess(vcpu, &rd_dev, is_write, offset, val);
  877. }
  878. int vgic_v3_line_level_info_uaccess(struct kvm_vcpu *vcpu, bool is_write,
  879. u32 intid, u64 *val)
  880. {
  881. if (intid % 32)
  882. return -EINVAL;
  883. if (is_write)
  884. vgic_write_irq_line_level_info(vcpu, intid, *val);
  885. else
  886. *val = vgic_read_irq_line_level_info(vcpu, intid);
  887. return 0;
  888. }