rdma.c 53 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118
  1. /*
  2. * NVMe over Fabrics RDMA host code.
  3. * Copyright (c) 2015-2016 HGST, a Western Digital Company.
  4. *
  5. * This program is free software; you can redistribute it and/or modify it
  6. * under the terms and conditions of the GNU General Public License,
  7. * version 2, as published by the Free Software Foundation.
  8. *
  9. * This program is distributed in the hope it will be useful, but WITHOUT
  10. * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11. * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
  12. * more details.
  13. */
  14. #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  15. #include <linux/module.h>
  16. #include <linux/init.h>
  17. #include <linux/slab.h>
  18. #include <rdma/mr_pool.h>
  19. #include <linux/err.h>
  20. #include <linux/string.h>
  21. #include <linux/atomic.h>
  22. #include <linux/blk-mq.h>
  23. #include <linux/blk-mq-rdma.h>
  24. #include <linux/types.h>
  25. #include <linux/list.h>
  26. #include <linux/mutex.h>
  27. #include <linux/scatterlist.h>
  28. #include <linux/nvme.h>
  29. #include <asm/unaligned.h>
  30. #include <rdma/ib_verbs.h>
  31. #include <rdma/rdma_cm.h>
  32. #include <linux/nvme-rdma.h>
  33. #include "nvme.h"
  34. #include "fabrics.h"
  35. #define NVME_RDMA_CONNECT_TIMEOUT_MS 3000 /* 3 second */
  36. #define NVME_RDMA_MAX_SEGMENTS 256
  37. #define NVME_RDMA_MAX_INLINE_SEGMENTS 4
  38. struct nvme_rdma_device {
  39. struct ib_device *dev;
  40. struct ib_pd *pd;
  41. struct kref ref;
  42. struct list_head entry;
  43. unsigned int num_inline_segments;
  44. };
  45. struct nvme_rdma_qe {
  46. struct ib_cqe cqe;
  47. void *data;
  48. u64 dma;
  49. };
  50. struct nvme_rdma_queue;
  51. struct nvme_rdma_request {
  52. struct nvme_request req;
  53. struct ib_mr *mr;
  54. struct nvme_rdma_qe sqe;
  55. union nvme_result result;
  56. __le16 status;
  57. refcount_t ref;
  58. struct ib_sge sge[1 + NVME_RDMA_MAX_INLINE_SEGMENTS];
  59. u32 num_sge;
  60. int nents;
  61. struct ib_reg_wr reg_wr;
  62. struct ib_cqe reg_cqe;
  63. struct nvme_rdma_queue *queue;
  64. struct sg_table sg_table;
  65. struct scatterlist first_sgl[];
  66. };
  67. enum nvme_rdma_queue_flags {
  68. NVME_RDMA_Q_ALLOCATED = 0,
  69. NVME_RDMA_Q_LIVE = 1,
  70. NVME_RDMA_Q_TR_READY = 2,
  71. };
  72. struct nvme_rdma_queue {
  73. struct nvme_rdma_qe *rsp_ring;
  74. int queue_size;
  75. size_t cmnd_capsule_len;
  76. struct nvme_rdma_ctrl *ctrl;
  77. struct nvme_rdma_device *device;
  78. struct ib_cq *ib_cq;
  79. struct ib_qp *qp;
  80. unsigned long flags;
  81. struct rdma_cm_id *cm_id;
  82. int cm_error;
  83. struct completion cm_done;
  84. };
  85. struct nvme_rdma_ctrl {
  86. /* read only in the hot path */
  87. struct nvme_rdma_queue *queues;
  88. /* other member variables */
  89. struct blk_mq_tag_set tag_set;
  90. struct work_struct err_work;
  91. struct nvme_rdma_qe async_event_sqe;
  92. struct delayed_work reconnect_work;
  93. struct list_head list;
  94. struct blk_mq_tag_set admin_tag_set;
  95. struct nvme_rdma_device *device;
  96. u32 max_fr_pages;
  97. struct sockaddr_storage addr;
  98. struct sockaddr_storage src_addr;
  99. struct nvme_ctrl ctrl;
  100. struct mutex teardown_lock;
  101. bool use_inline_data;
  102. };
  103. static inline struct nvme_rdma_ctrl *to_rdma_ctrl(struct nvme_ctrl *ctrl)
  104. {
  105. return container_of(ctrl, struct nvme_rdma_ctrl, ctrl);
  106. }
  107. static LIST_HEAD(device_list);
  108. static DEFINE_MUTEX(device_list_mutex);
  109. static LIST_HEAD(nvme_rdma_ctrl_list);
  110. static DEFINE_MUTEX(nvme_rdma_ctrl_mutex);
  111. /*
  112. * Disabling this option makes small I/O goes faster, but is fundamentally
  113. * unsafe. With it turned off we will have to register a global rkey that
  114. * allows read and write access to all physical memory.
  115. */
  116. static bool register_always = true;
  117. module_param(register_always, bool, 0444);
  118. MODULE_PARM_DESC(register_always,
  119. "Use memory registration even for contiguous memory regions");
  120. static int nvme_rdma_cm_handler(struct rdma_cm_id *cm_id,
  121. struct rdma_cm_event *event);
  122. static void nvme_rdma_recv_done(struct ib_cq *cq, struct ib_wc *wc);
  123. static const struct blk_mq_ops nvme_rdma_mq_ops;
  124. static const struct blk_mq_ops nvme_rdma_admin_mq_ops;
  125. /* XXX: really should move to a generic header sooner or later.. */
  126. static inline void put_unaligned_le24(u32 val, u8 *p)
  127. {
  128. *p++ = val;
  129. *p++ = val >> 8;
  130. *p++ = val >> 16;
  131. }
  132. static inline int nvme_rdma_queue_idx(struct nvme_rdma_queue *queue)
  133. {
  134. return queue - queue->ctrl->queues;
  135. }
  136. static inline size_t nvme_rdma_inline_data_size(struct nvme_rdma_queue *queue)
  137. {
  138. return queue->cmnd_capsule_len - sizeof(struct nvme_command);
  139. }
  140. static void nvme_rdma_free_qe(struct ib_device *ibdev, struct nvme_rdma_qe *qe,
  141. size_t capsule_size, enum dma_data_direction dir)
  142. {
  143. ib_dma_unmap_single(ibdev, qe->dma, capsule_size, dir);
  144. kfree(qe->data);
  145. }
  146. static int nvme_rdma_alloc_qe(struct ib_device *ibdev, struct nvme_rdma_qe *qe,
  147. size_t capsule_size, enum dma_data_direction dir)
  148. {
  149. qe->data = kzalloc(capsule_size, GFP_KERNEL);
  150. if (!qe->data)
  151. return -ENOMEM;
  152. qe->dma = ib_dma_map_single(ibdev, qe->data, capsule_size, dir);
  153. if (ib_dma_mapping_error(ibdev, qe->dma)) {
  154. kfree(qe->data);
  155. qe->data = NULL;
  156. return -ENOMEM;
  157. }
  158. return 0;
  159. }
  160. static void nvme_rdma_free_ring(struct ib_device *ibdev,
  161. struct nvme_rdma_qe *ring, size_t ib_queue_size,
  162. size_t capsule_size, enum dma_data_direction dir)
  163. {
  164. int i;
  165. for (i = 0; i < ib_queue_size; i++)
  166. nvme_rdma_free_qe(ibdev, &ring[i], capsule_size, dir);
  167. kfree(ring);
  168. }
  169. static struct nvme_rdma_qe *nvme_rdma_alloc_ring(struct ib_device *ibdev,
  170. size_t ib_queue_size, size_t capsule_size,
  171. enum dma_data_direction dir)
  172. {
  173. struct nvme_rdma_qe *ring;
  174. int i;
  175. ring = kcalloc(ib_queue_size, sizeof(struct nvme_rdma_qe), GFP_KERNEL);
  176. if (!ring)
  177. return NULL;
  178. for (i = 0; i < ib_queue_size; i++) {
  179. if (nvme_rdma_alloc_qe(ibdev, &ring[i], capsule_size, dir))
  180. goto out_free_ring;
  181. }
  182. return ring;
  183. out_free_ring:
  184. nvme_rdma_free_ring(ibdev, ring, i, capsule_size, dir);
  185. return NULL;
  186. }
  187. static void nvme_rdma_qp_event(struct ib_event *event, void *context)
  188. {
  189. pr_debug("QP event %s (%d)\n",
  190. ib_event_msg(event->event), event->event);
  191. }
  192. static int nvme_rdma_wait_for_cm(struct nvme_rdma_queue *queue)
  193. {
  194. wait_for_completion_interruptible_timeout(&queue->cm_done,
  195. msecs_to_jiffies(NVME_RDMA_CONNECT_TIMEOUT_MS) + 1);
  196. return queue->cm_error;
  197. }
  198. static int nvme_rdma_create_qp(struct nvme_rdma_queue *queue, const int factor)
  199. {
  200. struct nvme_rdma_device *dev = queue->device;
  201. struct ib_qp_init_attr init_attr;
  202. int ret;
  203. memset(&init_attr, 0, sizeof(init_attr));
  204. init_attr.event_handler = nvme_rdma_qp_event;
  205. /* +1 for drain */
  206. init_attr.cap.max_send_wr = factor * queue->queue_size + 1;
  207. /* +1 for drain */
  208. init_attr.cap.max_recv_wr = queue->queue_size + 1;
  209. init_attr.cap.max_recv_sge = 1;
  210. init_attr.cap.max_send_sge = 1 + dev->num_inline_segments;
  211. init_attr.sq_sig_type = IB_SIGNAL_REQ_WR;
  212. init_attr.qp_type = IB_QPT_RC;
  213. init_attr.send_cq = queue->ib_cq;
  214. init_attr.recv_cq = queue->ib_cq;
  215. ret = rdma_create_qp(queue->cm_id, dev->pd, &init_attr);
  216. queue->qp = queue->cm_id->qp;
  217. return ret;
  218. }
  219. static void nvme_rdma_exit_request(struct blk_mq_tag_set *set,
  220. struct request *rq, unsigned int hctx_idx)
  221. {
  222. struct nvme_rdma_ctrl *ctrl = set->driver_data;
  223. struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
  224. int queue_idx = (set == &ctrl->tag_set) ? hctx_idx + 1 : 0;
  225. struct nvme_rdma_queue *queue = &ctrl->queues[queue_idx];
  226. struct nvme_rdma_device *dev = queue->device;
  227. nvme_rdma_free_qe(dev->dev, &req->sqe, sizeof(struct nvme_command),
  228. DMA_TO_DEVICE);
  229. }
  230. static int nvme_rdma_init_request(struct blk_mq_tag_set *set,
  231. struct request *rq, unsigned int hctx_idx,
  232. unsigned int numa_node)
  233. {
  234. struct nvme_rdma_ctrl *ctrl = set->driver_data;
  235. struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
  236. int queue_idx = (set == &ctrl->tag_set) ? hctx_idx + 1 : 0;
  237. struct nvme_rdma_queue *queue = &ctrl->queues[queue_idx];
  238. struct nvme_rdma_device *dev = queue->device;
  239. struct ib_device *ibdev = dev->dev;
  240. int ret;
  241. nvme_req(rq)->ctrl = &ctrl->ctrl;
  242. ret = nvme_rdma_alloc_qe(ibdev, &req->sqe, sizeof(struct nvme_command),
  243. DMA_TO_DEVICE);
  244. if (ret)
  245. return ret;
  246. req->queue = queue;
  247. return 0;
  248. }
  249. static int nvme_rdma_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
  250. unsigned int hctx_idx)
  251. {
