bpf_jit_comp_64.c 37 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582
  1. // SPDX-License-Identifier: GPL-2.0
  2. #include <linux/moduleloader.h>
  3. #include <linux/workqueue.h>
  4. #include <linux/netdevice.h>
  5. #include <linux/filter.h>
  6. #include <linux/bpf.h>
  7. #include <linux/cache.h>
  8. #include <linux/if_vlan.h>
  9. #include <asm/cacheflush.h>
  10. #include <asm/ptrace.h>
  11. #include "bpf_jit_64.h"
  12. static inline bool is_simm13(unsigned int value)
  13. {
  14. return value + 0x1000 < 0x2000;
  15. }
  16. static inline bool is_simm10(unsigned int value)
  17. {
  18. return value + 0x200 < 0x400;
  19. }
  20. static inline bool is_simm5(unsigned int value)
  21. {
  22. return value + 0x10 < 0x20;
  23. }
  24. static inline bool is_sethi(unsigned int value)
  25. {
  26. return (value & ~0x3fffff) == 0;
  27. }
  28. static void bpf_flush_icache(void *start_, void *end_)
  29. {
  30. /* Cheetah's I-cache is fully coherent. */
  31. if (tlb_type == spitfire) {
  32. unsigned long start = (unsigned long) start_;
  33. unsigned long end = (unsigned long) end_;
  34. start &= ~7UL;
  35. end = (end + 7UL) & ~7UL;
  36. while (start < end) {
  37. flushi(start);
  38. start += 32;
  39. }
  40. }
  41. }
  42. #define S13(X) ((X) & 0x1fff)
  43. #define S5(X) ((X) & 0x1f)
  44. #define IMMED 0x00002000
  45. #define RD(X) ((X) << 25)
  46. #define RS1(X) ((X) << 14)
  47. #define RS2(X) ((X))
  48. #define OP(X) ((X) << 30)
  49. #define OP2(X) ((X) << 22)
  50. #define OP3(X) ((X) << 19)
  51. #define COND(X) (((X) & 0xf) << 25)
  52. #define CBCOND(X) (((X) & 0x1f) << 25)
  53. #define F1(X) OP(X)
  54. #define F2(X, Y) (OP(X) | OP2(Y))
  55. #define F3(X, Y) (OP(X) | OP3(Y))
  56. #define ASI(X) (((X) & 0xff) << 5)
  57. #define CONDN COND(0x0)
  58. #define CONDE COND(0x1)
  59. #define CONDLE COND(0x2)
  60. #define CONDL COND(0x3)
  61. #define CONDLEU COND(0x4)
  62. #define CONDCS COND(0x5)
  63. #define CONDNEG COND(0x6)
  64. #define CONDVC COND(0x7)
  65. #define CONDA COND(0x8)
  66. #define CONDNE COND(0x9)
  67. #define CONDG COND(0xa)
  68. #define CONDGE COND(0xb)
  69. #define CONDGU COND(0xc)
  70. #define CONDCC COND(0xd)
  71. #define CONDPOS COND(0xe)
  72. #define CONDVS COND(0xf)
  73. #define CONDGEU CONDCC
  74. #define CONDLU CONDCS
  75. #define WDISP22(X) (((X) >> 2) & 0x3fffff)
  76. #define WDISP19(X) (((X) >> 2) & 0x7ffff)
  77. /* The 10-bit branch displacement for CBCOND is split into two fields */
  78. static u32 WDISP10(u32 off)
  79. {
  80. u32 ret = ((off >> 2) & 0xff) << 5;
  81. ret |= ((off >> (2 + 8)) & 0x03) << 19;
  82. return ret;
  83. }
  84. #define CBCONDE CBCOND(0x09)
  85. #define CBCONDLE CBCOND(0x0a)
  86. #define CBCONDL CBCOND(0x0b)
  87. #define CBCONDLEU CBCOND(0x0c)
  88. #define CBCONDCS CBCOND(0x0d)
  89. #define CBCONDN CBCOND(0x0e)
  90. #define CBCONDVS CBCOND(0x0f)
  91. #define CBCONDNE CBCOND(0x19)
  92. #define CBCONDG CBCOND(0x1a)
  93. #define CBCONDGE CBCOND(0x1b)
  94. #define CBCONDGU CBCOND(0x1c)
  95. #define CBCONDCC CBCOND(0x1d)
  96. #define CBCONDPOS CBCOND(0x1e)
  97. #define CBCONDVC CBCOND(0x1f)
  98. #define CBCONDGEU CBCONDCC
  99. #define CBCONDLU CBCONDCS
  100. #define ANNUL (1 << 29)
  101. #define XCC (1 << 21)
  102. #define BRANCH (F2(0, 1) | XCC)
  103. #define CBCOND_OP (F2(0, 3) | XCC)
  104. #define BA (BRANCH | CONDA)
  105. #define BG (BRANCH | CONDG)
  106. #define BL (BRANCH | CONDL)
  107. #define BLE (BRANCH | CONDLE)
  108. #define BGU (BRANCH | CONDGU)
  109. #define BLEU (BRANCH | CONDLEU)
  110. #define BGE (BRANCH | CONDGE)
  111. #define BGEU (BRANCH | CONDGEU)
  112. #define BLU (BRANCH | CONDLU)
  113. #define BE (BRANCH | CONDE)
  114. #define BNE (BRANCH | CONDNE)
  115. #define SETHI(K, REG) \
  116. (F2(0, 0x4) | RD(REG) | (((K) >> 10) & 0x3fffff))
  117. #define OR_LO(K, REG) \
  118. (F3(2, 0x02) | IMMED | RS1(REG) | ((K) & 0x3ff) | RD(REG))
  119. #define ADD F3(2, 0x00)
  120. #define AND F3(2, 0x01)
  121. #define ANDCC F3(2, 0x11)
  122. #define OR F3(2, 0x02)
  123. #define XOR F3(2, 0x03)
  124. #define SUB F3(2, 0x04)
  125. #define SUBCC F3(2, 0x14)
  126. #define MUL F3(2, 0x0a)
  127. #define MULX F3(2, 0x09)
  128. #define UDIVX F3(2, 0x0d)
  129. #define DIV F3(2, 0x0e)
  130. #define SLL F3(2, 0x25)
  131. #define SLLX (F3(2, 0x25)|(1<<12))
  132. #define SRA F3(2, 0x27)
  133. #define SRAX (F3(2, 0x27)|(1<<12))
  134. #define SRL F3(2, 0x26)
  135. #define SRLX (F3(2, 0x26)|(1<<12))
  136. #define JMPL F3(2, 0x38)
  137. #define SAVE F3(2, 0x3c)
  138. #define RESTORE F3(2, 0x3d)
  139. #define CALL F1(1)
  140. #define BR F2(0, 0x01)
  141. #define RD_Y F3(2, 0x28)
  142. #define WR_Y F3(2, 0x30)
  143. #define LD32 F3(3, 0x00)
  144. #define LD8 F3(3, 0x01)
  145. #define LD16 F3(3, 0x02)
  146. #define LD64 F3(3, 0x0b)
  147. #define LD64A F3(3, 0x1b)
  148. #define ST8 F3(3, 0x05)
  149. #define ST16 F3(3, 0x06)
  150. #define ST32 F3(3, 0x04)
  151. #define ST64 F3(3, 0x0e)
  152. #define CAS F3(3, 0x3c)
  153. #define CASX F3(3, 0x3e)
  154. #define LDPTR LD64
  155. #define BASE_STACKFRAME 176
  156. #define LD32I (LD32 | IMMED)
  157. #define LD8I (LD8 | IMMED)
  158. #define LD16I (LD16 | IMMED)
  159. #define LD64I (LD64 | IMMED)
  160. #define LDPTRI (LDPTR | IMMED)
  161. #define ST32I (ST32 | IMMED)
  162. struct jit_ctx {
  163. struct bpf_prog *prog;
  164. unsigned int *offset;
  165. int idx;
  166. int epilogue_offset;
  167. bool tmp_1_used;
  168. bool tmp_2_used;
  169. bool tmp_3_used;
  170. bool saw_frame_pointer;
  171. bool saw_call;
  172. bool saw_tail_call;
  173. u32 *image;
  174. };
  175. #define TMP_REG_1 (MAX_BPF_JIT_REG + 0)
  176. #define TMP_REG_2 (MAX_BPF_JIT_REG + 1)
  177. #define TMP_REG_3 (MAX_BPF_JIT_REG + 2)
  178. /* Map BPF registers to SPARC registers */
  179. static const int bpf2sparc[] = {
  180. /* return value from in-kernel function, and exit value from eBPF */
  181. [BPF_REG_0] = O5,
  182. /* arguments from eBPF program to in-kernel function */
  183. [BPF_REG_1] = O0,
  184. [BPF_REG_2] = O1,
  185. [BPF_REG_3] = O2,
  186. [BPF_REG_4] = O3,
  187. [BPF_REG_5] = O4,
  188. /* callee saved registers that in-kernel function will preserve */
  189. [BPF_REG_6] = L0,
  190. [BPF_REG_7] = L1,
  191. [BPF_REG_8] = L2,
  192. [BPF_REG_9] = L3,
  193. /* read-only frame pointer to access stack */
  194. [BPF_REG_FP] = L6,
