| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254 | // SPDX-License-Identifier: GPL-2.0+/* * (C) Copyright 2016 Xilinx, Inc. * * Xilinx Zynq NAND Flash Controller Driver * This driver is based on plat_nand.c and mxc_nand.c drivers */#include <common.h>#include <malloc.h>#include <asm/io.h>#include <linux/errno.h>#include <nand.h>#include <linux/mtd/mtd.h>#include <linux/mtd/rawnand.h>#include <linux/mtd/partitions.h>#include <linux/mtd/nand_ecc.h>#include <asm/arch/hardware.h>#include <asm/arch/sys_proto.h>/* The NAND flash driver defines */#define ZYNQ_NAND_CMD_PHASE		1#define ZYNQ_NAND_DATA_PHASE		2#define ZYNQ_NAND_ECC_SIZE		512#define ZYNQ_NAND_SET_OPMODE_8BIT	(0 << 0)#define ZYNQ_NAND_SET_OPMODE_16BIT	(1 << 0)#define ZYNQ_NAND_ECC_STATUS		(1 << 6)#define ZYNQ_MEMC_CLRCR_INT_CLR1	(1 << 4)#define ZYNQ_MEMC_SR_RAW_INT_ST1	(1 << 6)#define ZYNQ_MEMC_SR_INT_ST1		(1 << 4)#define ZYNQ_MEMC_NAND_ECC_MODE_MASK	0xC/* Flash memory controller operating parameters */#define ZYNQ_NAND_CLR_CONFIG	((0x1 << 1)  |	/* Disable interrupt */ \				(0x1 << 4)   |	/* Clear interrupt */ \				(0x1 << 6))	/* Disable ECC interrupt */#ifndef CONFIG_NAND_ZYNQ_USE_BOOTLOADER1_TIMINGS/* Assuming 50MHz clock (20ns cycle time) and 3V operation */#define ZYNQ_NAND_SET_CYCLES	((0x2 << 20) |	/* t_rr from nand_cycles */ \				(0x2 << 17)  |	/* t_ar from nand_cycles */ \				(0x1 << 14)  |	/* t_clr from nand_cycles */ \				(0x3 << 11)  |	/* t_wp from nand_cycles */ \				(0x2 << 8)   |	/* t_rea from nand_cycles */ \				(0x5 << 4)   |	/* t_wc from nand_cycles */ \				(0x5 << 0))	/* t_rc from nand_cycles */#endif#define ZYNQ_NAND_DIRECT_CMD	((0x4 << 23) |	/* Chip 0 from interface 1 */ \				(0x2 << 21))	/* UpdateRegs operation */#define ZYNQ_NAND_ECC_CONFIG	((0x1 << 2)  |	/* ECC available on APB */ \				(0x1 << 4)   |	/* ECC read at end of page */ \				(0x0 << 5))	/* No Jumping */#define ZYNQ_NAND_ECC_CMD1	((0x80)      |	/* Write command */ \				(0x00 << 8)  |	/* Read command */ \				(0x30 << 16) |	/* Read End command */ \				(0x1 << 24))	/* Read End command calid */#define ZYNQ_NAND_ECC_CMD2	((0x85)      |	/* Write col change cmd */ \				(0x05 << 8)  |	/* Read col change cmd */ \				(0xE0 << 16) |	/* Read col change end cmd */ \				(0x1 << 24))	/* Read col change							end cmd valid *//* AXI Address definitions */#define START_CMD_SHIFT			3#define END_CMD_SHIFT			11#define END_CMD_VALID_SHIFT		20#define ADDR_CYCLES_SHIFT		21#define CLEAR_CS_SHIFT			21#define ECC_LAST_SHIFT			10#define COMMAND_PHASE			(0 << 19)#define DATA_PHASE			(1 << 19)#define ONDIE_ECC_FEATURE_ADDR		0x90#define ONDIE_ECC_FEATURE_ENABLE	0x08#define ZYNQ_NAND_ECC_LAST	(1 << ECC_LAST_SHIFT)	/* Set ECC_Last */#define ZYNQ_NAND_CLEAR_CS	(1 << CLEAR_CS_SHIFT)	/* Clear chip select *//* ECC block registers bit position and bit mask */#define ZYNQ_NAND_ECC_BUSY	(1 << 6)	/* ECC block is busy */#define ZYNQ_NAND_ECC_MASK	0x00FFFFFF	/* ECC value mask */#define ZYNQ_NAND_ROW_ADDR_CYCL_MASK	0x0F#define ZYNQ_NAND_COL_ADDR_CYCL_MASK	0xF0#define ZYNQ_NAND_MIO_NUM_NAND_8BIT	13#define ZYNQ_NAND_MIO_NUM_NAND_16BIT	8enum zynq_nand_bus_width {	NAND_BW_UNKNOWN = -1,	NAND_BW_8BIT,	NAND_BW_16BIT,};#ifndef NAND_CMD_LOCK_TIGHT#define NAND_CMD_LOCK_TIGHT 0x2c#endif#ifndef NAND_CMD_LOCK_STATUS#define NAND_CMD_LOCK_STATUS 0x7a#endif/* SMC register set */struct zynq_nand_smc_regs {	u32 csr;		/* 0x00 */	u32 reserved0[2];	u32 cfr;		/* 0x0C */	u32 dcr;		/* 0x10 */	u32 scr;		/* 0x14 */	u32 sor;		/* 0x18 */	u32 reserved1[249];	u32 esr;		/* 0x400 */	u32 emcr;		/* 0x404 */	u32 emcmd1r;		/* 0x408 */	u32 emcmd2r;		/* 0x40C */	u32 reserved2[2];	u32 eval0r;		/* 0x418 */};#define zynq_nand_smc_base	((struct zynq_nand_smc_regs __iomem *)\				ZYNQ_SMC_BASEADDR)/* * struct zynq_nand_info - Defines the NAND flash driver instance * @parts:		Pointer to the mtd_partition structure * @nand_base:		Virtual address of the NAND flash device * @end_cmd_pending:	End command is pending * @end_cmd:		