  252. struct nvme_rdma_ctrl *ctrl = data;
  253. struct nvme_rdma_queue *queue = &ctrl->queues[hctx_idx + 1];
  254. BUG_ON(hctx_idx >= ctrl->ctrl.queue_count);
  255. hctx->driver_data = queue;
  256. return 0;
  257. }
  258. static int nvme_rdma_init_admin_hctx(struct blk_mq_hw_ctx *hctx, void *data,
  259. unsigned int hctx_idx)
  260. {
  261. struct nvme_rdma_ctrl *ctrl = data;
  262. struct nvme_rdma_queue *queue = &ctrl->queues[0];
  263. BUG_ON(hctx_idx != 0);
  264. hctx->driver_data = queue;
  265. return 0;
  266. }
  267. static void nvme_rdma_free_dev(struct kref *ref)
  268. {
  269. struct nvme_rdma_device *ndev =
  270. container_of(ref, struct nvme_rdma_device, ref);
  271. mutex_lock(&device_list_mutex);
  272. list_del(&ndev->entry);
  273. mutex_unlock(&device_list_mutex);
  274. ib_dealloc_pd(ndev->pd);
  275. kfree(ndev);
  276. }
  277. static void nvme_rdma_dev_put(struct nvme_rdma_device *dev)
  278. {
  279. kref_put(&dev->ref, nvme_rdma_free_dev);
  280. }
  281. static int nvme_rdma_dev_get(struct nvme_rdma_device *dev)
  282. {
  283. return kref_get_unless_zero(&dev->ref);
  284. }
  285. static struct nvme_rdma_device *
  286. nvme_rdma_find_get_device(struct rdma_cm_id *cm_id)
  287. {
  288. struct nvme_rdma_device *ndev;
  289. mutex_lock(&device_list_mutex);
  290. list_for_each_entry(ndev, &device_list, entry) {
  291. if (ndev->dev->node_guid == cm_id->device->node_guid &&
  292. nvme_rdma_dev_get(ndev))
  293. goto out_unlock;
  294. }
  295. ndev = kzalloc(sizeof(*ndev), GFP_KERNEL);
  296. if (!ndev)
  297. goto out_err;
  298. ndev->dev = cm_id->device;
  299. kref_init(&ndev->ref);
  300. ndev->pd = ib_alloc_pd(ndev->dev,
  301. register_always ? 0 : IB_PD_UNSAFE_GLOBAL_RKEY);
  302. if (IS_ERR(ndev->pd))
  303. goto out_free_dev;
  304. if (!(ndev->dev->attrs.device_cap_flags &
  305. IB_DEVICE_MEM_MGT_EXTENSIONS)) {
  306. dev_err(&ndev->dev->dev,
  307. "Memory registrations not supported.\n");
  308. goto out_free_pd;
  309. }
  310. ndev->num_inline_segments = min(NVME_RDMA_MAX_INLINE_SEGMENTS,
  311. ndev->dev->attrs.max_send_sge - 1);
  312. list_add(&ndev->entry, &device_list);
  313. out_unlock:
  314. mutex_unlock(&device_list_mutex);
  315. return ndev;
  316. out_free_pd:
  317. ib_dealloc_pd(ndev->pd);
  318. out_free_dev:
  319. kfree(ndev);
  320. out_err:
  321. mutex_unlock(&device_list_mutex);
  322. return NULL;
  323. }
  324. static void nvme_rdma_destroy_queue_ib(struct nvme_rdma_queue *queue)
  325. {
  326. struct nvme_rdma_device *dev;
  327. struct ib_device *ibdev;
  328. if (!test_and_clear_bit(NVME_RDMA_Q_TR_READY, &queue->flags))
  329. return;
  330. dev = queue->device;
  331. ibdev = dev->dev;
  332. ib_mr_pool_destroy(queue->qp, &queue->qp->rdma_mrs);
  333. /*
  334. * The cm_id object might have been destroyed during RDMA connection
  335. * establishment error flow to avoid getting other cma events, thus
  336. * the destruction of the QP shouldn't use rdma_cm API.
  337. */
  338. ib_destroy_qp(queue->qp);
  339. ib_free_cq(queue->ib_cq);
  340. nvme_rdma_free_ring(ibdev, queue->rsp_ring, queue->queue_size,
  341. sizeof(struct nvme_completion), DMA_FROM_DEVICE);
  342. nvme_rdma_dev_put(dev);
  343. }
  344. static int nvme_rdma_get_max_fr_pages(struct ib_device *ibdev)
  345. {
  346. return min_t(u32, NVME_RDMA_MAX_SEGMENTS,
  347. ibdev->attrs.max_fast_reg_page_list_len);
  348. }
  349. static int nvme_rdma_create_queue_ib(struct nvme_rdma_queue *queue)
  350. {
  351. struct ib_device *ibdev;
  352. const int send_wr_factor = 3; /* MR, SEND, INV */
  353. const int cq_factor = send_wr_factor + 1; /* + RECV */
  354. int comp_vector, idx = nvme_rdma_queue_idx(queue);
  355. int ret;
  356. queue->device = nvme_rdma_find_get_device(queue->cm_id);
  357. if (!queue->device) {
  358. dev_err(queue->cm_id->device->dev.parent,
  359. "no client data found!\n");
  360. return -ECONNREFUSED;
  361. }
  362. ibdev = queue->device->dev;
  363. /*
  364. * Spread I/O queues completion vectors according their queue index.
  365. * Admin queues can always go on completion vector 0.
  366. */
  367. comp_vector = (idx == 0 ? idx : idx - 1) % ibdev->num_comp_vectors;
  368. /* +1 for ib_stop_cq */
  369. queue->ib_cq = ib_alloc_cq(ibdev, queue,
  370. cq_factor * queue->queue_size + 1,
  371. comp_vector, IB_POLL_SOFTIRQ);
  372. if (IS_ERR(queue->ib_cq)) {
  373. ret = PTR_ERR(queue->ib_cq);
  374. goto out_put_dev;
  375. }
  376. ret = nvme_rdma_create_qp(queue, send_wr_factor);
  377. if (ret)
  378. goto out_destroy_ib_cq;
  379. queue->rsp_ring = nvme_rdma_alloc_ring(ibdev, queue->queue_size,
  380. sizeof(struct nvme_completion), DMA_FROM_DEVICE);
  381. if (!queue->rsp_ring) {
  382. ret = -ENOMEM;
  383. goto out_destroy_qp;
  384. }
  385. ret = ib_mr_pool_init(queue->qp, &queue->qp->rdma_mrs,
  386. queue->queue_size,
  387. IB_MR_TYPE_MEM_REG,
  388. nvme_rdma_get_max_fr_pages(ibdev));
  389. if (ret) {
  390. dev_err(queue->ctrl->ctrl.device,
  391. "failed to initialize MR pool sized %d for QID %d\n",
  392. queue->queue_size, idx);
  393. goto out_destroy_ring;
  394. }
  395. set_bit(NVME_RDMA_Q_TR_READY, &queue->flags);
  396. return 0;
  397. out_destroy_ring:
  398. nvme_rdma_free_ring(ibdev, queue->rsp_ring, queue->queue_size,
  399. sizeof(struct nvme_completion), DMA_FROM_DEVICE);
  400. out_destroy_qp:
  401. rdma_destroy_qp(queue->cm_id);
  402. out_destroy_ib_cq:
  403. ib_free_cq(queue->ib_cq);
  404. out_put_dev:
  405. nvme_rdma_dev_put(queue->device);
  406. return ret;
  407. }
  408. static int nvme_rdma_alloc_queue(struct nvme_rdma_ctrl *ctrl,
  409. int idx, size_t queue_size)
  410. {
  411. struct nvme_rdma_queue *queue;
  412. struct sockaddr *src_addr = NULL;
  413. int ret;
  414. queue = &ctrl->queues[idx];
  415. queue->ctrl = ctrl;
  416. init_completion(&queue->cm_done);
  417. if (idx > 0)
  418. queue->cmnd_capsule_len = ctrl->ctrl.ioccsz * 16;
  419. else
  420. queue->cmnd_capsule_len = sizeof(struct nvme_command);
  421. queue->queue_size = queue_size;
  422. queue->cm_id = rdma_create_id(&init_net, nvme_rdma_cm_handler, queue,
  423. RDMA_PS_TCP, IB_QPT_RC);
  424. if (IS_ERR(queue->cm_id)) {
  425. dev_info(ctrl->ctrl.device,
  426. "failed to create CM ID: %ld\n", PTR_ERR(queue->cm_id));
  427. return PTR_ERR(queue->cm_id);
  428. }
  429. if (ctrl->ctrl.opts->mask & NVMF_OPT_HOST_TRADDR)
  430. src_addr = (struct sockaddr *)&ctrl->src_addr;
  431. queue->cm_error = -ETIMEDOUT;
  432. ret = rdma_resolve_addr(queue->cm_id, src_addr,
  433. (struct sockaddr *)&ctrl->addr,
  434. NVME_RDMA_CONNECT_TIMEOUT_MS);
  435. if (ret) {
  436. dev_info(ctrl->ctrl.device,
  437. "rdma_resolve_addr failed (%d).\n", ret);
  438. goto out_destroy_cm_id;
  439. }
  440. ret = nvme_rdma_wait_for_cm(queue);
  441. if (ret) {
  442. dev_info(ctrl->ctrl.device,
  443. "rdma connection establishment failed (%d)\n", ret);
  444. goto out_destroy_cm_id;
  445. }
  446. set_bit(NVME_RDMA_Q_ALLOCATED, &queue->flags);
  447. return 0;
  448. out_destroy_cm_id:
  449. rdma_destroy_id(queue->cm_id);
  450. nvme_rdma_destroy_queue_ib(queue);
  451. return ret;
  452. }
  453. static void nvme_rdma_stop_queue(struct nvme_rdma_queue *queue)
  454. {
  455. if (!test_and_clear_bit(NVME_RDMA_Q_LIVE, &queue->flags))
  456. return;
  457. rdma_disconnect(queue->cm_id);
  458. ib_drain_qp(queue->qp);
  459. }
  460. static void nvme_rdma_free_queue(struct nvme_rdma_queue *queue)
  461. {
  462. if (!test_and_clear_bit(NVME_RDMA_Q_ALLOCATED, &queue->flags))
  463. return;
  464. nvme_rdma_destroy_queue_ib(queue);
  465. rdma_destroy_id(queue->cm_id);
  466. }
  467. static void nvme_rdma_free_io_queues(struct nvme_rdma_ctrl *ctrl)
  468. {
  469. int i;
  470. for (i = 1; i < ctrl->ctrl.queue_count; i++)
  471. nvme_rdma_free_queue(&ctrl->queues[i]);
  472. }
  473. static void nvme_rdma_stop_io_queues(struct nvme_rdma_ctrl *ctrl)
  474. {
  475. int i;
  476. for (i = 1; i < ctrl->ctrl.queue_count; i++)
  477. nvme_rdma_stop_queue(&ctrl->queues[i]);
  478. }
  479. static int nvme_rdma_start_queue(struct nvme_rdma_ctrl *ctrl, int idx)
  480. {
  481. int ret;
  482. if (idx)
  483. ret = nvmf_connect_io_queue(&ctrl->ctrl, idx);
  484. else
  485. ret = nvmf_connect_admin_queue(&ctrl->ctrl);
  486. if (!ret)
  487. set_bit(NVME_RDMA_Q_LIVE, &ctrl->queues[idx].flags);
  488. else
  489. dev_info(ctrl->ctrl.device,
  490. "failed to connect queue: %d ret=%d\n", idx, ret);
  491. return ret;
  492. }
  493. static int nvme_rdma_start_io_queues(struct nvme_rdma_ctrl *ctrl)
  494. {
  495. int i, ret = 0;
  496. for (i = 1; i < ctrl->ctrl.queue_count; i++) {
  497. ret = nvme_rdma_start_queue(ctrl, i);
  498. if (ret)
  499. goto out_stop_queues;
  500. }
  501. return 0;
  502. out_stop_queues:
  503. for (i--; i >= 1; i--)
  504. nvme_rdma_stop_queue(&ctrl->queues[i]);
  505. return ret;
  506. }
  507. static int nvme_rdma_alloc_io_queues(struct nvme_rdma_ctrl *ctrl)
  508. {
  509. struct nvmf_ctrl_options *opts = ctrl->ctrl.opts;
  510. struct ib_device *ibdev = ctrl->device->dev;
  511. unsigned int nr_io_queues;
  512. int i, ret;
  513. nr_io_queues = min(opts->nr_io_queues, num_online_cpus());
  514. /*
  515. * we map queues according to the device irq vectors for
  516. * optimal locality so we don't need more queues than
  517. * completion vectors.
