sdma.c 89 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422
  1. /*
  2. * Copyright(c) 2015 - 2018 Intel Corporation.
  3. *
  4. * This file is provided under a dual BSD/GPLv2 license. When using or
  5. * redistributing this file, you may do so under either license.
  6. *
  7. * GPL LICENSE SUMMARY
  8. *
  9. * This program is free software; you can redistribute it and/or modify
  10. * it under the terms of version 2 of the GNU General Public License as
  11. * published by the Free Software Foundation.
  12. *
  13. * This program is distributed in the hope that it will be useful, but
  14. * WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  16. * General Public License for more details.
  17. *
  18. * BSD LICENSE
  19. *
  20. * Redistribution and use in source and binary forms, with or without
  21. * modification, are permitted provided that the following conditions
  22. * are met:
  23. *
  24. * - Redistributions of source code must retain the above copyright
  25. * notice, this list of conditions and the following disclaimer.
  26. * - Redistributions in binary form must reproduce the above copyright
  27. * notice, this list of conditions and the following disclaimer in
  28. * the documentation and/or other materials provided with the
  29. * distribution.
  30. * - Neither the name of Intel Corporation nor the names of its
  31. * contributors may be used to endorse or promote products derived
  32. * from this software without specific prior written permission.
  33. *
  34. * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
  35. * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
  36. * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
  37. * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
  38. * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
  39. * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
  40. * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
  41. * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
  42. * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
  43. * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
  44. * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
  45. *
  46. */
  47. #include <linux/spinlock.h>
  48. #include <linux/seqlock.h>
  49. #include <linux/netdevice.h>
  50. #include <linux/moduleparam.h>
  51. #include <linux/bitops.h>
  52. #include <linux/timer.h>
  53. #include <linux/vmalloc.h>
  54. #include <linux/highmem.h>
  55. #include "hfi.h"
  56. #include "common.h"
  57. #include "qp.h"
  58. #include "sdma.h"
  59. #include "iowait.h"
  60. #include "trace.h"
  61. /* must be a power of 2 >= 64 <= 32768 */
  62. #define SDMA_DESCQ_CNT 2048
  63. #define SDMA_DESC_INTR 64
  64. #define INVALID_TAIL 0xffff
  65. #define SDMA_PAD max_t(size_t, MAX_16B_PADDING, sizeof(u32))
  66. static uint sdma_descq_cnt = SDMA_DESCQ_CNT;
  67. module_param(sdma_descq_cnt, uint, S_IRUGO);
  68. MODULE_PARM_DESC(sdma_descq_cnt, "Number of SDMA descq entries");
  69. static uint sdma_idle_cnt = 250;
  70. module_param(sdma_idle_cnt, uint, S_IRUGO);
  71. MODULE_PARM_DESC(sdma_idle_cnt, "sdma interrupt idle delay (ns,default 250)");
  72. uint mod_num_sdma;
  73. module_param_named(num_sdma, mod_num_sdma, uint, S_IRUGO);
  74. MODULE_PARM_DESC(num_sdma, "Set max number SDMA engines to use");
  75. static uint sdma_desct_intr = SDMA_DESC_INTR;
  76. module_param_named(desct_intr, sdma_desct_intr, uint, S_IRUGO | S_IWUSR);
  77. MODULE_PARM_DESC(desct_intr, "Number of SDMA descriptor before interrupt");
  78. #define SDMA_WAIT_BATCH_SIZE 20
  79. /* max wait time for a SDMA engine to indicate it has halted */
  80. #define SDMA_ERR_HALT_TIMEOUT 10 /* ms */
  81. /* all SDMA engine errors that cause a halt */
  82. #define SD(name) SEND_DMA_##name
  83. #define ALL_SDMA_ENG_HALT_ERRS \
  84. (SD(ENG_ERR_STATUS_SDMA_WRONG_DW_ERR_SMASK) \
  85. | SD(ENG_ERR_STATUS_SDMA_GEN_MISMATCH_ERR_SMASK) \
  86. | SD(ENG_ERR_STATUS_SDMA_TOO_LONG_ERR_SMASK) \
  87. | SD(ENG_ERR_STATUS_SDMA_TAIL_OUT_OF_BOUNDS_ERR_SMASK) \
  88. | SD(ENG_ERR_STATUS_SDMA_FIRST_DESC_ERR_SMASK) \
  89. | SD(ENG_ERR_STATUS_SDMA_MEM_READ_ERR_SMASK) \
  90. | SD(ENG_ERR_STATUS_SDMA_HALT_ERR_SMASK) \
  91. | SD(ENG_ERR_STATUS_SDMA_LENGTH_MISMATCH_ERR_SMASK) \
  92. | SD(ENG_ERR_STATUS_SDMA_PACKET_DESC_OVERFLOW_ERR_SMASK) \
  93. | SD(ENG_ERR_STATUS_SDMA_HEADER_SELECT_ERR_SMASK) \
  94. | SD(ENG_ERR_STATUS_SDMA_HEADER_ADDRESS_ERR_SMASK) \
  95. | SD(ENG_ERR_STATUS_SDMA_HEADER_LENGTH_ERR_SMASK) \
  96. | SD(ENG_ERR_STATUS_SDMA_TIMEOUT_ERR_SMASK) \
  97. | SD(ENG_ERR_STATUS_SDMA_DESC_TABLE_UNC_ERR_SMASK) \
  98. | SD(ENG_ERR_STATUS_SDMA_ASSEMBLY_UNC_ERR_SMASK) \
  99. | SD(ENG_ERR_STATUS_SDMA_PACKET_TRACKING_UNC_ERR_SMASK) \
  100. | SD(ENG_ERR_STATUS_SDMA_HEADER_STORAGE_UNC_ERR_SMASK) \
  101. | SD(ENG_ERR_STATUS_SDMA_HEADER_REQUEST_FIFO_UNC_ERR_SMASK))
  102. /* sdma_sendctrl operations */
  103. #define SDMA_SENDCTRL_OP_ENABLE BIT(0)
  104. #define SDMA_SENDCTRL_OP_INTENABLE BIT(1)
  105. #define SDMA_SENDCTRL_OP_HALT BIT(2)
  106. #define SDMA_SENDCTRL_OP_CLEANUP BIT(3)
  107. /* handle long defines */
  108. #define SDMA_EGRESS_PACKET_OCCUPANCY_SMASK \
  109. SEND_EGRESS_SEND_DMA_STATUS_SDMA_EGRESS_PACKET_OCCUPANCY_SMASK
  110. #define SDMA_EGRESS_PACKET_OCCUPANCY_SHIFT \
  111. SEND_EGRESS_SEND_DMA_STATUS_SDMA_EGRESS_PACKET_OCCUPANCY_SHIFT
  112. static const char * const sdma_state_names[] = {
  113. [sdma_state_s00_hw_down] = "s00_HwDown",
  114. [sdma_state_s10_hw_start_up_halt_wait] = "s10_HwStartUpHaltWait",
  115. [sdma_state_s15_hw_start_up_clean_wait] = "s15_HwStartUpCleanWait",
  116. [sdma_state_s20_idle] = "s20_Idle",
  117. [sdma_state_s30_sw_clean_up_wait] = "s30_SwCleanUpWait",
  118. [sdma_state_s40_hw_clean_up_wait] = "s40_HwCleanUpWait",
  119. [sdma_state_s50_hw_halt_wait] = "s50_HwHaltWait",
  120. [sdma_state_s60_idle_halt_wait] = "s60_IdleHaltWait",
  121. [sdma_state_s80_hw_freeze] = "s80_HwFreeze",
  122. [sdma_state_s82_freeze_sw_clean] = "s82_FreezeSwClean",
  123. [sdma_state_s99_running] = "s99_Running",
  124. };
  125. #ifdef CONFIG_SDMA_VERBOSITY
  126. static const char * const sdma_event_names[] = {
  127. [sdma_event_e00_go_hw_down] = "e00_GoHwDown",
  128. [sdma_event_e10_go_hw_start] = "e10_GoHwStart",
  129. [sdma_event_e15_hw_halt_done] = "e15_HwHaltDone",
  130. [sdma_event_e25_hw_clean_up_done] = "e25_HwCleanUpDone",
  131. [sdma_event_e30_go_running] = "e30_GoRunning",
  132. [sdma_event_e40_sw_cleaned] = "e40_SwCleaned",
  133. [sdma_event_e50_hw_cleaned] = "e50_HwCleaned",
  134. [sdma_event_e60_hw_halted] = "e60_HwHalted",
  135. [sdma_event_e70_go_idle] = "e70_GoIdle",
  136. [sdma_event_e80_hw_freeze] = "e80_HwFreeze",
  137. [sdma_event_e81_hw_frozen] = "e81_HwFrozen",
  138. [sdma_event_e82_hw_unfreeze] = "e82_HwUnfreeze",
  139. [sdma_event_e85_link_down] = "e85_LinkDown",
  140. [sdma_event_e90_sw_halted] = "e90_SwHalted",
  141. };
  142. #endif
  143. static const struct sdma_set_state_action sdma_action_table[] = {
  144. [sdma_state_s00_hw_down] = {
  145. .go_s99_running_tofalse = 1,
  146. .op_enable = 0,
  147. .op_intenable = 0,
  148. .op_halt = 0,
  149. .op_cleanup = 0,
  150. },
  151. [sdma_state_s10_hw_start_up_halt_wait] = {
  152. .op_enable = 0,
  153. .op_intenable = 0,
  154. .op_halt = 1,
  155. .op_cleanup = 0,
  156. },
  157. [sdma_state_s15_hw_start_up_clean_wait] = {
  158. .op_enable = 0,
  159. .op_intenable = 1,
  160. .op_halt = 0,
  161. .op_cleanup = 1,
  162. },
  163. [sdma_state_s20_idle] = {
  164. .op_enable = 0,
  165. .op_intenable = 1,
  166. .op_halt = 0,
  167. .op_cleanup = 0,
  168. },
  169. [sdma_state_s30_sw_clean_up_wait] = {
  170. .op_enable = 0,
  171. .op_intenable = 0,
  172. .op_halt = 0,
  173. .op_cleanup = 0,
  174. },
  175. [sdma_state_s40_hw_clean_up_wait] = {
  176. .op_enable = 0,
  177. .op_intenable = 0,
  178. .op_halt = 0,
  179. .op_cleanup = 1,
  180. },
  181. [sdma_state_s50_hw_halt_wait] = {
  182. .op_enable = 0,
  183. .op_intenable = 0,
  184. .op_halt = 0,
  185. .op_cleanup = 0,
  186. },
  187. [sdma_state_s60_idle_halt_wait] = {
  188. .go_s99_running_tofalse = 1,
  189. .op_enable = 0,
  190. .op_intenable = 0,
  191. .op_halt = 1,
  192. .op_cleanup = 0,
  193. },
  194. [sdma_state_s80_hw_freeze] = {
  195. .op_enable = 0,
  196. .op_intenable = 0,
  197. .op_halt = 0,
  198. .op_cleanup = 0,
  199. },
  200. [sdma_state_s82_freeze_sw_clean] = {
  201. .op_enable = 0,
  202. .op_intenable = 0,
  203. .op_halt = 0,
  204. .op_cleanup = 0,
  205. },
  206. [sdma_state_s99_running] = {
  207. .op_enable = 1,
  208. .op_intenable = 1,
  209. .op_halt = 0,
  210. .op_cleanup = 0,
  211. .go_s99_running_totrue = 1,
  212. },
  213. };
  214. #define SDMA_TAIL_UPDATE_THRESH 0x1F
  215. /* declare all statics here rather than keep sorting */
  216. static void sdma_complete(struct kref *);
  217. static void sdma_finalput(struct sdma_state *);
  218. static void sdma_get(struct sdma_state *);
  219. static void sdma_hw_clean_up_task(unsigned long);
  220. static void sdma_put(struct sdma_state *);
  221. static void sdma_set_state(struct sdma_engine *, enum sdma_states);
  222. static void sdma_start_hw_clean_up(struct sdma_engine *);
  223. static void sdma_sw_clean_up_task(unsigned long);
  224. static void sdma_sendctrl(struct sdma_engine *, unsigned);
  225. static void init_sdma_regs(struct sdma_engine *, u32, uint);
  226. static void sdma_process_event(
  227. struct sdma_engine *sde,
  228. enum sdma_events event);
  229. static void __sdma_process_event(
  230. struct sdma_engine *sde,
  231. enum sdma_events event);
  232. static void dump_sdma_state(struct sdma_engine *sde);
  233. static void sdma_make_progress(struct sdma_engine *sde, u64 status);
  234. static void sdma_desc_avail(struct sdma_engine *sde, uint avail);
  235. static void sdma_flush_descq(struct sdma_engine *sde);
  236. /**
  237. * sdma_state_name() - return state string from enum
  238. * @state: state
  239. */
  240. static const char *sdma_state_name(enum sdma_states state)
  241. {
  242. return sdma_state_names[state];
  243. }
  244. static void sdma_get(struct sdma_state *ss)
  245. {
  246. kref_get(&ss->kref);
  247. }
  248. static void sdma_complete(struct kref *kref)
  249. {
  250. struct sdma_state *ss =
  251. container_of(kref, struct sdma_state, kref);
  252. complete(&ss->comp);
  253. }
  254. static void sdma_put(struct sdma_state *ss)
  255. {
  256. kref_put(&ss->kref, sdma_complete);
  257. }
  258. static void sdma_finalput(struct sdma_state *ss)
  259. {
  260. sdma_put(ss);
  261. wait_for_completion(&ss->comp);
  262. }
  263. static inline void write_sde_csr(
  264. struct sdma_engine *sde,
  265. u32 offset0,
  266. u64 value)
  267. {
  268. write_kctxt_csr(sde->dd, sde->this_idx, offset0, value);
  269. }
  270. static inline u64 read_sde_csr(
  271. struct sdma_engine *sde,
  272. u32 offset0)
  273. {
  274. return read_kctxt_csr(sde->dd, sde->this_idx, offset0);
  275. }
  276. /*
  277. * sdma_wait_for_packet_egress() - wait for the VL FIFO occupancy for
  278. * sdma engine 'sde' to drop to 0.
  279. */
  280. static void sdma_wait_for_packet_egress(struct sdma_engine *sde,
  281. int pause)
  282. {
  283. u64 off = 8 * sde->this_idx;
  284. struct hfi1_devdata *dd = sde->dd;
  285. int lcnt = 0;
  286. u64 reg_prev;
  287. u64 reg = 0;
  288. while (1) {
  289. reg_prev = reg;
  290. reg = read_csr(dd, off + SEND_EGRESS_SEND_DMA_STATUS);
  291. reg &= SDMA_EGRESS_PACKET_OCCUPANCY_SMASK;
  292. reg >>= SDMA_EGRESS_PACKET_OCCUPANCY_SHIFT;
  293. if (reg == 0)
  294. break;
  295. /* counter is reest if accupancy count changes */
  296. if (reg != reg_prev)
  297. lcnt = 0;
  298. if (lcnt++ > 500) {
  299. /* timed out - bounce the link */
  300. dd_dev_err(dd, "%s: engine %u timeout waiting for packets to egress, remaining count %u, bouncing link\n",
  301. __func__, sde->this_idx, (u32)reg);
  302. queue_work(dd->pport->link_wq,
  303. &dd->pport->link_bounce_work);
  304. break;
  305. }
  306. udelay(1);
  307. }
  308. }
  309. /*
  310. * sdma_wait() - wait for packet egress to complete for all SDMA engines,
  311. * and pause for credit return.
  312. */
  313. void sdma_wait(struct hfi1_devdata *dd)
  314. {
  315. int i;
  316. for (i = 0; i < dd->num_sdma; i++) {
  317. struct sdma_engine *sde = &dd->per_sdma[i];
  318. sdma_wait_for_packet_egress(sde, 0);
  319. }
  320. }
  321. static inline void sdma_set_desc_cnt(struct sdma_engine *sde, unsigned cnt)
  322. {
  323. u64 reg;
  324. if (!(sde->dd->flags & HFI1_HAS_SDMA_TIMEOUT))
  325. return;
  326. reg = cnt;
  327. reg &= SD(DESC_CNT_CNT_MASK);
  328. reg <<= SD(DESC_CNT_CNT_SHIFT);
  329. write_sde_csr(sde, SD(DESC_CNT), reg);
  330. }
  331. static inline void complete_tx(struct sdma_engine *sde,
  332. struct sdma_txreq *tx,
  333. int res)
  334. {
  335. /* protect against complete modifying */
  336. struct iowait *wait = tx->wait;
  337. callback_t complete = tx->complete;
  338. #ifdef CONFIG_HFI1_DEBUG_SDMA_ORDER
  339. trace_hfi1_sdma_out_sn(sde, tx->sn);
  340. if (WARN_ON_ONCE(sde->head_sn != tx->sn))
  341. dd_dev_err(sde->dd, "expected %llu got %llu\n",
  342. sde->head_sn, tx->sn);
  343. sde->head_sn++;
  344. #endif
  345. __sdma_txclean(sde->dd, tx);
  346. if (complete)
  347. (*complete)(tx, res);
  348. if (wait && iowait_sdma_dec(wait))
  349. iowait_drain_wakeup(wait);
  350. }
  351. /*
  352. * Complete all the sdma requests with a SDMA_TXREQ_S_ABORTED status
  353. *
  354. * Depending on timing there can be txreqs in two places:
  355. * - in the descq ring
  356. * - in the flush list
  357. *
  358. * To avoid ordering issues the descq ring needs to be flushed
  359. * first followed by the flush list.
