| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379 | // SPDX-License-Identifier: GPL-2.0+/* * (C) Copyright 2010 * Stefano Babic, DENX Software Engineering, sbabic@denx.de. * * (C) Copyright 2002 * Rich Ireland, Enterasys Networks, rireland@enterasys.com. * * ispVM functions adapted from Lattice's ispmVMEmbedded code: * Copyright 2009 Lattice Semiconductor Corp. */#include <common.h>#include <malloc.h>#include <fpga.h>#include <lattice.h>static lattice_board_specific_func *pfns;static const char *fpga_image;static unsigned long read_bytes;static unsigned long bufsize;static unsigned short expectedCRC;/* * External variables and functions declared in ivm_core.c module. */extern unsigned short g_usCalculatedCRC;extern unsigned short g_usDataType;extern unsigned char *g_pucIntelBuffer;extern unsigned char *g_pucHeapMemory;extern unsigned short g_iHeapCounter;extern unsigned short g_iHEAPSize;extern unsigned short g_usIntelDataIndex;extern unsigned short g_usIntelBufferSize;extern char *const g_szSupportedVersions[];/* * ispVMDelay * * Users must implement a delay to observe a_usTimeDelay, where * bit 15 of the a_usTimeDelay defines the unit. *      1 = milliseconds *      0 = microseconds * Example: *      a_usTimeDelay = 0x0001 = 1 microsecond delay. *      a_usTimeDelay = 0x8001 = 1 millisecond delay. * * This subroutine is called upon to provide a delay from 1 millisecond to a few * hundreds milliseconds each time. * It is understood that due to a_usTimeDelay is defined as unsigned short, a 16 * bits integer, this function is restricted to produce a delay to 64000 * micro-seconds or 32000 milli-second maximum. The VME file will never pass on * to this function a delay time > those maximum number. If it needs more than * those maximum, the VME file will launch the delay function several times to * realize a larger delay time cummulatively. * It is perfectly alright to provide a longer delay than required. It is not * acceptable if the delay is shorter. */void ispVMDelay(unsigned short delay){	if (delay & 0x8000)		delay = (delay & ~0x8000) * 1000;	udelay(delay);}void writePort(unsigned char a_ucPins, unsigned char a_ucValue){	a_ucValue = a_ucValue ? 1 : 0;	switch (a_ucPins) {	case g_ucPinTDI:		pfns->jtag_set_tdi(a_ucValue);		break;	case g_ucPinTCK:		pfns->jtag_set_tck(a_ucValue);		break;	case g_ucPinTMS:		pfns->jtag_set_tms(a_ucValue);		break;	default:		printf("%s: requested unknown pin\n", __func__);	}}unsigned char readPort(void){	return pfns->jtag_get_tdo();}void sclock(void){	writePort(g_ucPinTCK, 0x01);	writePort(g_ucPinTCK, 0x00);}void calibration(void){	/* Apply 2 pulses to TCK. */	writePort(g_ucPinTCK, 0x00);	writePort(g_ucPinTCK, 0x01);	writePort(g_ucPinTCK, 0x00);	writePort(g_ucPinTCK, 0x01);	writePort(g_ucPinTCK, 0x00);	ispVMDelay(0x8001);	/* Apply 2 pulses to TCK. */	writePort(g_ucPinTCK, 0x01);	writePort(g_ucPinTCK, 0x00);	writePort(g_ucPinTCK, 0x01);	writePort(g_ucPinTCK, 0x00);}/* * GetByte * * Returns a byte to the caller. The returned byte depends on the * g_usDataType register. If the HEAP_IN bit is set, then the byte * is returned from the HEAP. If the LHEAP_IN bit is set, then * the byte is returned from the intelligent buffer. Otherwise, * the byte is returned directly from the VME file. */unsigned char GetByte(void){	unsigned char ucData;	unsigned int block_size = 4 * 1024;	if (g_usDataType & HEAP_IN) {		/*		 * Get data from repeat buffer.		 */		if (g_iHeapCounter > g_iHEAPSize) {			/*			 * Data over-run.			 */			return 0xFF;		}		ucData = g_pucHeapMemory[g_iHeapCounter++];	} else if (g_usDataType & LHEAP_IN) {		/*		 * Get data from intel buffer.		 */		if (g_usIntelDataIndex >= g_usIntelBufferSize) {			return 0xFF;		}		ucData = g_pucIntelBuffer[g_usIntelDataIndex++];	} else {		if (read_bytes == bufsize) {			return 0xFF;		}		ucData = *fpga_image++;		read_bytes++;		if (!