  518. */
  519. nr_io_queues = min_t(unsigned int, nr_io_queues,
  520. ibdev->num_comp_vectors);
  521. ret = nvme_set_queue_count(&ctrl->ctrl, &nr_io_queues);
  522. if (ret)
  523. return ret;
  524. ctrl->ctrl.queue_count = nr_io_queues + 1;
  525. if (ctrl->ctrl.queue_count < 2) {
  526. dev_err(ctrl->ctrl.device,
  527. "unable to set any I/O queues\n");
  528. return -ENOMEM;
  529. }
  530. dev_info(ctrl->ctrl.device,
  531. "creating %d I/O queues.\n", nr_io_queues);
  532. for (i = 1; i < ctrl->ctrl.queue_count; i++) {
  533. ret = nvme_rdma_alloc_queue(ctrl, i,
  534. ctrl->ctrl.sqsize + 1);
  535. if (ret)
  536. goto out_free_queues;
  537. }
  538. return 0;
  539. out_free_queues:
  540. for (i--; i >= 1; i--)
  541. nvme_rdma_free_queue(&ctrl->queues[i]);
  542. return ret;
  543. }
  544. static void nvme_rdma_free_tagset(struct nvme_ctrl *nctrl,
  545. struct blk_mq_tag_set *set)
  546. {
  547. struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(nctrl);
  548. blk_mq_free_tag_set(set);
  549. nvme_rdma_dev_put(ctrl->device);
  550. }
  551. static struct blk_mq_tag_set *nvme_rdma_alloc_tagset(struct nvme_ctrl *nctrl,
  552. bool admin)
  553. {
  554. struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(nctrl);
  555. struct blk_mq_tag_set *set;
  556. int ret;
  557. if (admin) {
  558. set = &ctrl->admin_tag_set;
  559. memset(set, 0, sizeof(*set));
  560. set->ops = &nvme_rdma_admin_mq_ops;
  561. set->queue_depth = NVME_AQ_MQ_TAG_DEPTH;
  562. set->reserved_tags = 2; /* connect + keep-alive */
  563. set->numa_node = NUMA_NO_NODE;
  564. set->cmd_size = sizeof(struct nvme_rdma_request) +
  565. SG_CHUNK_SIZE * sizeof(struct scatterlist);
  566. set->driver_data = ctrl;
  567. set->nr_hw_queues = 1;
  568. set->timeout = ADMIN_TIMEOUT;
  569. set->flags = BLK_MQ_F_NO_SCHED;
  570. } else {
  571. set = &ctrl->tag_set;
  572. memset(set, 0, sizeof(*set));
  573. set->ops = &nvme_rdma_mq_ops;
  574. set->queue_depth = nctrl->sqsize + 1;
  575. set->reserved_tags = 1; /* fabric connect */
  576. set->numa_node = NUMA_NO_NODE;
  577. set->flags = BLK_MQ_F_SHOULD_MERGE;
  578. set->cmd_size = sizeof(struct nvme_rdma_request) +
  579. SG_CHUNK_SIZE * sizeof(struct scatterlist);
  580. set->driver_data = ctrl;
  581. set->nr_hw_queues = nctrl->queue_count - 1;
  582. set->timeout = NVME_IO_TIMEOUT;
  583. }
  584. ret = blk_mq_alloc_tag_set(set);
  585. if (ret)
  586. goto out;
  587. /*
  588. * We need a reference on the device as long as the tag_set is alive,
  589. * as the MRs in the request structures need a valid ib_device.
  590. */
  591. ret = nvme_rdma_dev_get(ctrl->device);
  592. if (!ret) {
  593. ret = -EINVAL;
  594. goto out_free_tagset;
  595. }
  596. return set;
  597. out_free_tagset:
  598. blk_mq_free_tag_set(set);
  599. out:
  600. return ERR_PTR(ret);
  601. }
  602. static void nvme_rdma_destroy_admin_queue(struct nvme_rdma_ctrl *ctrl,
  603. bool remove)
  604. {
  605. if (remove) {
  606. blk_cleanup_queue(ctrl->ctrl.admin_q);
  607. nvme_rdma_free_tagset(&ctrl->ctrl, ctrl->ctrl.admin_tagset);
  608. }
  609. if (ctrl->async_event_sqe.data) {
  610. cancel_work_sync(&ctrl->ctrl.async_event_work);
  611. nvme_rdma_free_qe(ctrl->device->dev, &ctrl->async_event_sqe,
  612. sizeof(struct nvme_command), DMA_TO_DEVICE);
  613. ctrl->async_event_sqe.data = NULL;
  614. }
  615. nvme_rdma_free_queue(&ctrl->queues[0]);
  616. }
  617. static int nvme_rdma_configure_admin_queue(struct nvme_rdma_ctrl *ctrl,
  618. bool new)
  619. {
  620. int error;
  621. error = nvme_rdma_alloc_queue(ctrl, 0, NVME_AQ_DEPTH);
  622. if (error)
  623. return error;
  624. ctrl->device = ctrl->queues[0].device;
  625. ctrl->max_fr_pages = nvme_rdma_get_max_fr_pages(ctrl->device->dev);
  626. error = nvme_rdma_alloc_qe(ctrl->device->dev, &ctrl->async_event_sqe,
  627. sizeof(struct nvme_command), DMA_TO_DEVICE);
  628. if (error)
  629. goto out_free_queue;
  630. if (new) {
  631. ctrl->ctrl.admin_tagset = nvme_rdma_alloc_tagset(&ctrl->ctrl, true);
  632. if (IS_ERR(ctrl->ctrl.admin_tagset)) {
  633. error = PTR_ERR(ctrl->ctrl.admin_tagset);
  634. goto out_free_async_qe;
  635. }
  636. ctrl->ctrl.admin_q = blk_mq_init_queue(&ctrl->admin_tag_set);
  637. if (IS_ERR(ctrl->ctrl.admin_q)) {
  638. error = PTR_ERR(ctrl->ctrl.admin_q);
  639. goto out_free_tagset;
  640. }
  641. }
  642. error = nvme_rdma_start_queue(ctrl, 0);
  643. if (error)
  644. goto out_cleanup_queue;
  645. error = ctrl->ctrl.ops->reg_read64(&ctrl->ctrl, NVME_REG_CAP,
  646. &ctrl->ctrl.cap);
  647. if (error) {
  648. dev_err(ctrl->ctrl.device,
  649. "prop_get NVME_REG_CAP failed\n");
  650. goto out_stop_queue;
  651. }
  652. ctrl->ctrl.sqsize =
  653. min_t(int, NVME_CAP_MQES(ctrl->ctrl.cap), ctrl->ctrl.sqsize);
  654. error = nvme_enable_ctrl(&ctrl->ctrl, ctrl->ctrl.cap);
  655. if (error)
  656. goto out_stop_queue;
  657. ctrl->ctrl.max_hw_sectors =
  658. (ctrl->max_fr_pages - 1) << (ilog2(SZ_4K) - 9);
  659. error = nvme_init_identify(&ctrl->ctrl);
  660. if (error)
  661. goto out_stop_queue;
  662. return 0;
  663. out_stop_queue:
  664. nvme_rdma_stop_queue(&ctrl->queues[0]);
  665. out_cleanup_queue:
  666. if (new)
  667. blk_cleanup_queue(ctrl->ctrl.admin_q);
  668. out_free_tagset:
  669. if (new)
  670. nvme_rdma_free_tagset(&ctrl->ctrl, ctrl->ctrl.admin_tagset);
  671. out_free_async_qe:
  672. if (ctrl->async_event_sqe.data) {
  673. nvme_rdma_free_qe(ctrl->device->dev, &ctrl->async_event_sqe,
  674. sizeof(struct nvme_command), DMA_TO_DEVICE);
  675. ctrl->async_event_sqe.data = NULL;
  676. }
  677. out_free_queue:
  678. nvme_rdma_free_queue(&ctrl->queues[0]);
  679. return error;
  680. }
  681. static void nvme_rdma_destroy_io_queues(struct nvme_rdma_ctrl *ctrl,
  682. bool remove)
  683. {
  684. if (remove) {
  685. blk_cleanup_queue(ctrl->ctrl.connect_q);
  686. nvme_rdma_free_tagset(&ctrl->ctrl, ctrl->ctrl.tagset);
  687. }
  688. nvme_rdma_free_io_queues(ctrl);
  689. }
  690. static int nvme_rdma_configure_io_queues(struct nvme_rdma_ctrl *ctrl, bool new)
  691. {
  692. int ret;
  693. ret = nvme_rdma_alloc_io_queues(ctrl);
  694. if (ret)
  695. return ret;
  696. if (new) {
  697. ctrl->ctrl.tagset = nvme_rdma_alloc_tagset(&ctrl->ctrl, false);
  698. if (IS_ERR(ctrl->ctrl.tagset)) {
  699. ret = PTR_ERR(ctrl->ctrl.tagset);
  700. goto out_free_io_queues;
  701. }
  702. ctrl->ctrl.connect_q = blk_mq_init_queue(&ctrl->tag_set);
  703. if (IS_ERR(ctrl->ctrl.connect_q)) {
  704. ret = PTR_ERR(ctrl->ctrl.connect_q);
  705. goto out_free_tag_set;
  706. }
  707. } else {
  708. blk_mq_update_nr_hw_queues(&ctrl->tag_set,
  709. ctrl->ctrl.queue_count - 1);
  710. }
  711. ret = nvme_rdma_start_io_queues(ctrl);
  712. if (ret)
  713. goto out_cleanup_connect_q;
  714. return 0;
  715. out_cleanup_connect_q:
  716. if (new)
  717. blk_cleanup_queue(ctrl->ctrl.connect_q);
  718. out_free_tag_set:
  719. if (new)
  720. nvme_rdma_free_tagset(&ctrl->ctrl, ctrl->ctrl.tagset);
  721. out_free_io_queues:
  722. nvme_rdma_free_io_queues(ctrl);
  723. return ret;
  724. }
  725. static void nvme_rdma_teardown_admin_queue(struct nvme_rdma_ctrl *ctrl,
  726. bool remove)
  727. {
  728. mutex_lock(&ctrl->teardown_lock);
  729. blk_mq_quiesce_queue(ctrl->ctrl.admin_q);
  730. nvme_rdma_stop_queue(&ctrl->queues[0]);
  731. if (ctrl->ctrl.admin_tagset)
  732. blk_mq_tagset_busy_iter(ctrl->ctrl.admin_tagset,