  360. *
  361. * This routine is called from two places
  362. * - From a work queue item
  363. * - Directly from the state machine just before setting the
  364. * state to running
  365. *
  366. * Must be called with head_lock held
  367. *
  368. */
  369. static void sdma_flush(struct sdma_engine *sde)
  370. {
  371. struct sdma_txreq *txp, *txp_next;
  372. LIST_HEAD(flushlist);
  373. unsigned long flags;
  374. /* flush from head to tail */
  375. sdma_flush_descq(sde);
  376. spin_lock_irqsave(&sde->flushlist_lock, flags);
  377. /* copy flush list */
  378. list_splice_init(&sde->flushlist, &flushlist);
  379. spin_unlock_irqrestore(&sde->flushlist_lock, flags);
  380. /* flush from flush list */
  381. list_for_each_entry_safe(txp, txp_next, &flushlist, list)
  382. complete_tx(sde, txp, SDMA_TXREQ_S_ABORTED);
  383. }
  384. /*
  385. * Fields a work request for flushing the descq ring
  386. * and the flush list
  387. *
  388. * If the engine has been brought to running during
  389. * the scheduling delay, the flush is ignored, assuming
  390. * that the process of bringing the engine to running
  391. * would have done this flush prior to going to running.
  392. *
  393. */
  394. static void sdma_field_flush(struct work_struct *work)
  395. {
  396. unsigned long flags;
  397. struct sdma_engine *sde =
  398. container_of(work, struct sdma_engine, flush_worker);
  399. write_seqlock_irqsave(&sde->head_lock, flags);
  400. if (!__sdma_running(sde))
  401. sdma_flush(sde);
  402. write_sequnlock_irqrestore(&sde->head_lock, flags);
  403. }
  404. static void sdma_err_halt_wait(struct work_struct *work)
  405. {
  406. struct sdma_engine *sde = container_of(work, struct sdma_engine,
  407. err_halt_worker);
  408. u64 statuscsr;
  409. unsigned long timeout;
  410. timeout = jiffies + msecs_to_jiffies(SDMA_ERR_HALT_TIMEOUT);
  411. while (1) {
  412. statuscsr = read_sde_csr(sde, SD(STATUS));
  413. statuscsr &= SD(STATUS_ENG_HALTED_SMASK);
  414. if (statuscsr)
  415. break;
  416. if (time_after(jiffies, timeout)) {
  417. dd_dev_err(sde->dd,
  418. "SDMA engine %d - timeout waiting for engine to halt\n",
  419. sde->this_idx);
  420. /*
  421. * Continue anyway. This could happen if there was
  422. * an uncorrectable error in the wrong spot.
  423. */
  424. break;
  425. }
  426. usleep_range(80, 120);
  427. }
  428. sdma_process_event(sde, sdma_event_e15_hw_halt_done);
  429. }
  430. static void sdma_err_progress_check_schedule(struct sdma_engine *sde)
  431. {
  432. if (!is_bx(sde->dd) && HFI1_CAP_IS_KSET(SDMA_AHG)) {
  433. unsigned index;
  434. struct hfi1_devdata *dd = sde->dd;
  435. for (index = 0; index < dd->num_sdma; index++) {
  436. struct sdma_engine *curr_sdma = &dd->per_sdma[index];
  437. if (curr_sdma != sde)
  438. curr_sdma->progress_check_head =
  439. curr_sdma->descq_head;
  440. }
  441. dd_dev_err(sde->dd,
  442. "SDMA engine %d - check scheduled\n",
  443. sde->this_idx);
  444. mod_timer(&sde->err_progress_check_timer, jiffies + 10);
  445. }
  446. }
  447. static void sdma_err_progress_check(struct timer_list *t)
  448. {
  449. unsigned index;
  450. struct sdma_engine *sde = from_timer(sde, t, err_progress_check_timer);
  451. dd_dev_err(sde->dd, "SDE progress check event\n");
  452. for (index = 0; index < sde->dd->num_sdma; index++) {
  453. struct sdma_engine *curr_sde = &sde->dd->per_sdma[index];
  454. unsigned long flags;
  455. /* check progress on each engine except the current one */
  456. if (curr_sde == sde)
  457. continue;
  458. /*
  459. * We must lock interrupts when acquiring sde->lock,
  460. * to avoid a deadlock if interrupt triggers and spins on
  461. * the same lock on same CPU
  462. */
  463. spin_lock_irqsave(&curr_sde->tail_lock, flags);
  464. write_seqlock(&curr_sde->head_lock);
  465. /* skip non-running queues */
  466. if (curr_sde->state.current_state != sdma_state_s99_running) {
  467. write_sequnlock(&curr_sde->head_lock);
  468. spin_unlock_irqrestore(&curr_sde->tail_lock, flags);
  469. continue;
  470. }
  471. if ((curr_sde->descq_head != curr_sde->descq_tail) &&
  472. (curr_sde->descq_head ==
  473. curr_sde->progress_check_head))
  474. __sdma_process_event(curr_sde,
  475. sdma_event_e90_sw_halted);
  476. write_sequnlock(&curr_sde->head_lock);
  477. spin_unlock_irqrestore(&curr_sde->tail_lock, flags);
  478. }
  479. schedule_work(&sde->err_halt_worker);
  480. }
  481. static void sdma_hw_clean_up_task(unsigned long opaque)
  482. {
  483. struct sdma_engine *sde = (struct sdma_engine *)opaque;
  484. u64 statuscsr;
  485. while (1) {
  486. #ifdef CONFIG_SDMA_VERBOSITY
  487. dd_dev_err(sde->dd, "CONFIG SDMA(%u) %s:%d %s()\n",
  488. sde->this_idx, slashstrip(__FILE__), __LINE__,
  489. __func__);
  490. #endif
  491. statuscsr = read_sde_csr(sde, SD(STATUS));
  492. statuscsr &= SD(STATUS_ENG_CLEANED_UP_SMASK);
  493. if (statuscsr)
  494. break;
  495. udelay(10);
  496. }
  497. sdma_process_event(sde, sdma_event_e25_hw_clean_up_done);
  498. }
  499. static inline struct sdma_txreq *get_txhead(struct sdma_engine *sde)
  500. {
  501. return sde->tx_ring[sde->tx_head & sde->sdma_mask];
  502. }
  503. /*
  504. * flush ring for recovery
  505. */
  506. static void sdma_flush_descq(struct sdma_engine *sde)
  507. {
  508. u16 head, tail;
  509. int progress = 0;
  510. struct sdma_txreq *txp = get_txhead(sde);
  511. /* The reason for some of the complexity of this code is that
  512. * not all descriptors have corresponding txps. So, we have to
  513. * be able to skip over descs until we wander into the range of
  514. * the next txp on the list.
  515. */
  516. head = sde->descq_head & sde->sdma_mask;
  517. tail = sde->descq_tail & sde->sdma_mask;
  518. while (head != tail) {
  519. /* advance head, wrap if needed */
  520. head = ++sde->descq_head & sde->sdma_mask;
  521. /* if now past this txp's descs, do the callback */
  522. if (txp && txp->next_descq_idx == head) {
  523. /* remove from list */
  524. sde->tx_ring[sde->tx_head++ & sde->sdma_mask] = NULL;
  525. complete_tx(sde, txp, SDMA_TXREQ_S_ABORTED);
  526. trace_hfi1_sdma_progress(sde, head, tail, txp);
  527. txp = get_txhead(sde);
  528. }
  529. progress++;
  530. }
  531. if (progress)
  532. sdma_desc_avail(sde, sdma_descq_freecnt(sde));
  533. }
  534. static void sdma_sw_clean_up_task(unsigned long opaque)
  535. {
  536. struct sdma_engine *sde = (struct sdma_engine *)opaque;
  537. unsigned long flags;
  538. spin_lock_irqsave(&sde->tail_lock, flags);
  539. write_seqlock(&sde->head_lock);
  540. /*
  541. * At this point, the following should always be true:
  542. * - We are halted, so no more descriptors are getting retired.
  543. * - We are not running, so no one is submitting new work.
  544. * - Only we can send the e40_sw_cleaned, so we can't start
  545. * running again until we say so. So, the active list and
  546. * descq are ours to play with.
  547. */
  548. /*
  549. * In the error clean up sequence, software clean must be called
  550. * before the hardware clean so we can use the hardware head in
  551. * the progress routine. A hardware clean or SPC unfreeze will
  552. * reset the hardware head.
  553. *
  554. * Process all retired requests. The progress routine will use the
  555. * latest physical hardware head - we are not running so speed does
  556. * not matter.
  557. */
  558. sdma_make_progress(sde, 0);
  559. sdma_flush(sde);
  560. /*
  561. * Reset our notion of head and tail.
  562. * Note that the HW registers have been reset via an earlier
  563. * clean up.
  564. */
  565. sde->descq_tail = 0;
  566. sde->descq_head = 0;
  567. sde->desc_avail = sdma_descq_freecnt(sde);
  568. *sde->head_dma = 0;
  569. __sdma_process_event(sde, sdma_event_e40_sw_cleaned);
  570. write_sequnlock(&sde->head_lock);
  571. spin_unlock_irqrestore(&sde->tail_lock, flags);
  572. }
  573. static void sdma_sw_tear_down(struct sdma_engine *sde)
  574. {
  575. struct sdma_state *ss = &sde->state;
  576. /* Releasing this reference means the state machine has stopped. */
  577. sdma_put(ss);
  578. /* stop waiting for all unfreeze events to complete */
  579. atomic_set(&sde->dd->sdma_unfreeze_count, -1);
  580. wake_up_interruptible(&sde->dd->sdma_unfreeze_wq);
  581. }
  582. static void sdma_start_hw_clean_up(struct sdma_engine *sde)
  583. {
  584. tasklet_hi_schedule(&sde->sdma_hw_clean_up_task);
  585. }
  586. static void sdma_set_state(struct sdma_engine *sde,
  587. enum sdma_states next_state)
  588. {
  589. struct sdma_state *ss = &sde->state;
  590. const struct sdma_set_state_action *action = sdma_action_table;
  591. unsigned op = 0;
  592. trace_hfi1_sdma_state(
  593. sde,
  594. sdma_state_names[ss->current_state],
  595. sdma_state_names[next_state]);
  596. /* debugging bookkeeping */
  597. ss->previous_state = ss->current_state;
  598. ss->previous_op = ss->current_op;
  599. ss->current_state = next_state;
  600. if (ss->previous_state != sdma_state_s99_running &&
  601. next_state == sdma_state_s99_running)
  602. sdma_flush(sde);
  603. if (action[next_state].op_enable)
  604. op |= SDMA_SENDCTRL_OP_ENABLE;
  605. if (action[next_state].op_intenable)
  606. op |= SDMA_SENDCTRL_OP_INTENABLE;
  607. if (action[next_state].op_halt)
  608. op |= SDMA_SENDCTRL_OP_HALT;
  609. if (action[next_state].op_cleanup)
  610. op |= SDMA_SENDCTRL_OP_CLEANUP;
  611. if (action[next_state].go_s99_running_tofalse)
  612. ss->go_s99_running = 0;
  613. if (action[next_state].go_s99_running_totrue)
  614. ss->go_s99_running = 1;
  615. ss->current_op = op;
  616. sdma_sendctrl(sde, ss->current_op);
  617. }
  618. /**
  619. * sdma_get_descq_cnt() - called when device probed
  620. *
  621. * Return a validated descq count.
  622. *
  623. * This is currently only used in the verbs initialization to build the tx
  624. * list.
  625. *
  626. * This will probably be deleted in favor of a more scalable approach to
  627. * alloc tx's.
  628. *
  629. */
  630. u16 sdma_get_descq_cnt(void)
  631. {
  632. u16 count = sdma_descq_cnt;
  633. if (!count)
  634. return SDMA_DESCQ_CNT;
  635. /* count must be a power of 2 greater than 64 and less than
  636. * 32768. Otherwise return default.
  637. */
  638. if (!is_power_of_2(count))
  639. return SDMA_DESCQ_CNT;
  640. if (count < 64 || count > 32768)
  641. return SDMA_DESCQ_CNT;
  642. return count;
  643. }
  644. /**
  645. * sdma_engine_get_vl() - return vl for a given sdma engine
  646. * @sde: sdma engine
  647. *
  648. * This function returns the vl mapped to a given engine, or an error if
  649. * the mapping can't be found. The mapping fields are protected by RCU.
  650. */
  651. int sdma_engine_get_vl(struct sdma_engine *sde)
  652. {
  653. struct hfi1_devdata *dd = sde->dd;
  654. struct sdma_vl_map *m;
  655. u8 vl;
  656. if (sde->this_idx >= TXE_NUM_SDMA_ENGINES)
  657. return -EINVAL;
  658. rcu_read_lock();
  659. m = rcu_dereference(dd->sdma_map);
  660. if (unlikely(!m)) {
  661. rcu_read_unlock();
  662. return -EINVAL;
  663. }
  664. vl = m->engine_to_vl[sde->this_idx];
  665. rcu_read_unlock();
  666. return vl;
  667. }
  668. /**
  669. * sdma_select_engine_vl() - select sdma engine
  670. * @dd: devdata
  671. * @selector: a spreading factor
  672. * @vl: this vl
  673. *
  674. *
  675. * This function returns an engine based on the selector and a vl. The
  676. * mapping fields are protected by RCU.
  677. */
  678. struct sdma_engine *sdma_select_engine_vl(
  679. struct hfi1_devdata *dd,
  680. u32 selector,
  681. u8 vl)
  682. {
  683. struct sdma_vl_map *m;
  684. struct sdma_map_elem *e;
  685. struct sdma_engine *rval;
  686. /* NOTE This should only happen if SC->VL changed after the initial
  687. * checks on the QP/AH
  688. * Default will return engine 0 below
  689. */
  690. if (vl >= num_vls) {
  691. rval = NULL;
  692. goto done;
  693. }
  694. rcu_read_lock();
  695. m = rcu_dereference(dd->sdma_map);
  696. if (unlikely(!m)) {
  697. rcu_read_unlock();
  698. return &dd->per_sdma[0];
  699. }
  700. e = m->map[vl & m->mask];
  701. rval = e->sde[selector & e->mask];
  702. rcu_read_unlock();
  703. done:
  704. rval = !rval ? &dd->per_sdma[0] : rval;
  705. trace_hfi1_sdma_engine_select(dd, selector, vl, rval->this_idx);
  706. return rval;
  707. }
  708. /**
  709. * sdma_select_engine_sc() - select sdma engine
  710. * @dd: devdata
  711. * @selector: a spreading factor
  712. * @sc5: the 5 bit sc
  713. *
  714. *
  715. * This function returns an engine based on the selector and an sc.
  716. */
  717. struct sdma_engine *sdma_select_engine_sc(
  718. struct hfi1_devdata *dd,
  719. u32 selector,
  720. u8 sc5)
  721. {
  722. u8 vl = sc_to_vlt(dd, sc5);
  723. return sdma_select_engine_vl(dd, selector, vl);
  724. }
  725. struct sdma_rht_map_elem {
  726. u32 mask;
  727. u8 ctr;
  728. struct sdma_engine *sde[0];
  729. };
  730. struct sdma_rht_node {
  731. unsigned long cpu_id;
  732. struct sdma_rht_map_elem *map[HFI1_MAX_VLS_SUPPORTED];
  733. struct rhash_head node;
  734. };
  735. #define NR_CPUS_HINT 192
  736. static const struct rhashtable_params sdma_rht_params = {
  737. .nelem_hint = NR_CPUS_HINT,
  738. .head_offset = offsetof(struct sdma_rht_node, node),
  739. .key_offset = offsetof(struct sdma_rht_node, cpu_id),
  740. .key_len = FIELD_SIZEOF(struct sdma_rht_node, cpu_id),
  741. .max_size = NR_CPUS,
  742. .min_size = 8,
  743. .automatic_shrinking = true,
  744. };
  745. /*
  746. * sdma_select_user_engine() - select sdma engine based on user setup
  747. * @dd: devdata
  748. * @selector: a spreading factor
  749. * @vl: this vl
  750. *
  751. * This function returns an sdma engine for a user sdma request.
  752. * User defined sdma engine affinity setting is honored when applicable,
  753. * otherwise system default sdma engine mapping is used. To ensure correct
  754. * ordering, the mapping from <selector, vl> to sde must remain unchanged.
  755. */
  756. struct sdma_engine *sdma_select_user_engine(struct hfi1_devdata *dd,
  757. u32 selector, u8 vl)
  758. {
  759. struct sdma_rht_node *rht_node;
  760. struct sdma_engine *sde = NULL;
  761. const struct cpumask *current_mask = &current->cpus_allowed;
  762. unsigned long cpu_id;
  763. /*
  764. * To ensure that always the same sdma engine(s) will be
  765. * selected make sure the process is pinned to this CPU only.
