| 12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511 | // SPDX-License-Identifier: GPL-2.0+/* * (C) Copyright 2007-2008 * Stelian Pop <stelian@popies.net> * Lead Tech Design <www.leadtechdesign.com> * * (C) Copyright 2006 ATMEL Rousset, Lacressonniere Nicolas * * Add Programmable Multibit ECC support for various AT91 SoC *     (C) Copyright 2012 ATMEL, Hong Xu */#include <common.h>#include <asm/gpio.h>#include <asm/arch/gpio.h>#include <malloc.h>#include <nand.h>#include <watchdog.h>#include <linux/mtd/nand_ecc.h>#ifdef CONFIG_ATMEL_NAND_HWECC/* Register access macros */#define ecc_readl(add, reg)				\	readl(add + ATMEL_ECC_##reg)#define ecc_writel(add, reg, value)			\	writel((value), add + ATMEL_ECC_##reg)#include "atmel_nand_ecc.h"	/* Hardware ECC registers */#ifdef CONFIG_ATMEL_NAND_HW_PMECC#ifdef CONFIG_SPL_BUILD#undef CONFIG_SYS_NAND_ONFI_DETECTION#endifstruct atmel_nand_host {	struct pmecc_regs __iomem *pmecc;	struct pmecc_errloc_regs __iomem *pmerrloc;	void __iomem		*pmecc_rom_base;	u8		pmecc_corr_cap;	u16		pmecc_sector_size;	u32		pmecc_index_table_offset;	u32		pmecc_version;	int		pmecc_bytes_per_sector;	int		pmecc_sector_number;	int		pmecc_degree;	/* Degree of remainders */	int		pmecc_cw_len;	/* Length of codeword */	/* lookup table for alpha_to and index_of */	void __iomem	*pmecc_alpha_to;	void __iomem	*pmecc_index_of;	/* data for pmecc computation */	int16_t	*pmecc_smu;	int16_t	*pmecc_partial_syn;	int16_t	*pmecc_si;	int16_t	*pmecc_lmu; /* polynomal order */	int	*pmecc_mu;	int	*pmecc_dmu;	int	*pmecc_delta;};static struct atmel_nand_host pmecc_host;static struct nand_ecclayout atmel_pmecc_oobinfo;/* * Return number of ecc bytes per sector according to sector size and * correction capability * * Following table shows what at91 PMECC supported: * Correction Capability	Sector_512_bytes	Sector_1024_bytes * =====================	================	================= *                2-bits                 4-bytes                  4-bytes *                4-bits                 7-bytes                  7-bytes *                8-bits                13-bytes                 14-bytes *               12-bits                20-bytes                 21-bytes *               24-bits                39-bytes                 42-bytes *               32-bits                52-bytes                 56-bytes */static int pmecc_get_ecc_bytes(int cap, int sector_size){	int m = 12 + sector_size / 512;	return (m * cap + 7) / 8;}static void pmecc_config_ecc_layout(struct nand_ecclayout *layout,	int oobsize, int ecc_len){	int i;	layout->eccbytes = ecc_len;	/* ECC will occupy the last ecc_len bytes continuously */	for (i = 0; i < ecc_len; i++)		layout->eccpos[i] = oobsize - ecc_len + i;	layout->oobfree[0].offset = 2;	layout->oobfree[0].length =		oobsize - ecc_len - layout->oobfree[0].offset;}static void __iomem *pmecc_get_alpha_to(struct atmel_nand_host *host){	int table_size;	table_size = host->pmecc_sector_size == 512 ?		PMECC_INDEX_TABLE_SIZE_512 : PMECC_INDEX_TABLE_SIZE_1024;	/* the ALPHA lookup table is right behind the INDEX lookup table. */	return host->pmecc_rom_base + host->pmecc_index_table_offset +			table_size * sizeof(int16_t);}static void pmecc_data_free(struct atmel_nand_host *host){	free(host->pmecc_partial_syn);	free(host->pmecc_si);	free(host->pmecc_lmu);	free(host->pmecc_smu);	free(host->pmecc_mu);	free(host->pmecc_dmu);	free(host->pmecc_delta);}static int pmecc_data_alloc(struct atmel_nand_host *host){	const int cap = host->pmecc_corr_cap;	int size;	size = (2 * cap + 1) * sizeof(int16_t);	host->pmecc_partial_syn = malloc(size);	host->pmecc_si = malloc(size);	host->pmecc_lmu = malloc((cap + 1) * sizeof(int16_t));	host->pmecc_smu = malloc((cap + 2) * size);	size = (cap + 1) * sizeof(int);	host->pmecc_mu = malloc(size);	host->pmecc_dmu = malloc(size);	host->pmecc_delta = malloc(size);	if (host->pmecc_partial_syn &&			host->pmecc_si &&			host->pmecc_lmu &&			host->pmecc_smu &&			host->pmecc_mu &&			host->pmecc_dmu &&			host->pmecc_delta)		return 0;	/* error happened */	pmecc_data_free(host);	return -ENOMEM;}static void pmecc_gen_syndrome(struct mtd_info *mtd, int sector){	struct nand_chip *nand_chip = mtd_to_nand(mtd);	struct atmel_nand_host *host = nand_get_controller_data(nand_chip);	int i;	uint32_t value;	/* Fill odd syndromes */	for (i = 0; i < host->pmecc_corr_cap; i++) {		value = pmecc_readl(host->pmecc, rem_port[sector].rem[i / 2]);		if (i & 1)			value >>= 16;		value &= 0xffff;		host->pmecc_partial_syn[(2 * i) + 1] = (int16_t)value;	}}static void pmecc_substitute(struct mtd_info *mtd){	struct nand_chip *nand_chip = mtd_to_nand(mtd);	struct atmel_nand_host *host = nand_get_controller_data(nand_chip);	int16_t __iomem *alpha_to = host->pmecc_alpha_to;	