| 1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265 | 
							- /* ---------- To make a malloc.h, start cutting here ------------ */
 
- /*
 
-   A version of malloc/free/realloc written by Doug Lea and released to the
 
-   public domain.  Send questions/comments/complaints/performance data
 
-   to dl@cs.oswego.edu
 
- * VERSION 2.6.6  Sun Mar  5 19:10:03 2000  Doug Lea  (dl at gee)
 
-    Note: There may be an updated version of this malloc obtainable at
 
- 	   ftp://g.oswego.edu/pub/misc/malloc.c
 
- 	 Check before installing!
 
- * Why use this malloc?
 
-   This is not the fastest, most space-conserving, most portable, or
 
-   most tunable malloc ever written. However it is among the fastest
 
-   while also being among the most space-conserving, portable and tunable.
 
-   Consistent balance across these factors results in a good general-purpose
 
-   allocator. For a high-level description, see
 
-      http://g.oswego.edu/dl/html/malloc.html
 
- * Synopsis of public routines
 
-   (Much fuller descriptions are contained in the program documentation below.)
 
-   malloc(size_t n);
 
-      Return a pointer to a newly allocated chunk of at least n bytes, or null
 
-      if no space is available.
 
-   free(Void_t* p);
 
-      Release the chunk of memory pointed to by p, or no effect if p is null.
 
-   realloc(Void_t* p, size_t n);
 
-      Return a pointer to a chunk of size n that contains the same data
 
-      as does chunk p up to the minimum of (n, p's size) bytes, or null
 
-      if no space is available. The returned pointer may or may not be
 
-      the same as p. If p is null, equivalent to malloc.  Unless the
 
-      #define REALLOC_ZERO_BYTES_FREES below is set, realloc with a
 
-      size argument of zero (re)allocates a minimum-sized chunk.
 
-   memalign(size_t alignment, size_t n);
 
-      Return a pointer to a newly allocated chunk of n bytes, aligned
 
-      in accord with the alignment argument, which must be a power of
 
-      two.
 
-   valloc(size_t n);
 
-      Equivalent to memalign(pagesize, n), where pagesize is the page
 
-      size of the system (or as near to this as can be figured out from
 
-      all the includes/defines below.)
 
-   pvalloc(size_t n);
 
-      Equivalent to valloc(minimum-page-that-holds(n)), that is,
 
-      round up n to nearest pagesize.
 
-   calloc(size_t unit, size_t quantity);
 
-      Returns a pointer to quantity * unit bytes, with all locations
 
-      set to zero.
 
-   cfree(Void_t* p);
 
-      Equivalent to free(p).
 
-   malloc_trim(size_t pad);
 
-      Release all but pad bytes of freed top-most memory back
 
-      to the system. Return 1 if successful, else 0.
 
-   malloc_usable_size(Void_t* p);
 
-      Report the number usable allocated bytes associated with allocated
 
-      chunk p. This may or may not report more bytes than were requested,
 
-      due to alignment and minimum size constraints.
 
-   malloc_stats();
 
-      Prints brief summary statistics on stderr.
 
-   mallinfo()
 
-      Returns (by copy) a struct containing various summary statistics.
 
-   mallopt(int parameter_number, int parameter_value)
 
-      Changes one of the tunable parameters described below. Returns
 
-      1 if successful in changing the parameter, else 0.
 
- * Vital statistics:
 
-   Alignment:                            8-byte
 
-        8 byte alignment is currently hardwired into the design.  This
 
-        seems to suffice for all current machines and C compilers.
 
-   Assumed pointer representation:       4 or 8 bytes
 
-        Code for 8-byte pointers is untested by me but has worked
 
-        reliably by Wolfram Gloger, who contributed most of the
 
-        changes supporting this.
 
-   Assumed size_t  representation:       4 or 8 bytes
 
-        Note that size_t is allowed to be 4 bytes even if pointers are 8.
 
-   Minimum overhead per allocated chunk: 4 or 8 bytes
 
-        Each malloced chunk has a hidden overhead of 4 bytes holding size
 
-        and status information.
 
-   Minimum allocated size: 4-byte ptrs:  16 bytes    (including 4 overhead)
 
- 			  8-byte ptrs:  24/32 bytes (including, 4/8 overhead)
 
-        When a chunk is freed, 12 (for 4byte ptrs) or 20 (for 8 byte
 
-        ptrs but 4 byte size) or 24 (for 8/8) additional bytes are
 
-        needed; 4 (8) for a trailing size field
 
-        and 8 (16) bytes for free list pointers. Thus, the minimum
 
-        allocatable size is 16/24/32 bytes.
 
-        Even a request for zero bytes (i.e., malloc(0)) returns a
 
-        pointer to something of the minimum allocatable size.
 
-   Maximum allocated size: 4-byte size_t: 2^31 -  8 bytes
 
- 			  8-byte size_t: 2^63 - 16 bytes
 
-        It is assumed that (possibly signed) size_t bit values suffice to
 
-        represent chunk sizes. `Possibly signed' is due to the fact
 
-        that `size_t' may be defined on a system as either a signed or
 
-        an unsigned type. To be conservative, values that would appear
 
-        as negative numbers are avoided.
 
-        Requests for sizes with a negative sign bit when the request
 
-        size is treaded as a long will return null.
 
-   Maximum overhead wastage per allocated chunk: normally 15 bytes
 
-        Alignnment demands, plus the minimum allocatable size restriction
 
-        make the normal worst-case wastage 15 bytes (i.e., up to 15
 
-        more bytes will be allocated than were requested in malloc), with
 
-        two exceptions:
 
- 	 1. Because requests for zero bytes allocate non-zero space,
 
- 	    the worst case wastage for a request of zero bytes is 24 bytes.
 
- 	 2. For requests >= mmap_threshold that are serviced via
 
- 	    mmap(), the worst case wastage is 8 bytes plus the remainder
 
- 	    from a system page (the minimal mmap unit); typically 4096 bytes.
 
- * Limitations
 
-     Here are some features that are NOT currently supported
 
-     * No user-definable hooks for callbacks and the like.
 
-     * No automated mechanism for fully checking that all accesses
 
-       to malloced memory stay within their bounds.
 
-     * No support for compaction.
 
- * Synopsis of compile-time options:
 
-     People have reported using previous versions of this malloc on all
 
-     versions of Unix, sometimes by tweaking some of the defines
 
-     below. It has been tested most extensively on Solaris and
 
-     Linux. It is also reported to work on WIN32 platforms.
 
-     People have also reported adapting this malloc for use in
 
-     stand-alone embedded systems.
 
-     The implementation is in straight, hand-tuned ANSI C.  Among other
 
-     consequences, it uses a lot of macros.  Because of this, to be at
 
-     all usable, this code should be compiled using an optimizing compiler
 
-     (for example gcc -O2) that can simplify expressions and control
 
-     paths.
 
-   __STD_C                  (default: derived from C compiler defines)
 
-      Nonzero if using ANSI-standard C compiler, a C++ compiler, or
 
-      a C compiler sufficiently close to ANSI to get away with it.
 
-   DEBUG                    (default: NOT defined)
 
-      Define to enable debugging. Adds fairly extensive assertion-based
 
-      checking to help track down memory errors, but noticeably slows down
 
-      execution.
 
-   REALLOC_ZERO_BYTES_FREES (default: NOT defined)
 
-      Define this if you think that realloc(p, 0) should be equivalent
 
-      to free(p). Otherwise, since malloc returns a unique pointer for
 
-      malloc(0), so does realloc(p, 0).
 
-   HAVE_MEMCPY               (default: defined)
 
-      Define if you are not otherwise using ANSI STD C, but still
 
-      have memcpy and memset in your C library and want to use them.
 
-      Otherwise, simple internal versions are supplied.
 
-   USE_MEMCPY               (default: 1 if HAVE_MEMCPY is defined, 0 otherwise)
 
-      Define as 1 if you want the C library versions of memset and
 
-      memcpy called in realloc and calloc (otherwise macro versions are used).
 
-      At least on some platforms, the simple macro versions usually
 
-      outperform libc versions.
 
-   HAVE_MMAP                 (default: defined as 1)
 
-      Define to non-zero to optionally make malloc() use mmap() to
 
-      allocate very large blocks.
 
-   HAVE_MREMAP                 (default: defined as 0 unless Linux libc set)
 
-      Define to non-zero to optionally make realloc() use mremap() to
 
-      reallocate very large blocks.
 
-   malloc_getpagesize        (default: derived from system #includes)
 
-      Either a constant or routine call returning the system page size.
 
-   HAVE_USR_INCLUDE_MALLOC_H (default: NOT defined)
 
-      Optionally define if you are on a system with a /usr/include/malloc.h
 
-      that declares struct mallinfo. It is not at all necessary to
 
-      define this even if you do, but will ensure consistency.
 
-   INTERNAL_SIZE_T           (default: size_t)
 
-      Define to a 32-bit type (probably `unsigned int') if you are on a
 
-      64-bit machine, yet do not want or need to allow malloc requests of
 
-      greater than 2^31 to be handled. This saves space, especially for
 
-      very small chunks.
 
-   INTERNAL_LINUX_C_LIB      (default: NOT defined)
 
-      Defined only when compiled as part of Linux libc.
 
-      Also note that there is some odd internal name-mangling via defines
 
-      (for example, internally, `malloc' is named `mALLOc') needed
 
-      when compiling in this case. These look funny but don't otherwise
 
-      affect anything.
 
-   WIN32                     (default: undefined)
 
-      Define this on MS win (95, nt) platforms to compile in sbrk emulation.
 
-   LACKS_UNISTD_H            (default: undefined if not WIN32)
 
-      Define this if your system does not have a <unistd.h>.
 
-   LACKS_SYS_PARAM_H         (default: undefined if not WIN32)
 
-      Define this if your system does not have a <sys/param.h>.
 
-   MORECORE                  (default: sbrk)
 
-      The name of the routine to call to obtain more memory from the system.
 
-   MORECORE_FAILURE          (default: -1)
 
-      The value returned upon failure of MORECORE.
 
-   MORECORE_CLEARS           (default 1)
 
-      true (1) if the routine mapped to MORECORE zeroes out memory (which
 
-      holds for sbrk).
 
-   DEFAULT_TRIM_THRESHOLD
 
-   DEFAULT_TOP_PAD
 
-   DEFAULT_MMAP_THRESHOLD
 
-   DEFAULT_MMAP_MAX
 
-      Default values of tunable parameters (described in detail below)
 
-      controlling interaction with host system routines (sbrk, mmap, etc).
 
-      These values may also be changed dynamically via mallopt(). The
 
-      preset defaults are those that give best performance for typical
 
-      programs/systems.
 
-   USE_DL_PREFIX             (default: undefined)
 
-      Prefix all public routines with the string 'dl'.  Useful to
 
-      quickly avoid procedure declaration conflicts and linker symbol
 
-      conflicts with existing memory allocation routines.
 
- */
 
- /* Preliminaries */
 
- #ifndef __STD_C
 
- #ifdef __STDC__
 
- #define __STD_C     1
 
- #else
 
- #if __cplusplus
 
- #define __STD_C     1
 
- #else
 
- #define __STD_C     0
 
- #endif /*__cplusplus*/
 
- #endif /*__STDC__*/
 
- #endif /*__STD_C*/
 
- #ifndef Void_t
 
- #if (__STD_C || defined(WIN32))
 
- #define Void_t      void
 
- #else
 
- #define Void_t      char
 
- #endif
 
- #endif /*Void_t*/
 
- #if __STD_C
 
- #include <stddef.h>   /* for size_t */
 
- #else
 
- #include <sys/types.h>
 
- #endif
 
- #ifdef __cplusplus
 
- extern "C" {
 
- #endif
 
- #include <stdio.h>    /* needed for malloc_stats */
 
- /*
 
-   Compile-time options
 
- */
 
- /*
 
-     Debugging:
 
-     Because freed chunks may be overwritten with link fields, this
 
-     malloc will often die when freed memory is overwritten by user
 
-     programs.  This can be very effective (albeit in an annoying way)
 
-     in helping track down dangling pointers.
 
-     If you compile with -DDEBUG, a number of assertion checks are
 
-     enabled that will catch more memory errors. You probably won't be
 
-     able to make much sense of the actual assertion errors, but they
 
-     should help you locate incorrectly overwritten memory.  The
 
-     checking is fairly extensive, and will slow down execution
 
-     noticeably. Calling malloc_stats or mallinfo with DEBUG set will
 
-     attempt to check every non-mmapped allocated and free chunk in the
 
-     course of computing the summmaries. (By nature, mmapped regions
 
-     cannot be checked very much automatically.)
 
-     Setting DEBUG may also be helpful if you are trying to modify
 
-     this code. The assertions in the check routines spell out in more
 
-     detail the assumptions and invariants underlying the algorithms.
 
- */
 
- #if DEBUG
 
- #include <assert.h>
 
- #else
 
- #define assert(x) ((void)0)
 
- #endif
 
- /*
 
-   INTERNAL_SIZE_T is the word-size used for internal bookkeeping
 
-   of chunk sizes. On a 64-bit machine, you can reduce malloc
 
-   overhead by defining INTERNAL_SIZE_T to be a 32 bit `unsigned int'
 
-   at the expense of not being able to handle requests greater than
 
-   2^31. This limitation is hardly ever a concern; you are encouraged
 
-   to set this. However, the default version is the same as size_t.
 
- */
 
- #ifndef INTERNAL_SIZE_T
 
- #define INTERNAL_SIZE_T size_t
 
- #endif
 
- /*
 
-   REALLOC_ZERO_BYTES_FREES should be set if a call to
 
-   realloc with zero bytes should be the same as a call to free.
 
-   Some people think it should. Otherwise, since this malloc
 
-   returns a unique pointer for malloc(0), so does realloc(p, 0).
 
- */
 
- /*   #define REALLOC_ZERO_BYTES_FREES */
 
- /*
 
-   WIN32 causes an emulation of sbrk to be compiled in
 
-   mmap-based options are not currently supported in WIN32.
 
- */
 
- /* #define WIN32 */
 
- #ifdef WIN32
 
- #define MORECORE wsbrk
 
- #define HAVE_MMAP 0
 
- #define LACKS_UNISTD_H
 
- #define LACKS_SYS_PARAM_H
 
- /*
 
-   Include 'windows.h' to get the necessary declarations for the
 
-   Microsoft Visual C++ data structures and routines used in the 'sbrk'
 
-   emulation.
 
-   Define WIN32_LEAN_AND_MEAN so that only the essential Microsoft
 
-   Visual C++ header files are included.
 
- */
 
- #define WIN32_LEAN_AND_MEAN
 
- #include <windows.h>
 
- #endif
 
- /*
 
-   HAVE_MEMCPY should be defined if you are not otherwise using
 
-   ANSI STD C, but still have memcpy and memset in your C library
 
-   and want to use them in calloc and realloc. Otherwise simple
 
-   macro versions are defined here.
 
-   USE_MEMCPY should be defined as 1 if you actually want to
 
-   have memset and memcpy called. People report that the macro
 
-   versions are often enough faster than libc versions on many
 
-   systems that it is better to use them.
 