  766. */
  767. if (cpumask_weight(current_mask) != 1)
  768. goto out;
  769. cpu_id = smp_processor_id();
  770. rcu_read_lock();
  771. rht_node = rhashtable_lookup_fast(dd->sdma_rht, &cpu_id,
  772. sdma_rht_params);
  773. if (rht_node && rht_node->map[vl]) {
  774. struct sdma_rht_map_elem *map = rht_node->map[vl];
  775. sde = map->sde[selector & map->mask];
  776. }
  777. rcu_read_unlock();
  778. if (sde)
  779. return sde;
  780. out:
  781. return sdma_select_engine_vl(dd, selector, vl);
  782. }
  783. static void sdma_populate_sde_map(struct sdma_rht_map_elem *map)
  784. {
  785. int i;
  786. for (i = 0; i < roundup_pow_of_two(map->ctr ? : 1) - map->ctr; i++)
  787. map->sde[map->ctr + i] = map->sde[i];
  788. }
  789. static void sdma_cleanup_sde_map(struct sdma_rht_map_elem *map,
  790. struct sdma_engine *sde)
  791. {
  792. unsigned int i, pow;
  793. /* only need to check the first ctr entries for a match */
  794. for (i = 0; i < map->ctr; i++) {
  795. if (map->sde[i] == sde) {
  796. memmove(&map->sde[i], &map->sde[i + 1],
  797. (map->ctr - i - 1) * sizeof(map->sde[0]));
  798. map->ctr--;
  799. pow = roundup_pow_of_two(map->ctr ? : 1);
  800. map->mask = pow - 1;
  801. sdma_populate_sde_map(map);
  802. break;
  803. }
  804. }
  805. }
  806. /*
  807. * Prevents concurrent reads and writes of the sdma engine cpu_mask
  808. */
  809. static DEFINE_MUTEX(process_to_sde_mutex);
  810. ssize_t sdma_set_cpu_to_sde_map(struct sdma_engine *sde, const char *buf,
  811. size_t count)
  812. {
  813. struct hfi1_devdata *dd = sde->dd;
  814. cpumask_var_t mask, new_mask;
  815. unsigned long cpu;
  816. int ret, vl, sz;
  817. struct sdma_rht_node *rht_node;
  818. vl = sdma_engine_get_vl(sde);
  819. if (unlikely(vl < 0 || vl >= ARRAY_SIZE(rht_node->map)))
  820. return -EINVAL;
  821. ret = zalloc_cpumask_var(&mask, GFP_KERNEL);
  822. if (!ret)
  823. return -ENOMEM;
  824. ret = zalloc_cpumask_var(&new_mask, GFP_KERNEL);
  825. if (!ret) {
  826. free_cpumask_var(mask);
  827. return -ENOMEM;
  828. }
  829. ret = cpulist_parse(buf, mask);
  830. if (ret)
  831. goto out_free;
  832. if (!cpumask_subset(mask, cpu_online_mask)) {
  833. dd_dev_warn(sde->dd, "Invalid CPU mask\n");
  834. ret = -EINVAL;
  835. goto out_free;
  836. }
  837. sz = sizeof(struct sdma_rht_map_elem) +
  838. (TXE_NUM_SDMA_ENGINES * sizeof(struct sdma_engine *));
  839. mutex_lock(&process_to_sde_mutex);
  840. for_each_cpu(cpu, mask) {
  841. /* Check if we have this already mapped */
  842. if (cpumask_test_cpu(cpu, &sde->cpu_mask)) {
  843. cpumask_set_cpu(cpu, new_mask);
  844. continue;
  845. }
  846. rht_node = rhashtable_lookup_fast(dd->sdma_rht, &cpu,
  847. sdma_rht_params);
  848. if (!rht_node) {
  849. rht_node = kzalloc(sizeof(*rht_node), GFP_KERNEL);
  850. if (!rht_node) {
  851. ret = -ENOMEM;
  852. goto out;
  853. }
  854. rht_node->map[vl] = kzalloc(sz, GFP_KERNEL);
  855. if (!rht_node->map[vl]) {
  856. kfree(rht_node);
  857. ret = -ENOMEM;
  858. goto out;
  859. }
  860. rht_node->cpu_id = cpu;
  861. rht_node->map[vl]->mask = 0;
  862. rht_node->map[vl]->ctr = 1;
  863. rht_node->map[vl]->sde[0] = sde;
  864. ret = rhashtable_insert_fast(dd->sdma_rht,
  865. &rht_node->node,
  866. sdma_rht_params);
  867. if (ret) {
  868. kfree(rht_node->map[vl]);
  869. kfree(rht_node);
  870. dd_dev_err(sde->dd, "Failed to set process to sde affinity for cpu %lu\n",
  871. cpu);
  872. goto out;
  873. }
  874. } else {
  875. int ctr, pow;
  876. /* Add new user mappings */
  877. if (!rht_node->map[vl])
  878. rht_node->map[vl] = kzalloc(sz, GFP_KERNEL);
  879. if (!rht_node->map[vl]) {
  880. ret = -ENOMEM;
  881. goto out;
  882. }
  883. rht_node->map[vl]->ctr++;
  884. ctr = rht_node->map[vl]->ctr;
  885. rht_node->map[vl]->sde[ctr - 1] = sde;
  886. pow = roundup_pow_of_two(ctr);
  887. rht_node->map[vl]->mask = pow - 1;
  888. /* Populate the sde map table */
  889. sdma_populate_sde_map(rht_node->map[vl]);
  890. }
  891. cpumask_set_cpu(cpu, new_mask);
  892. }
  893. /* Clean up old mappings */
  894. for_each_cpu(cpu, cpu_online_mask) {
  895. struct sdma_rht_node *rht_node;
  896. /* Don't cleanup sdes that are set in the new mask */
  897. if (cpumask_test_cpu(cpu, mask))
  898. continue;
  899. rht_node = rhashtable_lookup_fast(dd->sdma_rht, &cpu,
  900. sdma_rht_params);
  901. if (rht_node) {
  902. bool empty = true;
  903. int i;
  904. /* Remove mappings for old sde */
  905. for (i = 0; i < HFI1_MAX_VLS_SUPPORTED; i++)
  906. if (rht_node->map[i])
  907. sdma_cleanup_sde_map(rht_node->map[i],
  908. sde);
  909. /* Free empty hash table entries */
  910. for (i = 0; i < HFI1_MAX_VLS_SUPPORTED; i++) {
  911. if (!rht_node->map[i])
  912. continue;
  913. if (rht_node->map[i]->ctr) {
  914. empty = false;
  915. break;
  916. }
  917. }
  918. if (empty) {
  919. ret = rhashtable_remove_fast(dd->sdma_rht,
  920. &rht_node->node,
  921. sdma_rht_params);
  922. WARN_ON(ret);
  923. for (i = 0; i < HFI1_MAX_VLS_SUPPORTED; i++)
  924. kfree(rht_node->map[i]);
  925. kfree(rht_node);
  926. }
  927. }
  928. }
  929. cpumask_copy(&sde->cpu_mask, new_mask);
  930. out:
  931. mutex_unlock(&process_to_sde_mutex);
  932. out_free:
  933. free_cpumask_var(mask);
  934. free_cpumask_var(new_mask);
  935. return ret ? : strnlen(buf, PAGE_SIZE);
  936. }
  937. ssize_t sdma_get_cpu_to_sde_map(struct sdma_engine *sde, char *buf)
  938. {
  939. mutex_lock(&process_to_sde_mutex);
  940. if (cpumask_empty(&sde->cpu_mask))
  941. snprintf(buf, PAGE_SIZE, "%s\n", "empty");
  942. else
  943. cpumap_print_to_pagebuf(true, buf, &sde->cpu_mask);
  944. mutex_unlock(&process_to_sde_mutex);
  945. return strnlen(buf, PAGE_SIZE);
  946. }
  947. static void sdma_rht_free(void *ptr, void *arg)
  948. {
  949. struct sdma_rht_node *rht_node = ptr;
  950. int i;
  951. for (i = 0; i < HFI1_MAX_VLS_SUPPORTED; i++)
  952. kfree(rht_node->map[i]);
  953. kfree(rht_node);
  954. }
  955. /**
  956. * sdma_seqfile_dump_cpu_list() - debugfs dump the cpu to sdma mappings
  957. * @s: seq file
  958. * @dd: hfi1_devdata
  959. * @cpuid: cpu id
  960. *
  961. * This routine dumps the process to sde mappings per cpu
  962. */
  963. void sdma_seqfile_dump_cpu_list(struct seq_file *s,
  964. struct hfi1_devdata *dd,
  965. unsigned long cpuid)
  966. {
  967. struct sdma_rht_node *rht_node;
  968. int i, j;
  969. rht_node = rhashtable_lookup_fast(dd->sdma_rht, &cpuid,
  970. sdma_rht_params);
  971. if (!rht_node)
  972. return;
  973. seq_printf(s, "cpu%3lu: ", cpuid);
  974. for (i = 0; i < HFI1_MAX_VLS_SUPPORTED; i++) {
  975. if (!rht_node->map[i] || !rht_node->map[i]->ctr)
  976. continue;
  977. seq_printf(s, " vl%d: [", i);
  978. for (j = 0; j < rht_node->map[i]->ctr; j++) {
  979. if (!rht_node->map[i]->sde[j])
  980. continue;
  981. if (j > 0)
  982. seq_puts(s, ",");
  983. seq_printf(s, " sdma%2d",
  984. rht_node->map[i]->sde[j]->this_idx);
  985. }
  986. seq_puts(s, " ]");
  987. }
  988. seq_puts(s, "\n");
  989. }
  990. /*
  991. * Free the indicated map struct
  992. */
  993. static void sdma_map_free(struct sdma_vl_map *m)
  994. {
  995. int i;
  996. for (i = 0; m && i < m->actual_vls; i++)
  997. kfree(m->map[i]);
  998. kfree(m);
  999. }
  1000. /*
  1001. * Handle RCU callback
  1002. */
  1003. static void sdma_map_rcu_callback(struct rcu_head *list)
  1004. {
  1005. struct sdma_vl_map *m = container_of(list, struct sdma_vl_map, list);
  1006. sdma_map_free(m);
  1007. }
  1008. /**
  1009. * sdma_map_init - called when # vls change
  1010. * @dd: hfi1_devdata
  1011. * @port: port number
  1012. * @num_vls: number of vls
  1013. * @vl_engines: per vl engine mapping (optional)
  1014. *
  1015. * This routine changes the mapping based on the number of vls.
  1016. *
  1017. * vl_engines is used to specify a non-uniform vl/engine loading. NULL
  1018. * implies auto computing the loading and giving each VLs a uniform
  1019. * distribution of engines per VL.
  1020. *
  1021. * The auto algorithm computes the sde_per_vl and the number of extra
  1022. * engines. Any extra engines are added from the last VL on down.
  1023. *
  1024. * rcu locking is used here to control access to the mapping fields.
  1025. *
  1026. * If either the num_vls or num_sdma are non-power of 2, the array sizes
  1027. * in the struct sdma_vl_map and the struct sdma_map_elem are rounded
  1028. * up to the next highest power of 2 and the first entry is reused
  1029. * in a round robin fashion.
  1030. *
  1031. * If an error occurs the map change is not done and the mapping is
  1032. * not changed.
  1033. *
  1034. */
  1035. int sdma_map_init(struct hfi1_devdata *dd, u8 port, u8 num_vls, u8 *vl_engines)
  1036. {
  1037. int i, j;
  1038. int extra, sde_per_vl;
  1039. int engine = 0;
  1040. u8 lvl_engines[OPA_MAX_VLS];
  1041. struct sdma_vl_map *oldmap, *newmap;
  1042. if (!(dd->flags & HFI1_HAS_SEND_DMA))
  1043. return 0;
  1044. if (!vl_engines) {
  1045. /* truncate divide */
  1046. sde_per_vl = dd->num_sdma / num_vls;
  1047. /* extras */
  1048. extra = dd->num_sdma % num_vls;
  1049. vl_engines = lvl_engines;
  1050. /* add extras from last vl down */
  1051. for (i = num_vls - 1; i >= 0; i--, extra--)
  1052. vl_engines[i] = sde_per_vl + (extra > 0 ? 1 : 0);
  1053. }
  1054. /* build new map */
  1055. newmap = kzalloc(
  1056. sizeof(struct sdma_vl_map) +
  1057. roundup_pow_of_two(num_vls) *
  1058. sizeof(struct sdma_map_elem *),
  1059. GFP_KERNEL);
  1060. if (!newmap)
  1061. goto bail;
  1062. newmap->actual_vls = num_vls;
  1063. newmap->vls = roundup_pow_of_two(num_vls);
  1064. newmap->mask = (1 << ilog2(newmap->vls)) - 1;
  1065. /* initialize back-map */
  1066. for (i = 0; i < TXE_NUM_SDMA_ENGINES; i++)
  1067. newmap->engine_to_vl[i] = -1;
  1068. for (i = 0; i < newmap->vls; i++) {
  1069. /* save for wrap around */
  1070. int first_engine = engine;
  1071. if (i < newmap->actual_vls) {
  1072. int sz = roundup_pow_of_two(vl_engines[i]);
  1073. /* only allocate once */
  1074. newmap->map[i] = kzalloc(
  1075. sizeof(struct sdma_map_elem) +
  1076. sz * sizeof(struct sdma_engine *),
  1077. GFP_KERNEL);
  1078. if (!newmap->map[i])
  1079. goto bail;
  1080. newmap->map[i]->mask = (1 << ilog2(sz)) - 1;
  1081. /* assign engines */
  1082. for (j = 0; j < sz; j++) {
  1083. newmap->map[i]->sde[j] =
  1084. &dd->per_sdma[engine];
  1085. if (++engine >= first_engine + vl_engines[i])
  1086. /* wrap back to first engine */
  1087. engine = first_engine;
  1088. }
  1089. /* assign back-map */
  1090. for (j = 0; j < vl_engines[i]; j++)
  1091. newmap->engine_to_vl[first_engine + j] = i;
  1092. } else {
  1093. /* just re-use entry without allocating */
  1094. newmap->map[i] = newmap->map[i % num_vls];
  1095. }
  1096. engine = first_engine + vl_engines[i];
  1097. }
  1098. /* newmap in hand, save old map */
  1099. spin_lock_irq(&dd->sde_map_lock);
  1100. oldmap = rcu_dereference_protected(dd->sdma_map,
  1101. lockdep_is_held(&dd->sde_map_lock));
  1102. /* publish newmap */
  1103. rcu_assign_pointer(dd->sdma_map, newmap);
  1104. spin_unlock_irq(&dd->sde_map_lock);
  1105. /* success, free any old map after grace period */
  1106. if (oldmap)
  1107. call_rcu(&oldmap->list, sdma_map_rcu_callback);
  1108. return 0;
  1109. bail:
  1110. /* free any partial allocation */
  1111. sdma_map_free(newmap);
  1112. return -ENOMEM;
  1113. }
  1114. /**
  1115. * sdma_clean() Clean up allocated memory
  1116. * @dd: struct hfi1_devdata
  1117. * @num_engines: num sdma engines
  1118. *
  1119. * This routine can be called regardless of the success of
  1120. * sdma_init()
  1121. */
  1122. void sdma_clean(struct hfi1_devdata *dd, size_t num_engines)
  1123. {
  1124. size_t i;
  1125. struct sdma_engine *sde;
  1126. if (dd->sdma_pad_dma) {
  1127. dma_free_coherent(&dd->pcidev->dev, SDMA_PAD,
  1128. (void *)dd->sdma_pad_dma,
  1129. dd->sdma_pad_phys);
  1130. dd->sdma_pad_dma = NULL;
  1131. dd->sdma_pad_phys = 0;
  1132. }
  1133. if (dd->sdma_heads_dma) {
  1134. dma_free_coherent(&dd->pcidev->dev, dd->sdma_heads_size,
  1135. (void *)dd->sdma_heads_dma,
  1136. dd->sdma_heads_phys);
  1137. dd->sdma_heads_dma = NULL;
  1138. dd->sdma_heads_phys = 0;
  1139. }
  1140. for (i = 0; dd->per_sdma && i < num_engines; ++i) {
  1141. sde = &dd->per_sdma[i];
  1142. sde->head_dma = NULL;
  1143. sde->head_phys = 0;
  1144. if (sde->descq) {
  1145. dma_free_coherent(
  1146. &dd->pcidev->dev,
  1147. sde->descq_cnt * sizeof(u64[2]),
  1148. sde->descq,
  1149. sde->descq_phys
  1150. );
  1151. sde->descq = NULL;
  1152. sde->descq_phys = 0;
  1153. }
  1154. kvfree(sde->tx_ring);
  1155. sde->tx_ring = NULL;
  1156. }
  1157. spin_lock_irq(&dd->sde_map_lock);
  1158. sdma_map_free(rcu_access_pointer(dd->sdma_map));
  1159. RCU_INIT_POINTER(dd->sdma_map, NULL);
  1160. spin_unlock_irq(&dd->sde_map_lock);
  1161. synchronize_rcu();
  1162. kfree(dd->per_sdma);
  1163. dd->per_sdma = NULL;
  1164. if (dd->sdma_rht) {
  1165. rhashtable_free_and_destroy(dd->sdma_rht, sdma_rht_free, NULL);
  1166. kfree(dd->sdma_rht);
  1167. dd->sdma_rht = NULL;
  1168. }
  1169. }
  1170. /**
  1171. * sdma_init() - called when device probed
  1172. * @dd: hfi1_devdata
  1173. * @port: port number (currently only zero)
  1174. *
  1175. * Initializes each sde and its csrs.
  1176. * Interrupts are not required to be enabled.