int16_t __iomem *index_of = host->pmecc_index_of;	int16_t *partial_syn = host->pmecc_partial_syn;	const int cap = host->pmecc_corr_cap;	int16_t *si;	int i, j;	/* si[] is a table that holds the current syndrome value,	 * an element of that table belongs to the field	 */	si = host->pmecc_si;	memset(&si[1], 0, sizeof(int16_t) * (2 * cap - 1));	/* Computation 2t syndromes based on S(x) */	/* Odd syndromes */	for (i = 1; i < 2 * cap; i += 2) {		for (j = 0; j < host->pmecc_degree; j++) {			if (partial_syn[i] & (0x1 << j))				si[i] = readw(alpha_to + i * j) ^ si[i];		}	}	/* Even syndrome = (Odd syndrome) ** 2 */	for (i = 2, j = 1; j <= cap; i = ++j << 1) {		if (si[j] == 0) {			si[i] = 0;		} else {			int16_t tmp;			tmp = readw(index_of + si[j]);			tmp = (tmp * 2) % host->pmecc_cw_len;			si[i] = readw(alpha_to + tmp);		}	}}/* * This function defines a Berlekamp iterative procedure for * finding the value of the error location polynomial. * The input is si[], initialize by pmecc_substitute(). * The output is smu[][]. * * This function is written according to chip datasheet Chapter: * Find the Error Location Polynomial Sigma(x) of Section: * Programmable Multibit ECC Control (PMECC). */static void pmecc_get_sigma(struct mtd_info *mtd){	struct nand_chip *nand_chip = mtd_to_nand(mtd);	struct atmel_nand_host *host = nand_get_controller_data(nand_chip);	int16_t *lmu = host->pmecc_lmu;	int16_t *si = host->pmecc_si;	int *mu = host->pmecc_mu;	int *dmu = host->pmecc_dmu;	/* Discrepancy */	int *delta = host->pmecc_delta; /* Delta order */	int cw_len = host->pmecc_cw_len;	const int16_t cap = host->pmecc_corr_cap;	const int num = 2 * cap + 1;	int16_t __iomem	*index_of = host->pmecc_index_of;	int16_t __iomem	*alpha_to = host->pmecc_alpha_to;	int i, j, k;	uint32_t dmu_0_count, tmp;	int16_t *smu = host->pmecc_smu;	/* index of largest delta */	int ro;	int largest;	int diff;	/* Init the Sigma(x) */	memset(smu, 0, sizeof(int16_t) * ARRAY_SIZE(smu));	dmu_0_count = 0;	/* First Row */	/* Mu */	mu[0] = -1;	smu[0] = 1;	/* discrepancy set to 1 */	dmu[0] = 1;	/* polynom order set to 0 */	lmu[0] = 0;	/* delta[0] = (mu[0] * 2 - lmu[0]) >> 1; */	delta[0] = -1;	/* Second Row */	/* Mu */	mu[1] = 0;	/* Sigma(x) set to 1 */	smu[num] = 1;	/* discrepancy set to S1 */	dmu[1] = si[1];	/* polynom order set to 0 */	lmu[1] = 0;	/* delta[1] = (mu[1] * 2 - lmu[1]) >> 1; */	delta[1] = 0;	for (i = 1; i <= cap; i++) {		mu[i + 1] = i << 1;		/* Begin Computing Sigma (Mu+1) and L(mu) */		/* check if discrepancy is set to 0 */		if (dmu[i] == 0) {			dmu_0_count++;			tmp = ((cap - (lmu[i] >> 1) - 1) / 2);			if ((cap - (lmu[i] >> 1) - 1) & 0x1)				tmp += 2;			else				tmp += 1;			if (dmu_0_count == tmp) {				for (j = 0; j <= (lmu[i] >> 1) + 1; j++)					smu[(cap + 1) * num + j] =							smu[i * num + j];				lmu[cap + 1] = lmu[i];				return;			}			/* copy polynom */			for (j = 0; j <= lmu[i] >> 1; j++)				smu[(i + 1) * num + j] = smu[i * num + j];			/* copy previous polynom order to the next */			lmu[i + 1] = lmu[i];		} else {			ro = 0;			largest = -1;			/* find largest delta with dmu != 0 */			for (j = 0; j < i; j++) {				if ((dmu[j]) && (delta[j] > largest)) {					largest = delta[j];					ro = j;				}			}			/* compute difference */			diff = (mu[i] - mu[ro]);			/* Compute degree of the new smu polynomial */			if ((lmu[i] >> 1) > ((lmu[ro] >> 1) + diff))				lmu[i + 1] = lmu[i];			else				lmu[i + 1] = ((lmu[ro] >> 1) + diff) * 2;			/* Init smu[i+1] with 0 */			for (k = 0; k < num; k++)				smu[(i + 1) * num + k] = 0;			/* Compute smu[i+1] */			for (k = 0; k <= lmu[ro] >> 1; k++) {				int16_t a, b, c;				if (!(smu[ro * num + k] && dmu[i]))					continue;				a = readw(index_of + dmu[i]);				b = readw(index_of + dmu[ro]);				c = readw(index_of + smu[ro * num + k]);				tmp = a + (cw_len - b) + c;				a = readw(alpha_to + tmp % cw_len);				smu[(i + 1) * num + (k + diff)] = a;			}			for (k = 0; k <= lmu[i] >> 1; k++)				smu[(i + 1) * num + k] ^= smu[i * num + k];		}		/* End Computing Sigma (Mu+1) and L(mu) */		/* In either case compute delta */		delta[i + 1] = (mu[i + 1] * 2 - lmu[i + 1]) >> 1;		/* Do not compute discrepancy for the last iteration */		if (i >= cap)			continue;		for (k = 0; k <= (lmu[i + 1] >> 1); k++) {			tmp = 2 * (i - 1);			if (k == 0) {				dmu[i + 1] = si[tmp + 3];			} else if (smu[(i + 1) * num + k] && si[tmp + 3 - k]) {				int16_t a, b, c;				a = readw(index_of +						smu[(i + 1) * num + k]);				b = si[2 * (i - 1) + 3 - k];				c = readw(index_of + b);				tmp = a + c;				tmp %= cw_len;				dmu[i + 1] = readw(alpha_to + tmp) ^					dmu[i + 1];			}		}	}}static int pmecc_err_location(struct mtd_info *mtd){	struct nand_chip *nand_chip = mtd_to_nand(mtd);	struct atmel_nand_host *host = nand_get_controller_data(nand_chip);	