  733. nvme_cancel_request, &ctrl->ctrl);
  734. blk_mq_unquiesce_queue(ctrl->ctrl.admin_q);
  735. nvme_rdma_destroy_admin_queue(ctrl, remove);
  736. mutex_unlock(&ctrl->teardown_lock);
  737. }
  738. static void nvme_rdma_teardown_io_queues(struct nvme_rdma_ctrl *ctrl,
  739. bool remove)
  740. {
  741. mutex_lock(&ctrl->teardown_lock);
  742. if (ctrl->ctrl.queue_count > 1) {
  743. nvme_stop_queues(&ctrl->ctrl);
  744. nvme_rdma_stop_io_queues(ctrl);
  745. if (ctrl->ctrl.tagset)
  746. blk_mq_tagset_busy_iter(ctrl->ctrl.tagset,
  747. nvme_cancel_request, &ctrl->ctrl);
  748. if (remove)
  749. nvme_start_queues(&ctrl->ctrl);
  750. nvme_rdma_destroy_io_queues(ctrl, remove);
  751. }
  752. mutex_unlock(&ctrl->teardown_lock);
  753. }
  754. static void nvme_rdma_stop_ctrl(struct nvme_ctrl *nctrl)
  755. {
  756. struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(nctrl);
  757. cancel_work_sync(&ctrl->err_work);
  758. cancel_delayed_work_sync(&ctrl->reconnect_work);
  759. }
  760. static void nvme_rdma_free_ctrl(struct nvme_ctrl *nctrl)
  761. {
  762. struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(nctrl);
  763. if (list_empty(&ctrl->list))
  764. goto free_ctrl;
  765. mutex_lock(&nvme_rdma_ctrl_mutex);
  766. list_del(&ctrl->list);
  767. mutex_unlock(&nvme_rdma_ctrl_mutex);
  768. nvmf_free_options(nctrl->opts);
  769. free_ctrl:
  770. kfree(ctrl->queues);
  771. kfree(ctrl);
  772. }
  773. static void nvme_rdma_reconnect_or_remove(struct nvme_rdma_ctrl *ctrl)
  774. {
  775. /* If we are resetting/deleting then do nothing */
  776. if (ctrl->ctrl.state != NVME_CTRL_CONNECTING) {
  777. WARN_ON_ONCE(ctrl->ctrl.state == NVME_CTRL_NEW ||
  778. ctrl->ctrl.state == NVME_CTRL_LIVE);
  779. return;
  780. }
  781. if (nvmf_should_reconnect(&ctrl->ctrl)) {
  782. dev_info(ctrl->ctrl.device, "Reconnecting in %d seconds...\n",
  783. ctrl->ctrl.opts->reconnect_delay);
  784. queue_delayed_work(nvme_wq, &ctrl->reconnect_work,
  785. ctrl->ctrl.opts->reconnect_delay * HZ);
  786. } else {
  787. nvme_delete_ctrl(&ctrl->ctrl);
  788. }
  789. }
  790. static int nvme_rdma_setup_ctrl(struct nvme_rdma_ctrl *ctrl, bool new)
  791. {
  792. int ret = -EINVAL;
  793. bool changed;
  794. ret = nvme_rdma_configure_admin_queue(ctrl, new);
  795. if (ret)
  796. return ret;
  797. if (ctrl->ctrl.icdoff) {
  798. dev_err(ctrl->ctrl.device, "icdoff is not supported!\n");
  799. goto destroy_admin;
  800. }
  801. if (!(ctrl->ctrl.sgls & (1 << 2))) {
  802. dev_err(ctrl->ctrl.device,
  803. "Mandatory keyed sgls are not supported!\n");
  804. goto destroy_admin;
  805. }
  806. if (ctrl->ctrl.opts->queue_size > ctrl->ctrl.sqsize + 1) {
  807. dev_warn(ctrl->ctrl.device,
  808. "queue_size %zu > ctrl sqsize %u, clamping down\n",
  809. ctrl->ctrl.opts->queue_size, ctrl->ctrl.sqsize + 1);
  810. }
  811. if (ctrl->ctrl.sqsize + 1 > ctrl->ctrl.maxcmd) {
  812. dev_warn(ctrl->ctrl.device,
  813. "sqsize %u > ctrl maxcmd %u, clamping down\n",
  814. ctrl->ctrl.sqsize + 1, ctrl->ctrl.maxcmd);
  815. ctrl->ctrl.sqsize = ctrl->ctrl.maxcmd - 1;
  816. }
  817. if (ctrl->ctrl.sgls & (1 << 20))
  818. ctrl->use_inline_data = true;
  819. if (ctrl->ctrl.queue_count > 1) {
  820. ret = nvme_rdma_configure_io_queues(ctrl, new);
  821. if (ret)
  822. goto destroy_admin;
  823. }
  824. changed = nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_LIVE);
  825. if (!changed) {
  826. /* state change failure is ok if we're in DELETING state */
  827. WARN_ON_ONCE(ctrl->ctrl.state != NVME_CTRL_DELETING);
  828. ret = -EINVAL;
  829. goto destroy_io;
  830. }
  831. nvme_start_ctrl(&ctrl->ctrl);
  832. return 0;
  833. destroy_io:
  834. if (ctrl->ctrl.queue_count > 1)
  835. nvme_rdma_destroy_io_queues(ctrl, new);
  836. destroy_admin:
  837. nvme_rdma_stop_queue(&ctrl->queues[0]);
  838. nvme_rdma_destroy_admin_queue(ctrl, new);
  839. return ret;
  840. }
  841. static void nvme_rdma_reconnect_ctrl_work(struct work_struct *work)
  842. {
  843. struct nvme_rdma_ctrl *ctrl = container_of(to_delayed_work(work),
  844. struct nvme_rdma_ctrl, reconnect_work);
  845. ++ctrl->ctrl.nr_reconnects;
  846. if (nvme_rdma_setup_ctrl(ctrl, false))
  847. goto requeue;
  848. dev_info(ctrl->ctrl.device, "Successfully reconnected (%d attempts)\n",
  849. ctrl->ctrl.nr_reconnects);
  850. ctrl->ctrl.nr_reconnects = 0;
  851. return;
  852. requeue:
  853. dev_info(ctrl->ctrl.device, "Failed reconnect attempt %d\n",
  854. ctrl->ctrl.nr_reconnects);
  855. nvme_rdma_reconnect_or_remove(ctrl);
  856. }
  857. static void nvme_rdma_error_recovery_work(struct work_struct *work)
  858. {
  859. struct nvme_rdma_ctrl *ctrl = container_of(work,
  860. struct nvme_rdma_ctrl, err_work);
  861. nvme_stop_keep_alive(&ctrl->ctrl);
  862. nvme_rdma_teardown_io_queues(ctrl, false);
  863. nvme_start_queues(&ctrl->ctrl);
  864. nvme_rdma_teardown_admin_queue(ctrl, false);
  865. if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_CONNECTING)) {
  866. /* state change failure is ok if we're in DELETING state */
  867. WARN_ON_ONCE(ctrl->ctrl.state != NVME_CTRL_DELETING);
  868. return;
  869. }
  870. nvme_rdma_reconnect_or_remove(ctrl);
  871. }
  872. static void nvme_rdma_error_recovery(struct nvme_rdma_ctrl *ctrl)
  873. {
  874. if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_RESETTING))
  875. return;
  876. queue_work(nvme_wq, &ctrl->err_work);
  877. }
  878. static void nvme_rdma_wr_error(struct ib_cq *cq, struct ib_wc *wc,
  879. const char *op)
  880. {
  881. struct nvme_rdma_queue *queue = cq->cq_context;
  882. struct nvme_rdma_ctrl *ctrl = queue->ctrl;
  883. if (ctrl->ctrl.state == NVME_CTRL_LIVE)
  884. dev_info(ctrl->ctrl.device,
  885. "%s for CQE 0x%p failed with status %s (%d)\n",
  886. op, wc->wr_cqe,
  887. ib_wc_status_msg(wc->status), wc->status);
  888. nvme_rdma_error_recovery(ctrl);
  889. }
  890. static void nvme_rdma_memreg_done(struct ib_cq *cq, struct ib_wc *wc)
  891. {
  892. if (unlikely(wc->status != IB_WC_SUCCESS))
  893. nvme_rdma_wr_error(cq, wc, "MEMREG");
  894. }
  895. static void nvme_rdma_inv_rkey_done(struct ib_cq *cq, struct ib_wc *wc)
  896. {
  897. struct nvme_rdma_request *req =
  898. container_of(wc->wr_cqe, struct nvme_rdma_request, reg_cqe);
  899. struct request *rq = blk_mq_rq_from_pdu(req);
  900. if (unlikely(wc->status != IB_WC_SUCCESS)) {
  901. nvme_rdma_wr_error(cq, wc, "LOCAL_INV");
  902. return;
  903. }
  904. if (refcount_dec_and_test(&req->ref))
  905. nvme_end_request(rq, req->status, req->result);
  906. }
  907. static int nvme_rdma_inv_rkey(struct nvme_rdma_queue *queue,
  908. struct nvme_rdma_request *req)
  909. {
  910. struct ib_send_wr wr = {
  911. .opcode = IB_WR_LOCAL_INV,
  912. .next = NULL,
  913. .num_sge = 0,
  914. .send_flags = IB_SEND_SIGNALED,
  915. .ex.invalidate_rkey = req->mr->rkey,
  916. };
  917. req->reg_cqe.done = nvme_rdma_inv_rkey_done;
  918. wr.wr_cqe = &req->reg_cqe;
  919. return ib_post_send(queue->qp, &wr, NULL);
  920. }
  921. static void nvme_rdma_unmap_data(struct nvme_rdma_queue *queue,
  922. struct request *rq)
  923. {
  924. struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
  925. struct nvme_rdma_device *dev = queue->device;
  926. struct ib_device *ibdev = dev->dev;
  927. if (!blk_rq_payload_bytes(rq))
  928. return;
  929. if (req->mr) {
  930. ib_mr_pool_put(queue->qp, &queue->qp->rdma_mrs, req->mr);