  1177. *
  1178. * Returns:
  1179. * 0 - success, -errno on failure
  1180. */
  1181. int sdma_init(struct hfi1_devdata *dd, u8 port)
  1182. {
  1183. unsigned this_idx;
  1184. struct sdma_engine *sde;
  1185. struct rhashtable *tmp_sdma_rht;
  1186. u16 descq_cnt;
  1187. void *curr_head;
  1188. struct hfi1_pportdata *ppd = dd->pport + port;
  1189. u32 per_sdma_credits;
  1190. uint idle_cnt = sdma_idle_cnt;
  1191. size_t num_engines = chip_sdma_engines(dd);
  1192. int ret = -ENOMEM;
  1193. if (!HFI1_CAP_IS_KSET(SDMA)) {
  1194. HFI1_CAP_CLEAR(SDMA_AHG);
  1195. return 0;
  1196. }
  1197. if (mod_num_sdma &&
  1198. /* can't exceed chip support */
  1199. mod_num_sdma <= chip_sdma_engines(dd) &&
  1200. /* count must be >= vls */
  1201. mod_num_sdma >= num_vls)
  1202. num_engines = mod_num_sdma;
  1203. dd_dev_info(dd, "SDMA mod_num_sdma: %u\n", mod_num_sdma);
  1204. dd_dev_info(dd, "SDMA chip_sdma_engines: %u\n", chip_sdma_engines(dd));
  1205. dd_dev_info(dd, "SDMA chip_sdma_mem_size: %u\n",
  1206. chip_sdma_mem_size(dd));
  1207. per_sdma_credits =
  1208. chip_sdma_mem_size(dd) / (num_engines * SDMA_BLOCK_SIZE);
  1209. /* set up freeze waitqueue */
  1210. init_waitqueue_head(&dd->sdma_unfreeze_wq);
  1211. atomic_set(&dd->sdma_unfreeze_count, 0);
  1212. descq_cnt = sdma_get_descq_cnt();
  1213. dd_dev_info(dd, "SDMA engines %zu descq_cnt %u\n",
  1214. num_engines, descq_cnt);
  1215. /* alloc memory for array of send engines */
  1216. dd->per_sdma = kcalloc_node(num_engines, sizeof(*dd->per_sdma),
  1217. GFP_KERNEL, dd->node);
  1218. if (!dd->per_sdma)
  1219. return ret;
  1220. idle_cnt = ns_to_cclock(dd, idle_cnt);
  1221. if (idle_cnt)
  1222. dd->default_desc1 =
  1223. SDMA_DESC1_HEAD_TO_HOST_FLAG;
  1224. else
  1225. dd->default_desc1 =
  1226. SDMA_DESC1_INT_REQ_FLAG;
  1227. if (!sdma_desct_intr)
  1228. sdma_desct_intr = SDMA_DESC_INTR;
  1229. /* Allocate memory for SendDMA descriptor FIFOs */
  1230. for (this_idx = 0; this_idx < num_engines; ++this_idx) {
  1231. sde = &dd->per_sdma[this_idx];
  1232. sde->dd = dd;
  1233. sde->ppd = ppd;
  1234. sde->this_idx = this_idx;
  1235. sde->descq_cnt = descq_cnt;
  1236. sde->desc_avail = sdma_descq_freecnt(sde);
  1237. sde->sdma_shift = ilog2(descq_cnt);
  1238. sde->sdma_mask = (1 << sde->sdma_shift) - 1;
  1239. /* Create a mask specifically for each interrupt source */
  1240. sde->int_mask = (u64)1 << (0 * TXE_NUM_SDMA_ENGINES +
  1241. this_idx);
  1242. sde->progress_mask = (u64)1 << (1 * TXE_NUM_SDMA_ENGINES +
  1243. this_idx);
  1244. sde->idle_mask = (u64)1 << (2 * TXE_NUM_SDMA_ENGINES +
  1245. this_idx);
  1246. /* Create a combined mask to cover all 3 interrupt sources */
  1247. sde->imask = sde->int_mask | sde->progress_mask |
  1248. sde->idle_mask;
  1249. spin_lock_init(&sde->tail_lock);
  1250. seqlock_init(&sde->head_lock);
  1251. spin_lock_init(&sde->senddmactrl_lock);
  1252. spin_lock_init(&sde->flushlist_lock);
  1253. /* insure there is always a zero bit */
  1254. sde->ahg_bits = 0xfffffffe00000000ULL;
  1255. sdma_set_state(sde, sdma_state_s00_hw_down);
  1256. /* set up reference counting */
  1257. kref_init(&sde->state.kref);
  1258. init_completion(&sde->state.comp);
  1259. INIT_LIST_HEAD(&sde->flushlist);
  1260. INIT_LIST_HEAD(&sde->dmawait);
  1261. sde->tail_csr =
  1262. get_kctxt_csr_addr(dd, this_idx, SD(TAIL));
  1263. tasklet_init(&sde->sdma_hw_clean_up_task, sdma_hw_clean_up_task,
  1264. (unsigned long)sde);
  1265. tasklet_init(&sde->sdma_sw_clean_up_task, sdma_sw_clean_up_task,
  1266. (unsigned long)sde);
  1267. INIT_WORK(&sde->err_halt_worker, sdma_err_halt_wait);
  1268. INIT_WORK(&sde->flush_worker, sdma_field_flush);
  1269. sde->progress_check_head = 0;
  1270. timer_setup(&sde->err_progress_check_timer,
  1271. sdma_err_progress_check, 0);
  1272. sde->descq = dma_zalloc_coherent(
  1273. &dd->pcidev->dev,
  1274. descq_cnt * sizeof(u64[2]),
  1275. &sde->descq_phys,
  1276. GFP_KERNEL
  1277. );
  1278. if (!sde->descq)
  1279. goto bail;
  1280. sde->tx_ring =
  1281. kvzalloc_node(array_size(descq_cnt,
  1282. sizeof(struct sdma_txreq *)),
  1283. GFP_KERNEL, dd->node);
  1284. if (!sde->tx_ring)
  1285. goto bail;
  1286. }
  1287. dd->sdma_heads_size = L1_CACHE_BYTES * num_engines;
  1288. /* Allocate memory for DMA of head registers to memory */
  1289. dd->sdma_heads_dma = dma_zalloc_coherent(
  1290. &dd->pcidev->dev,
  1291. dd->sdma_heads_size,
  1292. &dd->sdma_heads_phys,
  1293. GFP_KERNEL
  1294. );
  1295. if (!dd->sdma_heads_dma) {
  1296. dd_dev_err(dd, "failed to allocate SendDMA head memory\n");
  1297. goto bail;
  1298. }
  1299. /* Allocate memory for pad */
  1300. dd->sdma_pad_dma = dma_zalloc_coherent(
  1301. &dd->pcidev->dev,
  1302. SDMA_PAD,
  1303. &dd->sdma_pad_phys,
  1304. GFP_KERNEL
  1305. );
  1306. if (!dd->sdma_pad_dma) {
  1307. dd_dev_err(dd, "failed to allocate SendDMA pad memory\n");
  1308. goto bail;
  1309. }
  1310. /* assign each engine to different cacheline and init registers */
  1311. curr_head = (void *)dd->sdma_heads_dma;
  1312. for (this_idx = 0; this_idx < num_engines; ++this_idx) {
  1313. unsigned long phys_offset;
  1314. sde = &dd->per_sdma[this_idx];
  1315. sde->head_dma = curr_head;
  1316. curr_head += L1_CACHE_BYTES;
  1317. phys_offset = (unsigned long)sde->head_dma -
  1318. (unsigned long)dd->sdma_heads_dma;
  1319. sde->head_phys = dd->sdma_heads_phys + phys_offset;
  1320. init_sdma_regs(sde, per_sdma_credits, idle_cnt);
  1321. }
  1322. dd->flags |= HFI1_HAS_SEND_DMA;
  1323. dd->flags |= idle_cnt ? HFI1_HAS_SDMA_TIMEOUT : 0;
  1324. dd->num_sdma = num_engines;
  1325. ret = sdma_map_init(dd, port, ppd->vls_operational, NULL);
  1326. if (ret < 0)
  1327. goto bail;
  1328. tmp_sdma_rht = kzalloc(sizeof(*tmp_sdma_rht), GFP_KERNEL);
  1329. if (!tmp_sdma_rht) {
  1330. ret = -ENOMEM;
  1331. goto bail;
  1332. }
  1333. ret = rhashtable_init(tmp_sdma_rht, &sdma_rht_params);
  1334. if (ret < 0) {
  1335. kfree(tmp_sdma_rht);
  1336. goto bail;
  1337. }
  1338. dd->sdma_rht = tmp_sdma_rht;
  1339. dd_dev_info(dd, "SDMA num_sdma: %u\n", dd->num_sdma);
  1340. return 0;
  1341. bail:
  1342. sdma_clean(dd, num_engines);
  1343. return ret;
  1344. }
  1345. /**
  1346. * sdma_all_running() - called when the link goes up
  1347. * @dd: hfi1_devdata
  1348. *
  1349. * This routine moves all engines to the running state.
  1350. */
  1351. void sdma_all_running(struct hfi1_devdata *dd)
  1352. {
  1353. struct sdma_engine *sde;
  1354. unsigned int i;
  1355. /* move all engines to running */
  1356. for (i = 0; i < dd->num_sdma; ++i) {
  1357. sde = &dd->per_sdma[i];
  1358. sdma_process_event(sde, sdma_event_e30_go_running);
  1359. }
  1360. }
  1361. /**
  1362. * sdma_all_idle() - called when the link goes down
  1363. * @dd: hfi1_devdata
  1364. *
  1365. * This routine moves all engines to the idle state.
  1366. */
  1367. void sdma_all_idle(struct hfi1_devdata *dd)
  1368. {
  1369. struct sdma_engine *sde;
  1370. unsigned int i;
  1371. /* idle all engines */
  1372. for (i = 0; i < dd->num_sdma; ++i) {
  1373. sde = &dd->per_sdma[i];
  1374. sdma_process_event(sde, sdma_event_e70_go_idle);
  1375. }
  1376. }
  1377. /**
  1378. * sdma_start() - called to kick off state processing for all engines
  1379. * @dd: hfi1_devdata
  1380. *
  1381. * This routine is for kicking off the state processing for all required
  1382. * sdma engines. Interrupts need to be working at this point.
  1383. *
  1384. */
  1385. void sdma_start(struct hfi1_devdata *dd)
  1386. {
  1387. unsigned i;
  1388. struct sdma_engine *sde;
  1389. /* kick off the engines state processing */
  1390. for (i = 0; i < dd->num_sdma; ++i) {
  1391. sde = &dd->per_sdma[i];
  1392. sdma_process_event(sde, sdma_event_e10_go_hw_start);
  1393. }
  1394. }
  1395. /**
  1396. * sdma_exit() - used when module is removed
  1397. * @dd: hfi1_devdata
  1398. */
  1399. void sdma_exit(struct hfi1_devdata *dd)
  1400. {
  1401. unsigned this_idx;
  1402. struct sdma_engine *sde;
  1403. for (this_idx = 0; dd->per_sdma && this_idx < dd->num_sdma;
  1404. ++this_idx) {
  1405. sde = &dd->per_sdma[this_idx];
  1406. if (!list_empty(&sde->dmawait))
  1407. dd_dev_err(dd, "sde %u: dmawait list not empty!\n",
  1408. sde->this_idx);
  1409. sdma_process_event(sde, sdma_event_e00_go_hw_down);
  1410. del_timer_sync(&sde->err_progress_check_timer);
  1411. /*
  1412. * This waits for the state machine to exit so it is not
  1413. * necessary to kill the sdma_sw_clean_up_task to make sure
  1414. * it is not running.
  1415. */
  1416. sdma_finalput(&sde->state);
  1417. }
  1418. }
  1419. /*
  1420. * unmap the indicated descriptor
  1421. */
  1422. static inline void sdma_unmap_desc(
  1423. struct hfi1_devdata *dd,
  1424. struct sdma_desc *descp)
  1425. {
  1426. switch (sdma_mapping_type(descp)) {
  1427. case SDMA_MAP_SINGLE:
  1428. dma_unmap_single(
  1429. &dd->pcidev->dev,
  1430. sdma_mapping_addr(descp),
  1431. sdma_mapping_len(descp),
  1432. DMA_TO_DEVICE);
  1433. break;
  1434. case SDMA_MAP_PAGE:
  1435. dma_unmap_page(
  1436. &dd->pcidev->dev,
  1437. sdma_mapping_addr(descp),
  1438. sdma_mapping_len(descp),
  1439. DMA_TO_DEVICE);
  1440. break;
  1441. }
  1442. }
  1443. /*
  1444. * return the mode as indicated by the first
  1445. * descriptor in the tx.
  1446. */
  1447. static inline u8 ahg_mode(struct sdma_txreq *tx)
  1448. {
  1449. return (tx->descp[0].qw[1] & SDMA_DESC1_HEADER_MODE_SMASK)
  1450. >> SDMA_DESC1_HEADER_MODE_SHIFT;
  1451. }
  1452. /**
  1453. * __sdma_txclean() - clean tx of mappings, descp *kmalloc's
  1454. * @dd: hfi1_devdata for unmapping
  1455. * @tx: tx request to clean
  1456. *
  1457. * This is used in the progress routine to clean the tx or
  1458. * by the ULP to toss an in-process tx build.
  1459. *
  1460. * The code can be called multiple times without issue.
  1461. *
  1462. */
  1463. void __sdma_txclean(
  1464. struct hfi1_devdata *dd,
  1465. struct sdma_txreq *tx)
  1466. {
  1467. u16 i;
  1468. if (tx->num_desc) {
  1469. u8 skip = 0, mode = ahg_mode(tx);
  1470. /* unmap first */
  1471. sdma_unmap_desc(dd, &tx->descp[0]);
  1472. /* determine number of AHG descriptors to skip */
  1473. if (mode > SDMA_AHG_APPLY_UPDATE1)
  1474. skip = mode >> 1;
  1475. for (i = 1 + skip; i < tx->num_desc; i++)
  1476. sdma_unmap_desc(dd, &tx->descp[i]);
  1477. tx->num_desc = 0;
  1478. }
  1479. kfree(tx->coalesce_buf);
  1480. tx->coalesce_buf = NULL;
  1481. /* kmalloc'ed descp */
  1482. if (unlikely(tx->desc_limit > ARRAY_SIZE(tx->descs))) {
  1483. tx->desc_limit = ARRAY_SIZE(tx->descs);
  1484. kfree(tx->descp);
  1485. }
  1486. }
  1487. static inline u16 sdma_gethead(struct sdma_engine *sde)
  1488. {
  1489. struct hfi1_devdata *dd = sde->dd;
  1490. int use_dmahead;
  1491. u16 hwhead;
  1492. #ifdef CONFIG_SDMA_VERBOSITY
  1493. dd_dev_err(sde->dd, "CONFIG SDMA(%u) %s:%d %s()\n",
  1494. sde->this_idx, slashstrip(__FILE__), __LINE__, __func__);
  1495. #endif
  1496. retry:
  1497. use_dmahead = HFI1_CAP_IS_KSET(USE_SDMA_HEAD) && __sdma_running(sde) &&
  1498. (dd->flags & HFI1_HAS_SDMA_TIMEOUT);
  1499. hwhead = use_dmahead ?
  1500. (u16)le64_to_cpu(*sde->head_dma) :
  1501. (u16)read_sde_csr(sde, SD(HEAD));
  1502. if (unlikely(HFI1_CAP_IS_KSET(SDMA_HEAD_CHECK))) {
  1503. u16 cnt;
  1504. u16 swtail;
  1505. u16 swhead;
  1506. int sane;
  1507. swhead = sde->descq_head & sde->sdma_mask;
  1508. /* this code is really bad for cache line trading */
  1509. swtail = READ_ONCE(sde->descq_tail) & sde->sdma_mask;
  1510. cnt = sde->descq_cnt;
  1511. if (swhead < swtail)
  1512. /* not wrapped */
  1513. sane = (hwhead >= swhead) & (hwhead <= swtail);
  1514. else if (swhead > swtail)
  1515. /* wrapped around */
  1516. sane = ((hwhead >= swhead) && (hwhead < cnt)) ||
  1517. (hwhead <= swtail);
  1518. else
  1519. /* empty */
  1520. sane = (hwhead == swhead);
  1521. if (unlikely(!sane)) {
  1522. dd_dev_err(dd, "SDMA(%u) bad head (%s) hwhd=%hu swhd=%hu swtl=%hu cnt=%hu\n",
  1523. sde->this_idx,
  1524. use_dmahead ? "dma" : "kreg",
  1525. hwhead, swhead, swtail, cnt);
  1526. if (use_dmahead) {
  1527. /* try one more time, using csr */
  1528. use_dmahead = 0;
  1529. goto retry;
  1530. }
  1531. /* proceed as if no progress */
  1532. hwhead = swhead;
  1533. }
  1534. }
  1535. return hwhead;
  1536. }
  1537. /*
  1538. * This is called when there are send DMA descriptors that might be
  1539. * available.
  1540. *
  1541. * This is called with head_lock held.
  1542. */
  1543. static void sdma_desc_avail(struct sdma_engine *sde, uint avail)
  1544. {
  1545. struct iowait *wait, *nw;
  1546. struct iowait *waits[SDMA_WAIT_BATCH_SIZE];
  1547. uint i, n = 0, seq, max_idx = 0;
  1548. struct sdma_txreq *stx;
  1549. struct hfi1_ibdev *dev = &sde->dd->verbs_dev;
  1550. u8 max_starved_cnt = 0;
  1551. #ifdef CONFIG_SDMA_VERBOSITY
  1552. dd_dev_err(sde->dd, "CONFIG SDMA(%u) %s:%d %s()\n", sde->this_idx,
  1553. slashstrip(__FILE__), __LINE__, __func__);
  1554. dd_dev_err(sde->dd, "avail: %u\n", avail);
  1555. #endif
  1556. do {
  1557. seq = read_seqbegin(&dev->iowait_lock);
  1558. if (!list_empty(&sde->dmawait)) {
  1559. /* at least one item */
  1560. write_seqlock(&dev->iowait_lock);
  1561. /* Harvest waiters wanting DMA descriptors */
  1562. list_for_each_entry_safe(
  1563. wait,
  1564. nw,
  1565. &sde->dmawait,
  1566. list) {
  1567. u16 num_desc = 0;
  1568. if (!wait->wakeup)
  1569. continue;
  1570. if (n == ARRAY_SIZE(waits))
  1571. break;
  1572. if (!list_empty(&wait->tx_head)) {
  1573. stx = list_first_entry(
  1574. &wait->tx_head,
  1575. struct sdma_txreq,
  1576. list);
  1577. num_desc = stx->num_desc;
  1578. }
  1579. if (num_desc > avail)
  1580. break;
  1581. avail -= num_desc;
  1582. /* Find the most starved wait memeber */
  1583. iowait_starve_find_max(wait, &max_starved_cnt,
  1584. n, &max_idx);
  1585. list_del_init(&wait->list);
  1586. waits[n++] = wait;
  1587. }
  1588. write_sequnlock(&dev->iowait_lock);
  1589. break;
  1590. }
  1591. } while (read_seqretry(&dev->iowait_lock, seq));
  1592. /* Schedule the most starved one first */
  1593. if (n)
  1594. waits[max_idx]->wakeup(waits[max_idx], SDMA_AVAIL_REASON);
  1595. for (i = 0; i < n; i++)
  1596. if (i != max_idx)
  1597. waits[i]->wakeup(waits[i], SDMA_AVAIL_REASON);
  1598. }
  1599. /* head_lock must be held */
  1600. static void sdma_make_progress(struct sdma_engine *sde, u64 status)
  1601. {
  1602. struct sdma_txreq *txp = NULL;
  1603. int progress = 0;
  1604. u16 hwhead, swhead;
  1605. int idle_check_done = 0;
  1606. hwhead = sdma_gethead(sde);
  1607. /* The reason for some of the complexity of this code is that
  1608. * not all descriptors have corresponding txps. So, we have to
  1609. * be able to skip over descs until we wander into the range of
  1610. * the next txp on the list.