const int cap = host->pmecc_corr_cap;	const int num = 2 * cap + 1;	int sector_size = host->pmecc_sector_size;	int err_nbr = 0;	/* number of error */	int roots_nbr;		/* number of roots */	int i;	uint32_t val;	int16_t *smu = host->pmecc_smu;	int timeout = PMECC_MAX_TIMEOUT_US;	pmecc_writel(host->pmerrloc, eldis, PMERRLOC_DISABLE);	for (i = 0; i <= host->pmecc_lmu[cap + 1] >> 1; i++) {		pmecc_writel(host->pmerrloc, sigma[i],			     smu[(cap + 1) * num + i]);		err_nbr++;	}	val = PMERRLOC_ELCFG_NUM_ERRORS(err_nbr - 1);	if (sector_size == 1024)		val |= PMERRLOC_ELCFG_SECTOR_1024;	pmecc_writel(host->pmerrloc, elcfg, val);	pmecc_writel(host->pmerrloc, elen,		     sector_size * 8 + host->pmecc_degree * cap);	while (--timeout) {		if (pmecc_readl(host->pmerrloc, elisr) & PMERRLOC_CALC_DONE)			break;		WATCHDOG_RESET();		udelay(1);	}	if (!timeout) {		dev_err(host->dev, "atmel_nand : Timeout to calculate PMECC error location\n");		return -1;	}	roots_nbr = (pmecc_readl(host->pmerrloc, elisr) & PMERRLOC_ERR_NUM_MASK)			>> 8;	/* Number of roots == degree of smu hence <= cap */	if (roots_nbr == host->pmecc_lmu[cap + 1] >> 1)		return err_nbr - 1;	/* Number of roots does not match the degree of smu	 * unable to correct error */	return -1;}static void pmecc_correct_data(struct mtd_info *mtd, uint8_t *buf, uint8_t *ecc,		int sector_num, int extra_bytes, int err_nbr){	struct nand_chip *nand_chip = mtd_to_nand(mtd);	struct atmel_nand_host *host = nand_get_controller_data(nand_chip);	int i = 0;	int byte_pos, bit_pos, sector_size, pos;	uint32_t tmp;	uint8_t err_byte;	sector_size = host->pmecc_sector_size;	while (err_nbr) {		tmp = pmecc_readl(host->pmerrloc, el[i]) - 1;		byte_pos = tmp / 8;		bit_pos  = tmp % 8;		if (byte_pos >= (sector_size + extra_bytes))			BUG();	/* should never happen */		if (byte_pos < sector_size) {			err_byte = *(buf + byte_pos);			*(buf + byte_pos) ^= (1 << bit_pos);			pos = sector_num * host->pmecc_sector_size + byte_pos;			dev_dbg(host->dev, "Bit flip in data area, byte_pos: %d, bit_pos: %d, 0x%02x -> 0x%02x\n",				pos, bit_pos, err_byte, *(buf + byte_pos));		} else {			/* Bit flip in OOB area */			tmp = sector_num * host->pmecc_bytes_per_sector					+ (byte_pos - sector_size);			err_byte = ecc[tmp];			ecc[tmp] ^= (1 << bit_pos);			pos = tmp + nand_chip->ecc.layout->eccpos[0];			dev_dbg(host->dev, "Bit flip in OOB, oob_byte_pos: %d, bit_pos: %d, 0x%02x -> 0x%02x\n",				pos, bit_pos, err_byte, ecc[tmp]);		}		i++;		err_nbr--;	}	return;}static int pmecc_correction(struct mtd_info *mtd, u32 pmecc_stat, uint8_t *buf,	u8 *ecc){	struct nand_chip *nand_chip = mtd_to_nand(mtd);	struct atmel_nand_host *host = nand_get_controller_data(nand_chip);	int i, err_nbr, eccbytes;	uint8_t *buf_pos;	/* SAMA5D4 PMECC IP can correct errors for all 0xff page */	if (host->pmecc_version >= PMECC_VERSION_SAMA5D4)		goto normal_check;	eccbytes = nand_chip->ecc.bytes;	for (i = 0; i < eccbytes; i++)		if (ecc[i] != 0xff)			goto normal_check;	/* Erased page, return OK */	return 0;normal_check:	for (i = 0; i < host->pmecc_sector_number; i++) {		err_nbr = 0;		if (pmecc_stat & 0x1) {			buf_pos = buf + i * host->pmecc_sector_size;			pmecc_gen_syndrome(mtd, i);			pmecc_substitute(mtd);			pmecc_get_sigma(mtd);			err_nbr = pmecc_err_location(mtd);			if (err_nbr == -1) {				dev_err(host->dev, "PMECC: Too many errors\n");				mtd->ecc_stats.failed++;				return -EBADMSG;			} else {				pmecc_correct_data(mtd, buf_pos, ecc, i,					host->pmecc_bytes_per_sector, err_nbr);				mtd->ecc_stats.corrected += err_nbr;			}		}		pmecc_stat >>= 1;	}	return 0;}static int atmel_nand_pmecc_read_page(struct mtd_info *mtd,	struct nand_chip *chip, uint8_t *buf, int oob_required, int page){	struct atmel_nand_host *host = nand_get_controller_data(chip);	int eccsize = chip->ecc.size;	uint8_t *oob = chip->oob_poi;	uint32_t *eccpos = chip->ecc.layout->eccpos;	uint32_t stat;	int timeout = PMECC_MAX_TIMEOUT_US;	pmecc_writel(host->pmecc, ctrl, PMECC_CTRL_RST);	pmecc_writel(host->pmecc, ctrl, PMECC_CTRL_DISABLE);	pmecc_writel(host->pmecc, cfg, ((pmecc_readl(host->pmecc, cfg))		& ~PMECC_CFG_WRITE_OP) | PMECC_CFG_AUTO_ENABLE);	pmecc_writel(host->pmecc, ctrl, PMECC_CTRL_ENABLE);	pmecc_writel(host->pmecc, ctrl, PMECC_CTRL_DATA);	chip->read_buf(mtd, buf, eccsize);	chip->read_buf(mtd, oob, mtd->oobsize);	while (--timeout) {		if (!