| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518 | // SPDX-License-Identifier: GPL-2.0+/* * (C) Copyright 2010 * Vipin Kumar, ST Microelectronics, vipin.kumar@st.com. * * (C) Copyright 2012 * Amit Virdi, ST Microelectronics, amit.virdi@st.com. */#include <common.h>#include <nand.h>#include <asm/io.h>#include <linux/bitops.h>#include <linux/err.h>#include <linux/mtd/nand_ecc.h>#include <linux/mtd/fsmc_nand.h>#include <asm/arch/hardware.h>static u32 fsmc_version;static struct fsmc_regs *const fsmc_regs_p = (struct fsmc_regs *)	CONFIG_SYS_FSMC_BASE;/* * ECC4 and ECC1 have 13 bytes and 3 bytes of ecc respectively for 512 bytes of * data. ECC4 can correct up to 8 bits in 512 bytes of data while ECC1 can * correct 1 bit in 512 bytes */static struct nand_ecclayout fsmc_ecc4_lp_layout = {	.eccbytes = 104,	.eccpos = {  2,   3,   4,   5,   6,   7,   8,		9,  10,  11,  12,  13,  14,		18,  19,  20,  21,  22,  23,  24,		25,  26,  27,  28,  29,  30,		34,  35,  36,  37,  38,  39,  40,		41,  42,  43,  44,  45,  46,		50,  51,  52,  53,  54,  55,  56,		57,  58,  59,  60,  61,  62,		66,  67,  68,  69,  70,  71,  72,		73,  74,  75,  76,  77,  78,		82,  83,  84,  85,  86,  87,  88,		89,  90,  91,  92,  93,  94,		98,  99, 100, 101, 102, 103, 104,		105, 106, 107, 108, 109, 110,		114, 115, 116, 117, 118, 119, 120,		121, 122, 123, 124, 125, 126	},	.oobfree = {		{.offset = 15, .length = 3},		{.offset = 31, .length = 3},		{.offset = 47, .length = 3},		{.offset = 63, .length = 3},		{.offset = 79, .length = 3},		{.offset = 95, .length = 3},		{.offset = 111, .length = 3},		{.offset = 127, .length = 1}	}};/* * ECC4 layout for NAND of pagesize 4096 bytes & OOBsize 224 bytes. 13*8 bytes * of OOB size is reserved for ECC, Byte no. 0 & 1 reserved for bad block & 118 * bytes are free for use. */static struct nand_ecclayout fsmc_ecc4_224_layout = {	.eccbytes = 104,	.eccpos = {  2,   3,   4,   5,   6,   7,   8,		9,  10,  11,  12,  13,  14,		18,  19,  20,  21,  22,  23,  24,		25,  26,  27,  28,  29,  30,		34,  35,  36,  37,  38,  39,  40,		41,  42,  43,  44,  45,  46,		50,  51,  52,  53,  54,  55,  56,		57,  58,  59,  60,  61,  62,		66,  67,  68,  69,  70,  71,  72,		73,  74,  75,  76,  77,  78,		82,  83,  84,  85,  86,  87,  88,		89,  90,  91,  92,  93,  94,		98,  99, 100, 101, 102, 103, 104,		105, 106, 107, 108, 109, 110,		114, 115, 116, 117, 118, 119, 120,		121, 122, 123, 124, 125, 126	},	.oobfree = {		{.offset = 15, .length = 3},		{.offset = 31, .length = 3},		{.offset = 47, .length = 3},		{.offset = 63, .length = 3},		{.offset = 79, .length = 3},		{.offset = 95, .length = 3},		{.offset = 111, .length = 3},		{.offset = 127, .length = 97}	}};/* * ECC placement definitions in oobfree