  1611. */
  1612. retry:
  1613. txp = get_txhead(sde);
  1614. swhead = sde->descq_head & sde->sdma_mask;
  1615. trace_hfi1_sdma_progress(sde, hwhead, swhead, txp);
  1616. while (swhead != hwhead) {
  1617. /* advance head, wrap if needed */
  1618. swhead = ++sde->descq_head & sde->sdma_mask;
  1619. /* if now past this txp's descs, do the callback */
  1620. if (txp && txp->next_descq_idx == swhead) {
  1621. /* remove from list */
  1622. sde->tx_ring[sde->tx_head++ & sde->sdma_mask] = NULL;
  1623. complete_tx(sde, txp, SDMA_TXREQ_S_OK);
  1624. /* see if there is another txp */
  1625. txp = get_txhead(sde);
  1626. }
  1627. trace_hfi1_sdma_progress(sde, hwhead, swhead, txp);
  1628. progress++;
  1629. }
  1630. /*
  1631. * The SDMA idle interrupt is not guaranteed to be ordered with respect
  1632. * to updates to the the dma_head location in host memory. The head
  1633. * value read might not be fully up to date. If there are pending
  1634. * descriptors and the SDMA idle interrupt fired then read from the
  1635. * CSR SDMA head instead to get the latest value from the hardware.
  1636. * The hardware SDMA head should be read at most once in this invocation
  1637. * of sdma_make_progress(..) which is ensured by idle_check_done flag
  1638. */
  1639. if ((status & sde->idle_mask) && !idle_check_done) {
  1640. u16 swtail;
  1641. swtail = READ_ONCE(sde->descq_tail) & sde->sdma_mask;
  1642. if (swtail != hwhead) {
  1643. hwhead = (u16)read_sde_csr(sde, SD(HEAD));
  1644. idle_check_done = 1;
  1645. goto retry;
  1646. }
  1647. }
  1648. sde->last_status = status;
  1649. if (progress)
  1650. sdma_desc_avail(sde, sdma_descq_freecnt(sde));
  1651. }
  1652. /*
  1653. * sdma_engine_interrupt() - interrupt handler for engine
  1654. * @sde: sdma engine
  1655. * @status: sdma interrupt reason
  1656. *
  1657. * Status is a mask of the 3 possible interrupts for this engine. It will
  1658. * contain bits _only_ for this SDMA engine. It will contain at least one
  1659. * bit, it may contain more.
  1660. */
  1661. void sdma_engine_interrupt(struct sdma_engine *sde, u64 status)
  1662. {
  1663. trace_hfi1_sdma_engine_interrupt(sde, status);
  1664. write_seqlock(&sde->head_lock);
  1665. sdma_set_desc_cnt(sde, sdma_desct_intr);
  1666. if (status & sde->idle_mask)
  1667. sde->idle_int_cnt++;
  1668. else if (status & sde->progress_mask)
  1669. sde->progress_int_cnt++;
  1670. else if (status & sde->int_mask)
  1671. sde->sdma_int_cnt++;
  1672. sdma_make_progress(sde, status);
  1673. write_sequnlock(&sde->head_lock);
  1674. }
  1675. /**
  1676. * sdma_engine_error() - error handler for engine
  1677. * @sde: sdma engine
  1678. * @status: sdma interrupt reason
  1679. */
  1680. void sdma_engine_error(struct sdma_engine *sde, u64 status)
  1681. {
  1682. unsigned long flags;
  1683. #ifdef CONFIG_SDMA_VERBOSITY
  1684. dd_dev_err(sde->dd, "CONFIG SDMA(%u) error status 0x%llx state %s\n",
  1685. sde->this_idx,
  1686. (unsigned long long)status,
  1687. sdma_state_names[sde->state.current_state]);
  1688. #endif
  1689. spin_lock_irqsave(&sde->tail_lock, flags);
  1690. write_seqlock(&sde->head_lock);
  1691. if (status & ALL_SDMA_ENG_HALT_ERRS)
  1692. __sdma_process_event(sde, sdma_event_e60_hw_halted);
  1693. if (status & ~SD(ENG_ERR_STATUS_SDMA_HALT_ERR_SMASK)) {
  1694. dd_dev_err(sde->dd,
  1695. "SDMA (%u) engine error: 0x%llx state %s\n",
  1696. sde->this_idx,
  1697. (unsigned long long)status,
  1698. sdma_state_names[sde->state.current_state]);
  1699. dump_sdma_state(sde);
  1700. }
  1701. write_sequnlock(&sde->head_lock);
  1702. spin_unlock_irqrestore(&sde->tail_lock, flags);
  1703. }
  1704. static void sdma_sendctrl(struct sdma_engine *sde, unsigned op)
  1705. {
  1706. u64 set_senddmactrl = 0;
  1707. u64 clr_senddmactrl = 0;
  1708. unsigned long flags;
  1709. #ifdef CONFIG_SDMA_VERBOSITY
  1710. dd_dev_err(sde->dd, "CONFIG SDMA(%u) senddmactrl E=%d I=%d H=%d C=%d\n",
  1711. sde->this_idx,
  1712. (op & SDMA_SENDCTRL_OP_ENABLE) ? 1 : 0,
  1713. (op & SDMA_SENDCTRL_OP_INTENABLE) ? 1 : 0,
  1714. (op & SDMA_SENDCTRL_OP_HALT) ? 1 : 0,
  1715. (op & SDMA_SENDCTRL_OP_CLEANUP) ? 1 : 0);
  1716. #endif
  1717. if (op & SDMA_SENDCTRL_OP_ENABLE)
  1718. set_senddmactrl |= SD(CTRL_SDMA_ENABLE_SMASK);
  1719. else
  1720. clr_senddmactrl |= SD(CTRL_SDMA_ENABLE_SMASK);
  1721. if (op & SDMA_SENDCTRL_OP_INTENABLE)
  1722. set_senddmactrl |= SD(CTRL_SDMA_INT_ENABLE_SMASK);
  1723. else
  1724. clr_senddmactrl |= SD(CTRL_SDMA_INT_ENABLE_SMASK);
  1725. if (op & SDMA_SENDCTRL_OP_HALT)
  1726. set_senddmactrl |= SD(CTRL_SDMA_HALT_SMASK);
  1727. else
  1728. clr_senddmactrl |= SD(CTRL_SDMA_HALT_SMASK);
  1729. spin_lock_irqsave(&sde->senddmactrl_lock, flags);
  1730. sde->p_senddmactrl |= set_senddmactrl;
  1731. sde->p_senddmactrl &= ~clr_senddmactrl;
  1732. if (op & SDMA_SENDCTRL_OP_CLEANUP)
  1733. write_sde_csr(sde, SD(CTRL),
  1734. sde->p_senddmactrl |
  1735. SD(CTRL_SDMA_CLEANUP_SMASK));
  1736. else
  1737. write_sde_csr(sde, SD(CTRL), sde->p_senddmactrl);
  1738. spin_unlock_irqrestore(&sde->senddmactrl_lock, flags);
  1739. #ifdef CONFIG_SDMA_VERBOSITY
  1740. sdma_dumpstate(sde);
  1741. #endif
  1742. }
  1743. static void sdma_setlengen(struct sdma_engine *sde)
  1744. {
  1745. #ifdef CONFIG_SDMA_VERBOSITY
  1746. dd_dev_err(sde->dd, "CONFIG SDMA(%u) %s:%d %s()\n",
  1747. sde->this_idx, slashstrip(__FILE__), __LINE__, __func__);
  1748. #endif
  1749. /*
  1750. * Set SendDmaLenGen and clear-then-set the MSB of the generation
  1751. * count to enable generation checking and load the internal
  1752. * generation counter.
  1753. */
  1754. write_sde_csr(sde, SD(LEN_GEN),
  1755. (sde->descq_cnt / 64) << SD(LEN_GEN_LENGTH_SHIFT));
  1756. write_sde_csr(sde, SD(LEN_GEN),
  1757. ((sde->descq_cnt / 64) << SD(LEN_GEN_LENGTH_SHIFT)) |
  1758. (4ULL << SD(LEN_GEN_GENERATION_SHIFT)));
  1759. }
  1760. static inline void sdma_update_tail(struct sdma_engine *sde, u16 tail)
  1761. {
  1762. /* Commit writes to memory and advance the tail on the chip */
  1763. smp_wmb(); /* see get_txhead() */
  1764. writeq(tail, sde->tail_csr);
  1765. }
  1766. /*
  1767. * This is called when changing to state s10_hw_start_up_halt_wait as
  1768. * a result of send buffer errors or send DMA descriptor errors.
  1769. */
  1770. static void sdma_hw_start_up(struct sdma_engine *sde)
  1771. {
  1772. u64 reg;
  1773. #ifdef CONFIG_SDMA_VERBOSITY
  1774. dd_dev_err(sde->dd, "CONFIG SDMA(%u) %s:%d %s()\n",
  1775. sde->this_idx, slashstrip(__FILE__), __LINE__, __func__);
  1776. #endif
  1777. sdma_setlengen(sde);
  1778. sdma_update_tail(sde, 0); /* Set SendDmaTail */
  1779. *sde->head_dma = 0;
  1780. reg = SD(ENG_ERR_CLEAR_SDMA_HEADER_REQUEST_FIFO_UNC_ERR_MASK) <<
  1781. SD(ENG_ERR_CLEAR_SDMA_HEADER_REQUEST_FIFO_UNC_ERR_SHIFT);
  1782. write_sde_csr(sde, SD(ENG_ERR_CLEAR), reg);
  1783. }
  1784. /*
  1785. * set_sdma_integrity
  1786. *
  1787. * Set the SEND_DMA_CHECK_ENABLE register for send DMA engine 'sde'.
  1788. */
  1789. static void set_sdma_integrity(struct sdma_engine *sde)
  1790. {
  1791. struct hfi1_devdata *dd = sde->dd;
  1792. write_sde_csr(sde, SD(CHECK_ENABLE),
  1793. hfi1_pkt_base_sdma_integrity(dd));
  1794. }
  1795. static void init_sdma_regs(
  1796. struct sdma_engine *sde,
  1797. u32 credits,
  1798. uint idle_cnt)
  1799. {
  1800. u8 opval, opmask;
  1801. #ifdef CONFIG_SDMA_VERBOSITY
  1802. struct hfi1_devdata *dd = sde->dd;
  1803. dd_dev_err(dd, "CONFIG SDMA(%u) %s:%d %s()\n",
  1804. sde->this_idx, slashstrip(__FILE__), __LINE__, __func__);
  1805. #endif
  1806. write_sde_csr(sde, SD(BASE_ADDR), sde->descq_phys);
  1807. sdma_setlengen(sde);
  1808. sdma_update_tail(sde, 0); /* Set SendDmaTail */
  1809. write_sde_csr(sde, SD(RELOAD_CNT), idle_cnt);
  1810. write_sde_csr(sde, SD(DESC_CNT), 0);
  1811. write_sde_csr(sde, SD(HEAD_ADDR), sde->head_phys);
  1812. write_sde_csr(sde, SD(MEMORY),
  1813. ((u64)credits << SD(MEMORY_SDMA_MEMORY_CNT_SHIFT)) |
  1814. ((u64)(credits * sde->this_idx) <<
  1815. SD(MEMORY_SDMA_MEMORY_INDEX_SHIFT)));
  1816. write_sde_csr(sde, SD(ENG_ERR_MASK), ~0ull);
  1817. set_sdma_integrity(sde);
  1818. opmask = OPCODE_CHECK_MASK_DISABLED;
  1819. opval = OPCODE_CHECK_VAL_DISABLED;
  1820. write_sde_csr(sde, SD(CHECK_OPCODE),
  1821. (opmask << SEND_CTXT_CHECK_OPCODE_MASK_SHIFT) |
  1822. (opval << SEND_CTXT_CHECK_OPCODE_VALUE_SHIFT));
  1823. }
  1824. #ifdef CONFIG_SDMA_VERBOSITY
  1825. #define sdma_dumpstate_helper0(reg) do { \
  1826. csr = read_csr(sde->dd, reg); \
  1827. dd_dev_err(sde->dd, "%36s 0x%016llx\n", #reg, csr); \
  1828. } while (0)
  1829. #define sdma_dumpstate_helper(reg) do { \
  1830. csr = read_sde_csr(sde, reg); \
  1831. dd_dev_err(sde->dd, "%36s[%02u] 0x%016llx\n", \
  1832. #reg, sde->this_idx, csr); \
  1833. } while (0)
  1834. #define sdma_dumpstate_helper2(reg) do { \
  1835. csr = read_csr(sde->dd, reg + (8 * i)); \
  1836. dd_dev_err(sde->dd, "%33s_%02u 0x%016llx\n", \
  1837. #reg, i, csr); \
  1838. } while (0)
  1839. void sdma_dumpstate(struct sdma_engine *sde)
  1840. {
  1841. u64 csr;
  1842. unsigned i;
  1843. sdma_dumpstate_helper(SD(CTRL));
  1844. sdma_dumpstate_helper(SD(STATUS));
  1845. sdma_dumpstate_helper0(SD(ERR_STATUS));
  1846. sdma_dumpstate_helper0(SD(ERR_MASK));
  1847. sdma_dumpstate_helper(SD(ENG_ERR_STATUS));
  1848. sdma_dumpstate_helper(SD(ENG_ERR_MASK));
  1849. for (i = 0; i < CCE_NUM_INT_CSRS; ++i) {
  1850. sdma_dumpstate_helper2(CCE_INT_STATUS);
  1851. sdma_dumpstate_helper2(CCE_INT_MASK);
  1852. sdma_dumpstate_helper2(CCE_INT_BLOCKED);
  1853. }
  1854. sdma_dumpstate_helper(SD(TAIL));
  1855. sdma_dumpstate_helper(SD(HEAD));
  1856. sdma_dumpstate_helper(SD(PRIORITY_THLD));
  1857. sdma_dumpstate_helper(SD(IDLE_CNT));
  1858. sdma_dumpstate_helper(SD(RELOAD_CNT));
  1859. sdma_dumpstate_helper(SD(DESC_CNT));
  1860. sdma_dumpstate_helper(SD(DESC_FETCHED_CNT));
  1861. sdma_dumpstate_helper(SD(MEMORY));
  1862. sdma_dumpstate_helper0(SD(ENGINES));
  1863. sdma_dumpstate_helper0(SD(MEM_SIZE));
  1864. /* sdma_dumpstate_helper(SEND_EGRESS_SEND_DMA_STATUS); */
  1865. sdma_dumpstate_helper(SD(BASE_ADDR));
  1866. sdma_dumpstate_helper(SD(LEN_GEN));
  1867. sdma_dumpstate_helper(SD(HEAD_ADDR));
  1868. sdma_dumpstate_helper(SD(CHECK_ENABLE));
  1869. sdma_dumpstate_helper(SD(CHECK_VL));
  1870. sdma_dumpstate_helper(SD(CHECK_JOB_KEY));
  1871. sdma_dumpstate_helper(SD(CHECK_PARTITION_KEY));
  1872. sdma_dumpstate_helper(SD(CHECK_SLID));
  1873. sdma_dumpstate_helper(SD(CHECK_OPCODE));
  1874. }
  1875. #endif
  1876. static void dump_sdma_state(struct sdma_engine *sde)
  1877. {
  1878. struct hw_sdma_desc *descqp;
  1879. u64 desc[2];
  1880. u64 addr;
  1881. u8 gen;
  1882. u16 len;
  1883. u16 head, tail, cnt;
  1884. head = sde->descq_head & sde->sdma_mask;
  1885. tail = sde->descq_tail & sde->sdma_mask;
  1886. cnt = sdma_descq_freecnt(sde);
  1887. dd_dev_err(sde->dd,
  1888. "SDMA (%u) descq_head: %u descq_tail: %u freecnt: %u FLE %d\n",
  1889. sde->this_idx, head, tail, cnt,
  1890. !list_empty(&sde->flushlist));
  1891. /* print info for each entry in the descriptor queue */
  1892. while (head != tail) {
  1893. char flags[6] = { 'x', 'x', 'x', 'x', 0 };
  1894. descqp = &sde->descq[head];
  1895. desc[0] = le64_to_cpu(descqp->qw[0]);
  1896. desc[1] = le64_to_cpu(descqp->qw[1]);
  1897. flags[0] = (desc[1] & SDMA_DESC1_INT_REQ_FLAG) ? 'I' : '-';
  1898. flags[1] = (desc[1] & SDMA_DESC1_HEAD_TO_HOST_FLAG) ?