- */
 
- #define HAVE_MEMCPY
 
- #ifndef USE_MEMCPY
 
- #ifdef HAVE_MEMCPY
 
- #define USE_MEMCPY 1
 
- #else
 
- #define USE_MEMCPY 0
 
- #endif
 
- #endif
 
- #if (__STD_C || defined(HAVE_MEMCPY))
 
- #if __STD_C
 
- void* memset(void*, int, size_t);
 
- void* memcpy(void*, const void*, size_t);
 
- #else
 
- #ifdef WIN32
 
- /* On Win32 platforms, 'memset()' and 'memcpy()' are already declared in */
 
- /* 'windows.h' */
 
- #else
 
- Void_t* memset();
 
- Void_t* memcpy();
 
- #endif
 
- #endif
 
- #endif
 
- #if USE_MEMCPY
 
- /* The following macros are only invoked with (2n+1)-multiples of
 
-    INTERNAL_SIZE_T units, with a positive integer n. This is exploited
 
-    for fast inline execution when n is small. */
 
- #define MALLOC_ZERO(charp, nbytes)                                            \
 
- do {                                                                          \
 
-   INTERNAL_SIZE_T mzsz = (nbytes);                                            \
 
-   if(mzsz <= 9*sizeof(mzsz)) {                                                \
 
-     INTERNAL_SIZE_T* mz = (INTERNAL_SIZE_T*) (charp);                         \
 
-     if(mzsz >= 5*sizeof(mzsz)) {     *mz++ = 0;                               \
 
- 				     *mz++ = 0;                               \
 
-       if(mzsz >= 7*sizeof(mzsz)) {   *mz++ = 0;                               \
 
- 				     *mz++ = 0;                               \
 
- 	if(mzsz >= 9*sizeof(mzsz)) { *mz++ = 0;                               \
 
- 				     *mz++ = 0; }}}                           \
 
- 				     *mz++ = 0;                               \
 
- 				     *mz++ = 0;                               \
 
- 				     *mz   = 0;                               \
 
-   } else memset((charp), 0, mzsz);                                            \
 
- } while(0)
 
- #define MALLOC_COPY(dest,src,nbytes)                                          \
 
- do {                                                                          \
 
-   INTERNAL_SIZE_T mcsz = (nbytes);                                            \
 
-   if(mcsz <= 9*sizeof(mcsz)) {                                                \
 
-     INTERNAL_SIZE_T* mcsrc = (INTERNAL_SIZE_T*) (src);                        \
 
-     INTERNAL_SIZE_T* mcdst = (INTERNAL_SIZE_T*) (dest);                       \
 
-     if(mcsz >= 5*sizeof(mcsz)) {     *mcdst++ = *mcsrc++;                     \
 
- 				     *mcdst++ = *mcsrc++;                     \
 
-       if(mcsz >= 7*sizeof(mcsz)) {   *mcdst++ = *mcsrc++;                     \
 
- 				     *mcdst++ = *mcsrc++;                     \
 
- 	if(mcsz >= 9*sizeof(mcsz)) { *mcdst++ = *mcsrc++;                     \
 
- 				     *mcdst++ = *mcsrc++; }}}                 \
 
- 				     *mcdst++ = *mcsrc++;                     \
 
- 				     *mcdst++ = *mcsrc++;                     \
 
- 				     *mcdst   = *mcsrc  ;                     \
 
-   } else memcpy(dest, src, mcsz);                                             \
 
- } while(0)
 
- #else /* !USE_MEMCPY */
 
- /* Use Duff's device for good zeroing/copying performance. */
 
- #define MALLOC_ZERO(charp, nbytes)                                            \
 
- do {                                                                          \
 
-   INTERNAL_SIZE_T* mzp = (INTERNAL_SIZE_T*)(charp);                           \
 
-   long mctmp = (nbytes)/sizeof(INTERNAL_SIZE_T), mcn;                         \
 
-   if (mctmp < 8) mcn = 0; else { mcn = (mctmp-1)/8; mctmp %= 8; }             \
 
-   switch (mctmp) {                                                            \
 
-     case 0: for(;;) { *mzp++ = 0;                                             \
 
-     case 7:           *mzp++ = 0;                                             \
 
-     case 6:           *mzp++ = 0;                                             \
 
-     case 5:           *mzp++ = 0;                                             \
 
-     case 4:           *mzp++ = 0;                                             \
 
-     case 3:           *mzp++ = 0;                                             \
 
-     case 2:           *mzp++ = 0;                                             \
 
-     case 1:           *mzp++ = 0; if(mcn <= 0) break; mcn--; }                \
 
-   }                                                                           \
 
- } while(0)
 
- #define MALLOC_COPY(dest,src,nbytes)                                          \
 
- do {                                                                          \
 
-   INTERNAL_SIZE_T* mcsrc = (INTERNAL_SIZE_T*) src;                            \
 
-   INTERNAL_SIZE_T* mcdst = (INTERNAL_SIZE_T*) dest;                           \
 
-   long mctmp = (nbytes)/sizeof(INTERNAL_SIZE_T), mcn;                         \
 
-   if (mctmp < 8) mcn = 0; else { mcn = (mctmp-1)/8; mctmp %= 8; }             \
 
-   switch (mctmp) {                                                            \
 
-     case 0: for(;;) { *mcdst++ = *mcsrc++;                                    \
 
-     case 7:           *mcdst++ = *mcsrc++;                                    \
 
-     case 6:           *mcdst++ = *mcsrc++;                                    \
 
-     case 5:           *mcdst++ = *mcsrc++;                                    \
 
-     case 4:           *mcdst++ = *mcsrc++;                                    \
 
-     case 3:           *mcdst++ = *mcsrc++;                                    \
 
-     case 2:           *mcdst++ = *mcsrc++;                                    \
 
-     case 1:           *mcdst++ = *mcsrc++; if(mcn <= 0) break; mcn--; }       \
 
-   }                                                                           \
 
- } while(0)
 
- #endif
 
- /*
 
-   Define HAVE_MMAP to optionally make malloc() use mmap() to
 
-   allocate very large blocks.  These will be returned to the
 
-   operating system immediately after a free().
 
- */
 
- #ifndef HAVE_MMAP
 
- #define HAVE_MMAP 1
 
- #endif
 
- /*
 
-   Define HAVE_MREMAP to make realloc() use mremap() to re-allocate
 
-   large blocks.  This is currently only possible on Linux with
 
-   kernel versions newer than 1.3.77.
 
- */
 
- #ifndef HAVE_MREMAP
 
- #ifdef INTERNAL_LINUX_C_LIB
 
- #define HAVE_MREMAP 1
 
- #else
 
- #define HAVE_MREMAP 0
 
- #endif
 
- #endif
 
- #if HAVE_MMAP
 
- #include <unistd.h>
 
- #include <fcntl.h>
 
- #include <sys/mman.h>
 
- #if !defined(MAP_ANONYMOUS) && defined(MAP_ANON)
 
- #define MAP_ANONYMOUS MAP_ANON
 
- #endif
 
- #endif /* HAVE_MMAP */
 
- /*
 
-   Access to system page size. To the extent possible, this malloc
 
-   manages memory from the system in page-size units.
 
-   The following mechanics for getpagesize were adapted from
 
-   bsd/gnu getpagesize.h
 
- */
 
- #ifndef LACKS_UNISTD_H
 
- #  include <unistd.h>
 
- #endif
 
- #ifndef malloc_getpagesize
 
- #  ifdef _SC_PAGESIZE         /* some SVR4 systems omit an underscore */
 
- #    ifndef _SC_PAGE_SIZE
 
- #      define _SC_PAGE_SIZE _SC_PAGESIZE
 
- #    endif
 
- #  endif
 
- #  ifdef _SC_PAGE_SIZE
 
- #    define malloc_getpagesize sysconf(_SC_PAGE_SIZE)
 
- #  else
 
- #    if defined(BSD) || defined(DGUX) || defined(HAVE_GETPAGESIZE)
 
-        extern size_t getpagesize();
 
- #      define malloc_getpagesize getpagesize()
 
- #    else
 
- #      ifdef WIN32
 
- #        define malloc_getpagesize (4096) /* TBD: Use 'GetSystemInfo' instead */
 
- #      else
 
- #        ifndef LACKS_SYS_PARAM_H
 
- #          include <sys/param.h>
 
- #        endif
 
- #        ifdef EXEC_PAGESIZE
 
- #          define malloc_getpagesize EXEC_PAGESIZE
 
- #        else
 
- #          ifdef NBPG
 
- #            ifndef CLSIZE
 
- #              define malloc_getpagesize NBPG
 
- #            else
 
- #              define malloc_getpagesize (NBPG * CLSIZE)
 
- #            endif
 
- #          else
 
- #            ifdef NBPC
 
- #              define malloc_getpagesize NBPC
 
- #            else
 
- #              ifdef PAGESIZE
 
- #                define malloc_getpagesize PAGESIZE
 
- #              else
 
- #                define malloc_getpagesize (4096) /* just guess */
 
- #              endif
 
- #            endif
 
- #          endif
 
- #        endif
 
- #      endif
 
- #    endif
 
- #  endif
 
- #endif
 
- /*
 
-   This version of malloc supports the standard SVID/XPG mallinfo
 
-   routine that returns a struct containing the same kind of
 
-   information you can get from malloc_stats. It should work on
 
-   any SVID/XPG compliant system that has a /usr/include/malloc.h
 
-   defining struct mallinfo. (If you'd like to install such a thing
 
-   yourself, cut out the preliminary declarations as described above
 
-   and below and save them in a malloc.h file. But there's no
 
-   compelling reason to bother to do this.)
 
-   The main declaration needed is the mallinfo struct that is returned
 
-   (by-copy) by mallinfo().  The SVID/XPG malloinfo struct contains a
 
-   bunch of fields, most of which are not even meaningful in this
 
-   version of malloc. Some of these fields are are instead filled by
 
-   mallinfo() with other numbers that might possibly be of interest.
 
-   HAVE_USR_INCLUDE_MALLOC_H should be set if you have a
 
-   /usr/include/malloc.h file that includes a declaration of struct
 
-   mallinfo.  If so, it is included; else an SVID2/XPG2 compliant
 
-   version is declared below.  These must be precisely the same for
 
-   mallinfo() to work.
 
- */
 
- /* #define HAVE_USR_INCLUDE_MALLOC_H */
 
- #if HAVE_USR_INCLUDE_MALLOC_H
 
- #include "/usr/include/malloc.h"
 
- #else
 
- /* SVID2/XPG mallinfo structure */
 
- struct mallinfo {
 
-   int arena;    /* total space allocated from system */
 
-   int ordblks;  /* number of non-inuse chunks */
 
-   int smblks;   /* unused -- always zero */
 
-   int hblks;    /* number of mmapped regions */
 
-   int hblkhd;   /* total space in mmapped regions */
 
-   int usmblks;  /* unused -- always zero */
 
-   int fsmblks;  /* unused -- always zero */
 
-   int uordblks; /* total allocated space */
 
-   int fordblks; /* total non-inuse space */
 
-   int keepcost; /* top-most, releasable (via malloc_trim) space */
 
- };
 
- /* SVID2/XPG mallopt options */
 
- #define M_MXFAST  1    /* UNUSED in this malloc */
 
- #define M_NLBLKS  2    /* UNUSED in this malloc */
 
- #define M_GRAIN   3    /* UNUSED in this malloc */
 
- #define M_KEEP    4    /* UNUSED in this malloc */
 
- #endif
 
- /* mallopt options that actually do something */
 
- #define M_TRIM_THRESHOLD    -1
 
- #define M_TOP_PAD           -2
 
- #define M_MMAP_THRESHOLD    -3
 
- #define M_MMAP_MAX          -4
 
- #ifndef DEFAULT_TRIM_THRESHOLD
 
- #define DEFAULT_TRIM_THRESHOLD (128 * 1024)
 
- #endif
 
- /*
 
-     M_TRIM_THRESHOLD is the maximum amount of unused top-most memory
 
-       to keep before releasing via malloc_trim in free().
 
-       Automatic trimming is mainly useful in long-lived programs.
 
-       Because trimming via sbrk can be slow on some systems, and can
 
-       sometimes be wasteful (in cases where programs immediately
 
-       afterward allocate more large chunks) the value should be high
 
-       enough so that your overall system performance would improve by
 
-       releasing.
 
-       The trim threshold and the mmap control parameters (see below)
 
-       can be traded off with one another. Trimming and mmapping are
 
-       two different ways of releasing unused memory back to the
 
-       system. Between these two, it is often possible to keep
 
-       system-level demands of a long-lived program down to a bare
 
-       minimum. For example, in one test suite of sessions measuring
 
-       the XF86 X server on Linux, using a trim threshold of 128K and a
 
-       mmap threshold of 192K led to near-minimal long term resource
 
-       consumption.
 
-       If you are using this malloc in a long-lived program, it should
 
-       pay to experiment with these values.  As a rough guide, you
 
-       might set to a value close to the average size of a process
 
-       (program) running on your system.  Releasing this much memory
 
-       would allow such a process to run in memory.  Generally, it's
 
-       worth it to tune for trimming rather tham memory mapping when a
 
-       program undergoes phases where several large chunks are
 
-       allocated and released in ways that can reuse each other's
 
-       storage, perhaps mixed with phases where there are no such
 
-       chunks at all.  And in well-behaved long-lived programs,
 
-       controlling release of large blocks via trimming versus mapping
 
-       is usually faster.
 
-       However, in most programs, these parameters serve mainly as
 
-       protection against the system-level effects of carrying around
 
-       massive amounts of unneeded memory. Since frequent calls to
 
-       sbrk, mmap, and munmap otherwise degrade performance, the default
 
-       parameters are set to relatively high values that serve only as
 
-       safeguards.
 
-       The default trim value is high enough to cause trimming only in
 
-       fairly extreme (by current memory consumption standards) cases.
 
-       It must be greater than page size to have any useful effect.  To
 
-       disable trimming completely, you can set to (unsigned long)(-1);
 
- */
 
- #ifndef DEFAULT_TOP_PAD
 
- #define DEFAULT_TOP_PAD        (0)
 
- #endif
 
- /*
 
-     M_TOP_PAD is the amount of extra `padding' space to allocate or
 
-       retain whenever sbrk is called. It is used in two ways internally:
 
-       * When sbrk is called to extend the top of the arena to satisfy
 
- 	a new malloc request, this much padding is added to the sbrk
 
- 	request.
 
-       * When malloc_trim is called automatically from free(),
 
- 	it is used as the `pad' argument.
 
-       In both cases, the actual amount of padding is rounded
 
-       so that the end of the arena is always a system page boundary.
 
-       The main reason for using padding is to avoid calling sbrk so
 
-       often. Having even a small pad greatly reduces the likelihood
 
-       that nearly every malloc request during program start-up (or
 
-       after trimming) will invoke sbrk, which needlessly wastes
 
-       time.
 
-       Automatic rounding-up to page-size units is normally sufficient
 
-       to avoid measurable overhead, so the default is 0.  However, in
 
-       systems where sbrk is relatively slow, it can pay to increase
 
-       this value, at the expense of carrying around more memory than
 
-       the program needs.
 
- */
 
- #ifndef DEFAULT_MMAP_THRESHOLD
 
- #define DEFAULT_MMAP_THRESHOLD (128 * 1024)
 
- #endif
 
- /*
 
-     M_MMAP_THRESHOLD is the request size threshold for using mmap()
 
-       to service a request. Requests of at least this size that cannot
 
-       be allocated using already-existing space will be serviced via mmap.
 
-       (If enough normal freed space already exists it is used instead.)
 
-       Using mmap segregates relatively large chunks of memory so that
 
-       they can be individually obtained and released from the host
 
-       system. A request serviced through mmap is never reused by any
 
-       other request (at least not directly; the system may just so
 
-       happen to remap successive requests to the same locations).
 
-       Segregating space in this way has the benefit that mmapped space
 
-       can ALWAYS be individually released back to the system, which
 
-       helps keep the system level memory demands of a long-lived
 
-       program low. Mapped memory can never become `locked' between
 
-       other chunks, as can happen with normally allocated chunks, which
 
-       menas that even trimming via malloc_trim would not release them.
 