End command */struct zynq_nand_info {	void __iomem	*nand_base;	u8		end_cmd_pending;	u8		end_cmd;};/* * struct zynq_nand_command_format - Defines NAND flash command format * @start_cmd:		First cycle command (Start command) * @end_cmd:		Second cycle command (Last command) * @addr_cycles:	Number of address cycles required to send the address * @end_cmd_valid:	The second cycle command is valid for cmd or data phase */struct zynq_nand_command_format {	u8 start_cmd;	u8 end_cmd;	u8 addr_cycles;	u8 end_cmd_valid;};/*  The NAND flash operations command format */static const struct zynq_nand_command_format zynq_nand_commands[] = {	{NAND_CMD_READ0, NAND_CMD_READSTART, 5, ZYNQ_NAND_CMD_PHASE},	{NAND_CMD_RNDOUT, NAND_CMD_RNDOUTSTART, 2, ZYNQ_NAND_CMD_PHASE},	{NAND_CMD_READID, NAND_CMD_NONE, 1, 0},	{NAND_CMD_STATUS, NAND_CMD_NONE, 0, 0},	{NAND_CMD_SEQIN, NAND_CMD_PAGEPROG, 5, ZYNQ_NAND_DATA_PHASE},	{NAND_CMD_RNDIN, NAND_CMD_NONE, 2, 0},	{NAND_CMD_ERASE1, NAND_CMD_ERASE2, 3, ZYNQ_NAND_CMD_PHASE},	{NAND_CMD_RESET, NAND_CMD_NONE, 0, 0},	{NAND_CMD_PARAM, NAND_CMD_NONE, 1, 0},	{NAND_CMD_GET_FEATURES, NAND_CMD_NONE, 1, 0},	{NAND_CMD_SET_FEATURES, NAND_CMD_NONE, 1, 0},	{NAND_CMD_LOCK, NAND_CMD_NONE, 0, 0},	{NAND_CMD_LOCK_TIGHT, NAND_CMD_NONE, 0, 0},	{NAND_CMD_UNLOCK1, NAND_CMD_NONE, 3, 0},	{NAND_CMD_UNLOCK2, NAND_CMD_NONE, 3, 0},	{NAND_CMD_LOCK_STATUS, NAND_CMD_NONE, 3, 0},	{NAND_CMD_NONE, NAND_CMD_NONE, 0, 0},	/* Add all the flash commands supported by the flash device */};/* Define default oob placement schemes for large and small page devices */static struct nand_ecclayout nand_oob_16 = {	.eccbytes = 3,	.eccpos = {0, 1, 2},	.oobfree = {		{ .offset = 8, .length = 8 }	}};static struct nand_ecclayout nand_oob_64 = {	.eccbytes = 12,	.eccpos = {		   52, 53, 54, 55, 56, 57,		   58, 59, 60, 61, 62, 63},	.oobfree = {		{ .offset = 2, .length = 50 }	}};static struct nand_ecclayout ondie_nand_oob_64 = {	.eccbytes = 32,	.eccpos = {		8, 9, 10, 11, 12, 13, 14, 15,		24, 25, 26, 27, 28, 29, 30, 31,		40, 41, 42, 43, 44, 45, 46, 47,		56, 57, 58, 59, 60, 61, 62, 63	},	.oobfree = {		{ .offset = 4, .length = 4 },		{ .offset = 20, .length = 4 },		{ .offset = 36, .length = 4 },		{ .offset = 52, .length = 4 }	}};/* bbt decriptors for chips with on-die ECC and   chips with 64-byte OOB */static u8 bbt_pattern[] = {'B', 'b', 't', '0' };static u8 mirror_pattern[] = {'1', 't', 'b', 'B' };static struct nand_bbt_descr bbt_main_descr = {	.options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE |		NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP,	.offs = 4,	.len = 4,	.veroffs = 20,	.maxblocks = 4,	.pattern = bbt_pattern};static struct nand_bbt_descr bbt_mirror_descr = {	.options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE |		NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP,	.offs = 4,	.len = 4,	.veroffs = 20,	.maxblocks = 4,	.pattern = mirror_pattern};/* * zynq_nand_waitfor_ecc_completion - Wait for ECC completion * * returns: status for command completion, -1 for Timeout */static int zynq_nand_waitfor_ecc_completion(void){	unsigned long timeout;	u32 status;	/* Wait max 10us */	timeout = 10;	status = readl(&zynq_nand_smc_base->esr);	while (status & ZYNQ_NAND_ECC_BUSY) {		status = readl(&zynq_nand_smc_base->esr);		if (timeout == 0)			return -1;		timeout--;		udelay(1);	}	return status;}/* * zynq_nand_init_nand_flash - Initialize NAND controller * @option:	Device property flags * * This function initializes the NAND flash interface on the NAND controller. * * returns:	0 on success or error value on failure */static int zynq_nand_init_nand_flash(int option){	u32 status;	/* disable interrupts */	writel(ZYNQ_NAND_CLR_CONFIG, &zynq_nand_smc_base->cfr);#ifndef CONFIG_NAND_ZYNQ_USE_BOOTLOADER1_TIMINGS	/* Initialize the NAND interface by setting cycles and operation mode */	writel(ZYNQ_NAND_SET_CYCLES, &zynq_nand_smc_base->scr);#endif	if (option & NAND_BUSWIDTH_16)		writel(ZYNQ_NAND_SET_OPMODE_16BIT, &zynq_nand_smc_base->sor);	