  1899. 'H' : '-';
  1900. flags[2] = (desc[0] & SDMA_DESC0_FIRST_DESC_FLAG) ? 'F' : '-';
  1901. flags[3] = (desc[0] & SDMA_DESC0_LAST_DESC_FLAG) ? 'L' : '-';
  1902. addr = (desc[0] >> SDMA_DESC0_PHY_ADDR_SHIFT)
  1903. & SDMA_DESC0_PHY_ADDR_MASK;
  1904. gen = (desc[1] >> SDMA_DESC1_GENERATION_SHIFT)
  1905. & SDMA_DESC1_GENERATION_MASK;
  1906. len = (desc[0] >> SDMA_DESC0_BYTE_COUNT_SHIFT)
  1907. & SDMA_DESC0_BYTE_COUNT_MASK;
  1908. dd_dev_err(sde->dd,
  1909. "SDMA sdmadesc[%u]: flags:%s addr:0x%016llx gen:%u len:%u bytes\n",
  1910. head, flags, addr, gen, len);
  1911. dd_dev_err(sde->dd,
  1912. "\tdesc0:0x%016llx desc1 0x%016llx\n",
  1913. desc[0], desc[1]);
  1914. if (desc[0] & SDMA_DESC0_FIRST_DESC_FLAG)
  1915. dd_dev_err(sde->dd,
  1916. "\taidx: %u amode: %u alen: %u\n",
  1917. (u8)((desc[1] &
  1918. SDMA_DESC1_HEADER_INDEX_SMASK) >>
  1919. SDMA_DESC1_HEADER_INDEX_SHIFT),
  1920. (u8)((desc[1] &
  1921. SDMA_DESC1_HEADER_MODE_SMASK) >>
  1922. SDMA_DESC1_HEADER_MODE_SHIFT),
  1923. (u8)((desc[1] &
  1924. SDMA_DESC1_HEADER_DWS_SMASK) >>
  1925. SDMA_DESC1_HEADER_DWS_SHIFT));
  1926. head++;
  1927. head &= sde->sdma_mask;
  1928. }
  1929. }
  1930. #define SDE_FMT \
  1931. "SDE %u CPU %d STE %s C 0x%llx S 0x%016llx E 0x%llx T(HW) 0x%llx T(SW) 0x%x H(HW) 0x%llx H(SW) 0x%x H(D) 0x%llx DM 0x%llx GL 0x%llx R 0x%llx LIS 0x%llx AHGI 0x%llx TXT %u TXH %u DT %u DH %u FLNE %d DQF %u SLC 0x%llx\n"
  1932. /**
  1933. * sdma_seqfile_dump_sde() - debugfs dump of sde
  1934. * @s: seq file
  1935. * @sde: send dma engine to dump
  1936. *
  1937. * This routine dumps the sde to the indicated seq file.
  1938. */
  1939. void sdma_seqfile_dump_sde(struct seq_file *s, struct sdma_engine *sde)
  1940. {
  1941. u16 head, tail;
  1942. struct hw_sdma_desc *descqp;
  1943. u64 desc[2];
  1944. u64 addr;
  1945. u8 gen;
  1946. u16 len;
  1947. head = sde->descq_head & sde->sdma_mask;
  1948. tail = READ_ONCE(sde->descq_tail) & sde->sdma_mask;
  1949. seq_printf(s, SDE_FMT, sde->this_idx,
  1950. sde->cpu,
  1951. sdma_state_name(sde->state.current_state),
  1952. (unsigned long long)read_sde_csr(sde, SD(CTRL)),
  1953. (unsigned long long)read_sde_csr(sde, SD(STATUS)),
  1954. (unsigned long long)read_sde_csr(sde, SD(ENG_ERR_STATUS)),
  1955. (unsigned long long)read_sde_csr(sde, SD(TAIL)), tail,
  1956. (unsigned long long)read_sde_csr(sde, SD(HEAD)), head,
  1957. (unsigned long long)le64_to_cpu(*sde->head_dma),
  1958. (unsigned long long)read_sde_csr(sde, SD(MEMORY)),
  1959. (unsigned long long)read_sde_csr(sde, SD(LEN_GEN)),
  1960. (unsigned long long)read_sde_csr(sde, SD(RELOAD_CNT)),
  1961. (unsigned long long)sde->last_status,
  1962. (unsigned long long)sde->ahg_bits,
  1963. sde->tx_tail,
  1964. sde->tx_head,
  1965. sde->descq_tail,
  1966. sde->descq_head,
  1967. !list_empty(&sde->flushlist),
  1968. sde->descq_full_count,
  1969. (unsigned long long)read_sde_csr(sde, SEND_DMA_CHECK_SLID));
  1970. /* print info for each entry in the descriptor queue */
  1971. while (head != tail) {
  1972. char flags[6] = { 'x', 'x', 'x', 'x', 0 };
  1973. descqp = &sde->descq[head];
  1974. desc[0] = le64_to_cpu(descqp->qw[0]);
  1975. desc[1] = le64_to_cpu(descqp->qw[1]);
  1976. flags[0] = (desc[1] & SDMA_DESC1_INT_REQ_FLAG) ? 'I' : '-';
  1977. flags[1] = (desc[1] & SDMA_DESC1_HEAD_TO_HOST_FLAG) ?
  1978. 'H' : '-';
  1979. flags[2] = (desc[0] & SDMA_DESC0_FIRST_DESC_FLAG) ? 'F' : '-';
  1980. flags[3] = (desc[0] & SDMA_DESC0_LAST_DESC_FLAG) ? 'L' : '-';
  1981. addr = (desc[0] >> SDMA_DESC0_PHY_ADDR_SHIFT)
  1982. & SDMA_DESC0_PHY_ADDR_MASK;
  1983. gen = (desc[1] >> SDMA_DESC1_GENERATION_SHIFT)
  1984. & SDMA_DESC1_GENERATION_MASK;
  1985. len = (desc[0] >> SDMA_DESC0_BYTE_COUNT_SHIFT)
  1986. & SDMA_DESC0_BYTE_COUNT_MASK;
  1987. seq_printf(s,
  1988. "\tdesc[%u]: flags:%s addr:0x%016llx gen:%u len:%u bytes\n",
  1989. head, flags, addr, gen, len);
  1990. if (desc[0] & SDMA_DESC0_FIRST_DESC_FLAG)
  1991. seq_printf(s, "\t\tahgidx: %u ahgmode: %u\n",
  1992. (u8)((desc[1] &
  1993. SDMA_DESC1_HEADER_INDEX_SMASK) >>
  1994. SDMA_DESC1_HEADER_INDEX_SHIFT),
  1995. (u8)((desc[1] &
  1996. SDMA_DESC1_HEADER_MODE_SMASK) >>
  1997. SDMA_DESC1_HEADER_MODE_SHIFT));
  1998. head = (head + 1) & sde->sdma_mask;
  1999. }
  2000. }
  2001. /*
  2002. * add the generation number into
  2003. * the qw1 and return
  2004. */
  2005. static inline u64 add_gen(struct sdma_engine *sde, u64 qw1)
  2006. {
  2007. u8 generation = (sde->descq_tail >> sde->sdma_shift) & 3;
  2008. qw1 &= ~SDMA_DESC1_GENERATION_SMASK;
  2009. qw1 |= ((u64)generation & SDMA_DESC1_GENERATION_MASK)
  2010. << SDMA_DESC1_GENERATION_SHIFT;
  2011. return qw1;
  2012. }
  2013. /*
  2014. * This routine submits the indicated tx
  2015. *
  2016. * Space has already been guaranteed and
  2017. * tail side of ring is locked.
  2018. *
  2019. * The hardware tail update is done
  2020. * in the caller and that is facilitated
  2021. * by returning the new tail.
  2022. *
  2023. * There is special case logic for ahg
  2024. * to not add the generation number for
  2025. * up to 2 descriptors that follow the
  2026. * first descriptor.
  2027. *
  2028. */
  2029. static inline u16 submit_tx(struct sdma_engine *sde, struct sdma_txreq *tx)
  2030. {
  2031. int i;
  2032. u16 tail;
  2033. struct sdma_desc *descp = tx->descp;
  2034. u8 skip = 0, mode = ahg_mode(tx);
  2035. tail = sde->descq_tail & sde->sdma_mask;
  2036. sde->descq[tail].qw[0] = cpu_to_le64(descp->qw[0]);
  2037. sde->descq[tail].qw[1] = cpu_to_le64(add_gen(sde, descp->qw[1]));
  2038. trace_hfi1_sdma_descriptor(sde, descp->qw[0], descp->qw[1],
  2039. tail, &sde->descq[tail]);
  2040. tail = ++sde->descq_tail & sde->sdma_mask;
  2041. descp++;
  2042. if (mode > SDMA_AHG_APPLY_UPDATE1)
  2043. skip = mode >> 1;
  2044. for (i = 1; i < tx->num_desc; i++, descp++) {
  2045. u64 qw1;
  2046. sde->descq[tail].qw[0] = cpu_to_le64(descp->qw[0]);
  2047. if (skip) {
  2048. /* edits don't have generation */
  2049. qw1 = descp->qw[1];
  2050. skip--;
  2051. } else {
  2052. /* replace generation with real one for non-edits */
  2053. qw1 = add_gen(sde, descp->qw[1]);
  2054. }
  2055. sde->descq[tail].qw[1] = cpu_to_le64(qw1);
  2056. trace_hfi1_sdma_descriptor(sde, descp->qw[0], qw1,
  2057. tail, &sde->descq[tail]);
  2058. tail = ++sde->descq_tail & sde->sdma_mask;
  2059. }
  2060. tx->next_descq_idx = tail;
  2061. #ifdef CONFIG_HFI1_DEBUG_SDMA_ORDER
  2062. tx->sn = sde->tail_sn++;
  2063. trace_hfi1_sdma_in_sn(sde, tx->sn);
  2064. WARN_ON_ONCE(sde->tx_ring[sde->tx_tail & sde->sdma_mask]);
  2065. #endif
  2066. sde->tx_ring[sde->tx_tail++ & sde->sdma_mask] = tx;
  2067. sde->desc_avail -= tx->num_desc;
  2068. return tail;
  2069. }
  2070. /*
  2071. * Check for progress
  2072. */
  2073. static int sdma_check_progress(
  2074. struct sdma_engine *sde,
  2075. struct iowait *wait,
  2076. struct sdma_txreq *tx,
  2077. bool pkts_sent)
  2078. {
  2079. int ret;
  2080. sde->desc_avail = sdma_descq_freecnt(sde);
  2081. if (tx->num_desc <= sde->desc_avail)
  2082. return -EAGAIN;
  2083. /* pulse the head_lock */
  2084. if (wait && wait->sleep) {
  2085. unsigned seq;
  2086. seq = raw_seqcount_begin(
  2087. (const seqcount_t *)&sde->head_lock.seqcount);
  2088. ret = wait->sleep(sde, wait, tx, seq, pkts_sent);
  2089. if (ret == -EAGAIN)
  2090. sde->desc_avail = sdma_descq_freecnt(sde);
  2091. } else {
  2092. ret = -EBUSY;
  2093. }
  2094. return ret;
  2095. }
  2096. /**
  2097. * sdma_send_txreq() - submit a tx req to ring
  2098. * @sde: sdma engine to use
  2099. * @wait: wait structure to use when full (may be NULL)
  2100. * @tx: sdma_txreq to submit
  2101. * @pkts_sent: has any packet been sent yet?
  2102. *
  2103. * The call submits the tx into the ring. If a iowait structure is non-NULL
  2104. * the packet will be queued to the list in wait.
  2105. *
  2106. * Return:
  2107. * 0 - Success, -EINVAL - sdma_txreq incomplete, -EBUSY - no space in
  2108. * ring (wait == NULL)
  2109. * -EIOCBQUEUED - tx queued to iowait, -ECOMM bad sdma state
  2110. */
  2111. int sdma_send_txreq(struct sdma_engine *sde,
  2112. struct iowait *wait,
  2113. struct sdma_txreq *tx,
  2114. bool pkts_sent)
  2115. {
  2116. int ret = 0;
  2117. u16 tail;
  2118. unsigned long flags;
  2119. /* user should have supplied entire packet */
  2120. if (unlikely(tx->tlen))
  2121. return -EINVAL;
  2122. tx->wait = wait;
  2123. spin_lock_irqsave(&sde->tail_lock, flags);
  2124. retry:
  2125. if (unlikely(!__sdma_running(sde)))
  2126. goto unlock_noconn;
  2127. if (unlikely(tx->num_desc > sde->desc_avail))
  2128. goto nodesc;
  2129. tail = submit_tx(sde, tx);
  2130. if (wait)
  2131. iowait_sdma_inc(wait);
  2132. sdma_update_tail(sde, tail);
  2133. unlock:
  2134. spin_unlock_irqrestore(&sde->tail_lock, flags);
  2135. return ret;
  2136. unlock_noconn:
  2137. if (wait)
  2138. iowait_sdma_inc(wait);
  2139. tx->next_descq_idx = 0;
  2140. #ifdef CONFIG_HFI1_DEBUG_SDMA_ORDER
  2141. tx->sn = sde->tail_sn++;
  2142. trace_hfi1_sdma_in_sn(sde, tx->sn);
  2143. #endif
  2144. spin_lock(&sde->flushlist_lock);
  2145. list_add_tail(&tx->list, &sde->flushlist);
  2146. spin_unlock(&sde->flushlist_lock);
  2147. if (wait) {
  2148. wait->tx_count++;
  2149. wait->count += tx->num_desc;
  2150. }
  2151. queue_work_on(sde->cpu, system_highpri_wq, &sde->flush_worker);
  2152. ret = -ECOMM;
  2153. goto unlock;
  2154. nodesc:
  2155. ret = sdma_check_progress(sde, wait, tx, pkts_sent);
  2156. if (ret == -EAGAIN) {
  2157. ret = 0;
  2158. goto retry;
  2159. }
  2160. sde->descq_full_count++;
  2161. goto unlock;
  2162. }
  2163. /**
  2164. * sdma_send_txlist() - submit a list of tx req to ring
  2165. * @sde: sdma engine to use
  2166. * @wait: wait structure to use when full (may be NULL)
  2167. * @tx_list: list of sdma_txreqs to submit
  2168. * @count: pointer to a u32 which, after return will contain the total number of
  2169. * sdma_txreqs removed from the tx_list. This will include sdma_txreqs
  2170. * whose SDMA descriptors are submitted to the ring and the sdma_txreqs
  2171. * which are added to SDMA engine flush list if the SDMA engine state is
  2172. * not running.
  2173. *
  2174. * The call submits the list into the ring.
  2175. *
  2176. * If the iowait structure is non-NULL and not equal to the iowait list
  2177. * the unprocessed part of the list will be appended to the list in wait.
  2178. *
  2179. * In all cases, the tx_list will be updated so the head of the tx_list is
  2180. * the list of descriptors that have yet to be transmitted.
  2181. *
  2182. * The intent of this call is to provide a more efficient
  2183. * way of submitting multiple packets to SDMA while holding the tail
  2184. * side locking.
  2185. *
  2186. * Return:
  2187. * 0 - Success,
  2188. * -EINVAL - sdma_txreq incomplete, -EBUSY - no space in ring (wait == NULL)
  2189. * -EIOCBQUEUED - tx queued to iowait, -ECOMM bad sdma state
  2190. */
  2191. int sdma_send_txlist(struct sdma_engine *sde, struct iowait *wait,
  2192. struct list_head *tx_list, u32 *count_out)
  2193. {
  2194. struct sdma_txreq *tx, *tx_next;
  2195. int ret = 0;
  2196. unsigned long flags;
  2197. u16 tail = INVALID_TAIL;
  2198. u32 submit_count = 0, flush_count = 0, total_count;
  2199. spin_lock_irqsave(&sde->tail_lock, flags);
  2200. retry:
  2201. list_for_each_entry_safe(tx, tx_next, tx_list, list) {
  2202. tx->wait = wait;
  2203. if (unlikely(!__sdma_running(sde)))
  2204. goto unlock_noconn;
  2205. if (unlikely(tx->num_desc > sde->desc_avail))
  2206. goto nodesc;
  2207. if (unlikely(tx->tlen)) {
  2208. ret = -EINVAL;
  2209. goto update_tail;
  2210. }
  2211. list_del_init(&tx->list);
  2212. tail = submit_tx(sde, tx);
  2213. submit_count++;
  2214. if (tail != INVALID_TAIL &&
  2215. (submit_count & SDMA_TAIL_UPDATE_THRESH) == 0) {
  2216. sdma_update_tail(sde, tail);
  2217. tail = INVALID_TAIL;
  2218. }
  2219. }
  2220. update_tail:
  2221. total_count = submit_count + flush_count;
  2222. if (wait) {
  2223. iowait_sdma_add(wait, total_count);
  2224. iowait_starve_clear(submit_count > 0, wait);
  2225. }
  2226. if (tail != INVALID_TAIL)
  2227. sdma_update_tail(sde, tail);
  2228. spin_unlock_irqrestore(&sde->tail_lock, flags);
  2229. *count_out = total_count;
  2230. return ret;
  2231. unlock_noconn:
  2232. spin_lock(&sde->flushlist_lock);
  2233. list_for_each_entry_safe(tx, tx_next, tx_list, list) {
  2234. tx->wait = wait;
  2235. list_del_init(&tx->list);
  2236. tx->next_descq_idx = 0;
  2237. #ifdef CONFIG_HFI1_DEBUG_SDMA_ORDER
  2238. tx->sn = sde->tail_sn++;
  2239. trace_hfi1_sdma_in_sn(sde, tx->sn);
  2240. #endif
  2241. list_add_tail(&tx->list, &sde->flushlist);
  2242. flush_count++;
  2243. if (wait) {
  2244. wait->tx_count++;
  2245. wait->count += tx->num_desc;
  2246. }
  2247. }
  2248. spin_unlock(&sde->flushlist_lock);
  2249. queue_work_on(sde->cpu, system_highpri_wq, &sde->flush_worker);
  2250. ret = -ECOMM;
  2251. goto update_tail;
  2252. nodesc:
  2253. ret = sdma_check_progress(sde, wait, tx, submit_count > 0);
  2254. if (ret == -EAGAIN) {
  2255. ret = 0;
  2256. goto retry;
  2257. }
  2258. sde->descq_full_count++;
  2259. goto update_tail;
  2260. }
  2261. static void sdma_process_event(struct sdma_engine *sde, enum sdma_events event)
  2262. {
  2263. unsigned long flags;
  2264. spin_lock_irqsave(&sde->tail_lock, flags);
  2265. write_seqlock(&sde->head_lock);
  2266. __sdma_process_event(sde, event);
  2267. if (sde->state.current_state == sdma_state_s99_running)
  2268. sdma_desc_avail(sde, sdma_descq_freecnt(sde));
  2269. write_sequnlock(&sde->head_lock);
  2270. spin_unlock_irqrestore(&sde->tail_lock, flags);
  2271. }
  2272. static void __sdma_process_event(struct sdma_engine *sde,
  2273. enum sdma_events event)
  2274. {
  2275. struct sdma_state *ss = &sde->state;
  2276. int need_progress = 0;
  2277. /* CONFIG SDMA temporary */
  2278. #ifdef CONFIG_SDMA_VERBOSITY
  2279. dd_dev_err(sde->dd, "CONFIG SDMA(%u) [%s] %s\n", sde->this_idx,
  2280. sdma_state_names[ss->current_state],
  2281. sdma_event_names[event]);
  2282. #endif
  2283. switch (ss->current_state) {
  2284. case sdma_state_s00_hw_down:
  2285. switch (event) {
  2286. case sdma_event_e00_go_hw_down:
  2287. break;
  2288. case sdma_event_e30_go_running:
  2289. /*
  2290. * If down, but running requested (usually result
  2291. * of link up, then we need to start up.