  195. [BPF_REG_AX] = G7,
  196. /* temporary register for internal BPF JIT */
  197. [TMP_REG_1] = G1,
  198. [TMP_REG_2] = G2,
  199. [TMP_REG_3] = G3,
  200. };
  201. static void emit(const u32 insn, struct jit_ctx *ctx)
  202. {
  203. if (ctx->image != NULL)
  204. ctx->image[ctx->idx] = insn;
  205. ctx->idx++;
  206. }
  207. static void emit_call(u32 *func, struct jit_ctx *ctx)
  208. {
  209. if (ctx->image != NULL) {
  210. void *here = &ctx->image[ctx->idx];
  211. unsigned int off;
  212. off = (void *)func - here;
  213. ctx->image[ctx->idx] = CALL | ((off >> 2) & 0x3fffffff);
  214. }
  215. ctx->idx++;
  216. }
  217. static void emit_nop(struct jit_ctx *ctx)
  218. {
  219. emit(SETHI(0, G0), ctx);
  220. }
  221. static void emit_reg_move(u32 from, u32 to, struct jit_ctx *ctx)
  222. {
  223. emit(OR | RS1(G0) | RS2(from) | RD(to), ctx);
  224. }
  225. /* Emit 32-bit constant, zero extended. */
  226. static void emit_set_const(s32 K, u32 reg, struct jit_ctx *ctx)
  227. {
  228. emit(SETHI(K, reg), ctx);
  229. emit(OR_LO(K, reg), ctx);
  230. }
  231. /* Emit 32-bit constant, sign extended. */
  232. static void emit_set_const_sext(s32 K, u32 reg, struct jit_ctx *ctx)
  233. {
  234. if (K >= 0) {
  235. emit(SETHI(K, reg), ctx);
  236. emit(OR_LO(K, reg), ctx);
  237. } else {
  238. u32 hbits = ~(u32) K;
  239. u32 lbits = -0x400 | (u32) K;
  240. emit(SETHI(hbits, reg), ctx);
  241. emit(XOR | IMMED | RS1(reg) | S13(lbits) | RD(reg), ctx);
  242. }
  243. }
  244. static void emit_alu(u32 opcode, u32 src, u32 dst, struct jit_ctx *ctx)
  245. {
  246. emit(opcode | RS1(dst) | RS2(src) | RD(dst), ctx);
  247. }
  248. static void emit_alu3(u32 opcode, u32 a, u32 b, u32 c, struct jit_ctx *ctx)
  249. {
  250. emit(opcode | RS1(a) | RS2(b) | RD(c), ctx);
  251. }
  252. static void emit_alu_K(unsigned int opcode, unsigned int dst, unsigned int imm,
  253. struct jit_ctx *ctx)
  254. {
  255. bool small_immed = is_simm13(imm);
  256. unsigned int insn = opcode;
  257. insn |= RS1(dst) | RD(dst);
  258. if (small_immed) {
  259. emit(insn | IMMED | S13(imm), ctx);
  260. } else {
  261. unsigned int tmp = bpf2sparc[TMP_REG_1];
  262. ctx->tmp_1_used = true;
  263. emit_set_const_sext(imm, tmp, ctx);
  264. emit(insn | RS2(tmp), ctx);
  265. }
  266. }
  267. static void emit_alu3_K(unsigned int opcode, unsigned int src, unsigned int imm,
  268. unsigned int dst, struct jit_ctx *ctx)
  269. {
  270. bool small_immed = is_simm13(imm);
  271. unsigned int insn = opcode;
  272. insn |= RS1(src) | RD(dst);
  273. if (small_immed) {
  274. emit(insn | IMMED | S13(imm), ctx);
  275. } else {
  276. unsigned int tmp = bpf2sparc[TMP_REG_1];
  277. ctx->tmp_1_used = true;
  278. emit_set_const_sext(imm, tmp, ctx);
  279. emit(insn | RS2(tmp), ctx);
  280. }
  281. }
  282. static void emit_loadimm32(s32 K, unsigned int dest, struct jit_ctx *ctx)
  283. {
  284. if (K >= 0 && is_simm13(K)) {
  285. /* or %g0, K, DEST */
  286. emit(OR | IMMED | RS1(G0) | S13(K) | RD(dest), ctx);
  287. } else {
  288. emit_set_const(K, dest, ctx);
  289. }
  290. }
  291. static void emit_loadimm(s32 K, unsigned int dest, struct jit_ctx *ctx)
  292. {
  293. if (is_simm13(K)) {
  294. /* or %g0, K, DEST */
  295. emit(OR | IMMED | RS1(G0) | S13(K) | RD(dest), ctx);
  296. } else {
  297. emit_set_const(K, dest, ctx);
  298. }
  299. }
  300. static void emit_loadimm_sext(s32 K, unsigned int dest, struct jit_ctx *ctx)
  301. {
  302. if (is_simm13(K)) {
  303. /* or %g0, K, DEST */
  304. emit(OR | IMMED | RS1(G0) | S13(K) | RD(dest), ctx);
  305. } else {
  306. emit_set_const_sext(K, dest, ctx);
  307. }
  308. }
  309. static void analyze_64bit_constant(u32 high_bits, u32 low_bits,
  310. int *hbsp, int *lbsp, int *abbasp)
  311. {
  312. int lowest_bit_set, highest_bit_set, all_bits_between_are_set;
  313. int i;
  314. lowest_bit_set = highest_bit_set = -1;
  315. i = 0;
  316. do {
  317. if ((lowest_bit_set == -1) && ((low_bits >> i) & 1))
  318. lowest_bit_set = i;
  319. if ((highest_bit_set == -1) && ((high_bits >> (32 - i - 1)) & 1))
  320. highest_bit_set = (64 - i - 1);
  321. } while (++i < 32 && (highest_bit_set == -1 ||
  322. lowest_bit_set == -1));
  323. if (i == 32) {
  324. i = 0;
  325. do {
  326. if (lowest_bit_set == -1 && ((high_bits >> i) & 1))
  327. lowest_bit_set = i + 32;
  328. if (highest_bit_set == -1 &&
  329. ((low_bits >> (32 - i - 1)) & 1))
  330. highest_bit_set = 32 - i - 1;
  331. } while (++i < 32 && (highest_bit_set == -1 ||
  332. lowest_bit_set == -1));
  333. }
  334. all_bits_between_are_set = 1;
  335. for (i = lowest_bit_set; i <= highest_bit_set; i++) {
  336. if (i < 32) {
  337. if ((low_bits & (1 << i)) != 0)
  338. continue;
  339. } else {
  340. if ((high_bits & (1 << (i - 32))) != 0)
  341. continue;
  342. }
  343. all_bits_between_are_set = 0;
  344. break;
  345. }
  346. *hbsp = highest_bit_set;
  347. *lbsp = lowest_bit_set;
  348. *abbasp = all_bits_between_are_set;
  349. }
  350. static unsigned long create_simple_focus_bits(unsigned long high_bits,
  351. unsigned long low_bits,
  352. int lowest_bit_set, int shift)
  353. {
  354. long hi, lo;
  355. if (lowest_bit_set < 32) {
  356. lo = (low_bits >> lowest_bit_set) << shift;
  357. hi = ((high_bits << (32 - lowest_bit_set)) << shift);
  358. } else {
  359. lo = 0;
  360. hi = ((high_bits >> (lowest_bit_set - 32)) << shift);
  361. }
  362. return hi | lo;
  363. }
  364. static bool const64_is_2insns(unsigned long high_bits,
  365. unsigned long low_bits)
  366. {
  367. int highest_bit_set, lowest_bit_set, all_bits_between_are_set;
  368. if (high_bits == 0 || high_bits == 0xffffffff)
  369. return true;
  370. analyze_64bit_constant(high_bits, low_bits,
  371. &highest_bit_set, &lowest_bit_set,
  372. &all_bits_between_are_set);
  373. if ((highest_bit_set == 63 || lowest_bit_set == 0) &&
  374. all_bits_between_are_set != 0)
  375. return true;
  376. if (highest_bit_set - lowest_bit_set < 21)
  377. return true;
  378. return false;
  379. }
  380. static void sparc_emit_set_const64_quick2(unsigned long high_bits,
  381. unsigned long low_imm,
  382. unsigned int dest,
  383. int shift_count, struct jit_ctx *ctx)
  384. {
  385. emit_loadimm32(high_bits, dest, ctx);
  386. /* Now shift it up into place. */
  387. emit_alu_K(SLLX, dest, shift_count, ctx);
  388. /* If there is a low immediate part piece, finish up by
  389. * putting that in as well.