else		writel(ZYNQ_NAND_SET_OPMODE_8BIT, &zynq_nand_smc_base->sor);	writel(ZYNQ_NAND_DIRECT_CMD, &zynq_nand_smc_base->dcr);	/* Wait till the ECC operation is complete */	status = zynq_nand_waitfor_ecc_completion();	if (status < 0) {		printf("%s: Timeout\n", __func__);		return status;	}	/* Set the command1 and command2 register */	writel(ZYNQ_NAND_ECC_CMD1, &zynq_nand_smc_base->emcmd1r);	writel(ZYNQ_NAND_ECC_CMD2, &zynq_nand_smc_base->emcmd2r);	return 0;}/* * zynq_nand_calculate_hwecc - Calculate Hardware ECC * @mtd:	Pointer to the mtd_info structure * @data:	Pointer to the page data * @ecc_code:	Pointer to the ECC buffer where ECC data needs to be stored * * This function retrieves the Hardware ECC data from the controller and returns * ECC data back to the MTD subsystem. * * returns:	0 on success or error value on failure */static int zynq_nand_calculate_hwecc(struct mtd_info *mtd, const u8 *data,		u8 *ecc_code){	u32 ecc_value = 0;	u8 ecc_reg, ecc_byte;	u32 ecc_status;	/* Wait till the ECC operation is complete */	ecc_status = zynq_nand_waitfor_ecc_completion();	if (ecc_status < 0) {		printf("%s: Timeout\n", __func__);		return ecc_status;	}	for (ecc_reg = 0; ecc_reg < 4; ecc_reg++) {		/* Read ECC value for each block */		ecc_value = readl(&zynq_nand_smc_base->eval0r + ecc_reg);		/* Get the ecc status from ecc read value */		ecc_status = (ecc_value >> 24) & 0xFF;		/* ECC value valid */		if (ecc_status & ZYNQ_NAND_ECC_STATUS) {			for (ecc_byte = 0; ecc_byte < 3; ecc_byte++) {				/* Copy ECC bytes to MTD buffer */				*ecc_code = ecc_value & 0xFF;				ecc_value = ecc_value >> 8;				ecc_code++;			}		} else {			debug("%s: ecc status failed\n", __func__);		}	}	return 0;}/* * onehot - onehot function * @value:	value to check for onehot * * This function checks whether a value is onehot or not. * onehot is if and only if one bit is set. * * FIXME: Try to move this in common.h */static bool onehot(unsigned short value){	bool onehot;	onehot = value && !(value & (value - 1));	return onehot;}/* * zynq_nand_correct_data - ECC correction function * @mtd:	Pointer to the mtd_info structure * @buf:	Pointer to the page data * @read_ecc:	Pointer to the ECC value read from spare data area * @calc_ecc:	Pointer to the calculated ECC value * * This function corrects the ECC single bit errors & detects 2-bit errors. * * returns:	0 if no ECC errors found *		1 if single bit error found and corrected. *		-1 if multiple ECC errors found. */static int zynq_nand_correct_data(struct mtd_info *mtd, unsigned char *buf,			unsigned char *read_ecc, unsigned char *calc_ecc){	unsigned char bit_addr;	unsigned int byte_addr;	unsigned short ecc_odd, ecc_even;	unsigned short read_ecc_lower, read_ecc_upper;	unsigned short calc_ecc_lower, calc_ecc_upper;	read_ecc_lower = (read_ecc[0] | (read_ecc[1] << 8)) & 0xfff;	read_ecc_upper = ((read_ecc[1] >> 4) | (read_ecc[2] << 4)) & 0xfff;	calc_ecc_lower = (calc_ecc[0] | (calc_ecc[1] << 8)) & 0xfff;	calc_ecc_upper = ((calc_ecc[1] >> 4) | (calc_ecc[2] << 4)) & 0xfff;	ecc_odd = read_ecc_lower ^ calc_ecc_lower;	ecc_even = read_ecc_upper ^ calc_ecc_upper;	if ((ecc_odd == 0) && (ecc_even == 0))		return 0;       /* no error */	if (ecc_odd == (~ecc_even & 0xfff)) {		/* bits [11:3] of error code is byte offset */		byte_addr = (ecc_odd >> 3) & 0x1ff;		/* bits [2:0] of error code is bit offset */		bit_addr = ecc_odd & 0x7;		/* Toggling error bit */		buf[byte_addr] ^= (1 << bit_addr);		return 1;	}	if (onehot(ecc_odd | ecc_even))		return 1; /* one error in parity */	return -1; /* Uncorrectable error */}/* * zynq_nand_read_oob - [REPLACABLE] the most common OOB data read function * @mtd:	mtd info structure * @chip:	nand chip info structure * @page:	page number to read * @sndcmd:	flag whether to issue read command or not */static int zynq_nand_read_oob(struct mtd_info *mtd, struct nand_chip *chip,			int page){	unsigned long data_phase_addr = 0;	int data_width = 4;	u8 *p;	