  931. req->mr = NULL;
  932. }
  933. ib_dma_unmap_sg(ibdev, req->sg_table.sgl,
  934. req->nents, rq_data_dir(rq) ==
  935. WRITE ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
  936. nvme_cleanup_cmd(rq);
  937. sg_free_table_chained(&req->sg_table, true);
  938. }
  939. static int nvme_rdma_set_sg_null(struct nvme_command *c)
  940. {
  941. struct nvme_keyed_sgl_desc *sg = &c->common.dptr.ksgl;
  942. sg->addr = 0;
  943. put_unaligned_le24(0, sg->length);
  944. put_unaligned_le32(0, sg->key);
  945. sg->type = NVME_KEY_SGL_FMT_DATA_DESC << 4;
  946. return 0;
  947. }
  948. static int nvme_rdma_map_sg_inline(struct nvme_rdma_queue *queue,
  949. struct nvme_rdma_request *req, struct nvme_command *c,
  950. int count)
  951. {
  952. struct nvme_sgl_desc *sg = &c->common.dptr.sgl;
  953. struct scatterlist *sgl = req->sg_table.sgl;
  954. struct ib_sge *sge = &req->sge[1];
  955. u32 len = 0;
  956. int i;
  957. for (i = 0; i < count; i++, sgl++, sge++) {
  958. sge->addr = sg_dma_address(sgl);
  959. sge->length = sg_dma_len(sgl);
  960. sge->lkey = queue->device->pd->local_dma_lkey;
  961. len += sge->length;
  962. }
  963. sg->addr = cpu_to_le64(queue->ctrl->ctrl.icdoff);
  964. sg->length = cpu_to_le32(len);
  965. sg->type = (NVME_SGL_FMT_DATA_DESC << 4) | NVME_SGL_FMT_OFFSET;
  966. req->num_sge += count;
  967. return 0;
  968. }
  969. static int nvme_rdma_map_sg_single(struct nvme_rdma_queue *queue,
  970. struct nvme_rdma_request *req, struct nvme_command *c)
  971. {
  972. struct nvme_keyed_sgl_desc *sg = &c->common.dptr.ksgl;
  973. sg->addr = cpu_to_le64(sg_dma_address(req->sg_table.sgl));
  974. put_unaligned_le24(sg_dma_len(req->sg_table.sgl), sg->length);
  975. put_unaligned_le32(queue->device->pd->unsafe_global_rkey, sg->key);
  976. sg->type = NVME_KEY_SGL_FMT_DATA_DESC << 4;
  977. return 0;
  978. }
  979. static int nvme_rdma_map_sg_fr(struct nvme_rdma_queue *queue,
  980. struct nvme_rdma_request *req, struct nvme_command *c,
  981. int count)
  982. {
  983. struct nvme_keyed_sgl_desc *sg = &c->common.dptr.ksgl;
  984. int nr;
  985. req->mr = ib_mr_pool_get(queue->qp, &queue->qp->rdma_mrs);
  986. if (WARN_ON_ONCE(!req->mr))
  987. return -EAGAIN;
  988. /*
  989. * Align the MR to a 4K page size to match the ctrl page size and
  990. * the block virtual boundary.
  991. */
  992. nr = ib_map_mr_sg(req->mr, req->sg_table.sgl, count, NULL, SZ_4K);
  993. if (unlikely(nr < count)) {
  994. ib_mr_pool_put(queue->qp, &queue->qp->rdma_mrs, req->mr);
  995. req->mr = NULL;
  996. if (nr < 0)
  997. return nr;
  998. return -EINVAL;
  999. }
  1000. ib_update_fast_reg_key(req->mr, ib_inc_rkey(req->mr->rkey));
  1001. req->reg_cqe.done = nvme_rdma_memreg_done;
  1002. memset(&req->reg_wr, 0, sizeof(req->reg_wr));
  1003. req->reg_wr.wr.opcode = IB_WR_REG_MR;
  1004. req->reg_wr.wr.wr_cqe = &req->reg_cqe;
  1005. req->reg_wr.wr.num_sge = 0;
  1006. req->reg_wr.mr = req->mr;
  1007. req->reg_wr.key = req->mr->rkey;
  1008. req->reg_wr.access = IB_ACCESS_LOCAL_WRITE |
  1009. IB_ACCESS_REMOTE_READ |
  1010. IB_ACCESS_REMOTE_WRITE;
  1011. sg->addr = cpu_to_le64(req->mr->iova);
  1012. put_unaligned_le24(req->mr->length, sg->length);
  1013. put_unaligned_le32(req->mr->rkey, sg->key);
  1014. sg->type = (NVME_KEY_SGL_FMT_DATA_DESC << 4) |
  1015. NVME_SGL_FMT_INVALIDATE;
  1016. return 0;
  1017. }
  1018. static int nvme_rdma_map_data(struct nvme_rdma_queue *queue,
  1019. struct request *rq, struct nvme_command *c)
  1020. {
  1021. struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
  1022. struct nvme_rdma_device *dev = queue->device;
  1023. struct ib_device *ibdev = dev->dev;
  1024. int count, ret;
  1025. req->num_sge = 1;
  1026. refcount_set(&req->ref, 2); /* send and recv completions */
  1027. c->common.flags |= NVME_CMD_SGL_METABUF;
  1028. if (!blk_rq_payload_bytes(rq))
  1029. return nvme_rdma_set_sg_null(c);
  1030. req->sg_table.sgl = req->first_sgl;
  1031. ret = sg_alloc_table_chained(&req->sg_table,
  1032. blk_rq_nr_phys_segments(rq), req->sg_table.sgl);
  1033. if (ret)
  1034. return -ENOMEM;
  1035. req->nents = blk_rq_map_sg(rq->q, rq, req->sg_table.sgl);
  1036. count = ib_dma_map_sg(ibdev, req->sg_table.sgl, req->nents,
  1037. rq_data_dir(rq) == WRITE ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
  1038. if (unlikely(count <= 0)) {
  1039. ret = -EIO;
  1040. goto out_free_table;
  1041. }
  1042. if (count <= dev->num_inline_segments) {
  1043. if (rq_data_dir(rq) == WRITE && nvme_rdma_queue_idx(queue) &&
  1044. queue->ctrl->use_inline_data &&
  1045. blk_rq_payload_bytes(rq) <=
  1046. nvme_rdma_inline_data_size(queue)) {
  1047. ret = nvme_rdma_map_sg_inline(queue, req, c, count);
  1048. goto out;
  1049. }
  1050. if (count == 1 && dev->pd->flags & IB_PD_UNSAFE_GLOBAL_RKEY) {
  1051. ret = nvme_rdma_map_sg_single(queue, req, c);
  1052. goto out;
  1053. }
  1054. }
  1055. ret = nvme_rdma_map_sg_fr(queue, req, c, count);
  1056. out:
  1057. if (unlikely(ret))
  1058. goto out_unmap_sg;
  1059. return 0;
  1060. out_unmap_sg:
  1061. ib_dma_unmap_sg(ibdev, req->sg_table.sgl,
  1062. req->nents, rq_data_dir(rq) ==
  1063. WRITE ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
  1064. out_free_table:
  1065. sg_free_table_chained(&req->sg_table, true);
  1066. return ret;
  1067. }
  1068. static void nvme_rdma_send_done(struct ib_cq *cq, struct ib_wc *wc)
  1069. {
  1070. struct nvme_rdma_qe *qe =
  1071. container_of(wc->wr_cqe, struct nvme_rdma_qe, cqe);
  1072. struct nvme_rdma_request *req =
  1073. container_of(qe, struct nvme_rdma_request, sqe);
  1074. struct request *rq = blk_mq_rq_from_pdu(req);
  1075. if (unlikely(wc->status != IB_WC_SUCCESS)) {
  1076. nvme_rdma_wr_error(cq, wc, "SEND");
  1077. return;
  1078. }
  1079. if (refcount_dec_and_test(&req->ref))
  1080. nvme_end_request(rq, req->status, req->result);
  1081. }
  1082. static int nvme_rdma_post_send(struct nvme_rdma_queue *queue,
  1083. struct nvme_rdma_qe *qe, struct ib_sge *sge, u32 num_sge,
  1084. struct ib_send_wr *first)
  1085. {
  1086. struct ib_send_wr wr;
  1087. int ret;
  1088. sge->addr = qe->dma;
  1089. sge->length = sizeof(struct nvme_command),
  1090. sge->lkey = queue->device->pd->local_dma_lkey;
  1091. wr.next = NULL;
  1092. wr.wr_cqe = &qe->cqe;
  1093. wr.sg_list = sge;
  1094. wr.num_sge = num_sge;
  1095. wr.opcode = IB_WR_SEND;
  1096. wr.send_flags = IB_SEND_SIGNALED;
  1097. if (first)
  1098. first->next = &wr;
  1099. else
  1100. first = &wr;
  1101. ret = ib_post_send(queue->qp, first, NULL);
  1102. if (unlikely(ret)) {
  1103. dev_err(queue->ctrl->ctrl.device,
  1104. "%s failed with error code %d\n", __func__, ret);
  1105. }
  1106. return ret;
  1107. }
  1108. static int nvme_rdma_post_recv(struct nvme_rdma_queue *queue,
  1109. struct nvme_rdma_qe *qe)
  1110. {
  1111. struct ib_recv_wr wr;
  1112. struct ib_sge list;
  1113. int ret;
  1114. list.addr = qe->dma;
  1115. list.length = sizeof(struct nvme_completion);
  1116. list.lkey = queue->device->pd->local_dma_lkey;
  1117. qe->cqe.done = nvme_rdma_recv_done;
  1118. wr.next = NULL;
  1119. wr.wr_cqe = &qe->cqe;
  1120. wr.sg_list = &list;
  1121. wr.num_sge = 1;
  1122. ret = ib_post_recv(queue->qp, &wr, NULL);
  1123. if (unlikely(ret)) {
  1124. dev_err(queue->ctrl->ctrl.device,
  1125. "%s failed with error code %d\n", __func__, ret);
