| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231 | // SPDX-License-Identifier: GPL-2.0+/* * This file provides ECC correction for more than 1 bit per block of data, * using binary BCH codes. It relies on the generic BCH library lib/bch.c. * * Copyright © 2011 Ivan Djelic <ivan.djelic@parrot.com> * */#include <common.h>/*#include <asm/io.h>*/#include <linux/types.h>#include <linux/bitops.h>#include <linux/mtd/mtd.h>#include <linux/mtd/rawnand.h>#include <linux/mtd/nand_bch.h>#include <linux/bch.h>#include <malloc.h>/** * struct nand_bch_control - private NAND BCH control structure * @bch:       BCH control structure * @ecclayout: private ecc layout for this BCH configuration * @errloc:    error location array * @eccmask:   XOR ecc mask, allows erased pages to be decoded as valid */struct nand_bch_control {	struct bch_control   *bch;	struct nand_ecclayout ecclayout;	unsigned int         *errloc;	unsigned char        *eccmask;};/** * nand_bch_calculate_ecc - [NAND Interface] Calculate ECC for data block * @mtd:	MTD block structure * @buf:	input buffer with raw data * @code:	output buffer with ECC */int nand_bch_calculate_ecc(struct mtd_info *mtd, const unsigned char *buf,			   unsigned char *code){	const struct nand_chip *chip = mtd_to_nand(mtd);	struct nand_bch_control *nbc = chip->ecc.priv;	unsigned int i;	memset(code, 0, chip->ecc.bytes);	encode_bch(nbc->bch, buf, chip->ecc.size, code);	/* apply mask so that an erased page is a valid codeword */	for (i = 0; i < chip->ecc.bytes; i++)		code[i] ^= nbc->eccmask[i];	return 0;}/** * nand_bch_correct_data - [NAND Interface] Detect and correct bit error(s) * @mtd:	MTD block structure * @buf:	raw data read from the chip * @read_ecc:	ECC from the chip * @calc_ecc:	the ECC calculated from raw data * * Detect and correct bit errors for a data byte block */int nand_bch_correct_data(struct mtd_info *mtd, unsigned char *buf,			  unsigned char *read_ecc, unsigned char *calc_ecc){	const struct nand_chip *chip = mtd_to_nand(mtd);	struct nand_bch_control *nbc = chip->ecc.priv;	unsigned int *errloc = nbc->errloc;	int i, count;	count = decode_bch(nbc->bch, NULL, chip->ecc.size, read_ecc, calc_ecc,			   NULL, errloc);	if (count > 0) {		for (i = 0; i < count; i++) {			if (errloc[i] < (chip->ecc.size*8))				/* error is located in data, correct it */				buf[errloc[i] >> 3] ^= (1 << (errloc[i] & 7));			/* else error in ecc, no action needed */			pr_debug("%s: corrected bitflip %u\n",				 __func__, errloc[i]);		}	} else if (count < 0) {		printk(KERN_ERR "ecc unrecoverable error\n");		count = -EBADMSG;	}	return count;}/** * nand_bch_init - [NAND Interface] Initialize NAND BCH error correction * @mtd:	MTD block structure * * Returns: *  a pointer to a new NAND BCH control structure, or NULL upon failure * * Initialize NAND BCH error correction. Parameters @eccsize and @eccbytes * are used to compute BCH parameters m (Galois field order) and t (error * correction capability). @eccbytes should be equal to the number of bytes * required to store m*t bits, where m is such that 2^m-1 > @eccsize*8. * * Example: to configure 4 bit