chip->cmdfunc(mtd, NAND_CMD_READOOB, 0, page);	p = chip->oob_poi;	chip->read_buf(mtd, p, (mtd->oobsize - data_width));	p += mtd->oobsize - data_width;	data_phase_addr = (unsigned long)chip->IO_ADDR_R;	data_phase_addr |= ZYNQ_NAND_CLEAR_CS;	chip->IO_ADDR_R = (void __iomem *)data_phase_addr;	chip->read_buf(mtd, p, data_width);	return 0;}/* * zynq_nand_write_oob - [REPLACABLE] the most common OOB data write function * @mtd:	mtd info structure * @chip:	nand chip info structure * @page:	page number to write */static int zynq_nand_write_oob(struct mtd_info *mtd, struct nand_chip *chip,			     int page){	int status = 0, data_width = 4;	const u8 *buf = chip->oob_poi;	unsigned long data_phase_addr = 0;	chip->cmdfunc(mtd, NAND_CMD_SEQIN, mtd->writesize, page);	chip->write_buf(mtd, buf, (mtd->oobsize - data_width));	buf += mtd->oobsize - data_width;	data_phase_addr = (unsigned long)chip->IO_ADDR_W;	data_phase_addr |= ZYNQ_NAND_CLEAR_CS;	data_phase_addr |= (1 << END_CMD_VALID_SHIFT);	chip->IO_ADDR_W = (void __iomem *)data_phase_addr;	chip->write_buf(mtd, buf, data_width);	/* Send command to program the OOB data */	chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);	status = chip->waitfunc(mtd, chip);	return status & NAND_STATUS_FAIL ? -EIO : 0;}/* * zynq_nand_read_page_raw - [Intern] read raw page data without ecc * @mtd:        mtd info structure * @chip:       nand chip info structure * @buf:        buffer to store read data * @oob_required: must write chip->oob_poi to OOB * @page:       page number to read */static int zynq_nand_read_page_raw(struct mtd_info *mtd, struct nand_chip *chip,				   u8 *buf,  int oob_required, int page){	unsigned long data_width = 4;	unsigned long data_phase_addr = 0;	u8 *p;	chip->read_buf(mtd, buf, mtd->writesize);	p = chip->oob_poi;	chip->read_buf(mtd, p, (mtd->oobsize - data_width));	p += (mtd->oobsize - data_width);	data_phase_addr = (unsigned long)chip->IO_ADDR_R;	data_phase_addr |= ZYNQ_NAND_CLEAR_CS;	chip->IO_ADDR_R = (void __iomem *)data_phase_addr;	chip->read_buf(mtd, p, data_width);	return 0;}static int zynq_nand_read_page_raw_nooob(struct mtd_info *mtd,		struct nand_chip *chip, u8 *buf, int oob_required, int page){	chip->read_buf(mtd, buf, mtd->writesize);	return 0;}static int zynq_nand_read_subpage_raw(struct mtd_info *mtd,				    struct nand_chip *chip, u32 data_offs,				    u32 readlen, u8 *buf, int page){	if (data_offs != 0) {		chip->cmdfunc(mtd, NAND_CMD_RNDOUT, data_offs, -1);		buf += data_offs;	}	chip->read_buf(mtd, buf, readlen);	return 0;}/* * zynq_nand_write_page_raw - [Intern] raw page write function * @mtd:        mtd info structure * @chip:       nand chip info structure * @buf:        data buffer * @oob_required: must write chip->oob_poi to OOB */static int zynq_nand_write_page_raw(struct mtd_info *mtd,	struct nand_chip *chip, const u8 *buf, int oob_required, int page){	unsigned long data_width = 4;	unsigned long data_phase_addr = 0;	u8 *p;	chip->write_buf(mtd, buf, mtd->writesize);	p = chip->oob_poi;	chip->write_buf(mtd, p, (mtd->oobsize - data_width));	p += (mtd->oobsize - data_width);	data_phase_addr = (unsigned long)chip->IO_ADDR_W;	data_phase_addr |= ZYNQ_NAND_CLEAR_CS;	data_phase_addr |= (1 << END_CMD_VALID_SHIFT);	chip->IO_ADDR_W = (void __iomem *)data_phase_addr;	chip->write_buf(mtd, p, data_width);	return 0;}/* * nand_write_page_hwecc - Hardware ECC based page write function * @mtd:	Pointer to the mtd info structure * @chip:	Pointer to the NAND chip info structure * @buf:	Pointer to the data buffer * @oob_required: must write chip->oob_poi to OOB * * This functions writes data and hardware generated ECC values in to the page. */static int zynq_nand_write_page_hwecc(struct mtd_info *mtd,	struct nand_chip *chip, const u8 *buf, int oob_required, int page){	int i, eccsteps, eccsize = chip->ecc.size;	u8 *ecc_calc = chip->buffers->ecccalc;	const u8 *p = buf;	u32 *eccpos = chip->ecc.layout->eccpos;	unsigned long data_phase_addr = 0;	unsigned