(pmecc_readl(host->pmecc, sr) & PMECC_SR_BUSY))			break;		WATCHDOG_RESET();		udelay(1);	}	if (!timeout) {		dev_err(host->dev, "atmel_nand : Timeout to read PMECC page\n");		return -1;	}	stat = pmecc_readl(host->pmecc, isr);	if (stat != 0)		if (pmecc_correction(mtd, stat, buf, &oob[eccpos[0]]) != 0)			return -EBADMSG;	return 0;}static int atmel_nand_pmecc_write_page(struct mtd_info *mtd,		struct nand_chip *chip, const uint8_t *buf,		int oob_required, int page){	struct atmel_nand_host *host = nand_get_controller_data(chip);	uint32_t *eccpos = chip->ecc.layout->eccpos;	int i, j;	int timeout = PMECC_MAX_TIMEOUT_US;	pmecc_writel(host->pmecc, ctrl, PMECC_CTRL_RST);	pmecc_writel(host->pmecc, ctrl, PMECC_CTRL_DISABLE);	pmecc_writel(host->pmecc, cfg, (pmecc_readl(host->pmecc, cfg) |		PMECC_CFG_WRITE_OP) & ~PMECC_CFG_AUTO_ENABLE);	pmecc_writel(host->pmecc, ctrl, PMECC_CTRL_ENABLE);	pmecc_writel(host->pmecc, ctrl, PMECC_CTRL_DATA);	chip->write_buf(mtd, (u8 *)buf, mtd->writesize);	while (--timeout) {		if (!(pmecc_readl(host->pmecc, sr) & PMECC_SR_BUSY))			break;		WATCHDOG_RESET();		udelay(1);	}	if (!timeout) {		dev_err(host->dev, "atmel_nand : Timeout to read PMECC status, fail to write PMECC in oob\n");		goto out;	}	for (i = 0; i < host->pmecc_sector_number; i++) {		for (j = 0; j < host->pmecc_bytes_per_sector; j++) {			int pos;			pos = i * host->pmecc_bytes_per_sector + j;			chip->oob_poi[eccpos[pos]] =				pmecc_readb(host->pmecc, ecc_port[i].ecc[j]);		}	}	chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);out:	return 0;}static void atmel_pmecc_core_init(struct mtd_info *mtd){	struct nand_chip *nand_chip = mtd_to_nand(mtd);	struct atmel_nand_host *host = nand_get_controller_data(nand_chip);	uint32_t val = 0;	struct nand_ecclayout *ecc_layout;	pmecc_writel(host->pmecc, ctrl, PMECC_CTRL_RST);	pmecc_writel(host->pmecc, ctrl, PMECC_CTRL_DISABLE);	switch (host->pmecc_corr_cap) {	case 2:		val = PMECC_CFG_BCH_ERR2;		break;	case 4:		val = PMECC_CFG_BCH_ERR4;		break;	case 8:		val = PMECC_CFG_BCH_ERR8;		break;	case 12:		val = PMECC_CFG_BCH_ERR12;		break;	case 24:		val = PMECC_CFG_BCH_ERR24;		break;	case 32:		val = PMECC_CFG_BCH_ERR32;		break;	}	if (host->pmecc_sector_size == 512)		val |= PMECC_CFG_SECTOR512;	else if (host->pmecc_sector_size == 1024)		val |= PMECC_CFG_SECTOR1024;	switch (host->pmecc_sector_number) {	case 1:		val |= PMECC_CFG_PAGE_1SECTOR;		break;	case 2:		val |= PMECC_CFG_PAGE_2SECTORS;		break;	case 4:		val |= PMECC_CFG_PAGE_4SECTORS;		break;	case 8:		val |= PMECC_CFG_PAGE_8SECTORS;		break;	}	val |= (PMECC_CFG_READ_OP | PMECC_CFG_SPARE_DISABLE		| PMECC_CFG_AUTO_DISABLE);	pmecc_writel(host->pmecc, cfg, val);	ecc_layout = nand_chip->ecc.layout;	pmecc_writel(host->pmecc, sarea, mtd->oobsize - 1);	pmecc_writel(host->pmecc, saddr, ecc_layout->eccpos[0]);	pmecc_writel(host->pmecc, eaddr,			ecc_layout->eccpos[ecc_layout->eccbytes - 1]);	/* See datasheet about PMECC Clock Control Register */	pmecc_writel(host->pmecc, clk, PMECC_CLK_133MHZ);	pmecc_writel(host->pmecc, idr, 0xff);	pmecc_writel(host->pmecc, ctrl, PMECC_CTRL_ENABLE);}#ifdef CONFIG_SYS_NAND_ONFI_DETECTION/* * pmecc_choose_ecc - Get ecc requirement from ONFI parameters. If *                    pmecc_corr_cap or pmecc_sector_size is 0, then set it as *                    ONFI ECC parameters. * @host: point to an atmel_nand_host structure. *        if host->pmecc_corr_cap is 0 then set it as the ONFI ecc_bits. *        if host->pmecc_sector_size is 0 then set it as the ONFI sector_size. * @chip: point to an nand_chip structure. * @cap: store the ONFI ECC correct bits capbility * @sector_size: in how many bytes that ONFI require to correct @ecc_bits * * Return 0 if success. otherwise return the error code. */static int pmecc_choose_ecc(struct atmel_nand_host *host,		struct nand_chip *chip,		int *cap, int *sector_size){	/* Get ECC requirement from ONFI parameters */	*cap = *sector_size = 0;	if (chip->onfi_version) {		*cap = chip->ecc_strength_ds;		*sector_size = chip->ecc_step_ds;		pr_debug("ONFI params, minimum required ECC: %d bits in %d bytes\n",			 *cap, *sector_size);	}	if (*cap == 0 && *sector_size == 0) {		/* Non-ONFI compliant */		dev_info(host->dev, "NAND chip is not ONFI compliant, assume ecc_bits is 2 in 512 bytes\n");		*cap = 2;		*sector_size = 512;	}	/* If head file doesn't specify then use the one in ONFI parameters */	if (host->pmecc_corr_cap == 0) {		/* use the most fitable ecc bits (the near bigger one ) */		if (*cap <= 2)			host->pmecc_corr_cap = 2;		else if (*cap <= 4)			host->pmecc_corr_cap = 4;		else if (*cap <= 8)			host->pmecc_corr_cap = 8;		else if (*cap <= 12)			host->pmecc_corr_cap = 12;		else if (*cap <= 24)			host->pmecc_corr_cap = 24;		else#ifdef CONFIG_SAMA5D2			host->pmecc_corr_cap = 32;#else			host->pmecc_corr_cap = 24;#endif	}	if (host->pmecc_sector_size == 0) {		/* use the most fitable sector size (the near smaller one ) */		if (*sector_size >= 1024)			host->pmecc_sector_size = 1024;		else if (*sector_size >= 512)			host->pmecc_sector_size = 512;		else			return -EINVAL;	}	return 0;}#endif#if defined(NO_GALOIS_TABLE_IN_ROM)static uint16_t *pmecc_galois_table;static inline int deg(unsigned int poly){	/* polynomial degree is the most-significant bit index */	return fls(poly) - 1;}static int build_gf_tables(int mm, unsigned int poly,			   int16_t *index_of, int16_t *alpha_to){	unsigned int i, x = 1;	const unsigned int k = 1 << deg(poly);	unsigned int nn = (1 << mm) - 1;	/* primitive polynomial must be of degree m */	if (k != (1u << mm))		return -EINVAL;	for (i = 0; i < nn; i++) {		alpha_to[i] = x;		index_of[x] = i;		if (i && (x == 1))			/* polynomial is not primitive (a^i=1 with 0<i<2^m-1) */			return -EINVAL;		x <<= 1;		if (x & k)			x ^= poly;	}	alpha_to[nn] = 1;	index_of[0] = 0;	return 0;}static uint16_t *create_lookup_table(int sector_size){	int degree = (sector_size == 512) ?			