  390. */
  391. if (low_imm != 0)
  392. emit(OR | IMMED | RS1(dest) | S13(low_imm) | RD(dest), ctx);
  393. }
  394. static void emit_loadimm64(u64 K, unsigned int dest, struct jit_ctx *ctx)
  395. {
  396. int all_bits_between_are_set, lowest_bit_set, highest_bit_set;
  397. unsigned int tmp = bpf2sparc[TMP_REG_1];
  398. u32 low_bits = (K & 0xffffffff);
  399. u32 high_bits = (K >> 32);
  400. /* These two tests also take care of all of the one
  401. * instruction cases.
  402. */
  403. if (high_bits == 0xffffffff && (low_bits & 0x80000000))
  404. return emit_loadimm_sext(K, dest, ctx);
  405. if (high_bits == 0x00000000)
  406. return emit_loadimm32(K, dest, ctx);
  407. analyze_64bit_constant(high_bits, low_bits, &highest_bit_set,
  408. &lowest_bit_set, &all_bits_between_are_set);
  409. /* 1) mov -1, %reg
  410. * sllx %reg, shift, %reg
  411. * 2) mov -1, %reg
  412. * srlx %reg, shift, %reg
  413. * 3) mov some_small_const, %reg
  414. * sllx %reg, shift, %reg
  415. */
  416. if (((highest_bit_set == 63 || lowest_bit_set == 0) &&
  417. all_bits_between_are_set != 0) ||
  418. ((highest_bit_set - lowest_bit_set) < 12)) {
  419. int shift = lowest_bit_set;
  420. long the_const = -1;
  421. if ((highest_bit_set != 63 && lowest_bit_set != 0) ||
  422. all_bits_between_are_set == 0) {
  423. the_const =
  424. create_simple_focus_bits(high_bits, low_bits,
  425. lowest_bit_set, 0);
  426. } else if (lowest_bit_set == 0)
  427. shift = -(63 - highest_bit_set);
  428. emit(OR | IMMED | RS1(G0) | S13(the_const) | RD(dest), ctx);
  429. if (shift > 0)
  430. emit_alu_K(SLLX, dest, shift, ctx);
  431. else if (shift < 0)
  432. emit_alu_K(SRLX, dest, -shift, ctx);
  433. return;
  434. }
  435. /* Now a range of 22 or less bits set somewhere.
  436. * 1) sethi %hi(focus_bits), %reg
  437. * sllx %reg, shift, %reg
  438. * 2) sethi %hi(focus_bits), %reg
  439. * srlx %reg, shift, %reg
  440. */
  441. if ((highest_bit_set - lowest_bit_set) < 21) {
  442. unsigned long focus_bits =
  443. create_simple_focus_bits(high_bits, low_bits,
  444. lowest_bit_set, 10);
  445. emit(SETHI(focus_bits, dest), ctx);
  446. /* If lowest_bit_set == 10 then a sethi alone could
  447. * have done it.
  448. */
  449. if (lowest_bit_set < 10)
  450. emit_alu_K(SRLX, dest, 10 - lowest_bit_set, ctx);
  451. else if (lowest_bit_set > 10)
  452. emit_alu_K(SLLX, dest, lowest_bit_set - 10, ctx);
  453. return;
  454. }
  455. /* Ok, now 3 instruction sequences. */
  456. if (low_bits == 0) {
  457. emit_loadimm32(high_bits, dest, ctx);
  458. emit_alu_K(SLLX, dest, 32, ctx);
  459. return;
  460. }
  461. /* We may be able to do something quick
  462. * when the constant is negated, so try that.
  463. */
  464. if (const64_is_2insns((~high_bits) & 0xffffffff,
  465. (~low_bits) & 0xfffffc00)) {
  466. /* NOTE: The trailing bits get XOR'd so we need the
  467. * non-negated bits, not the negated ones.
  468. */
  469. unsigned long trailing_bits = low_bits & 0x3ff;
  470. if ((((~high_bits) & 0xffffffff) == 0 &&
  471. ((~low_bits) & 0x80000000) == 0) ||
  472. (((~high_bits) & 0xffffffff) == 0xffffffff &&
  473. ((~low_bits) & 0x80000000) != 0)) {
  474. unsigned long fast_int = (~low_bits & 0xffffffff);
  475. if ((is_sethi(fast_int) &&
  476. (~high_bits & 0xffffffff) == 0)) {
  477. emit(SETHI(fast_int, dest), ctx);
  478. } else if (is_simm13(fast_int)) {
  479. emit(OR | IMMED | RS1(G0) | S13(fast_int) | RD(dest), ctx);
  480. } else {
  481. emit_loadimm64(fast_int, dest, ctx);
  482. }
  483. } else {
  484. u64 n = ((~low_bits) & 0xfffffc00) |
  485. (((unsigned long)((~high_bits) & 0xffffffff))<<32);
  486. emit_loadimm64(n, dest, ctx);
  487. }
  488. low_bits = -0x400 | trailing_bits;
  489. emit(XOR | IMMED | RS1(dest) | S13(low_bits) | RD(dest), ctx);
  490. return;
  491. }
  492. /* 1) sethi %hi(xxx), %reg
  493. * or %reg, %lo(xxx), %reg
  494. * sllx %reg, yyy, %reg
  495. */
  496. if ((highest_bit_set - lowest_bit_set) < 32) {
  497. unsigned long focus_bits =
  498. create_simple_focus_bits(high_bits, low_bits,
  499. lowest_bit_set, 0);
  500. /* So what we know is that the set bits straddle the
  501. * middle of the 64-bit word.