long data_width = 4;	u8 *oob_ptr;	for (eccsteps = chip->ecc.steps; (eccsteps - 1); eccsteps--) {		chip->write_buf(mtd, p, eccsize);		p += eccsize;	}	chip->write_buf(mtd, p, (eccsize - data_width));	p += eccsize - data_width;	/* Set ECC Last bit to 1 */	data_phase_addr = (unsigned long) chip->IO_ADDR_W;	data_phase_addr |= ZYNQ_NAND_ECC_LAST;	chip->IO_ADDR_W = (void __iomem *)data_phase_addr;	chip->write_buf(mtd, p, data_width);	/* Wait for ECC to be calculated and read the error values */	p = buf;	chip->ecc.calculate(mtd, p, &ecc_calc[0]);	for (i = 0; i < chip->ecc.total; i++)		chip->oob_poi[eccpos[i]] = ~(ecc_calc[i]);	/* Clear ECC last bit */	data_phase_addr = (unsigned long)chip->IO_ADDR_W;	data_phase_addr &= ~ZYNQ_NAND_ECC_LAST;	chip->IO_ADDR_W = (void __iomem *)data_phase_addr;	/* Write the spare area with ECC bytes */	oob_ptr = chip->oob_poi;	chip->write_buf(mtd, oob_ptr, (mtd->oobsize - data_width));	data_phase_addr = (unsigned long)chip->IO_ADDR_W;	data_phase_addr |= ZYNQ_NAND_CLEAR_CS;	data_phase_addr |= (1 << END_CMD_VALID_SHIFT);	chip->IO_ADDR_W = (void __iomem *)data_phase_addr;	oob_ptr += (mtd->oobsize - data_width);	chip->write_buf(mtd, oob_ptr, data_width);	return 0;}/* * zynq_nand_write_page_swecc - [REPLACABLE] software ecc based page * write function * @mtd:	mtd info structure * @chip:	nand chip info structure * @buf:	data buffer * @oob_required: must write chip->oob_poi to OOB */static int zynq_nand_write_page_swecc(struct mtd_info *mtd,	struct nand_chip *chip, const u8 *buf, int oob_required, int page){	int i, eccsize = chip->ecc.size;	int eccbytes = chip->ecc.bytes;	int eccsteps = chip->ecc.steps;	u8 *ecc_calc = chip->buffers->ecccalc;	const u8 *p = buf;	u32 *eccpos = chip->ecc.layout->eccpos;	/* Software ecc calculation */	for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize)		chip->ecc.calculate(mtd, p, &ecc_calc[i]);	for (i = 0; i < chip->ecc.total; i++)		chip->oob_poi[eccpos[i]] = ecc_calc[i];	return chip->ecc.write_page_raw(mtd, chip, buf, 1, page);}/* * nand_read_page_hwecc - Hardware ECC based page read function * @mtd:	Pointer to the mtd info structure * @chip:	Pointer to the NAND chip info structure * @buf:	Pointer to the buffer to store read data * @oob_required: must write chip->oob_poi to OOB * @page:	page number to read * * This functions reads data and checks the data integrity by comparing hardware * generated ECC values and read ECC values from spare area. * * returns:	0 always and updates ECC operation status in to MTD structure */static int zynq_nand_read_page_hwecc(struct mtd_info *mtd,	struct nand_chip *chip, u8 *buf, int oob_required, int page){	int i, stat, eccsteps, eccsize = chip->ecc.size;	int eccbytes = chip->ecc.bytes;	u8 *p = buf;	u8 *ecc_calc = chip->buffers->ecccalc;	u8 *ecc_code = chip->buffers->ecccode;	u32 *eccpos = chip->ecc.layout->eccpos;	unsigned long data_phase_addr = 0;	unsigned long data_width = 4;	u8 *oob_ptr;	for (eccsteps = chip->ecc.steps; (eccsteps - 1); eccsteps--) {		chip->read_buf(mtd, p, eccsize);		p += eccsize;	}	chip->read_buf(mtd, p, (eccsize - data_width));	p += eccsize - data_width;	/* Set ECC Last bit to 1 */	data_phase_addr = (unsigned long)chip->IO_ADDR_R;	data_phase_addr |= ZYNQ_NAND_ECC_LAST;	chip->IO_ADDR_R = (void __iomem *)data_phase_addr;	chip->read_buf(mtd, p, data_width);	/* Read the calculated ECC value */	p = buf;	chip->ecc.calculate(mtd, p, &ecc_calc[0]);	/* Clear ECC last bit */	data_phase_addr = (unsigned long)chip->IO_ADDR_R;	data_phase_addr &= ~ZYNQ_NAND_ECC_LAST;	chip->IO_ADDR_R = (void __iomem *)data_phase_addr;	/* Read the stored ECC value */	oob_ptr = chip->oob_poi;	chip->read_buf(mtd, oob_ptr, (mtd->oobsize - data_width));	/* de-assert chip select */	data_phase_addr = (unsigned long)chip->IO_ADDR_R;	data_phase_addr |= ZYNQ_NAND_CLEAR_CS;	chip->IO_ADDR_R = (void __iomem *)data_phase_addr;	oob_ptr += (mtd->oobsize - data_width);	chip->read_buf(mtd, oob_ptr, data_width);	for (i = 