  2292. * This can happen when hw down is requested while
  2293. * bringing the link up with traffic active on
  2294. * 7220, e.g.
  2295. */
  2296. ss->go_s99_running = 1;
  2297. /* fall through -- and start dma engine */
  2298. case sdma_event_e10_go_hw_start:
  2299. /* This reference means the state machine is started */
  2300. sdma_get(&sde->state);
  2301. sdma_set_state(sde,
  2302. sdma_state_s10_hw_start_up_halt_wait);
  2303. break;
  2304. case sdma_event_e15_hw_halt_done:
  2305. break;
  2306. case sdma_event_e25_hw_clean_up_done:
  2307. break;
  2308. case sdma_event_e40_sw_cleaned:
  2309. sdma_sw_tear_down(sde);
  2310. break;
  2311. case sdma_event_e50_hw_cleaned:
  2312. break;
  2313. case sdma_event_e60_hw_halted:
  2314. break;
  2315. case sdma_event_e70_go_idle:
  2316. break;
  2317. case sdma_event_e80_hw_freeze:
  2318. break;
  2319. case sdma_event_e81_hw_frozen:
  2320. break;
  2321. case sdma_event_e82_hw_unfreeze:
  2322. break;
  2323. case sdma_event_e85_link_down:
  2324. break;
  2325. case sdma_event_e90_sw_halted:
  2326. break;
  2327. }
  2328. break;
  2329. case sdma_state_s10_hw_start_up_halt_wait:
  2330. switch (event) {
  2331. case sdma_event_e00_go_hw_down:
  2332. sdma_set_state(sde, sdma_state_s00_hw_down);
  2333. sdma_sw_tear_down(sde);
  2334. break;
  2335. case sdma_event_e10_go_hw_start:
  2336. break;
  2337. case sdma_event_e15_hw_halt_done:
  2338. sdma_set_state(sde,
  2339. sdma_state_s15_hw_start_up_clean_wait);
  2340. sdma_start_hw_clean_up(sde);
  2341. break;
  2342. case sdma_event_e25_hw_clean_up_done:
  2343. break;
  2344. case sdma_event_e30_go_running:
  2345. ss->go_s99_running = 1;
  2346. break;
  2347. case sdma_event_e40_sw_cleaned:
  2348. break;
  2349. case sdma_event_e50_hw_cleaned:
  2350. break;
  2351. case sdma_event_e60_hw_halted:
  2352. schedule_work(&sde->err_halt_worker);
  2353. break;
  2354. case sdma_event_e70_go_idle:
  2355. ss->go_s99_running = 0;
  2356. break;
  2357. case sdma_event_e80_hw_freeze:
  2358. break;
  2359. case sdma_event_e81_hw_frozen:
  2360. break;
  2361. case sdma_event_e82_hw_unfreeze:
  2362. break;
  2363. case sdma_event_e85_link_down:
  2364. break;
  2365. case sdma_event_e90_sw_halted:
  2366. break;
  2367. }
  2368. break;
  2369. case sdma_state_s15_hw_start_up_clean_wait:
  2370. switch (event) {
  2371. case sdma_event_e00_go_hw_down:
  2372. sdma_set_state(sde, sdma_state_s00_hw_down);
  2373. sdma_sw_tear_down(sde);
  2374. break;
  2375. case sdma_event_e10_go_hw_start:
  2376. break;
  2377. case sdma_event_e15_hw_halt_done:
  2378. break;
  2379. case sdma_event_e25_hw_clean_up_done:
  2380. sdma_hw_start_up(sde);
  2381. sdma_set_state(sde, ss->go_s99_running ?
  2382. sdma_state_s99_running :
  2383. sdma_state_s20_idle);
  2384. break;
  2385. case sdma_event_e30_go_running:
  2386. ss->go_s99_running = 1;
  2387. break;
  2388. case sdma_event_e40_sw_cleaned:
  2389. break;
  2390. case sdma_event_e50_hw_cleaned:
  2391. break;
  2392. case sdma_event_e60_hw_halted:
  2393. break;
  2394. case sdma_event_e70_go_idle:
  2395. ss->go_s99_running = 0;
  2396. break;
  2397. case sdma_event_e80_hw_freeze:
  2398. break;
  2399. case sdma_event_e81_hw_frozen:
  2400. break;
  2401. case sdma_event_e82_hw_unfreeze:
  2402. break;
  2403. case sdma_event_e85_link_down:
  2404. break;
  2405. case sdma_event_e90_sw_halted:
  2406. break;
  2407. }
  2408. break;
  2409. case sdma_state_s20_idle:
  2410. switch (event) {
  2411. case sdma_event_e00_go_hw_down:
  2412. sdma_set_state(sde, sdma_state_s00_hw_down);
  2413. sdma_sw_tear_down(sde);
  2414. break;
  2415. case sdma_event_e10_go_hw_start:
  2416. break;
  2417. case sdma_event_e15_hw_halt_done:
  2418. break;
  2419. case sdma_event_e25_hw_clean_up_done:
  2420. break;
  2421. case sdma_event_e30_go_running:
  2422. sdma_set_state(sde, sdma_state_s99_running);
  2423. ss->go_s99_running = 1;
  2424. break;
  2425. case sdma_event_e40_sw_cleaned:
  2426. break;
  2427. case sdma_event_e50_hw_cleaned:
  2428. break;
  2429. case sdma_event_e60_hw_halted:
  2430. sdma_set_state(sde, sdma_state_s50_hw_halt_wait);
  2431. schedule_work(&sde->err_halt_worker);
  2432. break;
  2433. case sdma_event_e70_go_idle:
  2434. break;
  2435. case sdma_event_e85_link_down:
  2436. /* fall through */
  2437. case sdma_event_e80_hw_freeze:
  2438. sdma_set_state(sde, sdma_state_s80_hw_freeze);
  2439. atomic_dec(&sde->dd->sdma_unfreeze_count);
  2440. wake_up_interruptible(&sde->dd->sdma_unfreeze_wq);
  2441. break;
  2442. case sdma_event_e81_hw_frozen:
  2443. break;
  2444. case sdma_event_e82_hw_unfreeze:
  2445. break;
  2446. case sdma_event_e90_sw_halted:
  2447. break;
  2448. }
  2449. break;
  2450. case sdma_state_s30_sw_clean_up_wait:
  2451. switch (event) {
  2452. case sdma_event_e00_go_hw_down:
  2453. sdma_set_state(sde, sdma_state_s00_hw_down);
  2454. break;
  2455. case sdma_event_e10_go_hw_start:
  2456. break;
  2457. case sdma_event_e15_hw_halt_done:
  2458. break;
  2459. case sdma_event_e25_hw_clean_up_done:
  2460. break;
  2461. case sdma_event_e30_go_running:
  2462. ss->go_s99_running = 1;
  2463. break;
  2464. case sdma_event_e40_sw_cleaned:
  2465. sdma_set_state(sde, sdma_state_s40_hw_clean_up_wait);
  2466. sdma_start_hw_clean_up(sde);
  2467. break;
  2468. case sdma_event_e50_hw_cleaned:
  2469. break;
  2470. case sdma_event_e60_hw_halted:
  2471. break;
  2472. case sdma_event_e70_go_idle:
  2473. ss->go_s99_running = 0;
  2474. break;
  2475. case sdma_event_e80_hw_freeze:
  2476. break;
  2477. case sdma_event_e81_hw_frozen:
  2478. break;
  2479. case sdma_event_e82_hw_unfreeze:
  2480. break;
  2481. case sdma_event_e85_link_down:
  2482. ss->go_s99_running = 0;
  2483. break;
  2484. case sdma_event_e90_sw_halted:
  2485. break;
  2486. }
  2487. break;
  2488. case sdma_state_s40_hw_clean_up_wait:
  2489. switch (event) {
  2490. case sdma_event_e00_go_hw_down:
  2491. sdma_set_state(sde, sdma_state_s00_hw_down);
  2492. tasklet_hi_schedule(&sde->sdma_sw_clean_up_task);
  2493. break;
  2494. case sdma_event_e10_go_hw_start:
  2495. break;
  2496. case sdma_event_e15_hw_halt_done:
  2497. break;
  2498. case sdma_event_e25_hw_clean_up_done:
  2499. sdma_hw_start_up(sde);
  2500. sdma_set_state(sde, ss->go_s99_running ?
  2501. sdma_state_s99_running :
  2502. sdma_state_s20_idle);
  2503. break;
  2504. case sdma_event_e30_go_running:
  2505. ss->go_s99_running = 1;
  2506. break;
  2507. case sdma_event_e40_sw_cleaned:
  2508. break;
  2509. case sdma_event_e50_hw_cleaned:
  2510. break;
  2511. case sdma_event_e60_hw_halted:
  2512. break;
  2513. case sdma_event_e70_go_idle:
  2514. ss->go_s99_running = 0;
  2515. break;
  2516. case sdma_event_e80_hw_freeze:
  2517. break;
  2518. case sdma_event_e81_hw_frozen:
  2519. break;
  2520. case sdma_event_e82_hw_unfreeze:
  2521. break;
  2522. case sdma_event_e85_link_down:
  2523. ss->go_s99_running = 0;
  2524. break;
  2525. case sdma_event_e90_sw_halted:
  2526. break;
  2527. }
  2528. break;
  2529. case sdma_state_s50_hw_halt_wait:
  2530. switch (event) {
  2531. case sdma_event_e00_go_hw_down:
  2532. sdma_set_state(sde, sdma_state_s00_hw_down);
  2533. tasklet_hi_schedule(&sde->sdma_sw_clean_up_task);
  2534. break;
  2535. case sdma_event_e10_go_hw_start:
  2536. break;
  2537. case sdma_event_e15_hw_halt_done:
  2538. sdma_set_state(sde, sdma_state_s30_sw_clean_up_wait);
  2539. tasklet_hi_schedule(&sde->sdma_sw_clean_up_task);
  2540. break;
  2541. case sdma_event_e25_hw_clean_up_done:
  2542. break;
  2543. case sdma_event_e30_go_running:
  2544. ss->go_s99_running = 1;
  2545. break;
  2546. case sdma_event_e40_sw_cleaned:
  2547. break;
  2548. case sdma_event_e50_hw_cleaned:
  2549. break;
  2550. case sdma_event_e60_hw_halted:
  2551. schedule_work(&sde->err_halt_worker);
  2552. break;
  2553. case sdma_event_e70_go_idle:
  2554. ss->go_s99_running = 0;
  2555. break;
  2556. case sdma_event_e80_hw_freeze:
  2557. break;
  2558. case sdma_event_e81_hw_frozen:
  2559. break;
  2560. case sdma_event_e82_hw_unfreeze:
  2561. break;
  2562. case sdma_event_e85_link_down:
  2563. ss->go_s99_running = 0;
  2564. break;
  2565. case sdma_event_e90_sw_halted:
  2566. break;
  2567. }
  2568. break;
  2569. case sdma_state_s60_idle_halt_wait:
  2570. switch (event) {
  2571. case sdma_event_e00_go_hw_down:
  2572. sdma_set_state(sde, sdma_state_s00_hw_down);
  2573. tasklet_hi_schedule(&sde->sdma_sw_clean_up_task);
  2574. break;
  2575. case sdma_event_e10_go_hw_start:
  2576. break;
  2577. case sdma_event_e15_hw_halt_done:
  2578. sdma_set_state(sde, sdma_state_s30_sw_clean_up_wait);
  2579. tasklet_hi_schedule(&sde->sdma_sw_clean_up_task);
  2580. break;
  2581. case sdma_event_e25_hw_clean_up_done:
  2582. break;
  2583. case sdma_event_e30_go_running:
  2584. ss->go_s99_running = 1;
  2585. break;
  2586. case sdma_event_e40_sw_cleaned:
  2587. break;
  2588. case sdma_event_e50_hw_cleaned:
  2589. break;
  2590. case sdma_event_e60_hw_halted:
  2591. schedule_work(&sde->err_halt_worker);
  2592. break;
  2593. case sdma_event_e70_go_idle:
  2594. ss->go_s99_running = 0;
  2595. break;
  2596. case sdma_event_e80_hw_freeze:
  2597. break;
  2598. case sdma_event_e81_hw_frozen:
  2599. break;
  2600. case sdma_event_e82_hw_unfreeze:
  2601. break;
  2602. case sdma_event_e85_link_down:
  2603. break;
  2604. case sdma_event_e90_sw_halted:
  2605. break;
  2606. }
  2607. break;
  2608. case sdma_state_s80_hw_freeze:
  2609. switch (event) {
  2610. case sdma_event_e00_go_hw_down:
  2611. sdma_set_state(sde, sdma_state_s00_hw_down);
  2612. tasklet_hi_schedule(&sde->sdma_sw_clean_up_task);
  2613. break;
  2614. case sdma_event_e10_go_hw_start:
  2615. break;
  2616. case sdma_event_e15_hw_halt_done:
  2617. break;
  2618. case sdma_event_e25_hw_clean_up_done:
  2619. break;
  2620. case sdma_event_e30_go_running:
  2621. ss->go_s99_running = 1;
  2622. break;
  2623. case sdma_event_e40_sw_cleaned:
  2624. break;
  2625. case sdma_event_e50_hw_cleaned:
  2626. break;
  2627. case sdma_event_e60_hw_halted:
  2628. break;
  2629. case sdma_event_e70_go_idle:
  2630. ss->go_s99_running = 0;
  2631. break;
  2632. case sdma_event_e80_hw_freeze:
  2633. break;
  2634. case sdma_event_e81_hw_frozen:
  2635. sdma_set_state(sde, sdma_state_s82_freeze_sw_clean);
  2636. tasklet_hi_schedule(&sde->sdma_sw_clean_up_task);
  2637. break;
  2638. case sdma_event_e82_hw_unfreeze:
  2639. break;
  2640. case sdma_event_e85_link_down:
  2641. break;
  2642. case sdma_event_e90_sw_halted:
  2643. break;
  2644. }
  2645. break;
  2646. case sdma_state_s82_freeze_sw_clean:
  2647. switch (event) {
  2648. case sdma_event_e00_go_hw_down:
  2649. sdma_set_state(sde, sdma_state_s00_hw_down);
  2650. tasklet_hi_schedule(&sde->sdma_sw_clean_up_task);
  2651. break;
  2652. case sdma_event_e10_go_hw_start:
  2653. break;
  2654. case sdma_event_e15_hw_halt_done:
  2655. break;
  2656. case sdma_event_e25_hw_clean_up_done:
  2657. break;
  2658. case sdma_event_e30_go_running:
  2659. ss->go_s99_running = 1;
  2660. break;
  2661. case sdma_event_e40_sw_cleaned:
  2662. /* notify caller this engine is done cleaning */
  2663. atomic_dec(&sde->dd->sdma_unfreeze_count);
  2664. wake_up_interruptible(&sde->dd->sdma_unfreeze_wq);
  2665. break;
  2666. case sdma_event_e50_hw_cleaned:
  2667. break;
  2668. case sdma_event_e60_hw_halted:
  2669. break;
  2670. case sdma_event_e70_go_idle:
  2671. ss->go_s99_running = 0;
  2672. break;
  2673. case sdma_event_e80_hw_freeze:
  2674. break;
  2675. case sdma_event_e81_hw_frozen:
  2676. break;
  2677. case sdma_event_e82_hw_unfreeze:
  2678. sdma_hw_start_up(sde);
  2679. sdma_set_state(sde, ss->go_s99_running ?