  502. */
  503. sparc_emit_set_const64_quick2(focus_bits, 0, dest,
  504. lowest_bit_set, ctx);
  505. return;
  506. }
  507. /* 1) sethi %hi(high_bits), %reg
  508. * or %reg, %lo(high_bits), %reg
  509. * sllx %reg, 32, %reg
  510. * or %reg, low_bits, %reg
  511. */
  512. if (is_simm13(low_bits) && ((int)low_bits > 0)) {
  513. sparc_emit_set_const64_quick2(high_bits, low_bits,
  514. dest, 32, ctx);
  515. return;
  516. }
  517. /* Oh well, we tried... Do a full 64-bit decomposition. */
  518. ctx->tmp_1_used = true;
  519. emit_loadimm32(high_bits, tmp, ctx);
  520. emit_loadimm32(low_bits, dest, ctx);
  521. emit_alu_K(SLLX, tmp, 32, ctx);
  522. emit(OR | RS1(dest) | RS2(tmp) | RD(dest), ctx);
  523. }
  524. static void emit_branch(unsigned int br_opc, unsigned int from_idx, unsigned int to_idx,
  525. struct jit_ctx *ctx)
  526. {
  527. unsigned int off = to_idx - from_idx;
  528. if (br_opc & XCC)
  529. emit(br_opc | WDISP19(off << 2), ctx);
  530. else
  531. emit(br_opc | WDISP22(off << 2), ctx);
  532. }
  533. static void emit_cbcond(unsigned int cb_opc, unsigned int from_idx, unsigned int to_idx,
  534. const u8 dst, const u8 src, struct jit_ctx *ctx)
  535. {
  536. unsigned int off = to_idx - from_idx;
  537. emit(cb_opc | WDISP10(off << 2) | RS1(dst) | RS2(src), ctx);
  538. }
  539. static void emit_cbcondi(unsigned int cb_opc, unsigned int from_idx, unsigned int to_idx,
  540. const u8 dst, s32 imm, struct jit_ctx *ctx)
  541. {
  542. unsigned int off = to_idx - from_idx;
  543. emit(cb_opc | IMMED | WDISP10(off << 2) | RS1(dst) | S5(imm), ctx);
  544. }
  545. #define emit_read_y(REG, CTX) emit(RD_Y | RD(REG), CTX)
  546. #define emit_write_y(REG, CTX) emit(WR_Y | IMMED | RS1(REG) | S13(0), CTX)
  547. #define emit_cmp(R1, R2, CTX) \
  548. emit(SUBCC | RS1(R1) | RS2(R2) | RD(G0), CTX)
  549. #define emit_cmpi(R1, IMM, CTX) \
  550. emit(SUBCC | IMMED | RS1(R1) | S13(IMM) | RD(G0), CTX)
  551. #define emit_btst(R1, R2, CTX) \
  552. emit(ANDCC | RS1(R1) | RS2(R2) | RD(G0), CTX)
  553. #define emit_btsti(R1, IMM, CTX) \
  554. emit(ANDCC | IMMED | RS1(R1) | S13(IMM) | RD(G0), CTX)
  555. static int emit_compare_and_branch(const u8 code, const u8 dst, u8 src,
  556. const s32 imm, bool is_imm, int branch_dst,
  557. struct jit_ctx *ctx)
  558. {
  559. bool use_cbcond = (sparc64_elf_hwcap & AV_SPARC_CBCOND) != 0;
  560. const u8 tmp = bpf2sparc[TMP_REG_1];
  561. branch_dst = ctx->offset[branch_dst];
  562. if (!is_simm10(branch_dst - ctx->idx) ||
  563. BPF_OP(code) == BPF_JSET)
  564. use_cbcond = false;
  565. if (is_imm) {
  566. bool fits = true;
  567. if (use_cbcond) {
  568. if (!is_simm5(imm))
  569. fits = false;
  570. } else if (!is_simm13(imm)) {
  571. fits = false;
  572. }
  573. if (!fits) {
  574. ctx->tmp_1_used = true;
  575. emit_loadimm_sext(imm, tmp, ctx);
  576. src = tmp;
  577. is_imm = false;
  578. }
  579. }
  580. if (!use_cbcond) {
  581. u32 br_opcode;
  582. if (BPF_OP(code) == BPF_JSET) {
  583. if (is_imm)
  584. emit_btsti(dst, imm, ctx);
  585. else
  586. emit_btst(dst, src, ctx);
  587. } else {
  588. if (is_imm)
  589. emit_cmpi(dst, imm, ctx);
  590. else
  591. emit_cmp(dst, src, ctx);
  592. }
  593. switch (BPF_OP(code)) {
  594. case BPF_JEQ:
  595. br_opcode = BE;
  596. break;
  597. case BPF_JGT:
  598. br_opcode = BGU;
  599. break;
  600. case BPF_JLT:
  601. br_opcode = BLU;
  602. break;
  603. case BPF_JGE:
  604. br_opcode = BGEU;
  605. break;
  606. case BPF_JLE:
  607. br_opcode = BLEU;
  608. break;
  609. case BPF_JSET:
  610. case BPF_JNE:
  611. br_opcode = BNE;
  612. break;
  613. case BPF_JSGT:
  614. br_opcode = BG;
  615. break;
  616. case BPF_JSLT:
  617. br_opcode = BL;
  618. break;
  619. case BPF_JSGE:
  620. br_opcode = BGE;
  621. break;
  622. case BPF_JSLE:
  623. br_opcode = BLE;
  624. break;
  625. default:
  626. /* Make sure we dont leak kernel information to the
  627. * user.
  628. */
  629. return -EFAULT;
  630. }
  631. emit_branch(br_opcode, ctx->idx, branch_dst, ctx);
  632. emit_nop(ctx);
  633. } else {
  634. u32 cbcond_opcode;
  635. switch (BPF_OP(code)) {
  636. case BPF_JEQ:
  637. cbcond_opcode = CBCONDE;
  638. break;
  639. case BPF_JGT:
  640. cbcond_opcode = CBCONDGU;
  641. break;
  642. case BPF_JLT:
  643. cbcond_opcode = CBCONDLU;
  644. break;
  645. case BPF_JGE:
  646. cbcond_opcode = CBCONDGEU;
  647. break;
  648. case BPF_JLE:
  649. cbcond_opcode = CBCONDLEU;
  650. break;
  651. case BPF_JNE:
  652. cbcond_opcode = CBCONDNE;
  653. break;
  654. case BPF_JSGT:
  655. cbcond_opcode = CBCONDG;
  656. break;
  657. case BPF_JSLT:
  658. cbcond_opcode = CBCONDL;
  659. break;
  660. case BPF_JSGE:
  661. cbcond_opcode = CBCONDGE;
  662. break;
  663. case BPF_JSLE:
  664. cbcond_opcode = CBCONDLE;
  665. break;
  666. default:
  667. /* Make sure we dont leak kernel information to the
  668. * user.