-       However, it has the disadvantages that:
 
- 	 1. The space cannot be reclaimed, consolidated, and then
 
- 	    used to service later requests, as happens with normal chunks.
 
- 	 2. It can lead to more wastage because of mmap page alignment
 
- 	    requirements
 
- 	 3. It causes malloc performance to be more dependent on host
 
- 	    system memory management support routines which may vary in
 
- 	    implementation quality and may impose arbitrary
 
- 	    limitations. Generally, servicing a request via normal
 
- 	    malloc steps is faster than going through a system's mmap.
 
-       All together, these considerations should lead you to use mmap
 
-       only for relatively large requests.
 
- */
 
- #ifndef DEFAULT_MMAP_MAX
 
- #if HAVE_MMAP
 
- #define DEFAULT_MMAP_MAX       (64)
 
- #else
 
- #define DEFAULT_MMAP_MAX       (0)
 
- #endif
 
- #endif
 
- /*
 
-     M_MMAP_MAX is the maximum number of requests to simultaneously
 
-       service using mmap. This parameter exists because:
 
- 	 1. Some systems have a limited number of internal tables for
 
- 	    use by mmap.
 
- 	 2. In most systems, overreliance on mmap can degrade overall
 
- 	    performance.
 
- 	 3. If a program allocates many large regions, it is probably
 
- 	    better off using normal sbrk-based allocation routines that
 
- 	    can reclaim and reallocate normal heap memory. Using a
 
- 	    small value allows transition into this mode after the
 
- 	    first few allocations.
 
-       Setting to 0 disables all use of mmap.  If HAVE_MMAP is not set,
 
-       the default value is 0, and attempts to set it to non-zero values
 
-       in mallopt will fail.
 
- */
 
- /*
 
-     USE_DL_PREFIX will prefix all public routines with the string 'dl'.
 
-       Useful to quickly avoid procedure declaration conflicts and linker
 
-       symbol conflicts with existing memory allocation routines.
 
- */
 
- /* #define USE_DL_PREFIX */
 
- /*
 
-   Special defines for linux libc
 
-   Except when compiled using these special defines for Linux libc
 
-   using weak aliases, this malloc is NOT designed to work in
 
-   multithreaded applications.  No semaphores or other concurrency
 
-   control are provided to ensure that multiple malloc or free calls
 
-   don't run at the same time, which could be disasterous. A single
 
-   semaphore could be used across malloc, realloc, and free (which is
 
-   essentially the effect of the linux weak alias approach). It would
 
-   be hard to obtain finer granularity.
 
- */
 
- #ifdef INTERNAL_LINUX_C_LIB
 
- #if __STD_C
 
- Void_t * __default_morecore_init (ptrdiff_t);
 
- Void_t *(*__morecore)(ptrdiff_t) = __default_morecore_init;
 
- #else
 
- Void_t * __default_morecore_init ();
 
- Void_t *(*__morecore)() = __default_morecore_init;
 
- #endif
 
- #define MORECORE (*__morecore)
 
- #define MORECORE_FAILURE 0
 
- #define MORECORE_CLEARS 1
 
- #else /* INTERNAL_LINUX_C_LIB */
 
- #if __STD_C
 
- extern Void_t*     sbrk(ptrdiff_t);
 
- #else
 
- extern Void_t*     sbrk();
 
- #endif
 
- #ifndef MORECORE
 
- #define MORECORE sbrk
 
- #endif
 
- #ifndef MORECORE_FAILURE
 
- #define MORECORE_FAILURE -1
 
- #endif
 
- #ifndef MORECORE_CLEARS
 
- #define MORECORE_CLEARS 1
 
- #endif
 
- #endif /* INTERNAL_LINUX_C_LIB */
 
- #if defined(INTERNAL_LINUX_C_LIB) && defined(__ELF__)
 
- #define cALLOc		__libc_calloc
 
- #define fREe		__libc_free
 
- #define mALLOc		__libc_malloc
 
- #define mEMALIGn	__libc_memalign
 
- #define rEALLOc		__libc_realloc
 
- #define vALLOc		__libc_valloc
 
- #define pvALLOc		__libc_pvalloc
 
- #define mALLINFo	__libc_mallinfo
 
- #define mALLOPt		__libc_mallopt
 
- #pragma weak calloc = __libc_calloc
 
- #pragma weak free = __libc_free
 
- #pragma weak cfree = __libc_free
 
- #pragma weak malloc = __libc_malloc
 
- #pragma weak memalign = __libc_memalign
 
- #pragma weak realloc = __libc_realloc
 
- #pragma weak valloc = __libc_valloc
 
- #pragma weak pvalloc = __libc_pvalloc
 
- #pragma weak mallinfo = __libc_mallinfo
 
- #pragma weak mallopt = __libc_mallopt
 
- #else
 
- #ifdef USE_DL_PREFIX
 
- #define cALLOc		dlcalloc
 
- #define fREe		dlfree
 
- #define mALLOc		dlmalloc
 
- #define mEMALIGn	dlmemalign
 
- #define rEALLOc		dlrealloc
 
- #define vALLOc		dlvalloc
 
- #define pvALLOc		dlpvalloc
 
- #define mALLINFo	dlmallinfo
 
- #define mALLOPt		dlmallopt
 
- #else /* USE_DL_PREFIX */
 
- #define cALLOc		calloc
 
- #define fREe		free
 
- #define mALLOc		malloc
 
- #define mEMALIGn	memalign
 
- #define rEALLOc		realloc
 
- #define vALLOc		valloc
 
- #define pvALLOc		pvalloc
 
- #define mALLINFo	mallinfo
 
- #define mALLOPt		mallopt
 
- #endif /* USE_DL_PREFIX */
 
- #endif
 
- /* Public routines */
 
- #if __STD_C
 
- Void_t* mALLOc(size_t);
 
- void    fREe(Void_t*);
 
- Void_t* rEALLOc(Void_t*, size_t);
 
- Void_t* mEMALIGn(size_t, size_t);
 
- Void_t* vALLOc(size_t);
 
- Void_t* pvALLOc(size_t);
 
- Void_t* cALLOc(size_t, size_t);
 
- void    cfree(Void_t*);
 
- int     malloc_trim(size_t);
 
- size_t  malloc_usable_size(Void_t*);
 
- void    malloc_stats();
 
- int     mALLOPt(int, int);
 
- struct mallinfo mALLINFo(void);
 
- #else
 
- Void_t* mALLOc();
 
- void    fREe();
 
- Void_t* rEALLOc();
 
- Void_t* mEMALIGn();
 
- Void_t* vALLOc();
 
- Void_t* pvALLOc();
 
- Void_t* cALLOc();
 
- void    cfree();
 
- int     malloc_trim();
 
- size_t  malloc_usable_size();
 
- void    malloc_stats();
 
- int     mALLOPt();
 
- struct mallinfo mALLINFo();
 
- #endif
 
- #ifdef __cplusplus
 
- };  /* end of extern "C" */
 
- #endif
 
- /* ---------- To make a malloc.h, end cutting here ------------ */
 
- /*
 
-   Emulation of sbrk for WIN32
 
-   All code within the ifdef WIN32 is untested by me.
 
-   Thanks to Martin Fong and others for supplying this.
 
- */
 
- #ifdef WIN32
 
- #define AlignPage(add) (((add) + (malloc_getpagesize-1)) & \
 
- ~(malloc_getpagesize-1))
 
- #define AlignPage64K(add) (((add) + (0x10000 - 1)) & ~(0x10000 - 1))
 
- /* resrve 64MB to insure large contiguous space */
 
- #define RESERVED_SIZE (1024*1024*64)
 
- #define NEXT_SIZE (2048*1024)
 
- #define TOP_MEMORY ((unsigned long)2*1024*1024*1024)
 
- struct GmListElement;
 
- typedef struct GmListElement GmListElement;
 
- struct GmListElement
 
- {
 
- 	GmListElement* next;
 
- 	void* base;
 
- };
 
- static GmListElement* head = 0;
 
- static unsigned int gNextAddress = 0;
 
- static unsigned int gAddressBase = 0;
 
- static unsigned int gAllocatedSize = 0;
 
- static
 
- GmListElement* makeGmListElement (void* bas)
 
- {
 
- 	GmListElement* this;
 
- 	this = (GmListElement*)(void*)LocalAlloc (0, sizeof (GmListElement));
 
- 	assert (this);
 
- 	if (this)
 
- 	{
 
- 		this->base = bas;
 
- 		this->next = head;
 
- 		head = this;
 
- 	}
 
- 	return this;
 
- }
 
- void gcleanup ()
 
- {
 
- 	BOOL rval;
 
- 	assert ( (head == NULL) || (head->base == (void*)gAddressBase));
 
- 	if (gAddressBase && (gNextAddress - gAddressBase))
 
- 	{
 
- 		rval = VirtualFree ((void*)gAddressBase,
 
- 							gNextAddress - gAddressBase,
 
- 							MEM_DECOMMIT);
 
- 	assert (rval);
 
- 	}
 
- 	while (head)
 
- 	{
 
- 		GmListElement* next = head->next;
 
- 		rval = VirtualFree (head->base, 0, MEM_RELEASE);
 
- 		assert (rval);
 
- 		LocalFree (head);
 
- 		head = next;
 
- 	}
 
- }
 
- static
 
- void* findRegion (void* start_address, unsigned long size)
 
- {
 
- 	MEMORY_BASIC_INFORMATION info;
 
- 	if (size >= TOP_MEMORY) return NULL;
 
- 	while ((unsigned long)start_address + size < TOP_MEMORY)
 
- 	{
 
- 		VirtualQuery (start_address, &info, sizeof (info));
 
- 		if ((info.State == MEM_FREE) && (info.RegionSize >= size))
 
- 			return start_address;
 
- 		else
 
- 		{
 
- 			/* Requested region is not available so see if the */
 
- 			/* next region is available.  Set 'start_address' */
 
- 			/* to the next region and call 'VirtualQuery()' */
 
- 			/* again. */
 
- 			start_address = (char*)info.BaseAddress + info.RegionSize;
 
- 			/* Make sure we start looking for the next region */
 
- 			/* on the *next* 64K boundary.  Otherwise, even if */
 
- 			/* the new region is free according to */
 
- 			/* 'VirtualQuery()', the subsequent call to */
 
- 			/* 'VirtualAlloc()' (which follows the call to */
 
- 			/* this routine in 'wsbrk()') will round *down* */
 
- 			/* the requested address to a 64K boundary which */
 
- 			/* we already know is an address in the */
 
- 			/* unavailable region.  Thus, the subsequent call */
 
- 			/* to 'VirtualAlloc()' will fail and bring us back */
 
- 			/* here, causing us to go into an infinite loop. */
 
- 			start_address =
 
- 				(void *) AlignPage64K((unsigned long) start_address);
 
- 		}
 
- 	}
 
- 	return NULL;
 
- }
 
- void* wsbrk (long size)
 
- {
 
- 	void* tmp;
 
- 	if (size > 0)
 
- 	{
 
- 		if (gAddressBase == 0)
 
- 		{
 
- 			gAllocatedSize = max (RESERVED_SIZE, AlignPage (size));
 
- 			gNextAddress = gAddressBase =
 
- 				(unsigned int)VirtualAlloc (NULL, gAllocatedSize,
 
- 											MEM_RESERVE, PAGE_NOACCESS);
 
- 		} else if (AlignPage (gNextAddress + size) > (gAddressBase +
 
- gAllocatedSize))
 
- 		{
 
- 			long new_size = max (NEXT_SIZE, AlignPage (size));
 
- 			void* new_address = (void*)(gAddressBase+gAllocatedSize);
 
- 			do
 
- 			{
 
- 				new_address = findRegion (new_address, new_size);
 
- 				if (new_address == 0)
 
- 					return (void*)-1;
 
- 				gAddressBase = gNextAddress =
 
- 					(unsigned int)VirtualAlloc (new_address, new_size,
 
- 												MEM_RESERVE, PAGE_NOACCESS);
 
- 				/* repeat in case of race condition */
 
- 				/* The region that we found has been snagged */
 
- 				/* by another thread */
 
- 			}
 
- 			while (gAddressBase == 0);
 
- 			assert (new_address == (void*)gAddressBase);
 
- 			gAllocatedSize = new_size;
 
- 			if (!makeGmListElement ((void*)gAddressBase))
 
- 				return (void*)-1;
 
- 		}
 
- 		if ((size + gNextAddress) > AlignPage (gNextAddress))
 
- 		{
 
- 			void* res;
 
- 			res = VirtualAlloc ((void*)AlignPage (gNextAddress),
 
- 								(size + gNextAddress -
 
- 								 AlignPage (gNextAddress)),
 
- 								MEM_COMMIT, PAGE_READWRITE);
 
- 			if (res == 0)
 
- 				return (void*)-1;
 
- 		}
 
- 		tmp = (void*)gNextAddress;
 
- 		gNextAddress = (unsigned int)tmp + size;
 
- 		return tmp;
 
- 	}
 
- 	else if (size < 0)
 
- 	{
 
- 		unsigned int alignedGoal = AlignPage (gNextAddress + size);
 
- 		/* Trim by releasing the virtual memory */
 
- 		if (alignedGoal >= gAddressBase)
 
- 		{
 
- 			VirtualFree ((void*)alignedGoal, gNextAddress - alignedGoal,
 
- 						 MEM_DECOMMIT);
 
- 			gNextAddress = gNextAddress + size;
 
- 			return (void*)gNextAddress;
 
- 		}
 
- 		else
 
- 		{
 
- 			VirtualFree ((void*)gAddressBase, gNextAddress - gAddressBase,
 
- 						 MEM_DECOMMIT);
 
- 			gNextAddress = gAddressBase;
 
- 			return (void*)-1;
 
- 		}
 
- 	}
 
- 	else
 
- 	{
 
- 		return (void*)gNextAddress;
 
- 	}
 
- }
 
- #endif
 
- /*
 
-   Type declarations
 
- */
 
- struct malloc_chunk
 
- {
 
-   INTERNAL_SIZE_T prev_size; /* Size of previous chunk (if free). */
 
-   INTERNAL_SIZE_T size;      /* Size in bytes, including overhead. */
 
-   struct malloc_chunk* fd;   /* double links -- used only if free. */
 
-   struct malloc_chunk* bk;
 
- };
 
- typedef struct malloc_chunk* mchunkptr;
 
- /*
 
-    malloc_chunk details:
 
-     (The following includes lightly edited explanations by Colin Plumb.)
 
-     Chunks of memory are maintained using a `boundary tag' method as
 
-     described in e.g., Knuth or Standish.  (See the paper by Paul
 
-     Wilson ftp://ftp.cs.utexas.edu/pub/garbage/allocsrv.ps for a
 
-     survey of such techniques.)  Sizes of free chunks are stored both
 
-     in the front of each chunk and at the end.  This makes
 
-     consolidating fragmented chunks into bigger chunks very fast.  The
 
-     size fields also hold bits representing whether chunks are free or
 
-     in use.
 
-     An allocated chunk looks like this:
 
-     chunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 
- 	    |             Size of previous chunk, if allocated            | |
 
- 	    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 
- 	    |             Size of chunk, in bytes                         |P|
 
-       mem-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 
- 	    |             User data starts here...                          .
 
- 	    .                                                               .
 
- 	    .             (malloc_usable_space() bytes)                     .
 
- 	    .                                                               |
 
- nextchunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 
- 	    |             Size of chunk                                     |
 
- 	    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 
-     Where "chunk" is the front of the chunk for the purpose of most of
 
-     the malloc code, but "mem" is the pointer that is returned to the
 
-     user.  "Nextchunk" is the beginning of the next contiguous chunk.
 