type format * There are 13 bytes of ecc for every 512 byte block and it has to be read * consecutively and immediately after the 512 byte data block for hardware to * generate the error bit offsets in 512 byte data * Managing the ecc bytes in the following way makes it easier for software to * read ecc bytes consecutive to data bytes. This way is similar to * oobfree structure maintained already in u-boot nand driver */static struct fsmc_eccplace fsmc_eccpl_lp = {	.eccplace = {		{.offset = 2, .length = 13},		{.offset = 18, .length = 13},		{.offset = 34, .length = 13},		{.offset = 50, .length = 13},		{.offset = 66, .length = 13},		{.offset = 82, .length = 13},		{.offset = 98, .length = 13},		{.offset = 114, .length = 13}	}};static struct nand_ecclayout fsmc_ecc4_sp_layout = {	.eccbytes = 13,	.eccpos = { 0,  1,  2,  3,  6,  7, 8,		9, 10, 11, 12, 13, 14	},	.oobfree = {		{.offset = 15, .length = 1},	}};static struct fsmc_eccplace fsmc_eccpl_sp = {	.eccplace = {		{.offset = 0, .length = 4},		{.offset = 6, .length = 9}	}};static struct nand_ecclayout fsmc_ecc1_layout = {	.eccbytes = 24,	.eccpos = {2, 3, 4, 18, 19, 20, 34, 35, 36, 50, 51, 52,		66, 67, 68, 82, 83, 84, 98, 99, 100, 114, 115, 116},	.oobfree = {		{.offset = 8, .length = 8},		{.offset = 24, .length = 8},		{.offset = 40, .length = 8},		{.offset = 56, .length = 8},		{.offset = 72, .length = 8},		{.offset = 88, .length = 8},		{.offset = 104, .length = 8},		{.offset = 120, .length = 8}	}};/* Count the number of 0's in buff upto a max of max_bits */static int count_written_bits(uint8_t *buff, int size, int max_bits){	int k, written_bits = 0;	for (k = 0; k < size; k++) {		written_bits += hweight8(~buff[k]);		if (written_bits > max_bits)			break;	}	return written_bits;}static void fsmc_nand_hwcontrol(struct mtd_info *mtd, int cmd, uint ctrl){	struct nand_chip *this = mtd_to_nand(mtd);	ulong IO_ADDR_W;	if (ctrl & NAND_CTRL_CHANGE) {		IO_ADDR_W = (ulong)this->IO_ADDR_W;		IO_ADDR_W &= ~(CONFIG_SYS_NAND_CLE | CONFIG_SYS_NAND_ALE);		if (ctrl & NAND_CLE)			IO_ADDR_W |= CONFIG_SYS_NAND_CLE;		if (ctrl & NAND_ALE)			IO_ADDR_W |= CONFIG_SYS_NAND_ALE;		if (ctrl & NAND_NCE) {			writel(readl(&fsmc_regs_p->pc) |					FSMC_ENABLE, &fsmc_regs_p->pc);		} else {			writel(readl(&fsmc_regs_p->pc) &					~FSMC_ENABLE, &fsmc_regs_p->pc);		}		this->IO_ADDR_W = (void *)IO_ADDR_W;	}	if (cmd != NAND_CMD_NONE)		writeb(cmd, this->IO_ADDR_W);}static int fsmc_bch8_correct_data(struct mtd_info *mtd, u_char *dat,		u_char *read_ecc, u_char *calc_ecc){	/* The calculated ecc is actually the correction index in data */	u32 err_idx[8];	u32 num_err, i;	u32 ecc1, ecc2, ecc3, ecc4;	num_err = (readl(&fsmc_regs_p->sts) >> 10) & 0xF;	if (likely(num_err == 0))		return 0;	if (unlikely(num_err > 8)) {		/*		 * This is a temporary erase check. A newly erased page read		 * would result in an ecc error because the oob data is also		 * erased to FF and the calculated ecc for an FF data is not		 * FF..FF.		 * This is a workaround to skip performing correction in case		 * data is FF..FF		 *		 * Logic:		 * For every page, each bit written as 0 is counted until these		 * number of bits are greater than 8 (the maximum correction		 * capability of FSMC for each 512 + 13 bytes)		 */		int bits_ecc = count_written_bits(read_ecc, 13, 8);		int bits_data = count_written_bits(dat, 512, 8);		if ((bits_ecc + bits_data) <= 8) {			if (bits_data)				memset(dat, 0xff, 512);			return bits_data + bits_ecc;		}		return -EBADMSG;	}	ecc1 = readl(&fsmc_regs_p->ecc1);	ecc2 = readl(&fsmc_regs_p->ecc2);	ecc3 = readl(&fsmc_regs_p->ecc3);	ecc4 = readl(&fsmc_regs_p->sts);	err_idx[0] = (ecc1 >> 0) & 0x1FFF;	err_idx[1] = (ecc1 >> 13) & 0x1FFF;	err_idx[2] = (((ecc2 >> 0) & 0x7F) << 6) | ((ecc1 >> 26) & 0x3F);	err_idx[3] = (ecc2 >> 7) & 0x1FFF;	err_idx[4] = (((ecc3 >> 0) & 0x1) << 12) | ((ecc2 >> 20) & 0xFFF);	err_idx[5] = (ecc3 >> 1) & 0x1FFF;	err_idx[6] = (ecc3 >> 14) & 0x1FFF;	err_idx[7] = (((ecc4 >> 16) & 0xFF) << 5) | ((ecc3 >> 27) & 0x1F);	i = 0;	while (i < num_err) {		err_idx[i] ^= 3;		if (err_idx[i] < 512 * 8)			__change_bit(err_idx[i], dat);		i++;	}	return num_err;}static int fsmc_read_hwecc(struct mtd_info *mtd,			const u_char *data, u_char *ecc){	u_int ecc_tmp;	int timeout = CONFIG_SYS_HZ;	ulong start;	switch (fsmc_version) {	case FSMC_VER8:		start = get_timer(0);		while (get_timer(start) < timeout) {			/*			 * Busy waiting for ecc computation			 * to finish for 512 bytes			 */			if (readl(&fsmc_regs_p->sts) & FSMC_CODE_RDY)				break;		}		ecc_tmp = readl(&fsmc_regs_p->ecc1);		ecc[0] = (u_char) (ecc_tmp >> 0);		ecc[1] = (u_char) (ecc_tmp >> 8);		ecc[2] = (u_char) (ecc_tmp >> 16);		ecc[3] = (u_char) (ecc_tmp >> 24);		ecc_tmp = readl(&fsmc_regs_p->ecc2);		ecc[4] = (u_char) (ecc_tmp >> 0);		ecc[5] = (u_char) (ecc_tmp >> 8);		ecc[6] = (u_char) (ecc_tmp >> 16);		ecc[7] = (u_char) (ecc_tmp >> 24);		ecc_tmp = readl(&fsmc_regs_p->ecc3);		ecc[8] = (u_char) (ecc_tmp >> 0);		ecc[9] = (u_char) (ecc_tmp >> 8);		ecc[10] = (u_char) (ecc_tmp >> 16);		ecc[11] = (u_char) (ecc_tmp >> 24);		ecc_tmp = readl(&fsmc_regs_p->sts);		ecc[12] = (u_char) (ecc_tmp >> 16);		break;	default:		ecc_tmp = readl(&fsmc_regs_p->ecc1);		ecc[0] = (u_char) (ecc_tmp >> 0);		ecc[1] = (u_char) (ecc_tmp >> 8);		ecc[2] = (u_char) (ecc_tmp >> 16);		break;	}	return 0;}void fsmc_enable_hwecc(struct mtd_info *mtd, int mode){	writel(readl(&fsmc_regs_p->pc) & ~FSMC_ECCPLEN_256,			