PMECC_GF_DIMENSION_13 :			PMECC_GF_DIMENSION_14;	unsigned int poly = (sector_size == 512) ?			PMECC_GF_13_PRIMITIVE_POLY :			PMECC_GF_14_PRIMITIVE_POLY;	int table_size = (sector_size == 512) ?			PMECC_INDEX_TABLE_SIZE_512 :			PMECC_INDEX_TABLE_SIZE_1024;	int16_t *addr = kzalloc(2 * table_size * sizeof(uint16_t), GFP_KERNEL);	if (addr && build_gf_tables(degree, poly, addr, addr + table_size))		return NULL;	return (uint16_t *)addr;}#endifstatic int atmel_pmecc_nand_init_params(struct nand_chip *nand,		struct mtd_info *mtd){	struct atmel_nand_host *host;	int cap, sector_size;	host = &pmecc_host;	nand_set_controller_data(nand, host);	nand->ecc.mode = NAND_ECC_HW;	nand->ecc.calculate = NULL;	nand->ecc.correct = NULL;	nand->ecc.hwctl = NULL;#ifdef CONFIG_SYS_NAND_ONFI_DETECTION	host->pmecc_corr_cap = host->pmecc_sector_size = 0;#ifdef CONFIG_PMECC_CAP	host->pmecc_corr_cap = CONFIG_PMECC_CAP;#endif#ifdef CONFIG_PMECC_SECTOR_SIZE	host->pmecc_sector_size = CONFIG_PMECC_SECTOR_SIZE;#endif	/* Get ECC requirement of ONFI parameters. And if CONFIG_PMECC_CAP or	 * CONFIG_PMECC_SECTOR_SIZE not defined, then use ecc_bits, sector_size	 * from ONFI.	 */	if (pmecc_choose_ecc(host, nand, &cap, §or_size)) {		dev_err(host->dev, "Required ECC %d bits in %d bytes not supported!\n",			cap, sector_size);		return -EINVAL;	}	if (cap > host->pmecc_corr_cap)		dev_info(host->dev, "WARNING: Using different ecc correct bits(%d bit) from Nand ONFI ECC reqirement (%d bit).\n",				host->pmecc_corr_cap, cap);	if (sector_size < host->pmecc_sector_size)		dev_info(host->dev, "WARNING: Using different ecc correct sector size (%d bytes) from Nand ONFI ECC reqirement (%d bytes).\n",				host->pmecc_sector_size, sector_size);#else	/* CONFIG_SYS_NAND_ONFI_DETECTION */	host->pmecc_corr_cap = CONFIG_PMECC_CAP;	host->pmecc_sector_size = CONFIG_PMECC_SECTOR_SIZE;#endif	cap = host->pmecc_corr_cap;	sector_size = host->pmecc_sector_size;	/* TODO: need check whether cap & sector_size is validate */#if defined(NO_GALOIS_TABLE_IN_ROM)	/*	 * As pmecc_rom_base is the begin of the gallois field table, So the	 * index offset just set as 0.	 */	host->pmecc_index_table_offset = 0;#else	if (host->pmecc_sector_size == 512)		host->pmecc_index_table_offset = ATMEL_PMECC_INDEX_OFFSET_512;	else		host->pmecc_index_table_offset = ATMEL_PMECC_INDEX_OFFSET_1024;#endif	pr_debug("Initialize PMECC params, cap: %d, sector: %d\n",		 cap, sector_size);	host->pmecc = (struct pmecc_regs __iomem *) ATMEL_BASE_PMECC;	host->pmerrloc = (struct pmecc_errloc_regs __iomem *)			ATMEL_BASE_PMERRLOC;#if defined(NO_GALOIS_TABLE_IN_ROM)	pmecc_galois_table = create_lookup_table(host->pmecc_sector_size);	if (!pmecc_galois_table) {		dev_err(host->dev, "out of memory\n");		return -ENOMEM;	}	host->pmecc_rom_base = (void __iomem *)pmecc_galois_table;#else	host->pmecc_rom_base = (void __iomem *) ATMEL_BASE_ROM;#endif	/* ECC is calculated for the whole page (1 step) */	nand->ecc.size = mtd->writesize;	/* set ECC page size and oob layout */	switch (mtd->writesize) {	case 2048:	case 4096:	case 8192:		host->pmecc_degree = (sector_size == 512) ?			PMECC_GF_DIMENSION_13 : PMECC_GF_DIMENSION_14;		host->pmecc_cw_len = (1 << host->pmecc_degree) - 1;		host->pmecc_sector_number = mtd->writesize / sector_size;		host->pmecc_bytes_per_sector = pmecc_get_ecc_bytes(			cap, sector_size);		host->pmecc_alpha_to = pmecc_get_alpha_to(host);		host->pmecc_index_of = host->pmecc_rom_base +			host->pmecc_index_table_offset;		nand->ecc.steps = 1;		nand->ecc.bytes = host->pmecc_bytes_per_sector *				       host->pmecc_sector_number;		if (nand->ecc.bytes > MTD_MAX_ECCPOS_ENTRIES_LARGE) {			dev_err(host->dev, "too large eccpos entries. max support ecc.bytes is %d\n",					MTD_MAX_ECCPOS_ENTRIES_LARGE);			return -EINVAL;		}		if (nand->ecc.bytes > mtd->oobsize - PMECC_OOB_RESERVED_BYTES) {			dev_err(host->dev, "No room for ECC bytes\n");			return -EINVAL;		}		pmecc_config_ecc_layout(&atmel_pmecc_oobinfo,					mtd->oobsize,					nand->ecc.bytes);		nand->ecc.layout = &atmel_pmecc_oobinfo;		break;	case 512:	case 1024:		/* TODO */		dev_err(host->dev, "Unsupported page size for PMECC, use Software ECC\n");	default:		/* page size not handled by HW ECC */		/* switching back to soft ECC */		nand->ecc.mode = NAND_ECC_SOFT;		nand->ecc.read_page = NULL;		nand->ecc.postpad = 0;		nand->ecc.prepad = 0;		nand->ecc.bytes = 0;		return 0;	}	/* Allocate data for PMECC computation */	if (pmecc_data_alloc(host)) {		dev_err(host->dev, "Cannot allocate memory for PMECC computation!