-     Chunks always begin on even word boundries, so the mem portion
 
-     (which is returned to the user) is also on an even word boundary, and
 
-     thus double-word aligned.
 
-     Free chunks are stored in circular doubly-linked lists, and look like this:
 
-     chunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 
- 	    |             Size of previous chunk                            |
 
- 	    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 
-     `head:' |             Size of chunk, in bytes                         |P|
 
-       mem-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 
- 	    |             Forward pointer to next chunk in list             |
 
- 	    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 
- 	    |             Back pointer to previous chunk in list            |
 
- 	    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 
- 	    |             Unused space (may be 0 bytes long)                .
 
- 	    .                                                               .
 
- 	    .                                                               |
 
- nextchunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 
-     `foot:' |             Size of chunk, in bytes                           |
 
- 	    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 
-     The P (PREV_INUSE) bit, stored in the unused low-order bit of the
 
-     chunk size (which is always a multiple of two words), is an in-use
 
-     bit for the *previous* chunk.  If that bit is *clear*, then the
 
-     word before the current chunk size contains the previous chunk
 
-     size, and can be used to find the front of the previous chunk.
 
-     (The very first chunk allocated always has this bit set,
 
-     preventing access to non-existent (or non-owned) memory.)
 
-     Note that the `foot' of the current chunk is actually represented
 
-     as the prev_size of the NEXT chunk. (This makes it easier to
 
-     deal with alignments etc).
 
-     The two exceptions to all this are
 
-      1. The special chunk `top', which doesn't bother using the
 
- 	trailing size field since there is no
 
- 	next contiguous chunk that would have to index off it. (After
 
- 	initialization, `top' is forced to always exist.  If it would
 
- 	become less than MINSIZE bytes long, it is replenished via
 
- 	malloc_extend_top.)
 
-      2. Chunks allocated via mmap, which have the second-lowest-order
 
- 	bit (IS_MMAPPED) set in their size fields.  Because they are
 
- 	never merged or traversed from any other chunk, they have no
 
- 	foot size or inuse information.
 
-     Available chunks are kept in any of several places (all declared below):
 
-     * `av': An array of chunks serving as bin headers for consolidated
 
-        chunks. Each bin is doubly linked.  The bins are approximately
 
-        proportionally (log) spaced.  There are a lot of these bins
 
-        (128). This may look excessive, but works very well in
 
-        practice.  All procedures maintain the invariant that no
 
-        consolidated chunk physically borders another one. Chunks in
 
-        bins are kept in size order, with ties going to the
 
-        approximately least recently used chunk.
 
-        The chunks in each bin are maintained in decreasing sorted order by
 
-        size.  This is irrelevant for the small bins, which all contain
 
-        the same-sized chunks, but facilitates best-fit allocation for
 
-        larger chunks. (These lists are just sequential. Keeping them in
 
-        order almost never requires enough traversal to warrant using
 
-        fancier ordered data structures.)  Chunks of the same size are
 
-        linked with the most recently freed at the front, and allocations
 
-        are taken from the back.  This results in LRU or FIFO allocation
 
-        order, which tends to give each chunk an equal opportunity to be
 
-        consolidated with adjacent freed chunks, resulting in larger free
 
-        chunks and less fragmentation.
 
-     * `top': The top-most available chunk (i.e., the one bordering the
 
-        end of available memory) is treated specially. It is never
 
-        included in any bin, is used only if no other chunk is
 
-        available, and is released back to the system if it is very
 
-        large (see M_TRIM_THRESHOLD).
 
-     * `last_remainder': A bin holding only the remainder of the
 
-        most recently split (non-top) chunk. This bin is checked
 
-        before other non-fitting chunks, so as to provide better
 
-        locality for runs of sequentially allocated chunks.
 
-     *  Implicitly, through the host system's memory mapping tables.
 
-        If supported, requests greater than a threshold are usually
 
-        serviced via calls to mmap, and then later released via munmap.
 
- */
 
- /*  sizes, alignments */
 
- #define SIZE_SZ                (sizeof(INTERNAL_SIZE_T))
 
- #define MALLOC_ALIGNMENT       (SIZE_SZ + SIZE_SZ)
 
- #define MALLOC_ALIGN_MASK      (MALLOC_ALIGNMENT - 1)
 
- #define MINSIZE                (sizeof(struct malloc_chunk))
 
- /* conversion from malloc headers to user pointers, and back */
 
- #define chunk2mem(p)   ((Void_t*)((char*)(p) + 2*SIZE_SZ))
 
- #define mem2chunk(mem) ((mchunkptr)((char*)(mem) - 2*SIZE_SZ))
 
- /* pad request bytes into a usable size */
 
- #define request2size(req) \
 
-  (((long)((req) + (SIZE_SZ + MALLOC_ALIGN_MASK)) < \
 
-   (long)(MINSIZE + MALLOC_ALIGN_MASK)) ? MINSIZE : \
 
-    (((req) + (SIZE_SZ + MALLOC_ALIGN_MASK)) & ~(MALLOC_ALIGN_MASK)))
 
- /* Check if m has acceptable alignment */
 
- #define aligned_OK(m)    (((unsigned long)((m)) & (MALLOC_ALIGN_MASK)) == 0)
 
- /*
 
-   Physical chunk operations
 
- */
 
- /* size field is or'ed with PREV_INUSE when previous adjacent chunk in use */
 
- #define PREV_INUSE 0x1
 
- /* size field is or'ed with IS_MMAPPED if the chunk was obtained with mmap() */
 
- #define IS_MMAPPED 0x2
 
- /* Bits to mask off when extracting size */
 
- #define SIZE_BITS (PREV_INUSE|IS_MMAPPED)
 
- /* Ptr to next physical malloc_chunk. */
 
- #define next_chunk(p) ((mchunkptr)( ((char*)(p)) + ((p)->size & ~PREV_INUSE) ))
 
- /* Ptr to previous physical malloc_chunk */
 
- #define prev_chunk(p)\
 
-    ((mchunkptr)( ((char*)(p)) - ((p)->prev_size) ))
 
- /* Treat space at ptr + offset as a chunk */
 
- #define chunk_at_offset(p, s)  ((mchunkptr)(((char*)(p)) + (s)))
 
- /*
 
-   Dealing with use bits
 
- */
 
- /* extract p's inuse bit */
 
- #define inuse(p)\
 
- ((((mchunkptr)(((char*)(p))+((p)->size & ~PREV_INUSE)))->size) & PREV_INUSE)
 
- /* extract inuse bit of previous chunk */
 
- #define prev_inuse(p)  ((p)->size & PREV_INUSE)
 
- /* check for mmap()'ed chunk */
 
- #define chunk_is_mmapped(p) ((p)->size & IS_MMAPPED)
 
- /* set/clear chunk as in use without otherwise disturbing */
 
- #define set_inuse(p)\
 
- ((mchunkptr)(((char*)(p)) + ((p)->size & ~PREV_INUSE)))->size |= PREV_INUSE
 
- #define clear_inuse(p)\
 
- ((mchunkptr)(((char*)(p)) + ((p)->size & ~PREV_INUSE)))->size &= ~(PREV_INUSE)
 
- /* check/set/clear inuse bits in known places */
 
- #define inuse_bit_at_offset(p, s)\
 
-  (((mchunkptr)(((char*)(p)) + (s)))->size & PREV_INUSE)
 
- #define set_inuse_bit_at_offset(p, s)\
 
-  (((mchunkptr)(((char*)(p)) + (s)))->size |= PREV_INUSE)
 
- #define clear_inuse_bit_at_offset(p, s)\
 
-  (((mchunkptr)(((char*)(p)) + (s)))->size &= ~(PREV_INUSE))
 
- /*
 
-   Dealing with size fields
 
- */
 
- /* Get size, ignoring use bits */
 
- #define chunksize(p)          ((p)->size & ~(SIZE_BITS))
 
- /* Set size at head, without disturbing its use bit */
 
- #define set_head_size(p, s)   ((p)->size = (((p)->size & PREV_INUSE) | (s)))
 
- /* Set size/use ignoring previous bits in header */
 
- #define set_head(p, s)        ((p)->size = (s))
 
- /* Set size at footer (only when chunk is not in use) */
 
- #define set_foot(p, s)   (((mchunkptr)((char*)(p) + (s)))->prev_size = (s))
 
- /*
 
-    Bins
 
-     The bins, `av_' are an array of pairs of pointers serving as the
 
-     heads of (initially empty) doubly-linked lists of chunks, laid out
 
-     in a way so that each pair can be treated as if it were in a
 
-     malloc_chunk. (This way, the fd/bk offsets for linking bin heads
 
-     and chunks are the same).
 
-     Bins for sizes < 512 bytes contain chunks of all the same size, spaced
 
-     8 bytes apart. Larger bins are approximately logarithmically
 
-     spaced. (See the table below.) The `av_' array is never mentioned
 
-     directly in the code, but instead via bin access macros.
 
-     Bin layout:
 
-     64 bins of size       8
 
-     32 bins of size      64
 
-     16 bins of size     512
 
-      8 bins of size    4096
 
-      4 bins of size   32768
 
-      2 bins of size  262144
 
-      1 bin  of size what's left
 
-     There is actually a little bit of slop in the numbers in bin_index
 
-     for the sake of speed. This makes no difference elsewhere.
 
-     The special chunks `top' and `last_remainder' get their own bins,
 
-     (this is implemented via yet more trickery with the av_ array),
 
-     although `top' is never properly linked to its bin since it is
 
-     always handled specially.
 
- */
 
- #define NAV             128   /* number of bins */
 
- typedef struct malloc_chunk* mbinptr;
 
- /* access macros */
 
- #define bin_at(i)      ((mbinptr)((char*)&(av_[2*(i) + 2]) - 2*SIZE_SZ))
 
- #define next_bin(b)    ((mbinptr)((char*)(b) + 2 * sizeof(mbinptr)))
 
- #define prev_bin(b)    ((mbinptr)((char*)(b) - 2 * sizeof(mbinptr)))
 
- /*
 
-    The first 2 bins are never indexed. The corresponding av_ cells are instead
 
-    used for bookkeeping. This is not to save space, but to simplify
 
-    indexing, maintain locality, and avoid some initialization tests.
 
- */
 
- #define top            (bin_at(0)->fd)   /* The topmost chunk */
 
- #define last_remainder (bin_at(1))       /* remainder from last split */
 
- /*
 
-    Because top initially points to its own bin with initial
 
-    zero size, thus forcing extension on the first malloc request,
 
-    we avoid having any special code in malloc to check whether
 
-    it even exists yet. But we still need to in malloc_extend_top.
 
- */
 
- #define initial_top    ((mchunkptr)(bin_at(0)))
 
- /* Helper macro to initialize bins */
 
- #define IAV(i)  bin_at(i), bin_at(i)
 
- static mbinptr av_[NAV * 2 + 2] = {
 
-  0, 0,
 
-  IAV(0),   IAV(1),   IAV(2),   IAV(3),   IAV(4),   IAV(5),   IAV(6),   IAV(7),
 
-  IAV(8),   IAV(9),   IAV(10),  IAV(11),  IAV(12),  IAV(13),  IAV(14),  IAV(15),
 
-  IAV(16),  IAV(17),  IAV(18),  IAV(19),  IAV(20),  IAV(21),  IAV(22),  IAV(23),
 
-  IAV(24),  IAV(25),  IAV(26),  IAV(27),  IAV(28),  IAV(29),  IAV(30),  IAV(31),
 
-  IAV(32),  IAV(33),  IAV(34),  IAV(35),  IAV(36),  IAV(37),  IAV(38),  IAV(39),
 
-  IAV(40),  IAV(41),  IAV(42),  IAV(43),  IAV(44),  IAV(45),  IAV(46),  IAV(47),
 
-  IAV(48),  IAV(49),  IAV(50),  IAV(51),  IAV(52),  IAV(53),  IAV(54),  IAV(55),
 
-  IAV(56),  IAV(57),  IAV(58),  IAV(59),  IAV(60),  IAV(61),  IAV(62),  IAV(63),
 
-  IAV(64),  IAV(65),  IAV(66),  IAV(67),  IAV(68),  IAV(69),  IAV(70),  IAV(71),
 
-  IAV(72),  IAV(73),  IAV(74),  IAV(75),  IAV(76),  IAV(77),  IAV(78),  IAV(79),
 
-  IAV(80),  IAV(81),  IAV(82),  IAV(83),  IAV(84),  IAV(85),  IAV(86),  IAV(87),
 
-  IAV(88),  IAV(89),  IAV(90),  IAV(91),  IAV(92),  IAV(93),  IAV(94),  IAV(95),
 
-  IAV(96),  IAV(97),  IAV(98),  IAV(99),  IAV(100), IAV(101), IAV(102), IAV(103),
 
-  IAV(104), IAV(105), IAV(106), IAV(107), IAV(108), IAV(109), IAV(110), IAV(111),
 
-  IAV(112), IAV(113), IAV(114), IAV(115), IAV(116), IAV(117), IAV(118), IAV(119),
 
-  IAV(120), IAV(121), IAV(122), IAV(123), IAV(124), IAV(125), IAV(126), IAV(127)
 
- };
 
- /* field-extraction macros */
 
- #define first(b) ((b)->fd)
 
- #define last(b)  ((b)->bk)
 
- /*
 
-   Indexing into bins
 
- */
 
- #define bin_index(sz)                                                          \
 
- (((((unsigned long)(sz)) >> 9) ==    0) ?       (((unsigned long)(sz)) >>  3): \
 
-  ((((unsigned long)(sz)) >> 9) <=    4) ?  56 + (((unsigned long)(sz)) >>  6): \
 
-  ((((unsigned long)(sz)) >> 9) <=   20) ?  91 + (((unsigned long)(sz)) >>  9): \
 
-  ((((unsigned long)(sz)) >> 9) <=   84) ? 110 + (((unsigned long)(sz)) >> 12): \
 
-  ((((unsigned long)(sz)) >> 9) <=  340) ? 119 + (((unsigned long)(sz)) >> 15): \
 
-  ((((unsigned long)(sz)) >> 9) <= 1364) ? 124 + (((unsigned long)(sz)) >> 18): \
 
- 					  126)
 
- /*
 
-   bins for chunks < 512 are all spaced 8 bytes apart, and hold
 
-   identically sized chunks. This is exploited in malloc.
 
- */
 
- #define MAX_SMALLBIN         63
 
- #define MAX_SMALLBIN_SIZE   512
 
- #define SMALLBIN_WIDTH        8
 
- #define smallbin_index(sz)  (((unsigned long)(sz)) >> 3)
 
- /*
 
-    Requests are `small' if both the corresponding and the next bin are small
 
- */
 
- #define is_small_request(nb) (nb < MAX_SMALLBIN_SIZE - SMALLBIN_WIDTH)
 
- /*
 
-     To help compensate for the large number of bins, a one-level index
 
-     structure is used for bin-by-bin searching.  `binblocks' is a
 
-     one-word bitvector recording whether groups of BINBLOCKWIDTH bins
 
-     have any (possibly) non-empty bins, so they can be skipped over
 
-     all at once during during traversals. The bits are NOT always
 
-     cleared as soon as all bins in a block are empty, but instead only
 
-     when all are noticed to be empty during traversal in malloc.
 