(read_bytes % block_size)) {			printf("Downloading FPGA %ld/%ld completed\r",				read_bytes,				bufsize);		}		if (expectedCRC != 0) {			ispVMCalculateCRC32(ucData);		}	}	return ucData;}signed char ispVM(void){	char szFileVersion[9]      = { 0 };	signed char cRetCode         = 0;	signed char cIndex           = 0;	signed char cVersionIndex    = 0;	unsigned char ucReadByte     = 0;	unsigned short crc;	g_pucHeapMemory		= NULL;	g_iHeapCounter		= 0;	g_iHEAPSize		= 0;	g_usIntelDataIndex	= 0;	g_usIntelBufferSize	= 0;	g_usCalculatedCRC = 0;	expectedCRC   = 0;	ucReadByte = GetByte();	switch (ucReadByte) {	case FILE_CRC:		crc = (unsigned char)GetByte();		crc <<= 8;		crc |= GetByte();		expectedCRC = crc;		for (cIndex = 0; cIndex < 8; cIndex++)			szFileVersion[cIndex] = GetByte();		break;	default:		szFileVersion[0] = (signed char) ucReadByte;		for (cIndex = 1; cIndex < 8; cIndex++)			szFileVersion[cIndex] = GetByte();		break;	}	/*	 *	 * Compare the VME file version against the supported version.	 *	 */	for (cVersionIndex = 0; g_szSupportedVersions[cVersionIndex] != 0;		cVersionIndex++) {		for (cIndex = 0; cIndex < 8; cIndex++) {			if (szFileVersion[cIndex] !=				g_szSupportedVersions[cVersionIndex][cIndex]) {				cRetCode = VME_VERSION_FAILURE;				break;			}			cRetCode = 0;		}		if (cRetCode == 0) {			break;		}	}	if (cRetCode < 0) {		return VME_VERSION_FAILURE;	}	printf("VME file checked: starting downloading to FPGA\n");	ispVMStart();	cRetCode = ispVMCode();	ispVMEnd();	ispVMFreeMem();	puts("\n");	if (cRetCode == 0 && expectedCRC != 0 &&			(expectedCRC != g_usCalculatedCRC)) {		printf("Expected CRC:   0x%.4X\n", expectedCRC);		printf("Calculated CRC: 0x%.4X\n", g_usCalculatedCRC);		return VME_CRC_FAILURE;	}	return cRetCode;}static int lattice_validate(Lattice_desc *desc, const char *fn){	int ret_val = false;	if (desc) {		if ((desc->family > min_lattice_type) &&			(desc->family < max_lattice_type)) {			if ((desc->iface > min_lattice_iface_type) &&				(desc->iface < max_lattice_iface_type)) {				if (desc->size) {					ret_val = true;				} else {					printf("%s: NULL part size\n", fn);				}			} else {				printf("%s: Invalid Interface type, %d\n",					fn, desc->iface);			}		} else {			printf("%s: Invalid family type, %d\n",				fn, desc->family);		}	} else {		printf("%s: NULL descriptor!\n", fn);	}	return ret_val;}int lattice_load(Lattice_desc *desc, const void *buf, size_t bsize){	int ret_val = FPGA_FAIL;	if (!lattice_validate(desc, (char *)__func__)) {		printf("%s: Invalid device descriptor\n", __func__);	} else {		pfns = desc->iface_fns;		switch (desc->family) {		case Lattice_XP2:			fpga_image = buf;			read_bytes = 0;			bufsize = bsize;			debug("%s: Launching the Lattice ISPVME Loader:"				" addr %p size 0x%lx...\n",				__func__, fpga_image, bufsize);			ret_val = ispVM();			if (ret_val)				printf("%s: error %d downloading FPGA image\n",					__func__, ret_val);			else				puts("FPGA downloaded successfully\n");			break;		default:			printf("%s: Unsupported family type, %d\n",					__func__, desc->family);		}	}	return ret_val;}int lattice_dump(Lattice_desc *desc, const void *buf, size_t bsize){	puts("Dump not supported for Lattice FPGA\n");	return FPGA_FAIL;}int lattice_info(Lattice_desc *desc){	int ret_val = FPGA_FAIL;	if (lattice_validate(desc, (char *)__func__)) {		printf("Family:        \t");		switch (desc->family) {		case Lattice_XP2:			puts("XP2\n");			break;			/* Add new family types here */		default:			printf("Unknown family type, %d\n", desc->family);		}		puts("Interface type:\t");		switch (desc->iface) {		case lattice_jtag_mode:			puts("JTAG Mode\n");			break;			/* Add new interface types here */		default:			printf("Unsupported interface type, %d\n", desc->iface);		}		printf("Device Size:   \t%d bytes\n",				desc->size);		if (desc->iface_fns) {			printf("Device Function Table @ 0x%p\n",				desc->iface_fns);			switch (desc->family) {			case Lattice_XP2:				break;				/* Add new family types here */			default:				break;			}		} else {			puts("No Device Function Table.\n");		}		if (desc->desc)			printf("Model:         \t%s\n", desc->desc);		ret_val = FPGA_SUCCESS;	} else {		printf("%s: Invalid device descriptor\n", __func__);	}	return ret_val;}
 |