  669. */
  670. return -EFAULT;
  671. }
  672. cbcond_opcode |= CBCOND_OP;
  673. if (is_imm)
  674. emit_cbcondi(cbcond_opcode, ctx->idx, branch_dst,
  675. dst, imm, ctx);
  676. else
  677. emit_cbcond(cbcond_opcode, ctx->idx, branch_dst,
  678. dst, src, ctx);
  679. }
  680. return 0;
  681. }
  682. /* Just skip the save instruction and the ctx register move. */
  683. #define BPF_TAILCALL_PROLOGUE_SKIP 16
  684. #define BPF_TAILCALL_CNT_SP_OFF (STACK_BIAS + 128)
  685. static void build_prologue(struct jit_ctx *ctx)
  686. {
  687. s32 stack_needed = BASE_STACKFRAME;
  688. if (ctx->saw_frame_pointer || ctx->saw_tail_call) {
  689. struct bpf_prog *prog = ctx->prog;
  690. u32 stack_depth;
  691. stack_depth = prog->aux->stack_depth;
  692. stack_needed += round_up(stack_depth, 16);
  693. }
  694. if (ctx->saw_tail_call)
  695. stack_needed += 8;
  696. /* save %sp, -176, %sp */
  697. emit(SAVE | IMMED | RS1(SP) | S13(-stack_needed) | RD(SP), ctx);
  698. /* tail_call_cnt = 0 */
  699. if (ctx->saw_tail_call) {
  700. u32 off = BPF_TAILCALL_CNT_SP_OFF;
  701. emit(ST32 | IMMED | RS1(SP) | S13(off) | RD(G0), ctx);
  702. } else {
  703. emit_nop(ctx);
  704. }
  705. if (ctx->saw_frame_pointer) {
  706. const u8 vfp = bpf2sparc[BPF_REG_FP];
  707. emit(ADD | IMMED | RS1(FP) | S13(STACK_BIAS) | RD(vfp), ctx);
  708. }
  709. emit_reg_move(I0, O0, ctx);
  710. /* If you add anything here, adjust BPF_TAILCALL_PROLOGUE_SKIP above. */
  711. }
  712. static void build_epilogue(struct jit_ctx *ctx)
  713. {
  714. ctx->epilogue_offset = ctx->idx;
  715. /* ret (jmpl %i7 + 8, %g0) */
  716. emit(JMPL | IMMED | RS1(I7) | S13(8) | RD(G0), ctx);
  717. /* restore %i5, %g0, %o0 */
  718. emit(RESTORE | RS1(bpf2sparc[BPF_REG_0]) | RS2(G0) | RD(O0), ctx);
  719. }
  720. static void emit_tail_call(struct jit_ctx *ctx)
  721. {
  722. const u8 bpf_array = bpf2sparc[BPF_REG_2];
  723. const u8 bpf_index = bpf2sparc[BPF_REG_3];
  724. const u8 tmp = bpf2sparc[TMP_REG_1];
  725. u32 off;
  726. ctx->saw_tail_call = true;
  727. off = offsetof(struct bpf_array, map.max_entries);
  728. emit(LD32 | IMMED | RS1(bpf_array) | S13(off) | RD(tmp), ctx);
  729. emit_cmp(bpf_index, tmp, ctx);
  730. #define OFFSET1 17
  731. emit_branch(BGEU, ctx->idx, ctx->idx + OFFSET1, ctx);
  732. emit_nop(ctx);
  733. off = BPF_TAILCALL_CNT_SP_OFF;
  734. emit(LD32 | IMMED | RS1(SP) | S13(off) | RD(tmp), ctx);
  735. emit_cmpi(tmp, MAX_TAIL_CALL_CNT, ctx);
  736. #define OFFSET2 13
  737. emit_branch(BGU, ctx->idx, ctx->idx + OFFSET2, ctx);
  738. emit_nop(ctx);
  739. emit_alu_K(ADD, tmp, 1, ctx);
  740. off = BPF_TAILCALL_CNT_SP_OFF;
  741. emit(ST32 | IMMED | RS1(SP) | S13(off) | RD(tmp), ctx);
  742. emit_alu3_K(SLL, bpf_index, 3, tmp, ctx);
  743. emit_alu(ADD, bpf_array, tmp, ctx);
  744. off = offsetof(struct bpf_array, ptrs);
  745. emit(LD64 | IMMED | RS1(tmp) | S13(off) | RD(tmp), ctx);
  746. emit_cmpi(tmp, 0, ctx);
  747. #define OFFSET3 5
  748. emit_branch(BE, ctx->idx, ctx->idx + OFFSET3, ctx);
  749. emit_nop(ctx);
  750. off = offsetof(struct bpf_prog, bpf_func);
  751. emit(LD64 | IMMED | RS1(tmp) | S13(off) | RD(tmp), ctx);
  752. off = BPF_TAILCALL_PROLOGUE_SKIP;
  753. emit(JMPL | IMMED | RS1(tmp) | S13(off) | RD(G0), ctx);
  754. emit_nop(ctx);
  755. }
  756. static int build_insn(const struct bpf_insn *insn, struct jit_ctx *ctx)
  757. {
  758. const u8 code = insn->code;
  759. const u8 dst = bpf2sparc[insn->dst_reg];
  760. const u8 src = bpf2sparc[insn->src_reg];
  761. const int i = insn - ctx->prog->insnsi;
  762. const s16 off = insn->off;
  763. const s32 imm = insn->imm;
  764. if (insn->src_reg == BPF_REG_FP)
  765. ctx->saw_frame_pointer = true;
  766. switch (code) {
  767. /* dst = src */
  768. case BPF_ALU | BPF_MOV | BPF_X:
  769. emit_alu3_K(SRL, src, 0, dst, ctx);
  770. break;
  771. case BPF_ALU64 | BPF_MOV | BPF_X:
  772. emit_reg_move(src, dst, ctx);
  773. break;
  774. /* dst = dst OP src */
  775. case BPF_ALU | BPF_ADD | BPF_X:
  776. case BPF_ALU64 | BPF_ADD | BPF_X:
  777. emit_alu(ADD, src, dst, ctx);
  778. goto do_alu32_trunc;
  779. case BPF_ALU | BPF_SUB | BPF_X:
  780. case BPF_ALU64 | BPF_SUB | BPF_X:
  781. emit_alu(SUB, src, dst, ctx);
  782. goto do_alu32_trunc;
  783. case BPF_ALU | BPF_AND | BPF_X:
  784. case BPF_ALU64 | BPF_AND | BPF_X:
  785. emit_alu(AND, src, dst, ctx);
  786. goto do_alu32_trunc;
  787. case BPF_ALU | BPF_OR | BPF_X:
  788. case BPF_ALU64 | BPF_OR | BPF_X:
  789. emit_alu(OR, src, dst, ctx);
  790. goto do_alu32_trunc;
  791. case BPF_ALU | BPF_XOR | BPF_X:
  792. case BPF_ALU64 | BPF_XOR | BPF_X:
  793. emit_alu(XOR, src, dst, ctx);
  794. goto do_alu32_trunc;
  795. case BPF_ALU | BPF_MUL | BPF_X:
  796. emit_alu(MUL, src, dst, ctx);
  797. goto do_alu32_trunc;
  798. case BPF_ALU64 | BPF_MUL | BPF_X:
  799. emit_alu(MULX, src, dst, ctx);
  800. break;
  801. case BPF_ALU | BPF_DIV | BPF_X:
  802. emit_write_y(G0, ctx);
  803. emit_alu(DIV, src, dst, ctx);
  804. break;
  805. case BPF_ALU64 | BPF_DIV | BPF_X:
  806. emit_alu(UDIVX, src, dst, ctx);
  807. break;
  808. case BPF_ALU | BPF_MOD | BPF_X: {
  809. const u8 tmp = bpf2sparc[TMP_REG_1];
  810. ctx->tmp_1_used = true;
  811. emit_write_y(G0, ctx);
  812. emit_alu3(DIV, dst, src, tmp, ctx);
  813. emit_alu3(MULX, tmp, src, tmp, ctx);
  814. emit_alu3(SUB, dst, tmp, dst, ctx);
  815. goto do_alu32_trunc;
  816. }
  817. case BPF_ALU64 | BPF_MOD | BPF_X: {
  818. const u8 tmp = bpf2sparc[TMP_REG_1];
  819. ctx->tmp_1_used = true;
  820. emit_alu3(UDIVX, dst, src, tmp, ctx);
  821. emit_alu3(MULX, tmp, src, tmp, ctx);
  822. emit_alu3(SUB, dst, tmp, dst, ctx);
  823. break;
  824. }
  825. case BPF_ALU | BPF_LSH | BPF_X:
  826. emit_alu(SLL, src, dst, ctx);
  827. goto do_alu32_trunc;
  828. case BPF_ALU64 | BPF_LSH | BPF_X:
  829. emit_alu(SLLX, src, dst, ctx);
  830. break;
  831. case BPF_ALU | BPF_RSH | BPF_X:
  832. emit_alu(SRL, src, dst, ctx);
  833. break;
  834. case BPF_ALU64 | BPF_RSH | BPF_X:
  835. emit_alu(SRLX, src, dst, ctx);
  836. break;
  837. case BPF_ALU | BPF_ARSH | BPF_X:
  838. emit_alu(SRA, src, dst, ctx);
  839. goto do_alu32_trunc;
  840. case BPF_ALU64 | BPF_ARSH | BPF_X:
  841. emit_alu(SRAX, src, dst, ctx);
  842. break;
  843. /* dst = -dst */
  844. case BPF_ALU | BPF_NEG:
  845. case BPF_ALU64 | BPF_NEG:
  846. emit(SUB | RS1(0) | RS2(dst) | RD(dst), ctx);
  847. goto do_alu32_trunc;
  848. case BPF_ALU | BPF_END | BPF_FROM_BE:
  849. switch (imm) {
  850. case 16:
  851. emit_alu_K(SLL, dst, 16, ctx);
  852. emit_alu_K(SRL, dst, 16, ctx);
  853. break;
  854. case 32:
  855. emit_alu_K(SRL, dst, 0, ctx);
  856. break;
  857. case 64:
  858. /* nop */
  859. break;
  860. }
  861. break;
  862. /* dst = BSWAP##imm(dst) */
  863. case BPF_ALU | BPF_END | BPF_FROM_LE: {
  864. const u8 tmp = bpf2sparc[TMP_REG_1];
  865. const u8 tmp2 = bpf2sparc[TMP_REG_2];
  866. ctx->tmp_1_used = true;
  867. switch (imm) {
  868. case 16:
  869. emit_alu3_K(AND, dst, 0xff, tmp, ctx);
  870. emit_alu3_K(SRL, dst, 8, dst, ctx);
  871. emit_alu3_K(AND, dst, 0xff, dst, ctx);
  872. emit_alu3_K(SLL, tmp, 8, tmp, ctx);
  873. emit_alu(OR, tmp, dst, ctx);
  874. break;
  875. case 32:
  876. ctx->tmp_2_used = true;
  877. emit_alu3_K(SRL, dst, 24, tmp, ctx); /* tmp = dst >> 24 */
  878. emit_alu3_K(SRL, dst, 16, tmp2, ctx); /* tmp2 = dst >> 16 */
  879. emit_alu3_K(AND, tmp2, 0xff, tmp2, ctx);/* tmp2 = tmp2 & 0xff */
  880. emit_alu3_K(SLL, tmp2, 8, tmp2, ctx); /* tmp2 = tmp2 << 8 */
  881. emit_alu(OR, tmp2, tmp, ctx); /* tmp = tmp | tmp2 */
  882. emit_alu3_K(SRL, dst, 8, tmp2, ctx); /* tmp2 = dst >> 8 */
  883. emit_alu3_K(AND, tmp2, 0xff, tmp2, ctx);/* tmp2 = tmp2 & 0xff */
  884. emit_alu3_K(SLL, tmp2, 16, tmp2, ctx); /* tmp2 = tmp2 << 16 */
  885. emit_alu(OR, tmp2, tmp, ctx); /* tmp = tmp | tmp2 */
  886. emit_alu3_K(AND, dst, 0xff, dst, ctx); /* dst = dst & 0xff */
  887. emit_alu3_K(SLL, dst, 24, dst, ctx); /* dst = dst << 24 */
  888. emit_alu(OR, tmp, dst, ctx); /* dst = dst | tmp */
  889. break;
  890. case 64:
  891. emit_alu3_K(ADD, SP, STACK_BIAS + 128, tmp, ctx);
  892. emit(ST64 | RS1(tmp) | RS2(G0) | RD(dst), ctx);
  893. emit(LD64A | ASI(ASI_PL) | RS1(tmp) | RS2(G0) | RD(dst), ctx);
  894. break;
  895. }
  896. break;
  897. }
  898. /* dst = imm */
  899. case BPF_ALU | BPF_MOV | BPF_K:
  900. emit_loadimm32(imm, dst, ctx);
  901. break;
  902. case BPF_ALU64 | BPF_MOV | BPF_K:
  903. emit_loadimm_sext(imm, dst, ctx);
  904. break;
  905. /* dst = dst OP imm */
  906. case BPF_ALU | BPF_ADD | BPF_K:
  907. case BPF_ALU64 | BPF_ADD | BPF_K:
  908. emit_alu_K(ADD, dst, imm, ctx);
  909. goto do_alu32_trunc;
  910. case BPF_ALU | BPF_SUB | BPF_K:
  911. case BPF_ALU64 | BPF_SUB | BPF_K:
  912. emit_alu_K(SUB, dst, imm, ctx);
  913. goto do_alu32_trunc;
  914. case BPF_ALU | BPF_AND | BPF_K:
  915. case BPF_ALU64 | BPF_AND | BPF_K:
  916. emit_alu_K(AND, dst, imm, ctx);
  917. goto do_alu32_trunc;
  918. case BPF_ALU | BPF_OR | BPF_K:
  919. case BPF_ALU64 | BPF_OR | BPF_K:
  920. emit_alu_K(OR, dst, imm, ctx);
  921. goto do_alu32_trunc;
  922. case BPF_ALU | BPF_XOR | BPF_K:
  923. case BPF_ALU64 | BPF_XOR | BPF_K:
  924. emit_alu_K(XOR, dst, imm, ctx);
  925. goto do_alu32_trunc;
  926. case BPF_ALU | BPF_MUL | BPF_K:
  927. emit_alu_K(MUL, dst, imm, ctx);
  928. goto do_alu32_trunc;
  929. case BPF_ALU64 | BPF_MUL | BPF_K:
  930. emit_alu_K(MULX, dst, imm, ctx);
  931. break;
  932. case BPF_ALU | BPF_DIV | BPF_K:
  933. if (imm == 0)
  934. return -EINVAL;
  935. emit_write_y(G0, ctx);
  936. emit_alu_K(DIV, dst, imm, ctx);
  937. goto do_alu32_trunc;
  938. case BPF_ALU64 | BPF_DIV | BPF_K:
  939. if (imm == 0)
  940. return -EINVAL;
  941. emit_alu_K(UDIVX, dst, imm, ctx);
  942. break;
  943. case BPF_ALU64 | BPF_MOD | BPF_K:
  944. case BPF_ALU | BPF_MOD | BPF_K: {
  945. const u8 tmp = bpf2sparc[TMP_REG_2];
  946. unsigned int div;
  947. if (imm == 0)
  948. return -EINVAL;
  949. div = (BPF_CLASS(code) == BPF_ALU64) ? UDIVX : DIV;
  950. ctx->tmp_2_used = true;
  951. if (BPF_CLASS(code) != BPF_ALU64)
  952. emit_write_y(G0, ctx);
  953. if (is_simm13(imm)) {
  954. emit(div | IMMED | RS1(dst) | S13(imm) | RD(tmp), ctx);
  955. emit(MULX | IMMED | RS1(tmp) | S13(imm) | RD(tmp), ctx);
  956. emit(SUB | RS1(dst) | RS2(tmp) | RD(dst), ctx);
  957. } else {
  958. const u8 tmp1 = bpf2sparc[TMP_REG_1];
  959. ctx->tmp_1_used = true;
  960. emit_set_const_sext(imm, tmp1, ctx);
  961. emit(div | RS1(dst) | RS2(tmp1) | RD(tmp), ctx);
  962. emit(MULX | RS1(tmp) | RS2(tmp1) | RD(tmp), ctx);
  963. emit(SUB | RS1(dst) | RS2(tmp) | RD(dst), ctx);
  964. }
  965. goto do_alu32_trunc;
  966. }
  967. case BPF_ALU | BPF_LSH | BPF_K:
  968. emit_alu_K(SLL, dst, imm, ctx);
  969. goto do_alu32_trunc;
  970. case BPF_ALU64 | BPF_LSH | BPF_K:
  971. emit_alu_K(SLLX, dst, imm, ctx);
  972. break;
  973. case BPF_ALU | BPF_RSH | BPF_K:
  974. emit_alu_K(SRL, dst, imm, ctx);
  975. break;
  976. case BPF_ALU64 | BPF_RSH | BPF_K:
  977. emit_alu_K(SRLX, dst, imm, ctx);
  978. break;
  979. case BPF_ALU | BPF_ARSH | BPF_K:
  980. emit_alu_K(SRA, dst, imm, ctx);
  981. goto do_alu32_trunc;
  982. case BPF_ALU64 | BPF_ARSH | BPF_K:
  983. emit_alu_K(SRAX, dst, imm, ctx);
  984. break;
  985. do_alu32_trunc:
  986. if (BPF_CLASS(code) == BPF_ALU)
  987. emit_alu_K(SRL, dst, 0, ctx);
  988. break;
  989. /* JUMP off */
  990. case BPF_JMP | BPF_JA:
  991. emit_branch(BA, ctx->idx, ctx->offset[i + off], ctx);
  992. emit_nop(ctx);
  993. break;
  994. /* IF (dst COND src) JUMP off */
  995. case BPF_JMP | BPF_JEQ | BPF_X:
  996. case BPF_JMP | BPF_JGT | BPF_X:
  997. case BPF_JMP | BPF_JLT | BPF_X:
  998. case BPF_JMP | BPF_JGE | BPF_X:
  999. case BPF_JMP | BPF_JLE | BPF_X:
  1000. case BPF_JMP | BPF_JNE | BPF_X:
  1001. case BPF_JMP | BPF_JSGT | BPF_X:
  1002. case BPF_JMP | BPF_JSLT | BPF_X:
  1003. case BPF_JMP | BPF_JSGE | BPF_X:
  1004. case BPF_JMP | BPF_JSLE | BPF_X:
  1005. case BPF_JMP | BPF_JSET | BPF_X: {
  1006. int err;
  1007. err = emit_compare_and_branch(code, dst, src, 0, false, i + off, ctx);
  1008. if (err)
  1009. return err;
  1010. break;
  1011. }
  1012. /* IF (dst COND imm) JUMP off */
  1013. case BPF_JMP | BPF_JEQ | BPF_K:
  1014. case BPF_JMP | BPF_JGT | BPF_K:
  1015. case BPF_JMP | BPF_JLT | BPF_K:
  1016. case BPF_JMP | BPF_JGE | BPF_K:
  1017. case BPF_JMP | BPF_JLE | BPF_K:
  1018. case BPF_JMP | BPF_JNE | BPF_K:
  1019. case BPF_JMP | BPF_JSGT | BPF_K:
  1020. case BPF_JMP | BPF_JSLT | BPF_K:
  1021. case BPF_JMP | BPF_JSGE | BPF_K:
  1022. case BPF_JMP | BPF_JSLE | BPF_K:
  1023. case BPF_JMP | BPF_JSET | BPF_K: {
  1024. int err;
  1025. err = emit_compare_and_branch(code, dst, 0, imm, true, i + off, ctx);
  1026. if (err)
  1027. return err;
  1028. break;
  1029. }
  1030. /* function call */
  1031. case BPF_JMP | BPF_CALL:
  1032. {
  1033. u8 *func = ((u8 *)__bpf_call_base) + imm;
  1034. ctx->saw_call = true;
  1035. emit_call((u32 *)func, ctx);
  1036. emit_nop(ctx);
  1037. emit_reg_move(O0, bpf2sparc[BPF_REG_0], ctx);
  1038. break;
  1039. }
  1040. /* tail call */
  1041. case BPF_JMP | BPF_TAIL_CALL:
  1042. emit_tail_call(ctx);
  1043. break;
  1044. /* function return */
  1045. case BPF_JMP | BPF_EXIT:
  1046. /* Optimization: when last instruction is EXIT,
  1047. simply fallthrough to epilogue. */
  1048. if (i == ctx->prog->len - 1)
  1049. break;
  1050. emit_branch(BA, ctx->idx, ctx->epilogue_offset, ctx);
  1051. emit_nop(ctx);
  1052. break;
  1053. /* dst = imm64 */
  1054. case BPF_LD | BPF_IMM | BPF_DW:
  1055. {
  1056. const struct bpf_insn insn1 = insn[1];
  1057. u64 imm64;
  1058. imm64 = (u64)insn1.imm << 32 | (u32)imm;
  1059. emit_loadimm64(imm64, dst, ctx);
  1060. return 1;
  1061. }
  1062. /* LDX: dst = *(size *)(src + off) */
  1063. case BPF_LDX | BPF_MEM | BPF_W:
  1064. case BPF_LDX | BPF_MEM | BPF_H:
  1065. case BPF_LDX | BPF_MEM | BPF_B:
  1066. case BPF_LDX | BPF_MEM | BPF_DW: {
  1067. const u8 tmp = bpf2sparc[TMP_REG_1];
  1068. u32 opcode = 0, rs2;
  1069. ctx->tmp_1_used = true;
  1070. switch (BPF_SIZE(code)) {
  1071. case BPF_W:
  1072. opcode = LD32;
  1073. break;
  1074. case BPF_H:
  1075. opcode = LD16;
  1076. break;
  1077. case BPF_B:
  1078. opcode = LD8;
  1079. break;
  1080. case BPF_DW:
  1081. opcode = LD64;
  1082. break;
  1083. }
  1084. if (is_simm13(off)) {
  1085. opcode |= IMMED;
  1086. rs2 = S13(off);
  1087. } else {
  1088. emit_loadimm(off, tmp, ctx);
  1089. rs2 = RS2(tmp);
  1090. }
  1091. emit(opcode | RS1(src) | rs2 | RD(dst), ctx);
  1092. break;
  1093. }
  1094. /* ST: *(size *)(dst + off) = imm */
  1095. case BPF_ST | BPF_MEM | BPF_W:
  1096. case BPF_ST | BPF_MEM | BPF_H:
  1097. case BPF_ST | BPF_MEM | BPF_B:
  1098. case BPF_ST | BPF_MEM | BPF_DW: {
  1099. const u8 tmp = bpf2sparc[TMP_REG_1];
  1100. const u8 tmp2 = bpf2sparc[TMP_REG_2];
  1101. u32 opcode = 0, rs2;
  1102. if (insn->dst_reg == BPF_REG_FP)
  1103. ctx->saw_frame_pointer = true;
  1104. ctx->tmp_2_used = true;
  1105. emit_loadimm(imm, tmp2, ctx);
  1106. switch (BPF_SIZE(code)) {
  1107. case BPF_W:
  1108. opcode = ST32;
  1109. break;
  1110. case BPF_H:
  1111. opcode = ST16;
  1112. break;
  1113. case BPF_B:
  1114. opcode = ST8;
  1115. break;
  1116. case BPF_DW:
  1117. opcode = ST64;
  1118. break;
  1119. }
  1120. if (is_simm13(off)) {
  1121. opcode |= IMMED;
  1122. rs2 = S13(off);
  1123. } else {
  1124. ctx->tmp_1_used = true;
  1125. emit_loadimm(off, tmp, ctx);
  1126. rs2 = RS2(tmp);
  1127. }
  1128. emit(opcode | RS1(dst) | rs2 | RD(tmp2), ctx);
  1129. break;
  1130. }
  1131. /* STX: *(size *)(dst + off) = src */
  1132. case BPF_STX | BPF_MEM | BPF_W:
  1133. case BPF_STX | BPF_MEM | BPF_H:
  1134. case BPF_STX | BPF_MEM | BPF_B:
  1135. case BPF_STX | BPF_MEM | BPF_DW: {
  1136. const u8 tmp = bpf2sparc[TMP_REG_1];
  1137. u32 opcode = 0, rs2;
  1138. if (insn->dst_reg == BPF_REG_FP)
  1139. ctx->saw_frame_pointer = true;
  1140. switch (BPF_SIZE(code)) {
  1141. case BPF_W:
  1142. opcode = ST32;
  1143. break;
  1144. case BPF_H:
  1145. opcode = ST16;
  1146. break;
  1147. case BPF_B:
  1148. opcode = ST8;
  1149. break;
  1150. case BPF_DW:
  1151. opcode = ST64;
  1152. break;
  1153. }
  1154. if (is_simm13(off)) {
  1155. opcode |= IMMED;
  1156. rs2 = S13(off);
  1157. } else {
  1158. ctx->tmp_1_used = true;
  1159. emit_loadimm(off, tmp, ctx);
  1160. rs2 = RS2(tmp);
  1161. }
  1162. emit(opcode | RS1(dst) | rs2 | RD(src), ctx);
  1163. break;
  1164. }
  1165. /* STX XADD: lock *(u32 *)(dst + off) += src */
  1166. case BPF_STX | BPF_XADD | BPF_W: {
  1167. const u8 tmp = bpf2sparc[TMP_REG_1];
  1168. const u8 tmp2 = bpf2sparc[TMP_REG_2];
  1169. const u8 tmp3 = bpf2sparc[TMP_REG_3];
  1170. if (insn->dst_reg == BPF_REG_FP)
  1171. ctx->saw_frame_pointer = true;
  1172. ctx->tmp_1_used = true;
  1173. ctx->tmp_2_used = true;
  1174. ctx->tmp_3_used = true;
  1175. emit_loadimm(off, tmp, ctx);
  1176. emit_alu3(ADD, dst, tmp, tmp, ctx);
  1177. emit(LD32 | RS1(tmp) | RS2(G0) | RD(tmp2), ctx);
  1178. emit_alu3(ADD, tmp2, src, tmp3, ctx);
  1179. emit(CAS | ASI(ASI_P) | RS1(tmp) | RS2(tmp2) | RD(tmp3), ctx);
  1180. emit_cmp(tmp2, tmp3, ctx);
  1181. emit_branch(BNE, 4, 0, ctx);
  1182. emit_nop(ctx);
  1183. break;
  1184. }
  1185. /* STX XADD: lock *(u64 *)(dst + off) += src */