0; i < chip->ecc.total; i++)		ecc_code[i] = ~(chip->oob_poi[eccpos[i]]);	eccsteps = chip->ecc.steps;	p = buf;	/* Check ECC error for all blocks and correct if it is correctable */	for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {		stat = chip->ecc.correct(mtd, p, &ecc_code[i], &ecc_calc[i]);		if (stat < 0)			mtd->ecc_stats.failed++;		else			mtd->ecc_stats.corrected += stat;	}	return 0;}/* * zynq_nand_read_page_swecc - [REPLACABLE] software ecc based page * read function * @mtd:	mtd info structure * @chip:	nand chip info structure * @buf:	buffer to store read data * @page:	page number to read */static int zynq_nand_read_page_swecc(struct mtd_info *mtd,	struct nand_chip *chip, u8 *buf, int oob_required,  int page){	int i, eccsize = chip->ecc.size;	int eccbytes = chip->ecc.bytes;	int eccsteps = chip->ecc.steps;	u8 *p = buf;	u8 *ecc_calc = chip->buffers->ecccalc;	u8 *ecc_code = chip->buffers->ecccode;	u32 *eccpos = chip->ecc.layout->eccpos;	chip->ecc.read_page_raw(mtd, chip, buf, 1, page);	for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize)		chip->ecc.calculate(mtd, p, &ecc_calc[i]);	for (i = 0; i < chip->ecc.total; i++)		ecc_code[i] = chip->oob_poi[eccpos[i]];	eccsteps = chip->ecc.steps;	p = buf;	for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {		int stat;		stat = chip->ecc.correct(mtd, p, &ecc_code[i], &ecc_calc[i]);		if (stat < 0)			mtd->ecc_stats.failed++;		else			mtd->ecc_stats.corrected += stat;	}	return 0;}/* * zynq_nand_select_chip - Select the flash device * @mtd:	Pointer to the mtd_info structure * @chip:	Chip number to be selected * * This function is empty as the NAND controller handles chip select line * internally based on the chip address passed in command and data phase. */static void zynq_nand_select_chip(struct mtd_info *mtd, int chip){	/* Not support multiple chips yet */}/* * zynq_nand_cmd_function - Send command to NAND device * @mtd:	Pointer to the mtd_info structure * @command:	The command to be sent to the flash device * @column:	The column address for this command, -1 if none * @page_addr:	The page address for this command, -1 if none */static void zynq_nand_cmd_function(struct mtd_info *mtd, unsigned int command,				 int column, int page_addr){	struct nand_chip *chip = mtd->priv;	const struct zynq_nand_command_format *curr_cmd = NULL;	u8 addr_cycles = 0;	struct zynq_nand_info *xnand = (struct zynq_nand_info *)chip->priv;	void *cmd_addr;	unsigned long cmd_data = 0;	unsigned long cmd_phase_addr = 0;	unsigned long data_phase_addr = 0;	u8 end_cmd = 0;	u8 end_cmd_valid = 0;	u32 index;	if (xnand->end_cmd_pending) {		/* Check for end command if this command request is same as the		 * pending command then return		 */		if (xnand->end_cmd == command) {			xnand->end_cmd = 0;			xnand->end_cmd_pending = 0;			return;		}	}	/* Emulate NAND_CMD_READOOB for large page device */	if ((mtd->writesize > ZYNQ_NAND_ECC_SIZE) &&	    (command == NAND_CMD_READOOB)) {		column += mtd->writesize;		command = NAND_CMD_READ0;	}	/* Get the command format */	for (index = 0; index < ARRAY_SIZE(zynq_nand_commands); index++)		if (command == zynq_nand_commands[index].start_cmd)			break;	if (index == ARRAY_SIZE(zynq_nand_commands)) {		printf("%s: Unsupported start cmd %02x\n", __func__, command);		return;	}	curr_cmd = &zynq_nand_commands[index];	/* Clear interrupt */	writel(ZYNQ_MEMC_CLRCR_INT_CLR1, &zynq_nand_smc_base->cfr);	/* Get the command phase address */	if (curr_cmd->end_cmd_valid == ZYNQ_NAND_CMD_PHASE)		end_cmd_valid = 1;	if (curr_cmd->end_cmd == NAND_CMD_NONE)		end_cmd = 0x0;	else		end_cmd = curr_cmd->end_cmd;	if (command == NAND_CMD_READ0 ||	    command == NAND_CMD_SEQIN) {		addr_cycles = chip->onfi_params.addr_cycles &				ZYNQ_NAND_ROW_ADDR_CYCL_MASK;		addr_cycles += ((chip->onfi_params.addr_cycles &				ZYNQ_NAND_COL_ADDR_CYCL_MASK) >> 4);	} else {		addr_cycles = curr_cmd->addr_cycles;	}	cmd_phase_addr = (unsigned long)xnand->nand_base	|			(addr_cycles << ADDR_CYCLES_SHIFT)	