- */
 
- #define BINBLOCKWIDTH     4   /* bins per block */
 
- #define binblocks      (bin_at(0)->size) /* bitvector of nonempty blocks */
 
- /* bin<->block macros */
 
- #define idx2binblock(ix)    ((unsigned)1 << (ix / BINBLOCKWIDTH))
 
- #define mark_binblock(ii)   (binblocks |= idx2binblock(ii))
 
- #define clear_binblock(ii)  (binblocks &= ~(idx2binblock(ii)))
 
- /*  Other static bookkeeping data */
 
- /* variables holding tunable values */
 
- static unsigned long trim_threshold   = DEFAULT_TRIM_THRESHOLD;
 
- static unsigned long top_pad          = DEFAULT_TOP_PAD;
 
- static unsigned int  n_mmaps_max      = DEFAULT_MMAP_MAX;
 
- static unsigned long mmap_threshold   = DEFAULT_MMAP_THRESHOLD;
 
- /* The first value returned from sbrk */
 
- static char* sbrk_base = (char*)(-1);
 
- /* The maximum memory obtained from system via sbrk */
 
- static unsigned long max_sbrked_mem = 0;
 
- /* The maximum via either sbrk or mmap */
 
- static unsigned long max_total_mem = 0;
 
- /* internal working copy of mallinfo */
 
- static struct mallinfo current_mallinfo = {  0, 0, 0, 0, 0, 0, 0, 0, 0, 0 };
 
- /* The total memory obtained from system via sbrk */
 
- #define sbrked_mem  (current_mallinfo.arena)
 
- /* Tracking mmaps */
 
- static unsigned int n_mmaps = 0;
 
- static unsigned int max_n_mmaps = 0;
 
- static unsigned long mmapped_mem = 0;
 
- static unsigned long max_mmapped_mem = 0;
 
- /*
 
-   Debugging support
 
- */
 
- #if DEBUG
 
- /*
 
-   These routines make a number of assertions about the states
 
-   of data structures that should be true at all times. If any
 
-   are not true, it's very likely that a user program has somehow
 
-   trashed memory. (It's also possible that there is a coding error
 
-   in malloc. In which case, please report it!)
 
- */
 
- #if __STD_C
 
- static void do_check_chunk(mchunkptr p)
 
- #else
 
- static void do_check_chunk(p) mchunkptr p;
 
- #endif
 
- {
 
-   INTERNAL_SIZE_T sz = p->size & ~PREV_INUSE;
 
-   /* No checkable chunk is mmapped */
 
-   assert(!chunk_is_mmapped(p));
 
-   /* Check for legal address ... */
 
-   assert((char*)p >= sbrk_base);
 
-   if (p != top)
 
-     assert((char*)p + sz <= (char*)top);
 
-   else
 
-     assert((char*)p + sz <= sbrk_base + sbrked_mem);
 
- }
 
- #if __STD_C
 
- static void do_check_free_chunk(mchunkptr p)
 
- #else
 
- static void do_check_free_chunk(p) mchunkptr p;
 
- #endif
 
- {
 
-   INTERNAL_SIZE_T sz = p->size & ~PREV_INUSE;
 
-   mchunkptr next = chunk_at_offset(p, sz);
 
-   do_check_chunk(p);
 
-   /* Check whether it claims to be free ... */
 
-   assert(!inuse(p));
 
-   /* Unless a special marker, must have OK fields */
 
-   if ((long)sz >= (long)MINSIZE)
 
-   {
 
-     assert((sz & MALLOC_ALIGN_MASK) == 0);
 
-     assert(aligned_OK(chunk2mem(p)));
 
-     /* ... matching footer field */
 
-     assert(next->prev_size == sz);
 
-     /* ... and is fully consolidated */
 
-     assert(prev_inuse(p));
 
-     assert (next == top || inuse(next));
 
-     /* ... and has minimally sane links */
 
-     assert(p->fd->bk == p);
 
-     assert(p->bk->fd == p);
 
-   }
 
-   else /* markers are always of size SIZE_SZ */
 
-     assert(sz == SIZE_SZ);
 
- }
 
- #if __STD_C
 
- static void do_check_inuse_chunk(mchunkptr p)
 
- #else
 
- static void do_check_inuse_chunk(p) mchunkptr p;
 
- #endif
 
- {
 
-   mchunkptr next = next_chunk(p);
 
-   do_check_chunk(p);
 
-   /* Check whether it claims to be in use ... */
 
-   assert(inuse(p));
 
-   /* ... and is surrounded by OK chunks.
 
-     Since more things can be checked with free chunks than inuse ones,
 
-     if an inuse chunk borders them and debug is on, it's worth doing them.
 
-   */
 
-   if (!prev_inuse(p))
 
-   {
 
-     mchunkptr prv = prev_chunk(p);
 
-     assert(next_chunk(prv) == p);
 
-     do_check_free_chunk(prv);
 
-   }
 
-   if (next == top)
 
-   {
 
-     assert(prev_inuse(next));
 
-     assert(chunksize(next) >= MINSIZE);
 
-   }
 
-   else if (!inuse(next))
 
-     do_check_free_chunk(next);
 
- }
 
- #if __STD_C
 
- static void do_check_malloced_chunk(mchunkptr p, INTERNAL_SIZE_T s)
 
- #else
 
- static void do_check_malloced_chunk(p, s) mchunkptr p; INTERNAL_SIZE_T s;
 
- #endif
 
- {
 
-   INTERNAL_SIZE_T sz = p->size & ~PREV_INUSE;
 
-   long room = sz - s;
 
-   do_check_inuse_chunk(p);
 
-   /* Legal size ... */
 
-   assert((long)sz >= (long)MINSIZE);
 
-   assert((sz & MALLOC_ALIGN_MASK) == 0);
 
-   assert(room >= 0);
 
-   assert(room < (long)MINSIZE);
 
-   /* ... and alignment */
 
-   assert(aligned_OK(chunk2mem(p)));
 
-   /* ... and was allocated at front of an available chunk */
 
-   assert(prev_inuse(p));
 
- }
 
- #define check_free_chunk(P)  do_check_free_chunk(P)
 
- #define check_inuse_chunk(P) do_check_inuse_chunk(P)
 
- #define check_chunk(P) do_check_chunk(P)
 
- #define check_malloced_chunk(P,N) do_check_malloced_chunk(P,N)
 
- #else
 
- #define check_free_chunk(P)
 
- #define check_inuse_chunk(P)
 
- #define check_chunk(P)
 
- #define check_malloced_chunk(P,N)
 
- #endif
 
- /*
 
-   Macro-based internal utilities
 
- */
 
- /*
 
-   Linking chunks in bin lists.
 
-   Call these only with variables, not arbitrary expressions, as arguments.
 
- */
 
- /*
 
-   Place chunk p of size s in its bin, in size order,
 
-   putting it ahead of others of same size.
 
- */
 
- #define frontlink(P, S, IDX, BK, FD)                                          \
 
- {                                                                             \
 
-   if (S < MAX_SMALLBIN_SIZE)                                                  \
 
-   {                                                                           \
 
-     IDX = smallbin_index(S);                                                  \
 
-     mark_binblock(IDX);                                                       \
 
-     BK = bin_at(IDX);                                                         \
 
-     FD = BK->fd;                                                              \
 
-     P->bk = BK;                                                               \
 
-     P->fd = FD;                                                               \
 
-     FD->bk = BK->fd = P;                                                      \
 
-   }                                                                           \
 
-   else                                                                        \
 
-   {                                                                           \
 
-     IDX = bin_index(S);                                                       \
 
-     BK = bin_at(IDX);                                                         \
 
-     FD = BK->fd;                                                              \
 
-     if (FD == BK) mark_binblock(IDX);                                         \
 
-     else                                                                      \
 
-     {                                                                         \
 
-       while (FD != BK && S < chunksize(FD)) FD = FD->fd;                      \
 
-       BK = FD->bk;                                                            \
 
-     }                                                                         \
 
-     P->bk = BK;                                                               \
 
-     P->fd = FD;                                                               \
 
-     FD->bk = BK->fd = P;                                                      \
 
-   }                                                                           \
 
- }
 
- /* take a chunk off a list */
 
- #define unlink(P, BK, FD)                                                     \
 
- {                                                                             \
 
-   BK = P->bk;                                                                 \
 
-   FD = P->fd;                                                                 \
 
-   FD->bk = BK;                                                                \
 
-   BK->fd = FD;                                                                \
 
- }                                                                             \
 
- /* Place p as the last remainder */
 
- #define link_last_remainder(P)                                                \
 
- {                                                                             \
 
-   last_remainder->fd = last_remainder->bk =  P;                               \
 
-   P->fd = P->bk = last_remainder;                                             \
 
- }
 
- /* Clear the last_remainder bin */
 
- #define clear_last_remainder \
 
-   (last_remainder->fd = last_remainder->bk = last_remainder)
 
- /* Routines dealing with mmap(). */
 
- #if HAVE_MMAP
 
- #if __STD_C
 
- static mchunkptr mmap_chunk(size_t size)
 
- #else
 
- static mchunkptr mmap_chunk(size) size_t size;
 
- #endif
 
- {
 
-   size_t page_mask = malloc_getpagesize - 1;
 
-   mchunkptr p;
 
- #ifndef MAP_ANONYMOUS
 
-   static int fd = -1;
 
- #endif
 
-   if(n_mmaps >= n_mmaps_max) return 0; /* too many regions */
 
-   /* For mmapped chunks, the overhead is one SIZE_SZ unit larger, because
 
-    * there is no following chunk whose prev_size field could be used.
 
-    */
 
-   size = (size + SIZE_SZ + page_mask) & ~page_mask;
 
- #ifdef MAP_ANONYMOUS
 
-   p = (mchunkptr)mmap(0, size, PROT_READ|PROT_WRITE,
 
- 		      MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
 
- #else /* !MAP_ANONYMOUS */
 
-   if (fd < 0)
 
-   {
 
-     fd = open("/dev/zero", O_RDWR);
 
-     if(fd < 0) return 0;
 
-   }
 
-   p = (mchunkptr)mmap(0, size, PROT_READ|PROT_WRITE, MAP_PRIVATE, fd, 0);
 
- #endif
 
-   if(p == (mchunkptr)-1) return 0;
 
-   n_mmaps++;
 
-   if (n_mmaps > max_n_mmaps) max_n_mmaps = n_mmaps;
 
-   /* We demand that eight bytes into a page must be 8-byte aligned. */
 
-   assert(aligned_OK(chunk2mem(p)));
 
-   /* The offset to the start of the mmapped region is stored
 
-    * in the prev_size field of the chunk; normally it is zero,
 
-    * but that can be changed in memalign().
 
-    */
 
-   p->prev_size = 0;
 
-   set_head(p, size|IS_MMAPPED);
 
-   mmapped_mem += size;
 
-   if ((unsigned long)mmapped_mem > (unsigned long)max_mmapped_mem)
 
-     max_mmapped_mem = mmapped_mem;
 
-   if ((unsigned long)(mmapped_mem + sbrked_mem) > (unsigned long)max_total_mem)
 
-     max_total_mem = mmapped_mem + sbrked_mem;
 
-   return p;
 
- }
 
- #if __STD_C
 
- static void munmap_chunk(mchunkptr p)
 
- #else
 
- static void munmap_chunk(p) mchunkptr p;
 
- #endif
 
- {
 
-   INTERNAL_SIZE_T size = chunksize(p);
 
-   int ret;
 
-   assert (chunk_is_mmapped(p));
 
-   assert(! ((char*)p >= sbrk_base && (char*)p < sbrk_base + sbrked_mem));
 
-   assert((n_mmaps > 0));
 
-   assert(((p->prev_size + size) & (malloc_getpagesize-1)) == 0);
 
-   n_mmaps--;
 
-   mmapped_mem -= (size + p->prev_size);
 
-   ret = munmap((char *)p - p->prev_size, size + p->prev_size);
 
-   /* munmap returns non-zero on failure */
 
-   assert(ret == 0);
 
- }
 
- #if HAVE_MREMAP
 
- #if __STD_C
 
- static mchunkptr mremap_chunk(mchunkptr p, size_t new_size)
 
- #else
 
- static mchunkptr mremap_chunk(p, new_size) mchunkptr p; size_t new_size;
 
- #endif
 
- {
 
-   size_t page_mask = malloc_getpagesize - 1;
 
-   INTERNAL_SIZE_T offset = p->prev_size;
 
-   INTERNAL_SIZE_T size = chunksize(p);
 
-   char *cp;
 
-   assert (chunk_is_mmapped(p));
 
-   assert(! ((char*)p >= sbrk_base && (char*)p < sbrk_base + sbrked_mem));
 
-   assert((n_mmaps > 0));
 
-   assert(((size + offset) & (malloc_getpagesize-1)) == 0);
 
-   /* Note the extra SIZE_SZ overhead as in mmap_chunk(). */
 
-   new_size = (new_size + offset + SIZE_SZ + page_mask) & ~page_mask;
 
-   cp = (char *)mremap((char *)p - offset, size + offset, new_size, 1);
 
-   if (cp == (char *)-1) return 0;
 
-   p = (mchunkptr)(cp + offset);
 
-   assert(aligned_OK(chunk2mem(p)));
 
-   assert((p->prev_size == offset));
 
-   set_head(p, (new_size - offset)|IS_MMAPPED);
 
-   mmapped_mem -= size + offset;
 
-   mmapped_mem += new_size;
 
-   if ((unsigned long)mmapped_mem > (unsigned long)max_mmapped_mem)
 
-     max_mmapped_mem = mmapped_mem;
 
-   if ((unsigned long)(mmapped_mem + sbrked_mem) > (unsigned long)max_total_mem)
 
-     max_total_mem = mmapped_mem + sbrked_mem;
 
-   return p;
 
- }
 
- #endif /* HAVE_MREMAP */
 
- #endif /* HAVE_MMAP */
 
- /*
 
-   Extend the top-most chunk by obtaining memory from system.
 
-   Main interface to sbrk (but see also malloc_trim).
 