correction per 512 bytes, you should pass * @eccsize = 512  (thus, m=13 is the smallest integer such that 2^m-1 > 512*8) * @eccbytes = 7   (7 bytes are required to store m*t = 13*4 = 52 bits) */struct nand_bch_control *nand_bch_init(struct mtd_info *mtd){	struct nand_chip *nand = mtd_to_nand(mtd);	unsigned int m, t, eccsteps, i;	struct nand_ecclayout *layout = nand->ecc.layout;	struct nand_bch_control *nbc = NULL;	unsigned char *erased_page;	unsigned int eccsize = nand->ecc.size;	unsigned int eccbytes = nand->ecc.bytes;	unsigned int eccstrength = nand->ecc.strength;	if (!eccbytes && eccstrength) {		eccbytes = DIV_ROUND_UP(eccstrength * fls(8 * eccsize), 8);		nand->ecc.bytes = eccbytes;	}	if (!eccsize || !eccbytes) {		printk(KERN_WARNING "ecc parameters not supplied\n");		goto fail;	}	m = fls(1+8*eccsize);	t = (eccbytes*8)/m;	nbc = kzalloc(sizeof(*nbc), GFP_KERNEL);	if (!nbc)		goto fail;	nbc->bch = init_bch(m, t, 0);	if (!nbc->bch)		goto fail;	/* verify that eccbytes has the expected value */	if (nbc->bch->ecc_bytes != eccbytes) {		printk(KERN_WARNING "invalid eccbytes %u, should be %u\n",		       eccbytes, nbc->bch->ecc_bytes);		goto fail;	}	eccsteps = mtd->writesize/eccsize;	/* if no ecc placement scheme was provided, build one */	if (!layout) {		/* handle large page devices only */		if (mtd->oobsize < 64) {			printk(KERN_WARNING "must provide an oob scheme for "			       "oobsize %d\n", mtd->oobsize);			goto fail;		}		layout = &nbc->ecclayout;		layout->eccbytes = eccsteps*eccbytes;		/* reserve 2 bytes for bad block marker */		if (layout->eccbytes+2 > mtd->oobsize) {			printk(KERN_WARNING "no suitable oob scheme available "			       "for oobsize %d eccbytes %u\n", mtd->oobsize,			       eccbytes);			goto fail;		}		/* put ecc bytes at oob tail */		for (i = 0; i < layout->eccbytes; i++)			layout->eccpos[i] = mtd->oobsize-layout->eccbytes+i;		layout->oobfree[0].offset = 2;		layout->oobfree[0].length = mtd->oobsize-2-layout->eccbytes;		nand->ecc.layout = layout;	}	/* sanity checks */	if (8*(eccsize+eccbytes) >= (1 << m)) {		printk(KERN_WARNING "eccsize %u is too large\n", eccsize);		goto fail;	}	if (layout->eccbytes != (eccsteps*eccbytes)) {		printk(KERN_WARNING "invalid ecc layout\n");		goto fail;	}	nbc->eccmask = kmalloc(eccbytes, GFP_KERNEL);	nbc->errloc = kmalloc(t*sizeof(*nbc->errloc), GFP_KERNEL);	if (!nbc->eccmask || !nbc->errloc)		goto fail;	/*	 * compute and store the inverted ecc of an erased ecc block	 */	erased_page = kmalloc(eccsize, GFP_KERNEL);	if (!erased_page)		goto fail;	memset(erased_page, 0xff, eccsize);	memset(nbc->eccmask, 0, eccbytes);	encode_bch(nbc->bch, erased_page, eccsize, nbc->eccmask);	kfree(erased_page);	for (i = 0; i < eccbytes; i++)		nbc->eccmask[i] ^= 0xff;	if (!eccstrength)		nand->ecc.strength = (eccbytes * 8) / fls(8 * eccsize);	return nbc;fail:	nand_bch_free(nbc);	return NULL;}/** * nand_bch_free - [NAND Interface] Release NAND BCH ECC resources * @nbc:	NAND BCH control structure */void nand_bch_free(struct nand_bch_control *nbc){	if (nbc) {		free_bch(nbc->bch);		kfree(nbc->errloc);		kfree(nbc->eccmask);		kfree(nbc);	}}
 |