|			(end_cmd_valid << END_CMD_VALID_SHIFT)		|			(COMMAND_PHASE)					|			(end_cmd << END_CMD_SHIFT)			|			(curr_cmd->start_cmd << START_CMD_SHIFT);	cmd_addr = (void __iomem *)cmd_phase_addr;	/* Get the data phase address */	end_cmd_valid = 0;	data_phase_addr = (unsigned long)xnand->nand_base	|			(0x0 << CLEAR_CS_SHIFT)				|			(end_cmd_valid << END_CMD_VALID_SHIFT)		|			(DATA_PHASE)					|			(end_cmd << END_CMD_SHIFT)			|			(0x0 << ECC_LAST_SHIFT);	chip->IO_ADDR_R = (void  __iomem *)data_phase_addr;	chip->IO_ADDR_W = chip->IO_ADDR_R;	/* Command phase AXI Read & Write */	if (column != -1 && page_addr != -1) {		/* Adjust columns for 16 bit bus width */		if (chip->options & NAND_BUSWIDTH_16)			column >>= 1;		cmd_data = column;		if (mtd->writesize > ZYNQ_NAND_ECC_SIZE) {			cmd_data |= page_addr << 16;			/* Another address cycle for devices > 128MiB */			if (chip->chipsize > (128 << 20)) {				writel(cmd_data, cmd_addr);				cmd_data = (page_addr >> 16);			}		} else {			cmd_data |= page_addr << 8;		}	} else if (page_addr != -1)  { /* Erase */		cmd_data = page_addr;	} else if (column != -1) { /* Change read/write column, read id etc */		/* Adjust columns for 16 bit bus width */		if ((chip->options & NAND_BUSWIDTH_16) &&		    ((command == NAND_CMD_READ0) ||		     (command == NAND_CMD_SEQIN) ||		     (command == NAND_CMD_RNDOUT) ||		     (command == NAND_CMD_RNDIN)))			column >>= 1;		cmd_data = column;	}	writel(cmd_data, cmd_addr);	if (curr_cmd->end_cmd_valid) {		xnand->end_cmd = curr_cmd->end_cmd;		xnand->end_cmd_pending = 1;	}	ndelay(100);	if ((command == NAND_CMD_READ0) ||	    (command == NAND_CMD_RESET) ||	    (command == NAND_CMD_PARAM) ||	    (command == NAND_CMD_GET_FEATURES))		/* wait until command is processed */		nand_wait_ready(mtd);}/* * zynq_nand_read_buf - read chip data into buffer * @mtd:        MTD device structure * @buf:        buffer to store date * @len:        number of bytes to read */static void zynq_nand_read_buf(struct mtd_info *mtd, u8 *buf, int len){	struct nand_chip *chip = mtd->priv;	/* Make sure that buf is 32 bit aligned */	if (((unsigned long)buf & 0x3) != 0) {		if (((unsigned long)buf & 0x1) != 0) {			if (len) {				*buf = readb(chip->IO_ADDR_R);				buf += 1;				len--;			}		}		if (((unsigned long)buf & 0x3) != 0) {			if (len >= 2) {				*(u16 *)buf = readw(chip->IO_ADDR_R);				buf += 2;				len -= 2;			}		}	}	/* copy aligned data */	while (len >= 4) {		*(u32 *)buf = readl(chip->IO_ADDR_R);		buf += 4;		len -= 4;	}	/* mop up any remaining bytes */	if (len) {		if (len >= 2) {			*(u16 *)buf = readw(chip->IO_ADDR_R);			buf += 2;			len -= 2;		}		if (len)			*buf = readb(chip->IO_ADDR_R);	}}/* * zynq_nand_write_buf - write buffer to chip * @mtd:        MTD device structure * @buf:        data buffer * @len:        number of bytes to write */static void zynq_nand_write_buf(struct mtd_info *mtd, const u8 *buf, int len){	struct nand_chip *chip = mtd->priv;	const u32 *nand = chip->IO_ADDR_W;	/* Make sure that buf is 32 bit aligned */	if (((unsigned long)buf & 0x3) != 0) {		if (((unsigned long)buf & 0x1) != 0) {			if (len) {				writeb(*buf, nand);				buf += 1;				len--;			}		}		if (((unsigned long)buf & 0x3) != 0) {			if (len >= 2) {				writew(*(u16 *)buf, nand);				buf += 2;				len -= 2;			}		}	}	/* copy aligned data */	while (len >= 4) {		writel(*(u32 *)buf, nand);		buf += 4;		len -= 4;	}	/* mop up any remaining bytes */	if (len) {		if (len >= 2) {			writew(*(u16 *)buf, nand);			buf += 2;			len -= 2;		}		if (len)			writeb(*buf, nand);	}}/* * zynq_nand_device_ready - Check device ready/busy line * @mtd:	Pointer to the mtd_info structure * * returns:	0 on busy or 1 on ready state */static int zynq_nand_device_ready(struct mtd_info *mtd){	u32 csr_val;	csr_val = readl(&zynq_nand_smc_base->csr);	/* Check the raw_int_status1 bit */	if (csr_val & ZYNQ_MEMC_SR_RAW_INT_ST1) {		/* Clear the interrupt condition */		writel(ZYNQ_MEMC_SR_INT_ST1, &zynq_nand_smc_base->cfr);		