\n");		return -ENOMEM;	}	nand->options |= NAND_NO_SUBPAGE_WRITE;	nand->ecc.read_page = atmel_nand_pmecc_read_page;	nand->ecc.write_page = atmel_nand_pmecc_write_page;	nand->ecc.strength = cap;	/* Check the PMECC ip version */	host->pmecc_version = pmecc_readl(host->pmerrloc, version);	dev_dbg(host->dev, "PMECC IP version is: %x\n", host->pmecc_version);	atmel_pmecc_core_init(mtd);	return 0;}#else/* oob layout for large page size * bad block info is on bytes 0 and 1 * the bytes have to be consecutives to avoid * several NAND_CMD_RNDOUT during read */static struct nand_ecclayout atmel_oobinfo_large = {	.eccbytes = 4,	.eccpos = {60, 61, 62, 63},	.oobfree = {		{2, 58}	},};/* oob layout for small page size * bad block info is on bytes 4 and 5 * the bytes have to be consecutives to avoid * several NAND_CMD_RNDOUT during read */static struct nand_ecclayout atmel_oobinfo_small = {	.eccbytes = 4,	.eccpos = {0, 1, 2, 3},	.oobfree = {		{6, 10}	},};/* * Calculate HW ECC * * function called after a write * * mtd:        MTD block structure * dat:        raw data (unused) * ecc_code:   buffer for ECC */static int atmel_nand_calculate(struct mtd_info *mtd,		const u_char *dat, unsigned char *ecc_code){	unsigned int ecc_value;	/* get the first 2 ECC bytes */	ecc_value = ecc_readl(CONFIG_SYS_NAND_ECC_BASE, PR);	ecc_code[0] = ecc_value & 0xFF;	ecc_code[1] = (ecc_value >> 8) & 0xFF;	/* get the last 2 ECC bytes */	ecc_value = ecc_readl(CONFIG_SYS_NAND_ECC_BASE, NPR) & ATMEL_ECC_NPARITY;	ecc_code[2] = ecc_value & 0xFF;	ecc_code[3] = (ecc_value >> 8) & 0xFF;	return 0;}/* * HW ECC read page function * * mtd:        mtd info structure * chip:       nand chip info structure * buf:        buffer to store read data * oob_required:    caller expects OOB data read to chip->oob_poi */static int atmel_nand_read_page(struct mtd_info *mtd, struct nand_chip *chip,				uint8_t *buf, int oob_required, int page){	int eccsize = chip->ecc.size;	int eccbytes = chip->ecc.bytes;	uint32_t *eccpos = chip->ecc.layout->eccpos;	uint8_t *p = buf;	uint8_t *oob = chip->oob_poi;	uint8_t *ecc_pos;	int stat;	/* read the page */	chip->read_buf(mtd, p, eccsize);	/* move to ECC position if needed */	if (eccpos[0] != 0) {		/* This only works on large pages		 * because the ECC controller waits for		 * NAND_CMD_RNDOUTSTART after the		 * NAND_CMD_RNDOUT.		 * anyway, for small pages, the eccpos[0] == 0		 */		chip->cmdfunc(mtd, NAND_CMD_RNDOUT,				mtd->writesize + eccpos[0], -1);	}	/* the ECC controller needs to read the ECC just after the data */	ecc_pos = oob + eccpos[0];	chip->read_buf(mtd, ecc_pos, eccbytes);	/* check if there's an error */	stat = chip->ecc.correct(mtd, p, oob, NULL);	if (stat < 0)		mtd->ecc_stats.failed++;	else		mtd->ecc_stats.corrected += stat;	/* get back to oob start (end of page) */	chip->cmdfunc(mtd, NAND_CMD_RNDOUT, mtd->writesize, -1);	/* read the oob */	chip->read_buf(mtd, oob, mtd->oobsize);	return 0;}/* * HW ECC Correction * * function called after a read * * mtd:        MTD block structure * dat:        raw data read from the chip * read_ecc:   ECC from the chip (unused) * isnull:     unused * * Detect and correct a 1 bit error for a page */static int atmel_nand_correct(struct mtd_info *mtd, u_char *dat,		u_char *read_ecc, u_char *isnull){	struct nand_chip *nand_chip = mtd_to_nand(mtd);	unsigned int ecc_status;	unsigned int ecc_word, ecc_bit;	/* get the status from the Status Register */	ecc_status = ecc_readl(CONFIG_SYS_NAND_ECC_BASE, SR);	/* if there's no error */	if (likely(!(ecc_status & ATMEL_ECC_RECERR)))		return 0;	/* get error bit offset (4 bits) */	ecc_bit = ecc_readl(CONFIG_SYS_NAND_ECC_BASE, PR) & ATMEL_ECC_BITADDR;	/* get word address (12 bits) */	ecc_word = ecc_readl(CONFIG_SYS_NAND_ECC_BASE, PR) & ATMEL_ECC_WORDADDR;	ecc_word >>= 4;	/* if there are multiple errors */	if (ecc_status & ATMEL_ECC_MULERR) {		/* check if it is a freshly erased block		 * (filled with 0xff) */		if ((ecc_bit == ATMEL_ECC_BITADDR)				&& (ecc_word == (ATMEL_ECC_WORDADDR >> 4))) {			/* the block has just been erased, return OK */			return 0;		}		/* it doesn't seems to be a freshly		 * erased block.		 * We can't correct so many errors */		dev_warn(host->dev, "atmel_nand : multiple errors detected."				" Unable to correct.