- */
 
- #if __STD_C
 
- static void malloc_extend_top(INTERNAL_SIZE_T nb)
 
- #else
 
- static void malloc_extend_top(nb) INTERNAL_SIZE_T nb;
 
- #endif
 
- {
 
-   char*     brk;                  /* return value from sbrk */
 
-   INTERNAL_SIZE_T front_misalign; /* unusable bytes at front of sbrked space */
 
-   INTERNAL_SIZE_T correction;     /* bytes for 2nd sbrk call */
 
-   char*     new_brk;              /* return of 2nd sbrk call */
 
-   INTERNAL_SIZE_T top_size;       /* new size of top chunk */
 
-   mchunkptr old_top     = top;  /* Record state of old top */
 
-   INTERNAL_SIZE_T old_top_size = chunksize(old_top);
 
-   char*     old_end      = (char*)(chunk_at_offset(old_top, old_top_size));
 
-   /* Pad request with top_pad plus minimal overhead */
 
-   INTERNAL_SIZE_T    sbrk_size     = nb + top_pad + MINSIZE;
 
-   unsigned long pagesz    = malloc_getpagesize;
 
-   /* If not the first time through, round to preserve page boundary */
 
-   /* Otherwise, we need to correct to a page size below anyway. */
 
-   /* (We also correct below if an intervening foreign sbrk call.) */
 
-   if (sbrk_base != (char*)(-1))
 
-     sbrk_size = (sbrk_size + (pagesz - 1)) & ~(pagesz - 1);
 
-   brk = (char*)(MORECORE (sbrk_size));
 
-   /* Fail if sbrk failed or if a foreign sbrk call killed our space */
 
-   if (brk == (char*)(MORECORE_FAILURE) ||
 
-       (brk < old_end && old_top != initial_top))
 
-     return;
 
-   sbrked_mem += sbrk_size;
 
-   if (brk == old_end) /* can just add bytes to current top */
 
-   {
 
-     top_size = sbrk_size + old_top_size;
 
-     set_head(top, top_size | PREV_INUSE);
 
-   }
 
-   else
 
-   {
 
-     if (sbrk_base == (char*)(-1))  /* First time through. Record base */
 
-       sbrk_base = brk;
 
-     else  /* Someone else called sbrk().  Count those bytes as sbrked_mem. */
 
-       sbrked_mem += brk - (char*)old_end;
 
-     /* Guarantee alignment of first new chunk made from this space */
 
-     front_misalign = (unsigned long)chunk2mem(brk) & MALLOC_ALIGN_MASK;
 
-     if (front_misalign > 0)
 
-     {
 
-       correction = (MALLOC_ALIGNMENT) - front_misalign;
 
-       brk += correction;
 
-     }
 
-     else
 
-       correction = 0;
 
-     /* Guarantee the next brk will be at a page boundary */
 
-     correction += ((((unsigned long)(brk + sbrk_size))+(pagesz-1)) &
 
- 		   ~(pagesz - 1)) - ((unsigned long)(brk + sbrk_size));
 
-     /* Allocate correction */
 
-     new_brk = (char*)(MORECORE (correction));
 
-     if (new_brk == (char*)(MORECORE_FAILURE)) return;
 
-     sbrked_mem += correction;
 
-     top = (mchunkptr)brk;
 
-     top_size = new_brk - brk + correction;
 
-     set_head(top, top_size | PREV_INUSE);
 
-     if (old_top != initial_top)
 
-     {
 
-       /* There must have been an intervening foreign sbrk call. */
 
-       /* A double fencepost is necessary to prevent consolidation */
 
-       /* If not enough space to do this, then user did something very wrong */
 
-       if (old_top_size < MINSIZE)
 
-       {
 
- 	set_head(top, PREV_INUSE); /* will force null return from malloc */
 
- 	return;
 
-       }
 
-       /* Also keep size a multiple of MALLOC_ALIGNMENT */
 
-       old_top_size = (old_top_size - 3*SIZE_SZ) & ~MALLOC_ALIGN_MASK;
 
-       set_head_size(old_top, old_top_size);
 
-       chunk_at_offset(old_top, old_top_size          )->size =
 
- 	SIZE_SZ|PREV_INUSE;
 
-       chunk_at_offset(old_top, old_top_size + SIZE_SZ)->size =
 
- 	SIZE_SZ|PREV_INUSE;
 
-       /* If possible, release the rest. */
 
-       if (old_top_size >= MINSIZE)
 
- 	fREe(chunk2mem(old_top));
 
-     }
 
-   }
 
-   if ((unsigned long)sbrked_mem > (unsigned long)max_sbrked_mem)
 
-     max_sbrked_mem = sbrked_mem;
 
-   if ((unsigned long)(mmapped_mem + sbrked_mem) > (unsigned long)max_total_mem)
 
-     max_total_mem = mmapped_mem + sbrked_mem;
 
-   /* We always land on a page boundary */
 
-   assert(((unsigned long)((char*)top + top_size) & (pagesz - 1)) == 0);
 
- }
 
- /* Main public routines */
 
- /*
 
-   Malloc Algorthim:
 
-     The requested size is first converted into a usable form, `nb'.
 
-     This currently means to add 4 bytes overhead plus possibly more to
 
-     obtain 8-byte alignment and/or to obtain a size of at least
 
-     MINSIZE (currently 16 bytes), the smallest allocatable size.
 
-     (All fits are considered `exact' if they are within MINSIZE bytes.)
 
-     From there, the first successful of the following steps is taken:
 
-       1. The bin corresponding to the request size is scanned, and if
 
- 	 a chunk of exactly the right size is found, it is taken.
 
-       2. The most recently remaindered chunk is used if it is big
 
- 	 enough.  This is a form of (roving) first fit, used only in
 
- 	 the absence of exact fits. Runs of consecutive requests use
 
- 	 the remainder of the chunk used for the previous such request
 
- 	 whenever possible. This limited use of a first-fit style
 
- 	 allocation strategy tends to give contiguous chunks
 
- 	 coextensive lifetimes, which improves locality and can reduce
 
- 	 fragmentation in the long run.
 
-       3. Other bins are scanned in increasing size order, using a
 
- 	 chunk big enough to fulfill the request, and splitting off
 
- 	 any remainder.  This search is strictly by best-fit; i.e.,
 
- 	 the smallest (with ties going to approximately the least
 
- 	 recently used) chunk that fits is selected.
 
-       4. If large enough, the chunk bordering the end of memory
 
- 	 (`top') is split off. (This use of `top' is in accord with
 
- 	 the best-fit search rule.  In effect, `top' is treated as
 
- 	 larger (and thus less well fitting) than any other available
 
- 	 chunk since it can be extended to be as large as necessary
 
- 	 (up to system limitations).
 
-       5. If the request size meets the mmap threshold and the
 
- 	 system supports mmap, and there are few enough currently
 
- 	 allocated mmapped regions, and a call to mmap succeeds,
 
- 	 the request is allocated via direct memory mapping.
 
-       6. Otherwise, the top of memory is extended by
 
- 	 obtaining more space from the system (normally using sbrk,
 
- 	 but definable to anything else via the MORECORE macro).
 
- 	 Memory is gathered from the system (in system page-sized
 
- 	 units) in a way that allows chunks obtained across different
 
- 	 sbrk calls to be consolidated, but does not require
 
- 	 contiguous memory. Thus, it should be safe to intersperse
 
- 	 mallocs with other sbrk calls.
 
-       All allocations are made from the the `lowest' part of any found
 
-       chunk. (The implementation invariant is that prev_inuse is
 
-       always true of any allocated chunk; i.e., that each allocated
 
-       chunk borders either a previously allocated and still in-use chunk,
 
-       or the base of its memory arena.)
 
- */
 
- #if __STD_C
 
- Void_t* mALLOc(size_t bytes)
 
- #else
 
- Void_t* mALLOc(bytes) size_t bytes;
 
- #endif
 
- {
 
-   mchunkptr victim;                  /* inspected/selected chunk */
 
-   INTERNAL_SIZE_T victim_size;       /* its size */
 
-   int       idx;                     /* index for bin traversal */
 
-   mbinptr   bin;                     /* associated bin */
 
-   mchunkptr remainder;               /* remainder from a split */
 
-   long      remainder_size;          /* its size */
 
-   int       remainder_index;         /* its bin index */
 
-   unsigned long block;               /* block traverser bit */
 
-   int       startidx;                /* first bin of a traversed block */
 
-   mchunkptr fwd;                     /* misc temp for linking */
 
-   mchunkptr bck;                     /* misc temp for linking */
 
-   mbinptr q;                         /* misc temp */
 
-   INTERNAL_SIZE_T nb;
 
-   if ((long)bytes < 0) return 0;
 
-   nb = request2size(bytes);  /* padded request size; */
 
-   /* Check for exact match in a bin */
 
-   if (is_small_request(nb))  /* Faster version for small requests */
 
-   {
 
-     idx = smallbin_index(nb);
 
-     /* No traversal or size check necessary for small bins.  */
 
-     q = bin_at(idx);
 
-     victim = last(q);
 
-     /* Also scan the next one, since it would have a remainder < MINSIZE */
 
-     if (victim == q)
 
-     {
 
-       q = next_bin(q);
 
-       victim = last(q);
 
-     }
 
-     if (victim != q)
 
-     {
 
-       victim_size = chunksize(victim);
 
-       unlink(victim, bck, fwd);
 
-       set_inuse_bit_at_offset(victim, victim_size);
 
-       check_malloced_chunk(victim, nb);
 
-       return chunk2mem(victim);
 
-     }
 
-     idx += 2; /* Set for bin scan below. We've already scanned 2 bins. */
 
-   }
 
-   else
 
-   {
 
-     idx = bin_index(nb);
 
-     bin = bin_at(idx);
 
-     for (victim = last(bin); victim != bin; victim = victim->bk)
 
-     {
 
-       victim_size = chunksize(victim);
 
-       remainder_size = victim_size - nb;
 
-       if (remainder_size >= (long)MINSIZE) /* too big */
 
-       {
 
- 	--idx; /* adjust to rescan below after checking last remainder */
 
- 	break;
 
-       }
 
-       else if (remainder_size >= 0) /* exact fit */
 
-       {
 
- 	unlink(victim, bck, fwd);
 
- 	set_inuse_bit_at_offset(victim, victim_size);
 
- 	check_malloced_chunk(victim, nb);
 
- 	return chunk2mem(victim);
 
-       }
 
-     }
 
-     ++idx;
 
-   }
 
-   /* Try to use the last split-off remainder */
 
-   if ( (victim = last_remainder->fd) != last_remainder)
 
-   {
 
-     victim_size = chunksize(victim);
 
-     remainder_size = victim_size - nb;
 
-     if (remainder_size >= (long)MINSIZE) /* re-split */
 
-     {
 
-       remainder = chunk_at_offset(victim, nb);
 
-       set_head(victim, nb | PREV_INUSE);
 
-       link_last_remainder(remainder);
 
-       set_head(remainder, remainder_size | PREV_INUSE);
 
-       set_foot(remainder, remainder_size);
 
-       check_malloced_chunk(victim, nb);
 
-       return chunk2mem(victim);
 
-     }
 
-     clear_last_remainder;
 
-     if (remainder_size >= 0)  /* exhaust */
 
-     {
 
-       set_inuse_bit_at_offset(victim, victim_size);
 
-       check_malloced_chunk(victim, nb);
 
-       return chunk2mem(victim);
 
-     }
 
-     /* Else place in bin */
 
-     frontlink(victim, victim_size, remainder_index, bck, fwd);
 
-   }
 
-   /*
 
-      If there are any possibly nonempty big-enough blocks,
 
-      search for best fitting chunk by scanning bins in blockwidth units.
 
-   */
 
-   if ( (block = idx2binblock(idx)) <= binblocks)
 
-   {
 
-     /* Get to the first marked block */
 
-     if ( (block & binblocks) == 0)
 
-     {
 
-       /* force to an even block boundary */
 
-       idx = (idx & ~(BINBLOCKWIDTH - 1)) + BINBLOCKWIDTH;
 
-       block <<= 1;
 
-       while ((block & binblocks) == 0)
 
-       {
 
- 	idx += BINBLOCKWIDTH;
 
- 	block <<= 1;
 
-       }
 
-     }
 
-     /* For each possibly nonempty block ... */
 
-     for (;;)
 
-     {
 
-       startidx = idx;          /* (track incomplete blocks) */
 
-       q = bin = bin_at(idx);
 
-       /* For each bin in this block ... */
 
-       do
 
-       {
 
- 	/* Find and use first big enough chunk ... */
 
- 	for (victim = last(bin); victim != bin; victim = victim->bk)
 
- 	{
 
- 	  victim_size = chunksize(victim);
 
- 	  remainder_size = victim_size - nb;
 
- 	  if (remainder_size >= (long)MINSIZE) /* split */
 
- 	  {
 
- 	    remainder = chunk_at_offset(victim, nb);
 
- 	    set_head(victim, nb | PREV_INUSE);
 
- 	    unlink(victim, bck, fwd);
 
- 	    link_last_remainder(remainder);
 
- 	    set_head(remainder, remainder_size | PREV_INUSE);
 
- 	    set_foot(remainder, remainder_size);
 
- 	    check_malloced_chunk(victim, nb);
 
- 	    return chunk2mem(victim);
 
- 	  }
 
- 	  else if (remainder_size >= 0)  /* take */
 
- 	  {
 
- 	    set_inuse_bit_at_offset(victim, victim_size);
 
- 	    unlink(victim, bck, fwd);
 
- 	    check_malloced_chunk(victim, nb);
 
- 	    return chunk2mem(victim);
 
- 	  }
 
- 	}
 
-        bin = next_bin(bin);
 
-       } while ((++idx & (BINBLOCKWIDTH - 1)) != 0);
 
-       /* Clear out the block bit. */
 
-       do   /* Possibly backtrack to try to clear a partial block */
 
-       {
 
- 	if ((startidx & (BINBLOCKWIDTH - 1)) == 0)
 
- 	{
 
- 	  binblocks &= ~block;
 
- 	  break;
 
- 	}
 
- 	--startidx;
 
-        q = prev_bin(q);
 
-       } while (first(q) == q);
 
-       /* Get to the next possibly nonempty block */
 
-       if ( (block <<= 1) <= binblocks && (block != 0) )
 
-       {
 
- 	while ((block & binblocks) == 0)
 
- 	{
 
- 	  idx += BINBLOCKWIDTH;
 
- 	  block <<= 1;
 
- 	}
 
-       }
 
-       else
 
- 	break;
 
-     }
 
-   }
 
-   /* Try to use top chunk */
 
-   /* Require that there be a remainder, ensuring top always exists  */
 
-   if ( (remainder_size = chunksize(top) - nb) < (long)MINSIZE)
 
-   {
 
- #if HAVE_MMAP
 
-     /* If big and would otherwise need to extend, try to use mmap instead */
 
-     if ((unsigned long)nb >= (unsigned long)mmap_threshold &&
 
- 	(victim = mmap_chunk(nb)) != 0)
 
-       return chunk2mem(victim);
 
- #endif
 
-     /* Try to extend */
 
-     malloc_extend_top(nb);
 
-     if ( (remainder_size = chunksize(top) - nb) < (long)MINSIZE)
 
-       return 0; /* propagate failure */
 
-   }
 
-   victim = top;
 
-   set_head(victim, nb | PREV_INUSE);
 
-   top = chunk_at_offset(victim, nb);
 
-   set_head(top, remainder_size | PREV_INUSE);
 
-   check_malloced_chunk(victim, nb);
 
-   return chunk2mem(victim);
 
- }
 
- /*
 
-   free() algorithm :
 
-     cases:
 
-        1. free(0) has no effect.
 
-        2. If the chunk was allocated via mmap, it is release via munmap().
 
-        3. If a returned chunk borders the current high end of memory,
 
- 	  it is consolidated into the top, and if the total unused
 
- 	  topmost memory exceeds the trim threshold, malloc_trim is
 
- 	  called.
 
-        4. Other chunks are consolidated as they arrive, and
 
- 	  placed in corresponding bins. (This includes the case of
 
- 	  consolidating with the current `last_remainder').
 