  1126. }
  1127. return ret;
  1128. }
  1129. static struct blk_mq_tags *nvme_rdma_tagset(struct nvme_rdma_queue *queue)
  1130. {
  1131. u32 queue_idx = nvme_rdma_queue_idx(queue);
  1132. if (queue_idx == 0)
  1133. return queue->ctrl->admin_tag_set.tags[queue_idx];
  1134. return queue->ctrl->tag_set.tags[queue_idx - 1];
  1135. }
  1136. static void nvme_rdma_async_done(struct ib_cq *cq, struct ib_wc *wc)
  1137. {
  1138. if (unlikely(wc->status != IB_WC_SUCCESS))
  1139. nvme_rdma_wr_error(cq, wc, "ASYNC");
  1140. }
  1141. static void nvme_rdma_submit_async_event(struct nvme_ctrl *arg)
  1142. {
  1143. struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(arg);
  1144. struct nvme_rdma_queue *queue = &ctrl->queues[0];
  1145. struct ib_device *dev = queue->device->dev;
  1146. struct nvme_rdma_qe *sqe = &ctrl->async_event_sqe;
  1147. struct nvme_command *cmd = sqe->data;
  1148. struct ib_sge sge;
  1149. int ret;
  1150. ib_dma_sync_single_for_cpu(dev, sqe->dma, sizeof(*cmd), DMA_TO_DEVICE);
  1151. memset(cmd, 0, sizeof(*cmd));
  1152. cmd->common.opcode = nvme_admin_async_event;
  1153. cmd->common.command_id = NVME_AQ_BLK_MQ_DEPTH;
  1154. cmd->common.flags |= NVME_CMD_SGL_METABUF;
  1155. nvme_rdma_set_sg_null(cmd);
  1156. sqe->cqe.done = nvme_rdma_async_done;
  1157. ib_dma_sync_single_for_device(dev, sqe->dma, sizeof(*cmd),
  1158. DMA_TO_DEVICE);
  1159. ret = nvme_rdma_post_send(queue, sqe, &sge, 1, NULL);
  1160. WARN_ON_ONCE(ret);
  1161. }
  1162. static int nvme_rdma_process_nvme_rsp(struct nvme_rdma_queue *queue,
  1163. struct nvme_completion *cqe, struct ib_wc *wc, int tag)
  1164. {
  1165. struct request *rq;
  1166. struct nvme_rdma_request *req;
  1167. int ret = 0;
  1168. rq = blk_mq_tag_to_rq(nvme_rdma_tagset(queue), cqe->command_id);
  1169. if (!rq) {
  1170. dev_err(queue->ctrl->ctrl.device,
  1171. "tag 0x%x on QP %#x not found\n",
  1172. cqe->command_id, queue->qp->qp_num);
  1173. nvme_rdma_error_recovery(queue->ctrl);
  1174. return ret;
  1175. }
  1176. req = blk_mq_rq_to_pdu(rq);
  1177. req->status = cqe->status;
  1178. req->result = cqe->result;
  1179. if (wc->wc_flags & IB_WC_WITH_INVALIDATE) {
  1180. if (unlikely(wc->ex.invalidate_rkey != req->mr->rkey)) {
  1181. dev_err(queue->ctrl->ctrl.device,
  1182. "Bogus remote invalidation for rkey %#x\n",
  1183. req->mr->rkey);
  1184. nvme_rdma_error_recovery(queue->ctrl);
  1185. }
  1186. } else if (req->mr) {
  1187. ret = nvme_rdma_inv_rkey(queue, req);
  1188. if (unlikely(ret < 0)) {
  1189. dev_err(queue->ctrl->ctrl.device,
  1190. "Queueing INV WR for rkey %#x failed (%d)\n",
  1191. req->mr->rkey, ret);
  1192. nvme_rdma_error_recovery(queue->ctrl);
  1193. }
  1194. /* the local invalidation completion will end the request */
  1195. return 0;
  1196. }
  1197. if (refcount_dec_and_test(&req->ref)) {
  1198. if (rq->tag == tag)
  1199. ret = 1;
  1200. nvme_end_request(rq, req->status, req->result);
  1201. }
  1202. return ret;
  1203. }
  1204. static int __nvme_rdma_recv_done(struct ib_cq *cq, struct ib_wc *wc, int tag)
  1205. {
  1206. struct nvme_rdma_qe *qe =
  1207. container_of(wc->wr_cqe, struct nvme_rdma_qe, cqe);
  1208. struct nvme_rdma_queue *queue = cq->cq_context;
  1209. struct ib_device *ibdev = queue->device->dev;
  1210. struct nvme_completion *cqe = qe->data;
  1211. const size_t len = sizeof(struct nvme_completion);
  1212. int ret = 0;
  1213. if (unlikely(wc->status != IB_WC_SUCCESS)) {
  1214. nvme_rdma_wr_error(cq, wc, "RECV");
  1215. return 0;
  1216. }
  1217. ib_dma_sync_single_for_cpu(ibdev, qe->dma, len, DMA_FROM_DEVICE);
  1218. /*
  1219. * AEN requests are special as they don't time out and can
  1220. * survive any kind of queue freeze and often don't respond to
  1221. * aborts. We don't even bother to allocate a struct request
  1222. * for them but rather special case them here.
  1223. */
  1224. if (unlikely(nvme_rdma_queue_idx(queue) == 0 &&
  1225. cqe->command_id >= NVME_AQ_BLK_MQ_DEPTH))
  1226. nvme_complete_async_event(&queue->ctrl->ctrl, cqe->status,
  1227. &cqe->result);
  1228. else
  1229. ret = nvme_rdma_process_nvme_rsp(queue, cqe, wc, tag);
  1230. ib_dma_sync_single_for_device(ibdev, qe->dma, len, DMA_FROM_DEVICE);
  1231. nvme_rdma_post_recv(queue, qe);
  1232. return ret;
  1233. }
  1234. static void nvme_rdma_recv_done(struct ib_cq *cq, struct ib_wc *wc)
  1235. {
  1236. __nvme_rdma_recv_done(cq, wc, -1);
  1237. }
  1238. static int nvme_rdma_conn_established(struct nvme_rdma_queue *queue)
  1239. {
  1240. int ret, i;
  1241. for (i = 0; i < queue->queue_size; i++) {
  1242. ret = nvme_rdma_post_recv(queue, &queue->rsp_ring[i]);
  1243. if (ret)
  1244. goto out_destroy_queue_ib;
  1245. }
  1246. return 0;
  1247. out_destroy_queue_ib:
  1248. nvme_rdma_destroy_queue_ib(queue);
  1249. return ret;
  1250. }
  1251. static int nvme_rdma_conn_rejected(struct nvme_rdma_queue *queue,
  1252. struct rdma_cm_event *ev)
  1253. {
  1254. struct rdma_cm_id *cm_id = queue->cm_id;
  1255. int status = ev->status;
  1256. const char *rej_msg;
  1257. const struct nvme_rdma_cm_rej *rej_data;
  1258. u8 rej_data_len;
  1259. rej_msg = rdma_reject_msg(cm_id, status);
  1260. rej_data = rdma_consumer_reject_data(cm_id, ev, &rej_data_len);
  1261. if (rej_data && rej_data_len >= sizeof(u16)) {
  1262. u16 sts = le16_to_cpu(rej_data->sts);
  1263. dev_err(queue->ctrl->ctrl.device,
  1264. "Connect rejected: status %d (%s) nvme status %d (%s).\n",
  1265. status, rej_msg, sts, nvme_rdma_cm_msg(sts));
  1266. } else {
  1267. dev_err(queue->ctrl->ctrl.device,
  1268. "Connect rejected: status %d (%s).\n", status, rej_msg);
  1269. }
  1270. return -ECONNRESET;
  1271. }
  1272. static int nvme_rdma_addr_resolved(struct nvme_rdma_queue *queue)
  1273. {
  1274. int ret;
  1275. ret = nvme_rdma_create_queue_ib(queue);
  1276. if (ret)
  1277. return ret;
  1278. ret = rdma_resolve_route(queue->cm_id, NVME_RDMA_CONNECT_TIMEOUT_MS);
  1279. if (ret) {
  1280. dev_err(queue->ctrl->ctrl.device,
  1281. "rdma_resolve_route failed (%d).\n",
  1282. queue->cm_error);
  1283. goto out_destroy_queue;
  1284. }
  1285. return 0;
  1286. out_destroy_queue:
  1287. nvme_rdma_destroy_queue_ib(queue);
  1288. return ret;
  1289. }
  1290. static int nvme_rdma_route_resolved(struct nvme_rdma_queue *queue)
  1291. {
  1292. struct nvme_rdma_ctrl *ctrl = queue->ctrl;
  1293. struct rdma_conn_param param = { };
  1294. struct nvme_rdma_cm_req priv = { };
  1295. int ret;
  1296. param.qp_num = queue->qp->qp_num;
  1297. param.flow_control = 1;
  1298. param.responder_resources = queue->device->dev->attrs.max_qp_rd_atom;
  1299. /* maximum retry count */
  1300. param.retry_count = 7;
  1301. param.rnr_retry_count = 7;
  1302. param.private_data = &priv;
  1303. param.private_data_len = sizeof(priv);
  1304. priv.recfmt = cpu_to_le16(NVME_RDMA_CM_FMT_1_0);
  1305. priv.qid = cpu_to_le16(nvme_rdma_queue_idx(queue));
  1306. /*
  1307. * set the admin queue depth to the minimum size
  1308. * specified by the Fabrics standard.
  1309. */
  1310. if (priv.qid == 0) {
  1311. priv.hrqsize = cpu_to_le16(NVME_AQ_DEPTH);
  1312. priv.hsqsize = cpu_to_le16(NVME_AQ_DEPTH - 1);
  1313. } else {
  1314. /*
  1315. * current interpretation of the fabrics spec
  1316. * is at minimum you make hrqsize sqsize+1, or a
  1317. * 1's based representation of sqsize.