\n");		return -EBADMSG;	}	/* if there's a single bit error : we can correct it */	if (ecc_status & ATMEL_ECC_ECCERR) {		/* there's nothing much to do here.		 * the bit error is on the ECC itself.		 */		dev_warn(host->dev, "atmel_nand : one bit error on ECC code."				" Nothing to correct\n");		return 0;	}	dev_warn(host->dev, "atmel_nand : one bit error on data."			" (word offset in the page :"			" 0x%x bit offset : 0x%x)\n",			ecc_word, ecc_bit);	/* correct the error */	if (nand_chip->options & NAND_BUSWIDTH_16) {		/* 16 bits words */		((unsigned short *) dat)[ecc_word] ^= (1 << ecc_bit);	} else {		/* 8 bits words */		dat[ecc_word] ^= (1 << ecc_bit);	}	dev_warn(host->dev, "atmel_nand : error corrected\n");	return 1;}/* * Enable HW ECC : unused on most chips */static void atmel_nand_hwctl(struct mtd_info *mtd, int mode){}int atmel_hwecc_nand_init_param(struct nand_chip *nand, struct mtd_info *mtd){	nand->ecc.mode = NAND_ECC_HW;	nand->ecc.calculate = atmel_nand_calculate;	nand->ecc.correct = atmel_nand_correct;	nand->ecc.hwctl = atmel_nand_hwctl;	nand->ecc.read_page = atmel_nand_read_page;	nand->ecc.bytes = 4;	nand->ecc.strength = 4;	if (nand->ecc.mode == NAND_ECC_HW) {		/* ECC is calculated for the whole page (1 step) */		nand->ecc.size = mtd->writesize;		/* set ECC page size and oob layout */		switch (mtd->writesize) {		case 512:			nand->ecc.layout = &atmel_oobinfo_small;			ecc_writel(CONFIG_SYS_NAND_ECC_BASE, MR,					ATMEL_ECC_PAGESIZE_528);			break;		case 1024:			nand->ecc.layout = &atmel_oobinfo_large;			ecc_writel(CONFIG_SYS_NAND_ECC_BASE, MR,					ATMEL_ECC_PAGESIZE_1056);			break;		case 2048:			nand->ecc.layout = &atmel_oobinfo_large;			ecc_writel(CONFIG_SYS_NAND_ECC_BASE, MR,					ATMEL_ECC_PAGESIZE_2112);			break;		case 4096:			nand->ecc.layout = &atmel_oobinfo_large;			ecc_writel(CONFIG_SYS_NAND_ECC_BASE, MR,					ATMEL_ECC_PAGESIZE_4224);			break;		default:			/* page size not handled by HW ECC */			/* switching back to soft ECC */			nand->ecc.mode = NAND_ECC_SOFT;			nand->ecc.calculate = NULL;			nand->ecc.correct = NULL;			nand->ecc.hwctl = NULL;			nand->ecc.read_page = NULL;			nand->ecc.postpad = 0;			nand->ecc.prepad = 0;			nand->ecc.bytes = 0;			break;		}	}	return 0;}#endif /* CONFIG_ATMEL_NAND_HW_PMECC */#endif /* CONFIG_ATMEL_NAND_HWECC */static void at91_nand_hwcontrol(struct mtd_info *mtd,					 int cmd, unsigned int ctrl){	struct nand_chip *this = mtd_to_nand(mtd);	if (ctrl & NAND_CTRL_CHANGE) {		ulong IO_ADDR_W = (ulong) this->IO_ADDR_W;		IO_ADDR_W &= ~(CONFIG_SYS_NAND_MASK_ALE			     | CONFIG_SYS_NAND_MASK_CLE);		if (ctrl & NAND_CLE)			IO_ADDR_W |= CONFIG_SYS_NAND_MASK_CLE;		if (ctrl & NAND_ALE)			IO_ADDR_W |= CONFIG_SYS_NAND_MASK_ALE;#ifdef CONFIG_SYS_NAND_ENABLE_PIN		at91_set_gpio_value(CONFIG_SYS_NAND_ENABLE_PIN,				    !(ctrl & NAND_NCE));#endif		this->IO_ADDR_W = (void *) IO_ADDR_W;	}	if (cmd != NAND_CMD_NONE)		writeb(cmd, this->IO_ADDR_W);}#ifdef CONFIG_SYS_NAND_READY_PINstatic int at91_nand_ready(struct mtd_info *mtd){	return at91_get_gpio_value(CONFIG_SYS_NAND_READY_PIN);}#endif#ifdef CONFIG_SPL_BUILD/* The following code is for SPL */static struct mtd_info *mtd;static struct nand_chip nand_chip;static int nand_command(int block, int page, uint32_t offs, u8 cmd){	struct nand_chip *this = mtd_to_nand(mtd);	int page_addr = page + block * CONFIG_SYS_NAND_PAGE_COUNT;	void (*hwctrl)(struct mtd_info *mtd, int cmd,			unsigned int ctrl) = this->cmd_ctrl;	while (!this->dev_ready(mtd))		;	if (cmd == NAND_CMD_READOOB) {		offs += CONFIG_SYS_NAND_PAGE_SIZE;		cmd = NAND_CMD_READ0;	}	hwctrl(mtd, cmd, NAND_CTRL_CLE | NAND_CTRL_CHANGE);	if ((this->options & NAND_BUSWIDTH_16) && !nand_opcode_8bits(cmd))		offs >>= 1;	hwctrl(mtd, offs & 0xff, NAND_CTRL_ALE | NAND_CTRL_CHANGE);	hwctrl(mtd, (offs >> 8) & 0xff, NAND_CTRL_ALE);	hwctrl(mtd, (page_addr & 0xff), NAND_CTRL_ALE);	hwctrl(mtd, ((page_addr >> 8) & 0xff), NAND_CTRL_ALE);#ifdef CONFIG_SYS_NAND_5_ADDR_CYCLE	hwctrl(mtd, (page_addr >> 16) & 0x0f, NAND_CTRL_ALE);#endif	hwctrl(mtd, NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE);	hwctrl(mtd, NAND_CMD_READSTART, NAND_CTRL_CLE | NAND_CTRL_CHANGE);	hwctrl(mtd, NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE);	while (!this->dev_ready(mtd))		;	return 0;}static int nand_is_bad_block(int block){	struct nand_chip *this = mtd_to_nand(mtd);	nand_command(block, 0, CONFIG_SYS_NAND_BAD_BLOCK_POS, NAND_CMD_READOOB);	if (this->options & NAND_BUSWIDTH_16) {		if (readw(this->IO_ADDR_R) != 0xffff)			return 1;	} else {		if (readb(this->IO_ADDR_R) != 0xff)			return 1;	}	return 0;}#ifdef CONFIG_SPL_NAND_ECCstatic int nand_ecc_pos[] = CONFIG_SYS_NAND_ECCPOS;#define ECCSTEPS (CONFIG_SYS_NAND_PAGE_SIZE / \		  CONFIG_SYS_NAND_ECCSIZE)#define ECCTOTAL (ECCSTEPS * CONFIG_SYS_NAND_ECCBYTES)static int