  2680. sdma_state_s99_running :
  2681. sdma_state_s20_idle);
  2682. break;
  2683. case sdma_event_e85_link_down:
  2684. break;
  2685. case sdma_event_e90_sw_halted:
  2686. break;
  2687. }
  2688. break;
  2689. case sdma_state_s99_running:
  2690. switch (event) {
  2691. case sdma_event_e00_go_hw_down:
  2692. sdma_set_state(sde, sdma_state_s00_hw_down);
  2693. tasklet_hi_schedule(&sde->sdma_sw_clean_up_task);
  2694. break;
  2695. case sdma_event_e10_go_hw_start:
  2696. break;
  2697. case sdma_event_e15_hw_halt_done:
  2698. break;
  2699. case sdma_event_e25_hw_clean_up_done:
  2700. break;
  2701. case sdma_event_e30_go_running:
  2702. break;
  2703. case sdma_event_e40_sw_cleaned:
  2704. break;
  2705. case sdma_event_e50_hw_cleaned:
  2706. break;
  2707. case sdma_event_e60_hw_halted:
  2708. need_progress = 1;
  2709. sdma_err_progress_check_schedule(sde);
  2710. /* fall through */
  2711. case sdma_event_e90_sw_halted:
  2712. /*
  2713. * SW initiated halt does not perform engines
  2714. * progress check
  2715. */
  2716. sdma_set_state(sde, sdma_state_s50_hw_halt_wait);
  2717. schedule_work(&sde->err_halt_worker);
  2718. break;
  2719. case sdma_event_e70_go_idle:
  2720. sdma_set_state(sde, sdma_state_s60_idle_halt_wait);
  2721. break;
  2722. case sdma_event_e85_link_down:
  2723. ss->go_s99_running = 0;
  2724. /* fall through */
  2725. case sdma_event_e80_hw_freeze:
  2726. sdma_set_state(sde, sdma_state_s80_hw_freeze);
  2727. atomic_dec(&sde->dd->sdma_unfreeze_count);
  2728. wake_up_interruptible(&sde->dd->sdma_unfreeze_wq);
  2729. break;
  2730. case sdma_event_e81_hw_frozen:
  2731. break;
  2732. case sdma_event_e82_hw_unfreeze:
  2733. break;
  2734. }
  2735. break;
  2736. }
  2737. ss->last_event = event;
  2738. if (need_progress)
  2739. sdma_make_progress(sde, 0);
  2740. }
  2741. /*
  2742. * _extend_sdma_tx_descs() - helper to extend txreq
  2743. *
  2744. * This is called once the initial nominal allocation
  2745. * of descriptors in the sdma_txreq is exhausted.
  2746. *
  2747. * The code will bump the allocation up to the max
  2748. * of MAX_DESC (64) descriptors. There doesn't seem
  2749. * much point in an interim step. The last descriptor
  2750. * is reserved for coalesce buffer in order to support
  2751. * cases where input packet has >MAX_DESC iovecs.
  2752. *
  2753. */
  2754. static int _extend_sdma_tx_descs(struct hfi1_devdata *dd, struct sdma_txreq *tx)
  2755. {
  2756. int i;
  2757. /* Handle last descriptor */
  2758. if (unlikely((tx->num_desc == (MAX_DESC - 1)))) {
  2759. /* if tlen is 0, it is for padding, release last descriptor */
  2760. if (!tx->tlen) {
  2761. tx->desc_limit = MAX_DESC;
  2762. } else if (!tx->coalesce_buf) {
  2763. /* allocate coalesce buffer with space for padding */
  2764. tx->coalesce_buf = kmalloc(tx->tlen + sizeof(u32),
  2765. GFP_ATOMIC);
  2766. if (!tx->coalesce_buf)
  2767. goto enomem;
  2768. tx->coalesce_idx = 0;
  2769. }
  2770. return 0;
  2771. }
  2772. if (unlikely(tx->num_desc == MAX_DESC))
  2773. goto enomem;
  2774. tx->descp = kmalloc_array(
  2775. MAX_DESC,
  2776. sizeof(struct sdma_desc),
  2777. GFP_ATOMIC);
  2778. if (!tx->descp)
  2779. goto enomem;
  2780. /* reserve last descriptor for coalescing */
  2781. tx->desc_limit = MAX_DESC - 1;
  2782. /* copy ones already built */
  2783. for (i = 0; i < tx->num_desc; i++)
  2784. tx->descp[i] = tx->descs[i];
  2785. return 0;
  2786. enomem:
  2787. __sdma_txclean(dd, tx);
  2788. return -ENOMEM;
  2789. }
  2790. /*
  2791. * ext_coal_sdma_tx_descs() - extend or coalesce sdma tx descriptors
  2792. *
  2793. * This is called once the initial nominal allocation of descriptors
  2794. * in the sdma_txreq is exhausted.
  2795. *
  2796. * This function calls _extend_sdma_tx_descs to extend or allocate
  2797. * coalesce buffer. If there is a allocated coalesce buffer, it will
  2798. * copy the input packet data into the coalesce buffer. It also adds
  2799. * coalesce buffer descriptor once when whole packet is received.
  2800. *
  2801. * Return:
  2802. * <0 - error
  2803. * 0 - coalescing, don't populate descriptor
  2804. * 1 - continue with populating descriptor
  2805. */
  2806. int ext_coal_sdma_tx_descs(struct hfi1_devdata *dd, struct sdma_txreq *tx,
  2807. int type, void *kvaddr, struct page *page,
  2808. unsigned long offset, u16 len)
  2809. {
  2810. int pad_len, rval;
  2811. dma_addr_t addr;
  2812. rval = _extend_sdma_tx_descs(dd, tx);
  2813. if (rval) {
  2814. __sdma_txclean(dd, tx);
  2815. return rval;
  2816. }
  2817. /* If coalesce buffer is allocated, copy data into it */
  2818. if (tx->coalesce_buf) {
  2819. if (type == SDMA_MAP_NONE) {
  2820. __sdma_txclean(dd, tx);
  2821. return -EINVAL;
  2822. }
  2823. if (type == SDMA_MAP_PAGE) {
  2824. kvaddr = kmap(page);
  2825. kvaddr += offset;
  2826. } else if (WARN_ON(!kvaddr)) {
  2827. __sdma_txclean(dd, tx);
  2828. return -EINVAL;
  2829. }
  2830. memcpy(tx->coalesce_buf + tx->coalesce_idx, kvaddr, len);
  2831. tx->coalesce_idx += len;
  2832. if (type == SDMA_MAP_PAGE)
  2833. kunmap(page);
  2834. /* If there is more data, return */
  2835. if (tx->tlen - tx->coalesce_idx)
  2836. return 0;
  2837. /* Whole packet is received; add any padding */
  2838. pad_len = tx->packet_len & (sizeof(u32) - 1);
  2839. if (pad_len) {
  2840. pad_len = sizeof(u32) - pad_len;
  2841. memset(tx->coalesce_buf + tx->coalesce_idx, 0, pad_len);
  2842. /* padding is taken care of for coalescing case */
  2843. tx->packet_len += pad_len;
  2844. tx->tlen += pad_len;
  2845. }
  2846. /* dma map the coalesce buffer */
  2847. addr = dma_map_single(&dd->pcidev->dev,
  2848. tx->coalesce_buf,
  2849. tx->tlen,
  2850. DMA_TO_DEVICE);
  2851. if (unlikely(dma_mapping_error(&dd->pcidev->dev, addr))) {
  2852. __sdma_txclean(dd, tx);
  2853. return -ENOSPC;
  2854. }
  2855. /* Add descriptor for coalesce buffer */
  2856. tx->desc_limit = MAX_DESC;
  2857. return _sdma_txadd_daddr(dd, SDMA_MAP_SINGLE, tx,
  2858. addr, tx->tlen);
  2859. }
  2860. return 1;
  2861. }
  2862. /* Update sdes when the lmc changes */
  2863. void sdma_update_lmc(struct hfi1_devdata *dd, u64 mask, u32 lid)
  2864. {
  2865. struct sdma_engine *sde;
  2866. int i;
  2867. u64 sreg;
  2868. sreg = ((mask & SD(CHECK_SLID_MASK_MASK)) <<
  2869. SD(CHECK_SLID_MASK_SHIFT)) |
  2870. (((lid & mask) & SD(CHECK_SLID_VALUE_MASK)) <<
  2871. SD(CHECK_SLID_VALUE_SHIFT));
  2872. for (i = 0; i < dd->num_sdma; i++) {
  2873. hfi1_cdbg(LINKVERB, "SendDmaEngine[%d].SLID_CHECK = 0x%x",
  2874. i, (u32)sreg);
  2875. sde = &dd->per_sdma[i];
  2876. write_sde_csr(sde, SD(CHECK_SLID), sreg);
  2877. }
  2878. }
  2879. /* tx not dword sized - pad */
  2880. int _pad_sdma_tx_descs(struct hfi1_devdata *dd, struct sdma_txreq *tx)
  2881. {
  2882. int rval = 0;
  2883. tx->num_desc++;
  2884. if ((unlikely(tx->num_desc == tx->desc_limit))) {
  2885. rval = _extend_sdma_tx_descs(dd, tx);
  2886. if (rval) {
  2887. __sdma_txclean(dd, tx);
  2888. return rval;
  2889. }
  2890. }
  2891. /* finish the one just added */
  2892. make_tx_sdma_desc(
  2893. tx,
  2894. SDMA_MAP_NONE,
  2895. dd->sdma_pad_phys,
  2896. sizeof(u32) - (tx->packet_len & (sizeof(u32) - 1)));
  2897. _sdma_close_tx(dd, tx);
  2898. return rval;
  2899. }
  2900. /*
  2901. * Add ahg to the sdma_txreq
  2902. *
  2903. * The logic will consume up to 3
  2904. * descriptors at the beginning of
  2905. * sdma_txreq.
  2906. */
  2907. void _sdma_txreq_ahgadd(
  2908. struct sdma_txreq *tx,
  2909. u8 num_ahg,
  2910. u8 ahg_entry,
  2911. u32 *ahg,
  2912. u8 ahg_hlen)
  2913. {
  2914. u32 i, shift = 0, desc = 0;
  2915. u8 mode;
  2916. WARN_ON_ONCE(num_ahg > 9 || (ahg_hlen & 3) || ahg_hlen == 4);
  2917. /* compute mode */
  2918. if (num_ahg == 1)
  2919. mode = SDMA_AHG_APPLY_UPDATE1;
  2920. else if (num_ahg <= 5)
  2921. mode = SDMA_AHG_APPLY_UPDATE2;
  2922. else
  2923. mode = SDMA_AHG_APPLY_UPDATE3;
  2924. tx->num_desc++;
  2925. /* initialize to consumed descriptors to zero */
  2926. switch (mode) {
  2927. case SDMA_AHG_APPLY_UPDATE3:
  2928. tx->num_desc++;
  2929. tx->descs[2].qw[0] = 0;
  2930. tx->descs[2].qw[1] = 0;
  2931. /* FALLTHROUGH */
  2932. case SDMA_AHG_APPLY_UPDATE2:
  2933. tx->num_desc++;
  2934. tx->descs[1].qw[0] = 0;
  2935. tx->descs[1].qw[1] = 0;
  2936. break;
  2937. }
  2938. ahg_hlen >>= 2;
  2939. tx->descs[0].qw[1] |=
  2940. (((u64)ahg_entry & SDMA_DESC1_HEADER_INDEX_MASK)
  2941. << SDMA_DESC1_HEADER_INDEX_SHIFT) |
  2942. (((u64)ahg_hlen & SDMA_DESC1_HEADER_DWS_MASK)
  2943. << SDMA_DESC1_HEADER_DWS_SHIFT) |
  2944. (((u64)mode & SDMA_DESC1_HEADER_MODE_MASK)
  2945. << SDMA_DESC1_HEADER_MODE_SHIFT) |
  2946. (((u64)ahg[0] & SDMA_DESC1_HEADER_UPDATE1_MASK)
  2947. << SDMA_DESC1_HEADER_UPDATE1_SHIFT);
  2948. for (i = 0; i < (num_ahg - 1); i++) {
  2949. if (!shift && !(i & 2))
  2950. desc++;
  2951. tx->descs[desc].qw[!!(i & 2)] |=
  2952. (((u64)ahg[i + 1])
  2953. << shift);
  2954. shift = (shift + 32) & 63;
  2955. }
  2956. }
  2957. /**
  2958. * sdma_ahg_alloc - allocate an AHG entry
  2959. * @sde: engine to allocate from
  2960. *
  2961. * Return:
  2962. * 0-31 when successful, -EOPNOTSUPP if AHG is not enabled,
  2963. * -ENOSPC if an entry is not available
  2964. */
  2965. int sdma_ahg_alloc(struct sdma_engine *sde)
  2966. {
  2967. int nr;
  2968. int oldbit;
  2969. if (!sde) {
  2970. trace_hfi1_ahg_allocate(sde, -EINVAL);
  2971. return -EINVAL;
  2972. }
  2973. while (1) {
  2974. nr = ffz(READ_ONCE(sde->ahg_bits));
  2975. if (nr > 31) {
  2976. trace_hfi1_ahg_allocate(sde, -ENOSPC);
  2977. return -ENOSPC;
  2978. }
  2979. oldbit = test_and_set_bit(nr, &sde->ahg_bits);
  2980. if (!oldbit)
  2981. break;
  2982. cpu_relax();
  2983. }
  2984. trace_hfi1_ahg_allocate(sde, nr);
  2985. return nr;
  2986. }
  2987. /**
  2988. * sdma_ahg_free - free an AHG entry
  2989. * @sde: engine to return AHG entry
  2990. * @ahg_index: index to free
  2991. *
  2992. * This routine frees the indicate AHG entry.
  2993. */
  2994. void sdma_ahg_free(struct sdma_engine *sde, int ahg_index)
  2995. {
  2996. if (!sde)
  2997. return;
  2998. trace_hfi1_ahg_deallocate(sde, ahg_index);
  2999. if (ahg_index < 0 || ahg_index > 31)
  3000. return;
  3001. clear_bit(ahg_index, &sde->ahg_bits);
  3002. }
  3003. /*
  3004. * SPC freeze handling for SDMA engines. Called when the driver knows
  3005. * the SPC is going into a freeze but before the freeze is fully
  3006. * settled. Generally an error interrupt.
  3007. *
  3008. * This event will pull the engine out of running so no more entries can be
  3009. * added to the engine's queue.
  3010. */
  3011. void sdma_freeze_notify(struct hfi1_devdata *dd, int link_down)
  3012. {
  3013. int i;
  3014. enum sdma_events event = link_down ? sdma_event_e85_link_down :
  3015. sdma_event_e80_hw_freeze;
  3016. /* set up the wait but do not wait here */
  3017. atomic_set(&dd->sdma_unfreeze_count, dd->num_sdma);
  3018. /* tell all engines to stop running and wait */
  3019. for (i = 0; i < dd->num_sdma; i++)
  3020. sdma_process_event(&dd->per_sdma[i], event);
  3021. /* sdma_freeze() will wait for all engines to have stopped */
  3022. }
  3023. /*
  3024. * SPC freeze handling for SDMA engines. Called when the driver knows
  3025. * the SPC is fully frozen.
  3026. */
  3027. void sdma_freeze(struct hfi1_devdata *dd)
  3028. {
  3029. int i;
  3030. int ret;
  3031. /*
  3032. * Make sure all engines have moved out of the running state before
  3033. * continuing.
  3034. */
  3035. ret = wait_event_interruptible(dd->sdma_unfreeze_wq,
  3036. atomic_read(&dd->sdma_unfreeze_count) <=
  3037. 0);
  3038. /* interrupted or count is negative, then unloading - just exit */
  3039. if (ret || atomic_read(&dd->sdma_unfreeze_count) < 0)
  3040. return;
  3041. /* set up the count for the next wait */
  3042. atomic_set(&dd->sdma_unfreeze_count, dd->num_sdma);
  3043. /* tell all engines that the SPC is frozen, they can start cleaning */
  3044. for (i = 0; i < dd->num_sdma; i++)
  3045. sdma_process_event(&dd->per_sdma[i], sdma_event_e81_hw_frozen);
  3046. /*
  3047. * Wait for everyone to finish software clean before exiting. The
  3048. * software clean will read engine CSRs, so must be completed before
  3049. * the next step, which will clear the engine CSRs.
  3050. */
  3051. (void)wait_event_interruptible(dd->sdma_unfreeze_wq,
  3052. atomic_read(&dd->sdma_unfreeze_count) <= 0);
  3053. /* no need to check results - done no matter what */
  3054. }
  3055. /*
  3056. * SPC freeze handling for the SDMA engines. Called after the SPC is unfrozen.
  3057. *
  3058. * The SPC freeze acts like a SDMA halt and a hardware clean combined. All
  3059. * that is left is a software clean. We could do it after the SPC is fully
  3060. * frozen, but then we'd have to add another state to wait for the unfreeze.
  3061. * Instead, just defer the software clean until the unfreeze step.
  3062. */
  3063. void sdma_unfreeze(struct hfi1_devdata *dd)
  3064. {
  3065. int i;
  3066. /* tell all engines start freeze clean up */
  3067. for (i = 0; i < dd->num_sdma; i++)
  3068. sdma_process_event(&dd->per_sdma[i],
  3069. sdma_event_e82_hw_unfreeze);
  3070. }
  3071. /**
  3072. * _sdma_engine_progress_schedule() - schedule progress on engine
  3073. * @sde: sdma_engine to schedule progress
  3074. *
  3075. */
  3076. void _sdma_engine_progress_schedule(
  3077. struct sdma_engine *sde)
  3078. {
  3079. trace_hfi1_sdma_engine_progress(sde, sde->progress_mask);
  3080. /* assume we have selected a good cpu */
  3081. write_csr(sde->dd,
  3082. CCE_INT_FORCE + (8 * (IS_SDMA_START / 64)),
  3083. sde->progress_mask);
  3084. }