  1318. */
  1319. priv.hrqsize = cpu_to_le16(queue->queue_size);
  1320. priv.hsqsize = cpu_to_le16(queue->ctrl->ctrl.sqsize);
  1321. }
  1322. ret = rdma_connect(queue->cm_id, &param);
  1323. if (ret) {
  1324. dev_err(ctrl->ctrl.device,
  1325. "rdma_connect failed (%d).\n", ret);
  1326. goto out_destroy_queue_ib;
  1327. }
  1328. return 0;
  1329. out_destroy_queue_ib:
  1330. nvme_rdma_destroy_queue_ib(queue);
  1331. return ret;
  1332. }
  1333. static int nvme_rdma_cm_handler(struct rdma_cm_id *cm_id,
  1334. struct rdma_cm_event *ev)
  1335. {
  1336. struct nvme_rdma_queue *queue = cm_id->context;
  1337. int cm_error = 0;
  1338. dev_dbg(queue->ctrl->ctrl.device, "%s (%d): status %d id %p\n",
  1339. rdma_event_msg(ev->event), ev->event,
  1340. ev->status, cm_id);
  1341. switch (ev->event) {
  1342. case RDMA_CM_EVENT_ADDR_RESOLVED:
  1343. cm_error = nvme_rdma_addr_resolved(queue);
  1344. break;
  1345. case RDMA_CM_EVENT_ROUTE_RESOLVED:
  1346. cm_error = nvme_rdma_route_resolved(queue);
  1347. break;
  1348. case RDMA_CM_EVENT_ESTABLISHED:
  1349. queue->cm_error = nvme_rdma_conn_established(queue);
  1350. /* complete cm_done regardless of success/failure */
  1351. complete(&queue->cm_done);
  1352. return 0;
  1353. case RDMA_CM_EVENT_REJECTED:
  1354. cm_error = nvme_rdma_conn_rejected(queue, ev);
  1355. break;
  1356. case RDMA_CM_EVENT_ROUTE_ERROR:
  1357. case RDMA_CM_EVENT_CONNECT_ERROR:
  1358. case RDMA_CM_EVENT_UNREACHABLE:
  1359. nvme_rdma_destroy_queue_ib(queue);
  1360. /* fall through */
  1361. case RDMA_CM_EVENT_ADDR_ERROR:
  1362. dev_dbg(queue->ctrl->ctrl.device,
  1363. "CM error event %d\n", ev->event);
  1364. cm_error = -ECONNRESET;
  1365. break;
  1366. case RDMA_CM_EVENT_DISCONNECTED:
  1367. case RDMA_CM_EVENT_ADDR_CHANGE:
  1368. case RDMA_CM_EVENT_TIMEWAIT_EXIT:
  1369. dev_dbg(queue->ctrl->ctrl.device,
  1370. "disconnect received - connection closed\n");
  1371. nvme_rdma_error_recovery(queue->ctrl);
  1372. break;
  1373. case RDMA_CM_EVENT_DEVICE_REMOVAL:
  1374. /* device removal is handled via the ib_client API */
  1375. break;
  1376. default:
  1377. dev_err(queue->ctrl->ctrl.device,
  1378. "Unexpected RDMA CM event (%d)\n", ev->event);
  1379. nvme_rdma_error_recovery(queue->ctrl);
  1380. break;
  1381. }
  1382. if (cm_error) {
  1383. queue->cm_error = cm_error;
  1384. complete(&queue->cm_done);
  1385. }
  1386. return 0;
  1387. }
  1388. static enum blk_eh_timer_return
  1389. nvme_rdma_timeout(struct request *rq, bool reserved)
  1390. {
  1391. struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
  1392. struct nvme_rdma_queue *queue = req->queue;
  1393. struct nvme_rdma_ctrl *ctrl = queue->ctrl;
  1394. dev_warn(ctrl->ctrl.device, "I/O %d QID %d timeout\n",
  1395. rq->tag, nvme_rdma_queue_idx(queue));
  1396. if (ctrl->ctrl.state != NVME_CTRL_LIVE) {
  1397. /*
  1398. * Teardown immediately if controller times out while starting
  1399. * or we are already started error recovery. all outstanding
  1400. * requests are completed on shutdown, so we return BLK_EH_DONE.
  1401. */
  1402. flush_work(&ctrl->err_work);
  1403. nvme_rdma_teardown_io_queues(ctrl, false);
  1404. nvme_rdma_teardown_admin_queue(ctrl, false);
  1405. return BLK_EH_DONE;
  1406. }
  1407. dev_warn(ctrl->ctrl.device, "starting error recovery\n");
  1408. nvme_rdma_error_recovery(ctrl);
  1409. return BLK_EH_RESET_TIMER;
  1410. }
  1411. static blk_status_t nvme_rdma_queue_rq(struct blk_mq_hw_ctx *hctx,
  1412. const struct blk_mq_queue_data *bd)
  1413. {
  1414. struct nvme_ns *ns = hctx->queue->queuedata;
  1415. struct nvme_rdma_queue *queue = hctx->driver_data;
  1416. struct request *rq = bd->rq;
  1417. struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
  1418. struct nvme_rdma_qe *sqe = &req->sqe;
  1419. struct nvme_command *c = sqe->data;
  1420. struct ib_device *dev;
  1421. bool queue_ready = test_bit(NVME_RDMA_Q_LIVE, &queue->flags);
  1422. blk_status_t ret;
  1423. int err;
  1424. WARN_ON_ONCE(rq->tag < 0);
  1425. if (!nvmf_check_ready(&queue->ctrl->ctrl, rq, queue_ready))
  1426. return nvmf_fail_nonready_command(&queue->ctrl->ctrl, rq);
  1427. dev = queue->device->dev;
  1428. ib_dma_sync_single_for_cpu(dev, sqe->dma,
  1429. sizeof(struct nvme_command), DMA_TO_DEVICE);
  1430. ret = nvme_setup_cmd(ns, rq, c);
  1431. if (ret)
  1432. return ret;
  1433. blk_mq_start_request(rq);
  1434. err = nvme_rdma_map_data(queue, rq, c);
  1435. if (unlikely(err < 0)) {
  1436. dev_err(queue->ctrl->ctrl.device,
  1437. "Failed to map data (%d)\n", err);
  1438. nvme_cleanup_cmd(rq);
  1439. goto err;
  1440. }
  1441. sqe->cqe.done = nvme_rdma_send_done;
  1442. ib_dma_sync_single_for_device(dev, sqe->dma,
  1443. sizeof(struct nvme_command), DMA_TO_DEVICE);
  1444. err = nvme_rdma_post_send(queue, sqe, req->sge, req->num_sge,
  1445. req->mr ? &req->reg_wr.wr : NULL);
  1446. if (unlikely(err)) {
  1447. nvme_rdma_unmap_data(queue, rq);
  1448. goto err;
  1449. }
  1450. return BLK_STS_OK;
  1451. err:
  1452. if (err == -ENOMEM || err == -EAGAIN)
  1453. return BLK_STS_RESOURCE;
  1454. return BLK_STS_IOERR;
  1455. }
  1456. static int nvme_rdma_poll(struct blk_mq_hw_ctx *hctx, unsigned int tag)
  1457. {
  1458. struct nvme_rdma_queue *queue = hctx->driver_data;
  1459. struct ib_cq *cq = queue->ib_cq;
  1460. struct ib_wc wc;
  1461. int found = 0;
  1462. while (ib_poll_cq(cq, 1, &wc) > 0) {
  1463. struct ib_cqe *cqe = wc.wr_cqe;
  1464. if (cqe) {
  1465. if (cqe->done == nvme_rdma_recv_done)
  1466. found |= __nvme_rdma_recv_done(cq, &wc, tag);
  1467. else
  1468. cqe->done(cq, &wc);
  1469. }
  1470. }
  1471. return found;
  1472. }
  1473. static void nvme_rdma_complete_rq(struct request *rq)
  1474. {
  1475. struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
  1476. nvme_rdma_unmap_data(req->queue, rq);
  1477. nvme_complete_rq(rq);
  1478. }
  1479. static int nvme_rdma_map_queues(struct blk_mq_tag_set *set)
  1480. {
  1481. struct nvme_rdma_ctrl *ctrl = set->driver_data;
  1482. return blk_mq_rdma_map_queues(set, ctrl->device->dev, 0);
  1483. }
  1484. static const struct blk_mq_ops nvme_rdma_mq_ops = {
  1485. .queue_rq = nvme_rdma_queue_rq,
  1486. .complete = nvme_rdma_complete_rq,
  1487. .init_request = nvme_rdma_init_request,
  1488. .exit_request = nvme_rdma_exit_request,
  1489. .init_hctx = nvme_rdma_init_hctx,
  1490. .poll = nvme_rdma_poll,
  1491. .timeout = nvme_rdma_timeout,
  1492. .map_queues = nvme_rdma_map_queues,
  1493. };
  1494. static const struct blk_mq_ops nvme_rdma_admin_mq_ops = {
  1495. .queue_rq = nvme_rdma_queue_rq,
  1496. .complete = nvme_rdma_complete_rq,
  1497. .init_request = nvme_rdma_init_request,
  1498. .exit_request = nvme_rdma_exit_request,
  1499. .init_hctx = nvme_rdma_init_admin_hctx,
  1500. .timeout = nvme_rdma_timeout,
  1501. };
  1502. static void nvme_rdma_shutdown_ctrl(struct nvme_rdma_ctrl *ctrl, bool shutdown)
  1503. {
  1504. nvme_rdma_teardown_io_queues(ctrl, shutdown);
  1505. if (shutdown)
  1506. nvme_shutdown_ctrl(&ctrl->ctrl);
  1507. else
  1508. nvme_disable_ctrl(&ctrl->ctrl, ctrl->ctrl.cap);
  1509. nvme_rdma_teardown_admin_queue(ctrl, shutdown);
  1510. }
  1511. static void nvme_rdma_delete_ctrl(struct nvme_ctrl *ctrl)
  1512. {
  1513. nvme_rdma_shutdown_ctrl(to_rdma_ctrl(ctrl), true);
  1514. }
  1515. static void nvme_rdma_reset_ctrl_work(struct work_struct *work)
  1516. {
  1517. struct nvme_rdma_ctrl *ctrl =
  1518. container_of(work, struct nvme_rdma_ctrl, ctrl.reset_work);
  1519. nvme_stop_ctrl(&ctrl->ctrl);
  1520. nvme_rdma_shutdown_ctrl(ctrl, false);
  1521. if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_CONNECTING)) {
  1522. /* state change failure should never happen */
  1523. WARN_ON_ONCE(1);
  1524. return;
  1525. }
  1526. if (nvme_rdma_setup_ctrl(ctrl, false))
  1527. goto out_fail;
  1528. return;
  1529. out_fail:
  1530. ++ctrl->ctrl.nr_reconnects;
  1531. nvme_rdma_reconnect_or_remove(ctrl);
  1532. }
  1533. static const struct nvme_ctrl_ops nvme_rdma_ctrl_ops = {
  1534. .name = "rdma",
  1535. .module = THIS_MODULE,
  1536. .flags = NVME_F_FABRICS,
  1537. .reg_read32 = nvmf_reg_read32,
  1538. .reg_read64 = nvmf_reg_read64,
  1539. .reg_write32 = nvmf_reg_write32,
  1540. .free_ctrl = nvme_rdma_free_ctrl,
  1541. .submit_async_event = nvme_rdma_submit_async_event,
  1542. .delete_ctrl = nvme_rdma_delete_ctrl,
  1543. .get_address = nvmf_get_address,
  1544. .stop_ctrl = nvme_rdma_stop_ctrl,
  1545. };
  1546. static inline bool
  1547. __nvme_rdma_options_match(struct nvme_rdma_ctrl *ctrl,
  1548. struct nvmf_ctrl_options *opts)
  1549. {
  1550. char *stdport = __stringify(NVME_RDMA_IP_PORT);
  1551. if (!nvmf_ctlr_matches_baseopts(&ctrl->ctrl, opts) ||
  1552. strcmp(opts->traddr, ctrl->ctrl.opts->traddr))
  1553. return false;
  1554. if (opts->mask & NVMF_OPT_TRSVCID &&
  1555. ctrl->ctrl.opts->mask & NVMF_OPT_TRSVCID) {
  1556. if (strcmp(opts->trsvcid, ctrl->ctrl.opts->trsvcid))
  1557. return false;
  1558. } else if (opts->mask & NVMF_OPT_TRSVCID) {
  1559. if (strcmp(opts->trsvcid, stdport))
  1560. return false;
  1561. } else if (ctrl->ctrl.opts->mask & NVMF_OPT_TRSVCID) {
  1562. if (strcmp(stdport, ctrl->ctrl.opts->trsvcid))
  1563. return false;
  1564. }
  1565. /* else, it's a match as both have stdport. Fall to next checks */
  1566. /*
  1567. * checking the local address is rough. In most cases, one
  1568. * is not specified and the host port is selected by the stack.