- */
 
- #if __STD_C
 
- void fREe(Void_t* mem)
 
- #else
 
- void fREe(mem) Void_t* mem;
 
- #endif
 
- {
 
-   mchunkptr p;         /* chunk corresponding to mem */
 
-   INTERNAL_SIZE_T hd;  /* its head field */
 
-   INTERNAL_SIZE_T sz;  /* its size */
 
-   int       idx;       /* its bin index */
 
-   mchunkptr next;      /* next contiguous chunk */
 
-   INTERNAL_SIZE_T nextsz; /* its size */
 
-   INTERNAL_SIZE_T prevsz; /* size of previous contiguous chunk */
 
-   mchunkptr bck;       /* misc temp for linking */
 
-   mchunkptr fwd;       /* misc temp for linking */
 
-   int       islr;      /* track whether merging with last_remainder */
 
-   if (mem == 0)                              /* free(0) has no effect */
 
-     return;
 
-   p = mem2chunk(mem);
 
-   hd = p->size;
 
- #if HAVE_MMAP
 
-   if (hd & IS_MMAPPED)                       /* release mmapped memory. */
 
-   {
 
-     munmap_chunk(p);
 
-     return;
 
-   }
 
- #endif
 
-   check_inuse_chunk(p);
 
-   sz = hd & ~PREV_INUSE;
 
-   next = chunk_at_offset(p, sz);
 
-   nextsz = chunksize(next);
 
-   if (next == top)                            /* merge with top */
 
-   {
 
-     sz += nextsz;
 
-     if (!(hd & PREV_INUSE))                    /* consolidate backward */
 
-     {
 
-       prevsz = p->prev_size;
 
-       p = chunk_at_offset(p, -((long) prevsz));
 
-       sz += prevsz;
 
-       unlink(p, bck, fwd);
 
-     }
 
-     set_head(p, sz | PREV_INUSE);
 
-     top = p;
 
-     if ((unsigned long)(sz) >= (unsigned long)trim_threshold)
 
-       malloc_trim(top_pad);
 
-     return;
 
-   }
 
-   set_head(next, nextsz);                    /* clear inuse bit */
 
-   islr = 0;
 
-   if (!(hd & PREV_INUSE))                    /* consolidate backward */
 
-   {
 
-     prevsz = p->prev_size;
 
-     p = chunk_at_offset(p, -((long) prevsz));
 
-     sz += prevsz;
 
-     if (p->fd == last_remainder)             /* keep as last_remainder */
 
-       islr = 1;
 
-     else
 
-       unlink(p, bck, fwd);
 
-   }
 
-   if (!(inuse_bit_at_offset(next, nextsz)))   /* consolidate forward */
 
-   {
 
-     sz += nextsz;
 
-     if (!islr && next->fd == last_remainder)  /* re-insert last_remainder */
 
-     {
 
-       islr = 1;
 
-       link_last_remainder(p);
 
-     }
 
-     else
 
-       unlink(next, bck, fwd);
 
-   }
 
-   set_head(p, sz | PREV_INUSE);
 
-   set_foot(p, sz);
 
-   if (!islr)
 
-     frontlink(p, sz, idx, bck, fwd);
 
- }
 
- /*
 
-   Realloc algorithm:
 
-     Chunks that were obtained via mmap cannot be extended or shrunk
 
-     unless HAVE_MREMAP is defined, in which case mremap is used.
 
-     Otherwise, if their reallocation is for additional space, they are
 
-     copied.  If for less, they are just left alone.
 
-     Otherwise, if the reallocation is for additional space, and the
 
-     chunk can be extended, it is, else a malloc-copy-free sequence is
 
-     taken.  There are several different ways that a chunk could be
 
-     extended. All are tried:
 
-        * Extending forward into following adjacent free chunk.
 
-        * Shifting backwards, joining preceding adjacent space
 
-        * Both shifting backwards and extending forward.
 
-        * Extending into newly sbrked space
 
-     Unless the #define REALLOC_ZERO_BYTES_FREES is set, realloc with a
 
-     size argument of zero (re)allocates a minimum-sized chunk.
 
-     If the reallocation is for less space, and the new request is for
 
-     a `small' (<512 bytes) size, then the newly unused space is lopped
 
-     off and freed.
 
-     The old unix realloc convention of allowing the last-free'd chunk
 
-     to be used as an argument to realloc is no longer supported.
 
-     I don't know of any programs still relying on this feature,
 
-     and allowing it would also allow too many other incorrect
 
-     usages of realloc to be sensible.
 
- */
 
- #if __STD_C
 
- Void_t* rEALLOc(Void_t* oldmem, size_t bytes)
 
- #else
 
- Void_t* rEALLOc(oldmem, bytes) Void_t* oldmem; size_t bytes;
 
- #endif
 
- {
 
-   INTERNAL_SIZE_T    nb;      /* padded request size */
 
-   mchunkptr oldp;             /* chunk corresponding to oldmem */
 
-   INTERNAL_SIZE_T    oldsize; /* its size */
 
-   mchunkptr newp;             /* chunk to return */
 
-   INTERNAL_SIZE_T    newsize; /* its size */
 
-   Void_t*   newmem;           /* corresponding user mem */
 
-   mchunkptr next;             /* next contiguous chunk after oldp */
 
-   INTERNAL_SIZE_T  nextsize;  /* its size */
 
-   mchunkptr prev;             /* previous contiguous chunk before oldp */
 
-   INTERNAL_SIZE_T  prevsize;  /* its size */
 
-   mchunkptr remainder;        /* holds split off extra space from newp */
 
-   INTERNAL_SIZE_T  remainder_size;   /* its size */
 
-   mchunkptr bck;              /* misc temp for linking */
 
-   mchunkptr fwd;              /* misc temp for linking */
 
- #ifdef REALLOC_ZERO_BYTES_FREES
 
-   if (bytes == 0) { fREe(oldmem); return 0; }
 
- #endif
 
-   if ((long)bytes < 0) return 0;
 
-   /* realloc of null is supposed to be same as malloc */
 
-   if (oldmem == 0) return mALLOc(bytes);
 
-   newp    = oldp    = mem2chunk(oldmem);
 
-   newsize = oldsize = chunksize(oldp);
 
-   nb = request2size(bytes);
 
- #if HAVE_MMAP
 
-   if (chunk_is_mmapped(oldp))
 
-   {
 
- #if HAVE_MREMAP
 
-     newp = mremap_chunk(oldp, nb);
 
-     if(newp) return chunk2mem(newp);
 
- #endif
 
-     /* Note the extra SIZE_SZ overhead. */
 
-     if(oldsize - SIZE_SZ >= nb) return oldmem; /* do nothing */
 
-     /* Must alloc, copy, free. */
 
-     newmem = mALLOc(bytes);
 
-     if (newmem == 0) return 0; /* propagate failure */
 
-     MALLOC_COPY(newmem, oldmem, oldsize - 2*SIZE_SZ);
 
-     munmap_chunk(oldp);
 
-     return newmem;
 
-   }
 
- #endif
 
-   check_inuse_chunk(oldp);
 
-   if ((long)(oldsize) < (long)(nb))
 
-   {
 
-     /* Try expanding forward */
 
-     next = chunk_at_offset(oldp, oldsize);
 
-     if (next == top || !inuse(next))
 
-     {
 
-       nextsize = chunksize(next);
 
-       /* Forward into top only if a remainder */
 
-       if (next == top)
 
-       {
 
- 	if ((long)(nextsize + newsize) >= (long)(nb + MINSIZE))
 
- 	{
 
- 	  newsize += nextsize;
 
- 	  top = chunk_at_offset(oldp, nb);
 
- 	  set_head(top, (newsize - nb) | PREV_INUSE);
 
- 	  set_head_size(oldp, nb);
 
- 	  return chunk2mem(oldp);
 
- 	}
 
-       }
 
-       /* Forward into next chunk */
 
-       else if (((long)(nextsize + newsize) >= (long)(nb)))
 
-       {
 
- 	unlink(next, bck, fwd);
 
- 	newsize  += nextsize;
 
- 	goto split;
 
-       }
 
-     }
 
-     else
 
-     {
 
-       next = 0;
 
-       nextsize = 0;
 
-     }
 
-     /* Try shifting backwards. */
 
-     if (!prev_inuse(oldp))
 
-     {
 
-       prev = prev_chunk(oldp);
 
-       prevsize = chunksize(prev);
 
-       /* try forward + backward first to save a later consolidation */
 
-       if (next != 0)
 
-       {
 
- 	/* into top */
 
- 	if (next == top)
 
- 	{
 
- 	  if ((long)(nextsize + prevsize + newsize) >= (long)(nb + MINSIZE))
 
- 	  {
 
- 	    unlink(prev, bck, fwd);
 
- 	    newp = prev;
 
- 	    newsize += prevsize + nextsize;
 
- 	    newmem = chunk2mem(newp);
 
- 	    MALLOC_COPY(newmem, oldmem, oldsize - SIZE_SZ);
 
- 	    top = chunk_at_offset(newp, nb);
 
- 	    set_head(top, (newsize - nb) | PREV_INUSE);
 
- 	    set_head_size(newp, nb);
 
- 	    return newmem;
 
- 	  }
 
- 	}
 
- 	/* into next chunk */
 
- 	else if (((long)(nextsize + prevsize + newsize) >= (long)(nb)))
 
- 	{
 
- 	  unlink(next, bck, fwd);
 
- 	  unlink(prev, bck, fwd);
 
- 	  newp = prev;
 
- 	  newsize += nextsize + prevsize;
 
- 	  newmem = chunk2mem(newp);
 
- 	  MALLOC_COPY(newmem, oldmem, oldsize - SIZE_SZ);
 
- 	  goto split;
 
- 	}
 
-       }
 
-       /* backward only */
 
-       if (prev != 0 && (long)(prevsize + newsize) >= (long)nb)
 
-       {
 
- 	unlink(prev, bck, fwd);
 
- 	newp = prev;
 
- 	newsize += prevsize;
 
- 	newmem = chunk2mem(newp);
 
- 	MALLOC_COPY(newmem, oldmem, oldsize - SIZE_SZ);
 
- 	goto split;
 
-       }
 
-     }
 
-     /* Must allocate */
 
-     newmem = mALLOc (bytes);
 
-     if (newmem == 0)  /* propagate failure */
 
-       return 0;
 
-     /* Avoid copy if newp is next chunk after oldp. */
 
-     /* (This can only happen when new chunk is sbrk'ed.) */
 
-     if ( (newp = mem2chunk(newmem)) == next_chunk(oldp))
 
-     {
 
-       newsize += chunksize(newp);
 
-       newp = oldp;
 
-       goto split;
 
-     }
 
-     /* Otherwise copy, free, and exit */
 
-     MALLOC_COPY(newmem, oldmem, oldsize - SIZE_SZ);
 
-     fREe(oldmem);
 
-     return newmem;
 
-   }
 
-  split:  /* split off extra room in old or expanded chunk */
 
-   if (newsize - nb >= MINSIZE) /* split off remainder */
 
-   {
 
-     remainder = chunk_at_offset(newp, nb);
 
-     remainder_size = newsize - nb;
 
-     set_head_size(newp, nb);
 
-     set_head(remainder, remainder_size | PREV_INUSE);
 
-     set_inuse_bit_at_offset(remainder, remainder_size);
 
-     fREe(chunk2mem(remainder)); /* let free() deal with it */
 
-   }
 
-   else
 
-   {
 
-     set_head_size(newp, newsize);
 
-     set_inuse_bit_at_offset(newp, newsize);
 
-   }
 
-   check_inuse_chunk(newp);
 
-   return chunk2mem(newp);
 
- }
 
- /*
 
-   memalign algorithm:
 
-     memalign requests more than enough space from malloc, finds a spot
 
-     within that chunk that meets the alignment request, and then
 
-     possibly frees the leading and trailing space.
 
-     The alignment argument must be a power of two. This property is not
 
-     checked by memalign, so misuse may result in random runtime errors.
 
-     8-byte alignment is guaranteed by normal malloc calls, so don't
 
-     bother calling memalign with an argument of 8 or less.
 
-     Overreliance on memalign is a sure way to fragment space.
 
- */
 
- #if __STD_C
 
- Void_t* mEMALIGn(size_t alignment, size_t bytes)
 
- #else
 
- Void_t* mEMALIGn(alignment, bytes) size_t alignment; size_t bytes;
 
- #endif
 
- {
 
-   INTERNAL_SIZE_T    nb;      /* padded  request size */
 
-   char*     m;                /* memory returned by malloc call */
 
-   mchunkptr p;                /* corresponding chunk */
 
-   char*     brk;              /* alignment point within p */
 
-   mchunkptr newp;             /* chunk to return */
 
-   INTERNAL_SIZE_T  newsize;   /* its size */
 
-   INTERNAL_SIZE_T  leadsize;  /* leading space befor alignment point */
 
-   mchunkptr remainder;        /* spare room at end to split off */
 
-   long      remainder_size;   /* its size */
 
-   if ((long)bytes < 0) return 0;
 
-   /* If need less alignment than we give anyway, just relay to malloc */
 
-   if (alignment <= MALLOC_ALIGNMENT) return mALLOc(bytes);
 
-   /* Otherwise, ensure that it is at least a minimum chunk size */
 
-   if (alignment <  MINSIZE) alignment = MINSIZE;
 
-   /* Call malloc with worst case padding to hit alignment. */
 
-   nb = request2size(bytes);
 
-   m  = (char*)(mALLOc(nb + alignment + MINSIZE));
 
-   if (m == 0) return 0; /* propagate failure */
 
-   p = mem2chunk(m);
 
-   if ((((unsigned long)(m)) % alignment) == 0) /* aligned */
 
-   {
 
- #if HAVE_MMAP
 
-     if(chunk_is_mmapped(p))
 
-       return chunk2mem(p); /* nothing more to do */
 
- #endif
 
-   }
 
-   else /* misaligned */
 
-   {
 
-     /*
 
-       Find an aligned spot inside chunk.
 
-       Since we need to give back leading space in a chunk of at
 
-       least MINSIZE, if the first calculation places us at
 
-       a spot with less than MINSIZE leader, we can move to the
 
-       next aligned spot -- we've allocated enough total room so that
 
-       this is always possible.
 
-     */
 
-     brk = (char*)mem2chunk(((unsigned long)(m + alignment - 1)) & -((signed) alignment));
 
-     if ((long)(brk - (char*)(p)) < MINSIZE) brk = brk + alignment;
 
-     newp = (mchunkptr)brk;
 
-     leadsize = brk - (char*)(p);
 
-     newsize = chunksize(p) - leadsize;
 
- #if HAVE_MMAP
 
-     if(chunk_is_mmapped(p))
 
-     {
 
-       newp->prev_size = p->prev_size + leadsize;
 
-       set_head(newp, newsize|IS_MMAPPED);
 
-       return chunk2mem(newp);
 
-     }
 
- #endif
 
-     /* give back leader, use the rest */
 
-     set_head(newp, newsize | PREV_INUSE);
 
-     set_inuse_bit_at_offset(newp, newsize);
 
-     set_head_size(p, leadsize);
 
-     fREe(chunk2mem(p));
 
-     p = newp;
 
-     assert (newsize >= nb && (((unsigned long)(chunk2mem(p))) % alignment) == 0);
 
-   }
 
-   /* Also give back spare room at the end */
 
-   remainder_size = chunksize(p) - nb;
 
-   if (remainder_size >= (long)MINSIZE)
 
-   {
 
-     remainder = chunk_at_offset(p, nb);
 
-     set_head(remainder, remainder_size | PREV_INUSE);
 
-     set_head_size(p, nb);
 
-     fREe(chunk2mem(remainder));
 
-   }
 
-   check_inuse_chunk(p);
 
-   return chunk2mem(p);
 
- }
 
- /*
 
-     valloc just invokes memalign with alignment argument equal
 
-     to the page size of the system (or as near to this as can
 
-     be figured out from all the includes/defines above.)
 
- */
 
- #if __STD_C
 
- Void_t* vALLOc(size_t bytes)
 
- #else
 
- Void_t* vALLOc(bytes) size_t bytes;
 
- #endif
 
- {
 
-   return mEMALIGn (malloc_getpagesize, bytes);
 
- }
 
- /*
 
-   pvalloc just invokes valloc for the nearest pagesize
 
-   that will accommodate request
 
- */
 
- #if __STD_C
 
- Void_t* pvALLOc(size_t bytes)
 
- #else
 
- Void_t* pvALLOc(bytes) size_t bytes;
 
- #endif
 
- {
 
-   size_t pagesize = malloc_getpagesize;
 
-   return mEMALIGn (pagesize, (bytes + pagesize - 1) & ~(pagesize - 1));
 
- }
 
- /*
 
-   calloc calls malloc, then zeroes out the allocated chunk.
 