&fsmc_regs_p->pc);	writel(readl(&fsmc_regs_p->pc) & ~FSMC_ECCEN,			&fsmc_regs_p->pc);	writel(readl(&fsmc_regs_p->pc) | FSMC_ECCEN,			&fsmc_regs_p->pc);}/* * fsmc_read_page_hwecc * @mtd:	mtd info structure * @chip:	nand chip info structure * @buf:	buffer to store read data * @oob_required:	caller expects OOB data read to chip->oob_poi * @page:	page number to read * * This routine is needed for fsmc verison 8 as reading from NAND chip has to be * performed in a strict sequence as follows: * data(512 byte) -> ecc(13 byte) * After this read, fsmc hardware generates and reports error data bits(upto a * max of 8 bits) */static int fsmc_read_page_hwecc(struct mtd_info *mtd, struct nand_chip *chip,				 uint8_t *buf, int oob_required, int page){	struct fsmc_eccplace *fsmc_eccpl;	int i, j, s, stat, eccsize = chip->ecc.size;	int eccbytes = chip->ecc.bytes;	int eccsteps = chip->ecc.steps;	uint8_t *p = buf;	uint8_t *ecc_calc = chip->buffers->ecccalc;	uint8_t *ecc_code = chip->buffers->ecccode;	int off, len, group = 0;	uint8_t oob[13] __attribute__ ((aligned (2)));	/* Differentiate between small and large page ecc place definitions */	if (mtd->writesize == 512)		fsmc_eccpl = &fsmc_eccpl_sp;	else		fsmc_eccpl = &fsmc_eccpl_lp;	for (i = 0, s = 0; s < eccsteps; s++, i += eccbytes, p += eccsize) {		chip->cmdfunc(mtd, NAND_CMD_READ0, s * eccsize, page);		chip->ecc.hwctl(mtd, NAND_ECC_READ);		chip->read_buf(mtd, p, eccsize);		for (j = 0; j < eccbytes;) {			off = fsmc_eccpl->eccplace[group].offset;			len = fsmc_eccpl->eccplace[group].length;			group++;			/*			 * length is intentionally kept a higher multiple of 2			 * to read at least 13 bytes even in case of 16 bit NAND			 * devices			 */			if (chip->options & NAND_BUSWIDTH_16)				len = roundup(len, 2);			chip->cmdfunc(mtd, NAND_CMD_READOOB, off, page);			chip->read_buf(mtd, oob + j, len);			j += len;		}		memcpy(&ecc_code[i], oob, 13);		chip->ecc.calculate(mtd, p, &ecc_calc[i]);		stat = chip->ecc.correct(mtd, p, &ecc_code[i],				&ecc_calc[i]);		if (stat < 0)			mtd->ecc_stats.failed++;		else			mtd->ecc_stats.corrected += stat;	}	return 0;}#ifndef CONFIG_SPL_BUILD/* * fsmc_nand_switch_ecc - switch the ECC operation between different engines * * @eccstrength		- the number of bits that could be corrected *			  (1 - HW, 4 - SW BCH4) */int fsmc_nand_switch_ecc(uint32_t eccstrength){	struct nand_chip *nand;	struct mtd_info *mtd;	int err;	/*	 * This functions is only called on SPEAr600 platforms, supporting	 * 1 bit HW ECC. The BCH8 HW ECC (FSMC_VER8) from the ST-Ericsson	 * Nomadik SoC is currently supporting this fsmc_nand_switch_ecc()	 * function, as it doesn't need to switch to a different ECC layout.	 */	mtd = get_nand_dev_by_index(nand_curr_device);	nand = mtd_to_nand(mtd);	/* Setup the ecc configurations again */	if (eccstrength == 1) {		nand->ecc.mode = NAND_ECC_HW;		nand->ecc.bytes = 3;		nand->ecc.strength = 1;		nand->ecc.layout = &fsmc_ecc1_layout;		nand->ecc.calculate = fsmc_read_hwecc;		nand->ecc.correct = nand_correct_data;	} else if (eccstrength == 4) {		/*		 * .calculate .correct and .bytes will be set in		 * nand_scan_tail()		 */		nand->ecc.mode = NAND_ECC_SOFT_BCH;		nand->ecc.strength = 4;		nand->ecc.layout = NULL;	} else {		printf("Error: ECC strength %d not supported!\n", eccstrength);	}	/* Update NAND handling after ECC mode switch */	err = nand_scan_tail(mtd);	return err;}#endif /* CONFIG_SPL_BUILD */int fsmc_nand_init(struct nand_chip *nand){	static int chip_nr;	struct mtd_info *mtd;	u32 peripid2 = readl(&fsmc_regs_p->peripid2);	fsmc_version = (peripid2 >> FSMC_REVISION_SHFT) &		FSMC_REVISION_MSK;	writel(readl(&fsmc_regs_p->ctrl) | FSMC_WP, &fsmc_regs_p->ctrl);#if defined(CONFIG_SYS_FSMC_NAND_16BIT)	writel(FSMC_DEVWID_16 | FSMC_DEVTYPE_NAND | FSMC_ENABLE | FSMC_WAITON,			&fsmc_regs_p->pc);#elif defined(CONFIG_SYS_FSMC_NAND_8BIT)	writel(FSMC_DEVWID_8 | FSMC_DEVTYPE_NAND | FSMC_ENABLE | FSMC_WAITON,			&fsmc_regs_p->pc);#else#error Please define CONFIG_SYS_FSMC_NAND_16BIT or CONFIG_SYS_FSMC_NAND_8BIT#endif	writel(readl(&fsmc_regs_p->pc) | FSMC_TCLR_1 | FSMC_TAR_1,			&fsmc_regs_p->pc);	writel(FSMC_THIZ_1 | FSMC_THOLD_4 | FSMC_TWAIT_6 | FSMC_TSET_0,			&fsmc_regs_p->comm);	writel(FSMC_THIZ_1 | FSMC_THOLD_4 | FSMC_TWAIT_6 | FSMC_TSET_0,			&fsmc_regs_p->attrib);	nand->options = 0;#if defined(CONFIG_SYS_FSMC_NAND_16BIT)	nand->options |= NAND_BUSWIDTH_16;#endif	nand->ecc.mode = NAND_ECC_HW;	nand->ecc.size = 512;	nand->ecc.calculate = fsmc_read_hwecc;	nand->ecc.hwctl = fsmc_enable_hwecc;	nand->cmd_ctrl = fsmc_nand_hwcontrol;	nand->IO_ADDR_R = nand->IO_ADDR_W =		(void  __iomem *)CONFIG_SYS_NAND_BASE;	nand->badblockbits = 7;	mtd = nand_to_mtd(nand);	switch (fsmc_version) {	case FSMC_VER8:		nand->ecc.bytes = 13;		nand->ecc.strength = 8;		nand->ecc.correct = fsmc_bch8_correct_data;		nand->ecc.read_page = fsmc_read_page_hwecc;		if (mtd->writesize == 512)			nand->ecc.layout = &fsmc_ecc4_sp_layout;		else {			if (mtd->oobsize == 224)				nand->ecc.layout = &fsmc_ecc4_224_layout;			else				nand->ecc.layout = &fsmc_ecc4_lp_layout;		}		break;	default:		nand->ecc.bytes = 3;		nand->ecc.strength = 1;		nand->ecc.layout = &fsmc_ecc1_layout;		nand->ecc.correct = nand_correct_data;		break;	}	/* Detect NAND chips */	if (nand_scan_ident(mtd, CONFIG_SYS_MAX_NAND_DEVICE, NULL))		return -ENXIO;	if (nand_scan_tail(mtd))		return -ENXIO;	if (nand_register(chip_nr++, mtd))		return -ENXIO;	return 0;}
 |