  1569. *
  1570. * Assume no match if:
  1571. * local address is specified and address is not the same
  1572. * local address is not specified but remote is, or vice versa
  1573. * (admin using specific host_traddr when it matters).
  1574. */
  1575. if (opts->mask & NVMF_OPT_HOST_TRADDR &&
  1576. ctrl->ctrl.opts->mask & NVMF_OPT_HOST_TRADDR) {
  1577. if (strcmp(opts->host_traddr, ctrl->ctrl.opts->host_traddr))
  1578. return false;
  1579. } else if (opts->mask & NVMF_OPT_HOST_TRADDR ||
  1580. ctrl->ctrl.opts->mask & NVMF_OPT_HOST_TRADDR)
  1581. return false;
  1582. /*
  1583. * if neither controller had an host port specified, assume it's
  1584. * a match as everything else matched.
  1585. */
  1586. return true;
  1587. }
  1588. /*
  1589. * Fails a connection request if it matches an existing controller
  1590. * (association) with the same tuple:
  1591. * <Host NQN, Host ID, local address, remote address, remote port, SUBSYS NQN>
  1592. *
  1593. * if local address is not specified in the request, it will match an
  1594. * existing controller with all the other parameters the same and no
  1595. * local port address specified as well.
  1596. *
  1597. * The ports don't need to be compared as they are intrinsically
  1598. * already matched by the port pointers supplied.
  1599. */
  1600. static bool
  1601. nvme_rdma_existing_controller(struct nvmf_ctrl_options *opts)
  1602. {
  1603. struct nvme_rdma_ctrl *ctrl;
  1604. bool found = false;
  1605. mutex_lock(&nvme_rdma_ctrl_mutex);
  1606. list_for_each_entry(ctrl, &nvme_rdma_ctrl_list, list) {
  1607. found = __nvme_rdma_options_match(ctrl, opts);
  1608. if (found)
  1609. break;
  1610. }
  1611. mutex_unlock(&nvme_rdma_ctrl_mutex);
  1612. return found;
  1613. }
  1614. static struct nvme_ctrl *nvme_rdma_create_ctrl(struct device *dev,
  1615. struct nvmf_ctrl_options *opts)
  1616. {
  1617. struct nvme_rdma_ctrl *ctrl;
  1618. int ret;
  1619. bool changed;
  1620. char *port;
  1621. ctrl = kzalloc(sizeof(*ctrl), GFP_KERNEL);
  1622. if (!ctrl)
  1623. return ERR_PTR(-ENOMEM);
  1624. ctrl->ctrl.opts = opts;
  1625. INIT_LIST_HEAD(&ctrl->list);
  1626. mutex_init(&ctrl->teardown_lock);
  1627. if (opts->mask & NVMF_OPT_TRSVCID)
  1628. port = opts->trsvcid;
  1629. else
  1630. port = __stringify(NVME_RDMA_IP_PORT);
  1631. ret = inet_pton_with_scope(&init_net, AF_UNSPEC,
  1632. opts->traddr, port, &ctrl->addr);
  1633. if (ret) {
  1634. pr_err("malformed address passed: %s:%s\n", opts->traddr, port);
  1635. goto out_free_ctrl;
  1636. }
  1637. if (opts->mask & NVMF_OPT_HOST_TRADDR) {
  1638. ret = inet_pton_with_scope(&init_net, AF_UNSPEC,
  1639. opts->host_traddr, NULL, &ctrl->src_addr);
  1640. if (ret) {
  1641. pr_err("malformed src address passed: %s\n",
  1642. opts->host_traddr);
  1643. goto out_free_ctrl;
  1644. }
  1645. }
  1646. if (!opts->duplicate_connect && nvme_rdma_existing_controller(opts)) {
  1647. ret = -EALREADY;
  1648. goto out_free_ctrl;
  1649. }
  1650. INIT_DELAYED_WORK(&ctrl->reconnect_work,
  1651. nvme_rdma_reconnect_ctrl_work);
  1652. INIT_WORK(&ctrl->err_work, nvme_rdma_error_recovery_work);
  1653. INIT_WORK(&ctrl->ctrl.reset_work, nvme_rdma_reset_ctrl_work);
  1654. ctrl->ctrl.queue_count = opts->nr_io_queues + 1; /* +1 for admin queue */
  1655. ctrl->ctrl.sqsize = opts->queue_size - 1;
  1656. ctrl->ctrl.kato = opts->kato;
  1657. ret = -ENOMEM;
  1658. ctrl->queues = kcalloc(ctrl->ctrl.queue_count, sizeof(*ctrl->queues),
  1659. GFP_KERNEL);
  1660. if (!ctrl->queues)
  1661. goto out_free_ctrl;
  1662. ret = nvme_init_ctrl(&ctrl->ctrl, dev, &nvme_rdma_ctrl_ops,
  1663. 0 /* no quirks, we're perfect! */);
  1664. if (ret)
  1665. goto out_kfree_queues;
  1666. changed = nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_CONNECTING);
  1667. WARN_ON_ONCE(!changed);
  1668. ret = nvme_rdma_setup_ctrl(ctrl, true);
  1669. if (ret)
  1670. goto out_uninit_ctrl;
  1671. dev_info(ctrl->ctrl.device, "new ctrl: NQN \"%s\", addr %pISpcs\n",
  1672. ctrl->ctrl.opts->subsysnqn, &ctrl->addr);
  1673. nvme_get_ctrl(&ctrl->ctrl);
  1674. mutex_lock(&nvme_rdma_ctrl_mutex);
  1675. list_add_tail(&ctrl->list, &nvme_rdma_ctrl_list);
  1676. mutex_unlock(&nvme_rdma_ctrl_mutex);
  1677. return &ctrl->ctrl;
  1678. out_uninit_ctrl:
  1679. nvme_uninit_ctrl(&ctrl->ctrl);
  1680. nvme_put_ctrl(&ctrl->ctrl);
  1681. if (ret > 0)
  1682. ret = -EIO;
  1683. return ERR_PTR(ret);
  1684. out_kfree_queues:
  1685. kfree(ctrl->queues);
  1686. out_free_ctrl:
  1687. kfree(ctrl);
  1688. return ERR_PTR(ret);
  1689. }
  1690. static struct nvmf_transport_ops nvme_rdma_transport = {
  1691. .name = "rdma",
  1692. .module = THIS_MODULE,
  1693. .required_opts = NVMF_OPT_TRADDR,
  1694. .allowed_opts = NVMF_OPT_TRSVCID | NVMF_OPT_RECONNECT_DELAY |
  1695. NVMF_OPT_HOST_TRADDR | NVMF_OPT_CTRL_LOSS_TMO,
  1696. .create_ctrl = nvme_rdma_create_ctrl,
  1697. };
  1698. static void nvme_rdma_remove_one(struct ib_device *ib_device, void *client_data)
  1699. {
  1700. struct nvme_rdma_ctrl *ctrl;
  1701. struct nvme_rdma_device *ndev;
  1702. bool found = false;
  1703. mutex_lock(&device_list_mutex);
  1704. list_for_each_entry(ndev, &device_list, entry) {
  1705. if (ndev->dev == ib_device) {
  1706. found = true;
  1707. break;
  1708. }
  1709. }
  1710. mutex_unlock(&device_list_mutex);
  1711. if (!found)
  1712. return;
  1713. /* Delete all controllers using this device */
  1714. mutex_lock(&nvme_rdma_ctrl_mutex);
  1715. list_for_each_entry(ctrl, &nvme_rdma_ctrl_list, list) {
  1716. if (ctrl->device->dev != ib_device)
  1717. continue;
  1718. nvme_delete_ctrl(&ctrl->ctrl);
  1719. }
  1720. mutex_unlock(&nvme_rdma_ctrl_mutex);
  1721. flush_workqueue(nvme_delete_wq);
  1722. }
  1723. static struct ib_client nvme_rdma_ib_client = {
  1724. .name = "nvme_rdma",
  1725. .remove = nvme_rdma_remove_one
  1726. };
  1727. static int __init nvme_rdma_init_module(void)
  1728. {
  1729. int ret;
  1730. ret = ib_register_client(&nvme_rdma_ib_client);
  1731. if (ret)
  1732. return ret;
  1733. ret = nvmf_register_transport(&nvme_rdma_transport);
  1734. if (ret)
  1735. goto err_unreg_client;
  1736. return 0;
  1737. err_unreg_client:
  1738. ib_unregister_client(&nvme_rdma_ib_client);
  1739. return ret;
  1740. }
  1741. static void __exit nvme_rdma_cleanup_module(void)
  1742. {
  1743. nvmf_unregister_transport(&nvme_rdma_transport);
  1744. ib_unregister_client(&nvme_rdma_ib_client);
  1745. }
  1746. module_init(nvme_rdma_init_module);
  1747. module_exit(nvme_rdma_cleanup_module);
  1748. MODULE_LICENSE("GPL v2");