- */
 
- #if __STD_C
 
- Void_t* cALLOc(size_t n, size_t elem_size)
 
- #else
 
- Void_t* cALLOc(n, elem_size) size_t n; size_t elem_size;
 
- #endif
 
- {
 
-   mchunkptr p;
 
-   INTERNAL_SIZE_T csz;
 
-   INTERNAL_SIZE_T sz = n * elem_size;
 
-   /* check if expand_top called, in which case don't need to clear */
 
- #if MORECORE_CLEARS
 
-   mchunkptr oldtop = top;
 
-   INTERNAL_SIZE_T oldtopsize = chunksize(top);
 
- #endif
 
-   Void_t* mem = mALLOc (sz);
 
-   if ((long)n < 0) return 0;
 
-   if (mem == 0)
 
-     return 0;
 
-   else
 
-   {
 
-     p = mem2chunk(mem);
 
-     /* Two optional cases in which clearing not necessary */
 
- #if HAVE_MMAP
 
-     if (chunk_is_mmapped(p)) return mem;
 
- #endif
 
-     csz = chunksize(p);
 
- #if MORECORE_CLEARS
 
-     if (p == oldtop && csz > oldtopsize)
 
-     {
 
-       /* clear only the bytes from non-freshly-sbrked memory */
 
-       csz = oldtopsize;
 
-     }
 
- #endif
 
-     MALLOC_ZERO(mem, csz - SIZE_SZ);
 
-     return mem;
 
-   }
 
- }
 
- /*
 
-   cfree just calls free. It is needed/defined on some systems
 
-   that pair it with calloc, presumably for odd historical reasons.
 
- */
 
- #if !defined(INTERNAL_LINUX_C_LIB) || !defined(__ELF__)
 
- #if __STD_C
 
- void cfree(Void_t *mem)
 
- #else
 
- void cfree(mem) Void_t *mem;
 
- #endif
 
- {
 
-   fREe(mem);
 
- }
 
- #endif
 
- /*
 
-     Malloc_trim gives memory back to the system (via negative
 
-     arguments to sbrk) if there is unused memory at the `high' end of
 
-     the malloc pool. You can call this after freeing large blocks of
 
-     memory to potentially reduce the system-level memory requirements
 
-     of a program. However, it cannot guarantee to reduce memory. Under
 
-     some allocation patterns, some large free blocks of memory will be
 
-     locked between two used chunks, so they cannot be given back to
 
-     the system.
 
-     The `pad' argument to malloc_trim represents the amount of free
 
-     trailing space to leave untrimmed. If this argument is zero,
 
-     only the minimum amount of memory to maintain internal data
 
-     structures will be left (one page or less). Non-zero arguments
 
-     can be supplied to maintain enough trailing space to service
 
-     future expected allocations without having to re-obtain memory
 
-     from the system.
 
-     Malloc_trim returns 1 if it actually released any memory, else 0.
 
- */
 
- #if __STD_C
 
- int malloc_trim(size_t pad)
 
- #else
 
- int malloc_trim(pad) size_t pad;
 
- #endif
 
- {
 
-   long  top_size;        /* Amount of top-most memory */
 
-   long  extra;           /* Amount to release */
 
-   char* current_brk;     /* address returned by pre-check sbrk call */
 
-   char* new_brk;         /* address returned by negative sbrk call */
 
-   unsigned long pagesz = malloc_getpagesize;
 
-   top_size = chunksize(top);
 
-   extra = ((top_size - pad - MINSIZE + (pagesz-1)) / pagesz - 1) * pagesz;
 
-   if (extra < (long)pagesz)  /* Not enough memory to release */
 
-     return 0;
 
-   else
 
-   {
 
-     /* Test to make sure no one else called sbrk */
 
-     current_brk = (char*)(MORECORE (0));
 
-     if (current_brk != (char*)(top) + top_size)
 
-       return 0;     /* Apparently we don't own memory; must fail */
 
-     else
 
-     {
 
-       new_brk = (char*)(MORECORE (-extra));
 
-       if (new_brk == (char*)(MORECORE_FAILURE)) /* sbrk failed? */
 
-       {
 
- 	/* Try to figure out what we have */
 
- 	current_brk = (char*)(MORECORE (0));
 
- 	top_size = current_brk - (char*)top;
 
- 	if (top_size >= (long)MINSIZE) /* if not, we are very very dead! */
 
- 	{
 
- 	  sbrked_mem = current_brk - sbrk_base;
 
- 	  set_head(top, top_size | PREV_INUSE);
 
- 	}
 
- 	check_chunk(top);
 
- 	return 0;
 
-       }
 
-       else
 
-       {
 
- 	/* Success. Adjust top accordingly. */
 
- 	set_head(top, (top_size - extra) | PREV_INUSE);
 
- 	sbrked_mem -= extra;
 
- 	check_chunk(top);
 
- 	return 1;
 
-       }
 
-     }
 
-   }
 
- }
 
- /*
 
-   malloc_usable_size:
 
-     This routine tells you how many bytes you can actually use in an
 
-     allocated chunk, which may be more than you requested (although
 
-     often not). You can use this many bytes without worrying about
 
-     overwriting other allocated objects. Not a particularly great
 
-     programming practice, but still sometimes useful.
 
- */
 
- #if __STD_C
 
- size_t malloc_usable_size(Void_t* mem)
 
- #else
 
- size_t malloc_usable_size(mem) Void_t* mem;
 
- #endif
 
- {
 
-   mchunkptr p;
 
-   if (mem == 0)
 
-     return 0;
 
-   else
 
-   {
 
-     p = mem2chunk(mem);
 
-     if(!chunk_is_mmapped(p))
 
-     {
 
-       if (!inuse(p)) return 0;
 
-       check_inuse_chunk(p);
 
-       return chunksize(p) - SIZE_SZ;
 
-     }
 
-     return chunksize(p) - 2*SIZE_SZ;
 
-   }
 
- }
 
- /* Utility to update current_mallinfo for malloc_stats and mallinfo() */
 
- static void malloc_update_mallinfo()
 
- {
 
-   int i;
 
-   mbinptr b;
 
-   mchunkptr p;
 
- #if DEBUG
 
-   mchunkptr q;
 
- #endif
 
-   INTERNAL_SIZE_T avail = chunksize(top);
 
-   int   navail = ((long)(avail) >= (long)MINSIZE)? 1 : 0;
 
-   for (i = 1; i < NAV; ++i)
 
-   {
 
-     b = bin_at(i);
 
-     for (p = last(b); p != b; p = p->bk)
 
-     {
 
- #if DEBUG
 
-       check_free_chunk(p);
 
-       for (q = next_chunk(p);
 
- 	   q < top && inuse(q) && (long)(chunksize(q)) >= (long)MINSIZE;
 
- 	   q = next_chunk(q))
 
- 	check_inuse_chunk(q);
 
- #endif
 
-       avail += chunksize(p);
 
-       navail++;
 
-     }
 
-   }
 
-   current_mallinfo.ordblks = navail;
 
-   current_mallinfo.uordblks = sbrked_mem - avail;
 
-   current_mallinfo.fordblks = avail;
 
-   current_mallinfo.hblks = n_mmaps;
 
-   current_mallinfo.hblkhd = mmapped_mem;
 
-   current_mallinfo.keepcost = chunksize(top);
 
- }
 
- /*
 
-   malloc_stats:
 
-     Prints on stderr the amount of space obtain from the system (both
 
-     via sbrk and mmap), the maximum amount (which may be more than
 
-     current if malloc_trim and/or munmap got called), the maximum
 
-     number of simultaneous mmap regions used, and the current number
 
-     of bytes allocated via malloc (or realloc, etc) but not yet
 
-     freed. (Note that this is the number of bytes allocated, not the
 
-     number requested. It will be larger than the number requested
 
-     because of alignment and bookkeeping overhead.)
 
- */
 
- void malloc_stats()
 
- {
 
-   malloc_update_mallinfo();
 
-   fprintf(stderr, "max system bytes = %10u\n",
 
- 	  (unsigned int)(max_total_mem));
 
-   fprintf(stderr, "system bytes     = %10u\n",
 
- 	  (unsigned int)(sbrked_mem + mmapped_mem));
 
-   fprintf(stderr, "in use bytes     = %10u\n",
 
- 	  (unsigned int)(current_mallinfo.uordblks + mmapped_mem));
 
- #if HAVE_MMAP
 
-   fprintf(stderr, "max mmap regions = %10u\n",
 
- 	  (unsigned int)max_n_mmaps);
 
- #endif
 
- }
 
- /*
 
-   mallinfo returns a copy of updated current mallinfo.
 
- */
 
- struct mallinfo mALLINFo()
 
- {
 
-   malloc_update_mallinfo();
 
-   return current_mallinfo;
 
- }
 
- /*
 
-   mallopt:
 
-     mallopt is the general SVID/XPG interface to tunable parameters.
 
-     The format is to provide a (parameter-number, parameter-value) pair.
 
-     mallopt then sets the corresponding parameter to the argument
 
-     value if it can (i.e., so long as the value is meaningful),
 
-     and returns 1 if successful else 0.
 
-     See descriptions of tunable parameters above.
 
- */
 
- #if __STD_C
 
- int mALLOPt(int param_number, int value)
 
- #else
 
- int mALLOPt(param_number, value) int param_number; int value;
 
- #endif
 
- {
 
-   switch(param_number)
 
-   {
 
-     case M_TRIM_THRESHOLD:
 
-       trim_threshold = value; return 1;
 
-     case M_TOP_PAD:
 
-       top_pad = value; return 1;
 
-     case M_MMAP_THRESHOLD:
 
-       mmap_threshold = value; return 1;
 
-     case M_MMAP_MAX:
 
- #if HAVE_MMAP
 
-       n_mmaps_max = value; return 1;
 
- #else
 
-       if (value != 0) return 0; else  n_mmaps_max = value; return 1;
 
- #endif
 
-     default:
 
-       return 0;
 
-   }
 
- }
 
- /*
 
- History:
 
-     V2.6.6 Sun Dec  5 07:42:19 1999  Doug Lea  (dl at gee)
 
-       * return null for negative arguments
 
-       * Added Several WIN32 cleanups from Martin C. Fong <mcfong@yahoo.com>
 
- 	 * Add 'LACKS_SYS_PARAM_H' for those systems without 'sys/param.h'
 
- 	  (e.g. WIN32 platforms)
 
- 	 * Cleanup up header file inclusion for WIN32 platforms
 
- 	 * Cleanup code to avoid Microsoft Visual C++ compiler complaints
 
- 	 * Add 'USE_DL_PREFIX' to quickly allow co-existence with existing
 
- 	   memory allocation routines
 
- 	 * Set 'malloc_getpagesize' for WIN32 platforms (needs more work)
 
- 	 * Use 'assert' rather than 'ASSERT' in WIN32 code to conform to
 
- 	   usage of 'assert' in non-WIN32 code
 
- 	 * Improve WIN32 'sbrk()' emulation's 'findRegion()' routine to
 
- 	   avoid infinite loop
 
-       * Always call 'fREe()' rather than 'free()'
 
-     V2.6.5 Wed Jun 17 15:57:31 1998  Doug Lea  (dl at gee)
 
-       * Fixed ordering problem with boundary-stamping
 
-     V2.6.3 Sun May 19 08:17:58 1996  Doug Lea  (dl at gee)
 
-       * Added pvalloc, as recommended by H.J. Liu
 
-       * Added 64bit pointer support mainly from Wolfram Gloger
 
-       * Added anonymously donated WIN32 sbrk emulation
 
-       * Malloc, calloc, getpagesize: add optimizations from Raymond Nijssen
 
-       * malloc_extend_top: fix mask error that caused wastage after
 
- 	foreign sbrks
 
-       * Add linux mremap support code from HJ Liu
 
-     V2.6.2 Tue Dec  5 06:52:55 1995  Doug Lea  (dl at gee)
 
-       * Integrated most documentation with the code.
 
-       * Add support for mmap, with help from
 
- 	Wolfram Gloger (Gloger@lrz.uni-muenchen.de).
 
-       * Use last_remainder in more cases.
 
-       * Pack bins using idea from  colin@nyx10.cs.du.edu
 
-       * Use ordered bins instead of best-fit threshhold
 
-       * Eliminate block-local decls to simplify tracing and debugging.
 
-       * Support another case of realloc via move into top
 
-       * Fix error occuring when initial sbrk_base not word-aligned.
 
-       * Rely on page size for units instead of SBRK_UNIT to
 
- 	avoid surprises about sbrk alignment conventions.
 
-       * Add mallinfo, mallopt. Thanks to Raymond Nijssen
 
- 	(raymond@es.ele.tue.nl) for the suggestion.
 
-       * Add `pad' argument to malloc_trim and top_pad mallopt parameter.
 
-       * More precautions for cases where other routines call sbrk,
 
- 	courtesy of Wolfram Gloger (Gloger@lrz.uni-muenchen.de).
 
-       * Added macros etc., allowing use in linux libc from
 
- 	H.J. Lu (hjl@gnu.ai.mit.edu)
 
-       * Inverted this history list
 
-     V2.6.1 Sat Dec  2 14:10:57 1995  Doug Lea  (dl at gee)
 
-       * Re-tuned and fixed to behave more nicely with V2.6.0 changes.
 
-       * Removed all preallocation code since under current scheme
 
- 	the work required to undo bad preallocations exceeds
 
- 	the work saved in good cases for most test programs.
 
-       * No longer use return list or unconsolidated bins since
 
- 	no scheme using them consistently outperforms those that don't
 
- 	given above changes.
 
-       * Use best fit for very large chunks to prevent some worst-cases.
 
-       * Added some support for debugging
 
-     V2.6.0 Sat Nov  4 07:05:23 1995  Doug Lea  (dl at gee)
 
-       * Removed footers when chunks are in use. Thanks to
 
- 	Paul Wilson (wilson@cs.texas.edu) for the suggestion.
 
-     V2.5.4 Wed Nov  1 07:54:51 1995  Doug Lea  (dl at gee)
 
-       * Added malloc_trim, with help from Wolfram Gloger
 
- 	(wmglo@Dent.MED.Uni-Muenchen.DE).
 
-     V2.5.3 Tue Apr 26 10:16:01 1994  Doug Lea  (dl at g)
 
-     V2.5.2 Tue Apr  5 16:20:40 1994  Doug Lea  (dl at g)
 
-       * realloc: try to expand in both directions
 
-       * malloc: swap order of clean-bin strategy;
 
-       * realloc: only conditionally expand backwards
 
-       * Try not to scavenge used bins
 
-       * Use bin counts as a guide to preallocation
 
-       * Occasionally bin return list chunks in first scan
 
-       * Add a few optimizations from colin@nyx10.cs.du.edu
 
-     V2.5.1 Sat Aug 14 15:40:43 1993  Doug Lea  (dl at g)
 
-       * faster bin computation & slightly different binning
 
-       * merged all consolidations to one part of malloc proper
 
- 	 (eliminating old malloc_find_space & malloc_clean_bin)
 
-       * Scan 2 returns chunks (not just 1)
 
-       * Propagate failure in realloc if malloc returns 0
 
-       * Add stuff to allow compilation on non-ANSI compilers
 
- 	  from kpv@research.att.com
 
-     V2.5 Sat Aug  7 07:41:59 1993  Doug Lea  (dl at g.oswego.edu)
 
-       * removed potential for odd address access in prev_chunk
 
-       * removed dependency on getpagesize.h
 
-       * misc cosmetics and a bit more internal documentation
 
-       * anticosmetics: mangled names in macros to evade debugger strangeness
 
-       * tested on sparc, hp-700, dec-mips, rs6000
 
- 	  with gcc & native cc (hp, dec only) allowing
 
- 	  Detlefs & Zorn comparison study (in SIGPLAN Notices.)
 
-     Trial version Fri Aug 28 13:14:29 1992  Doug Lea  (dl at g.oswego.edu)
 
-       * Based loosely on libg++-1.2X malloc. (It retains some of the overall
 
- 	 structure of old version,  but most details differ.)
 
- */
 
 
  |