nand_read_page(int block, int page, void *dst){	struct nand_chip *this = mtd_to_nand(mtd);	u_char ecc_calc[ECCTOTAL];	u_char ecc_code[ECCTOTAL];	u_char oob_data[CONFIG_SYS_NAND_OOBSIZE];	int eccsize = CONFIG_SYS_NAND_ECCSIZE;	int eccbytes = CONFIG_SYS_NAND_ECCBYTES;	int eccsteps = ECCSTEPS;	int i;	uint8_t *p = dst;	nand_command(block, page, 0, NAND_CMD_READ0);	for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {		if (this->ecc.mode != NAND_ECC_SOFT)			this->ecc.hwctl(mtd, NAND_ECC_READ);		this->read_buf(mtd, p, eccsize);		this->ecc.calculate(mtd, p, &ecc_calc[i]);	}	this->read_buf(mtd, oob_data, CONFIG_SYS_NAND_OOBSIZE);	for (i = 0; i < ECCTOTAL; i++)		ecc_code[i] = oob_data[nand_ecc_pos[i]];	eccsteps = ECCSTEPS;	p = dst;	for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize)		this->ecc.correct(mtd, p, &ecc_code[i], &ecc_calc[i]);	return 0;}int spl_nand_erase_one(int block, int page){	struct nand_chip *this = mtd_to_nand(mtd);	void (*hwctrl)(struct mtd_info *mtd, int cmd,			unsigned int ctrl) = this->cmd_ctrl;	int page_addr;	if (nand_chip.select_chip)		nand_chip.select_chip(mtd, 0);	page_addr = page + block * CONFIG_SYS_NAND_PAGE_COUNT;	hwctrl(mtd, NAND_CMD_ERASE1, NAND_CTRL_CLE | NAND_CTRL_CHANGE);	/* Row address */	hwctrl(mtd, (page_addr & 0xff), NAND_CTRL_ALE | NAND_CTRL_CHANGE);	hwctrl(mtd, ((page_addr >> 8) & 0xff),	       NAND_CTRL_ALE | NAND_CTRL_CHANGE);#ifdef CONFIG_SYS_NAND_5_ADDR_CYCLE	/* One more address cycle for devices > 128MiB */	hwctrl(mtd, (page_addr >> 16) & 0x0f,	       NAND_CTRL_ALE | NAND_CTRL_CHANGE);#endif	hwctrl(mtd, NAND_CMD_ERASE2, NAND_CTRL_CLE | NAND_CTRL_CHANGE);	while (!this->dev_ready(mtd))		;	nand_deselect();	return 0;}#elsestatic int nand_read_page(int block, int page, void *dst){	struct nand_chip *this = mtd_to_nand(mtd);	nand_command(block, page, 0, NAND_CMD_READ0);	atmel_nand_pmecc_read_page(mtd, this, dst, 0, page);	return 0;}#endif /* CONFIG_SPL_NAND_ECC */int at91_nand_wait_ready(struct mtd_info *mtd){	struct nand_chip *this = mtd_to_nand(mtd);	udelay(this->chip_delay);	return 1;}int board_nand_init(struct nand_chip *nand){	int ret = 0;	nand->ecc.mode = NAND_ECC_SOFT;#ifdef CONFIG_SYS_NAND_DBW_16	nand->options = NAND_BUSWIDTH_16;	nand->read_buf = nand_read_buf16;#else	nand->read_buf = nand_read_buf;#endif	nand->cmd_ctrl = at91_nand_hwcontrol;#ifdef CONFIG_SYS_NAND_READY_PIN	nand->dev_ready = at91_nand_ready;#else	nand->dev_ready = at91_nand_wait_ready;#endif	nand->chip_delay = 20;#ifdef CONFIG_SYS_NAND_USE_FLASH_BBT	nand->bbt_options |= NAND_BBT_USE_FLASH;#endif#ifdef CONFIG_ATMEL_NAND_HWECC#ifdef CONFIG_ATMEL_NAND_HW_PMECC	ret = atmel_pmecc_nand_init_params(nand, mtd);#endif#endif	return ret;}void nand_init(void){	mtd = nand_to_mtd(&nand_chip);	mtd->writesize = CONFIG_SYS_NAND_PAGE_SIZE;	mtd->oobsize = CONFIG_SYS_NAND_OOBSIZE;	nand_chip.IO_ADDR_R = (void __iomem *)CONFIG_SYS_NAND_BASE;	nand_chip.IO_ADDR_W = (void __iomem *)CONFIG_SYS_NAND_BASE;	board_nand_init(&nand_chip);#ifdef CONFIG_SPL_NAND_ECC	if (nand_chip.ecc.mode == NAND_ECC_SOFT) {		nand_chip.ecc.calculate = nand_calculate_ecc;		nand_chip.ecc.correct = nand_correct_data;	}#endif	if (nand_chip.select_chip)		nand_chip.select_chip(mtd, 0);}void nand_deselect(void){	if (nand_chip.select_chip)		nand_chip.select_chip(mtd, -1);}#include "nand_spl_loaders.c"#else#ifndef CONFIG_SYS_NAND_BASE_LIST#define CONFIG_SYS_NAND_BASE_LIST { CONFIG_SYS_NAND_BASE }#endifstatic struct nand_chip nand_chip[CONFIG_SYS_MAX_NAND_DEVICE];static ulong base_addr[CONFIG_SYS_MAX_NAND_DEVICE] = CONFIG_SYS_NAND_BASE_LIST;int atmel_nand_chip_init(int devnum, ulong base_addr){	int ret;	struct nand_chip *nand = &nand_chip[devnum];	struct mtd_info *mtd = nand_to_mtd(nand);	nand->IO_ADDR_R = nand->IO_ADDR_W = (void  __iomem *)base_addr;#ifdef CONFIG_NAND_ECC_BCH	nand->ecc.mode = NAND_ECC_SOFT_BCH;#else	nand->ecc.mode = NAND_ECC_SOFT;#endif#ifdef CONFIG_SYS_NAND_DBW_16	nand->options = NAND_BUSWIDTH_16;#endif	nand->cmd_ctrl = at91_nand_hwcontrol;#ifdef CONFIG_SYS_NAND_READY_PIN	nand->dev_ready = at91_nand_ready;#endif	nand->chip_delay = 75;#ifdef CONFIG_SYS_NAND_USE_FLASH_BBT	nand->bbt_options |= NAND_BBT_USE_FLASH;#endif	ret = nand_scan_ident(mtd, CONFIG_SYS_NAND_MAX_CHIPS, NULL);	if (ret)		return ret;#ifdef CONFIG_ATMEL_NAND_HWECC#ifdef CONFIG_ATMEL_NAND_HW_PMECC	ret = atmel_pmecc_nand_init_params(nand, mtd);#else	ret = atmel_hwecc_nand_init_param(nand, mtd);#endif	if (ret)		return ret;#endif	ret = nand_scan_tail(mtd);	if (!ret)		nand_register(devnum, mtd);	return ret;}void board_nand_init(void){	int i;	for (i = 0; i < CONFIG_SYS_MAX_NAND_DEVICE; i++)		if (atmel_nand_chip_init(i, base_addr[i]))			dev_err(host->dev, "atmel_nand: Fail to initialize #%d chip",				i);}#endif /* CONFIG_SPL_BUILD */
 |