  1186. case BPF_STX | BPF_XADD | BPF_DW: {
  1187. const u8 tmp = bpf2sparc[TMP_REG_1];
  1188. const u8 tmp2 = bpf2sparc[TMP_REG_2];
  1189. const u8 tmp3 = bpf2sparc[TMP_REG_3];
  1190. if (insn->dst_reg == BPF_REG_FP)
  1191. ctx->saw_frame_pointer = true;
  1192. ctx->tmp_1_used = true;
  1193. ctx->tmp_2_used = true;
  1194. ctx->tmp_3_used = true;
  1195. emit_loadimm(off, tmp, ctx);
  1196. emit_alu3(ADD, dst, tmp, tmp, ctx);
  1197. emit(LD64 | RS1(tmp) | RS2(G0) | RD(tmp2), ctx);
  1198. emit_alu3(ADD, tmp2, src, tmp3, ctx);
  1199. emit(CASX | ASI(ASI_P) | RS1(tmp) | RS2(tmp2) | RD(tmp3), ctx);
  1200. emit_cmp(tmp2, tmp3, ctx);
  1201. emit_branch(BNE, 4, 0, ctx);
  1202. emit_nop(ctx);
  1203. break;
  1204. }
  1205. default:
  1206. pr_err_once("unknown opcode %02x\n", code);
  1207. return -EINVAL;
  1208. }
  1209. return 0;
  1210. }
  1211. static int build_body(struct jit_ctx *ctx)
  1212. {
  1213. const struct bpf_prog *prog = ctx->prog;
  1214. int i;
  1215. for (i = 0; i < prog->len; i++) {
  1216. const struct bpf_insn *insn = &prog->insnsi[i];
  1217. int ret;
  1218. ret = build_insn(insn, ctx);
  1219. if (ret > 0) {
  1220. i++;
  1221. ctx->offset[i] = ctx->idx;
  1222. continue;
  1223. }
  1224. ctx->offset[i] = ctx->idx;
  1225. if (ret)
  1226. return ret;
  1227. }
  1228. return 0;
  1229. }
  1230. static void jit_fill_hole(void *area, unsigned int size)
  1231. {
  1232. u32 *ptr;
  1233. /* We are guaranteed to have aligned memory. */
  1234. for (ptr = area; size >= sizeof(u32); size -= sizeof(u32))
  1235. *ptr++ = 0x91d02005; /* ta 5 */
  1236. }
  1237. struct sparc64_jit_data {
  1238. struct bpf_binary_header *header;
  1239. u8 *image;
  1240. struct jit_ctx ctx;
  1241. };
  1242. struct bpf_prog *bpf_int_jit_compile(struct bpf_prog *prog)
  1243. {
  1244. struct bpf_prog *tmp, *orig_prog = prog;
  1245. struct sparc64_jit_data *jit_data;
  1246. struct bpf_binary_header *header;
  1247. u32 prev_image_size, image_size;
  1248. bool tmp_blinded = false;
  1249. bool extra_pass = false;
  1250. struct jit_ctx ctx;
  1251. u8 *image_ptr;
  1252. int pass, i;
  1253. if (!prog->jit_requested)
  1254. return orig_prog;
  1255. tmp = bpf_jit_blind_constants(prog);
  1256. /* If blinding was requested and we failed during blinding,
  1257. * we must fall back to the interpreter.
  1258. */
  1259. if (IS_ERR(tmp))
  1260. return orig_prog;
  1261. if (tmp != prog) {
  1262. tmp_blinded = true;
  1263. prog = tmp;
  1264. }
  1265. jit_data = prog->aux->jit_data;
  1266. if (!jit_data) {
  1267. jit_data = kzalloc(sizeof(*jit_data), GFP_KERNEL);
  1268. if (!jit_data) {
  1269. prog = orig_prog;
  1270. goto out;
  1271. }
  1272. prog->aux->jit_data = jit_data;
  1273. }
  1274. if (jit_data->ctx.offset) {
  1275. ctx = jit_data->ctx;
  1276. image_ptr = jit_data->image;
  1277. header = jit_data->header;
  1278. extra_pass = true;
  1279. image_size = sizeof(u32) * ctx.idx;
  1280. prev_image_size = image_size;
  1281. pass = 1;
  1282. goto skip_init_ctx;
  1283. }
  1284. memset(&ctx, 0, sizeof(ctx));
  1285. ctx.prog = prog;
  1286. ctx.offset = kmalloc_array(prog->len, sizeof(unsigned int), GFP_KERNEL);
  1287. if (ctx.offset == NULL) {
  1288. prog = orig_prog;
  1289. goto out_off;
  1290. }
  1291. /* Longest sequence emitted is for bswap32, 12 instructions. Pre-cook
  1292. * the offset array so that we converge faster.
  1293. */
  1294. for (i = 0; i < prog->len; i++)
  1295. ctx.offset[i] = i * (12 * 4);
  1296. prev_image_size = ~0U;
  1297. for (pass = 1; pass < 40; pass++) {
  1298. ctx.idx = 0;
  1299. build_prologue(&ctx);
  1300. if (build_body(&ctx)) {
  1301. prog = orig_prog;
  1302. goto out_off;
  1303. }
  1304. build_epilogue(&ctx);
  1305. if (bpf_jit_enable > 1)
  1306. pr_info("Pass %d: size = %u, seen = [%c%c%c%c%c%c]\n", pass,
  1307. ctx.idx * 4,
  1308. ctx.tmp_1_used ? '1' : ' ',
  1309. ctx.tmp_2_used ? '2' : ' ',
  1310. ctx.tmp_3_used ? '3' : ' ',
  1311. ctx.saw_frame_pointer ? 'F' : ' ',
  1312. ctx.saw_call ? 'C' : ' ',
  1313. ctx.saw_tail_call ? 'T' : ' ');
  1314. if (ctx.idx * 4 == prev_image_size)
  1315. break;
  1316. prev_image_size = ctx.idx * 4;
  1317. cond_resched();
  1318. }
  1319. /* Now we know the actual image size. */
  1320. image_size = sizeof(u32) * ctx.idx;
  1321. header = bpf_jit_binary_alloc(image_size, &image_ptr,
  1322. sizeof(u32), jit_fill_hole);
  1323. if (header == NULL) {
  1324. prog = orig_prog;
  1325. goto out_off;
  1326. }
  1327. ctx.image = (u32 *)image_ptr;
  1328. skip_init_ctx:
  1329. ctx.idx = 0;
  1330. build_prologue(&ctx);
  1331. if (build_body(&ctx)) {
  1332. bpf_jit_binary_free(header);
  1333. prog = orig_prog;
  1334. goto out_off;
  1335. }
  1336. build_epilogue(&ctx);
  1337. if (ctx.idx * 4 != prev_image_size) {
  1338. pr_err("bpf_jit: Failed to converge, prev_size=%u size=%d\n",
  1339. prev_image_size, ctx.idx * 4);
  1340. bpf_jit_binary_free(header);
  1341. prog = orig_prog;
  1342. goto out_off;
  1343. }
  1344. if (bpf_jit_enable > 1)
  1345. bpf_jit_dump(prog->len, image_size, pass, ctx.image);
  1346. bpf_flush_icache(header, (u8 *)header + (header->pages * PAGE_SIZE));
  1347. if (!prog->is_func || extra_pass) {
  1348. bpf_jit_binary_lock_ro(header);
  1349. } else {
  1350. jit_data->ctx = ctx;
  1351. jit_data->image = image_ptr;
  1352. jit_data->header = header;
  1353. }
  1354. prog->bpf_func = (void *)ctx.image;
  1355. prog->jited = 1;
  1356. prog->jited_len = image_size;
  1357. if (!prog->is_func || extra_pass) {
  1358. out_off:
  1359. kfree(ctx.offset);
  1360. kfree(jit_data);
  1361. prog->aux->jit_data = NULL;
  1362. }
  1363. out:
  1364. if (tmp_blinded)
  1365. bpf_jit_prog_release_other(prog, prog == orig_prog ?
  1366. tmp : orig_prog);
  1367. return prog;
  1368. }