return 1;	}	return 0;}static int zynq_nand_check_is_16bit_bw_flash(void){	int is_16bit_bw = NAND_BW_UNKNOWN;	int mio_num_8bit = 0, mio_num_16bit = 0;	mio_num_8bit = zynq_slcr_get_mio_pin_status("nand8");	if (mio_num_8bit == ZYNQ_NAND_MIO_NUM_NAND_8BIT)		is_16bit_bw = NAND_BW_8BIT;	mio_num_16bit = zynq_slcr_get_mio_pin_status("nand16");	if (mio_num_8bit == ZYNQ_NAND_MIO_NUM_NAND_8BIT &&	    mio_num_16bit == ZYNQ_NAND_MIO_NUM_NAND_16BIT)		is_16bit_bw = NAND_BW_16BIT;	return is_16bit_bw;}static int zynq_nand_init(struct nand_chip *nand_chip, int devnum){	struct zynq_nand_info *xnand;	struct mtd_info *mtd;	unsigned long ecc_page_size;	u8 maf_id, dev_id, i;	u8 get_feature[4];	u8 set_feature[4] = {ONDIE_ECC_FEATURE_ENABLE, 0x00, 0x00, 0x00};	unsigned long ecc_cfg;	int ondie_ecc_enabled = 0;	int err = -1;	int is_16bit_bw;	xnand = calloc(1, sizeof(struct zynq_nand_info));	if (!xnand) {		printf("%s: failed to allocate\n", __func__);		goto fail;	}	xnand->nand_base = (void __iomem *)ZYNQ_NAND_BASEADDR;	mtd = nand_to_mtd(nand_chip);	nand_chip->priv = xnand;	mtd->priv = nand_chip;	/* Set address of NAND IO lines */	nand_chip->IO_ADDR_R = xnand->nand_base;	nand_chip->IO_ADDR_W = xnand->nand_base;	/* Set the driver entry points for MTD */	nand_chip->cmdfunc = zynq_nand_cmd_function;	nand_chip->dev_ready = zynq_nand_device_ready;	nand_chip->select_chip = zynq_nand_select_chip;	/* If we don't set this delay driver sets 20us by default */	nand_chip->chip_delay = 30;	/* Buffer read/write routines */	nand_chip->read_buf = zynq_nand_read_buf;	nand_chip->write_buf = zynq_nand_write_buf;	is_16bit_bw = zynq_nand_check_is_16bit_bw_flash();	if (is_16bit_bw == NAND_BW_UNKNOWN) {		printf("%s: Unable detect NAND based on MIO settings\n",		       __func__);		goto fail;	}	if (is_16bit_bw == NAND_BW_16BIT)		nand_chip->options = NAND_BUSWIDTH_16;	nand_chip->bbt_options = NAND_BBT_USE_FLASH;	/* Initialize the NAND flash interface on NAND controller */	if (zynq_nand_init_nand_flash(nand_chip->options) < 0) {		printf("%s: nand flash init failed\n", __func__);		goto fail;	}	/* first scan to find the device and get the page size */	if (nand_scan_ident(mtd, 1, NULL)) {		printf("%s: nand_scan_ident failed\n", __func__);		goto fail;	}	/* Send the command for reading device ID */	nand_chip->cmdfunc(mtd, NAND_CMD_RESET, -1, -1);	nand_chip->cmdfunc(mtd, NAND_CMD_READID, 0x00, -1);	/* Read manufacturer and device IDs */	maf_id = nand_chip->read_byte(mtd);	dev_id = nand_chip->read_byte(mtd);	if ((maf_id == 0x2c) && ((dev_id == 0xf1) ||				 (dev_id == 0xa1) || (dev_id == 0xb1) ||				 (dev_id == 0xaa) || (dev_id == 0xba) ||				 (dev_id == 0xda) || (dev_id == 0xca) ||				 (dev_id == 0xac) || (dev_id == 0xbc) ||				 (dev_id == 0xdc) || (dev_id == 0xcc) ||				 (dev_id == 0xa3) || (dev_id == 0xb3) ||				 (dev_id == 0xd3) || (dev_id == 0xc3))) {		nand_chip->cmdfunc(mtd, NAND_CMD_SET_FEATURES,						ONDIE_ECC_FEATURE_ADDR, -1);		for (i = 0; i < 4; i++)			writeb(set_feature[i], nand_chip->IO_ADDR_W);		/* Wait for 1us after writing data with SET_FEATURES command */		ndelay(1000);		nand_chip->cmdfunc(mtd, NAND_CMD_GET_FEATURES,						ONDIE_ECC_FEATURE_ADDR, -1);		nand_chip->read_buf(mtd, get_feature, 4);		if (get_feature[0] & ONDIE_ECC_FEATURE_ENABLE) {			debug("%s: OnDie ECC flash\n", __func__);			ondie_ecc_enabled = 1;		} else {			printf("%s: Unable to detect OnDie ECC\n", __func__);		}	}	if (ondie_ecc_enabled) {		/* Bypass the controller ECC block */		ecc_cfg = readl(&zynq_nand_smc_base->emcr);		ecc_cfg &= ~ZYNQ_MEMC_NAND_ECC_MODE_MASK;		writel(ecc_cfg, &zynq_nand_smc_base->emcr);		/* The software ECC routines won't work		 * with the SMC controller		 */		nand_chip->ecc.mode = NAND_ECC_HW;		nand_chip->ecc.strength = 1;		nand_chip->ecc.read_page = zynq_nand_read_page_raw_nooob;		nand_chip->ecc.read_subpage = zynq_nand_read_subpage_raw;		nand_chip->ecc.write_page = zynq_nand_write_page_raw;		nand_chip->ecc.read_page_raw = zynq_nand_read_page_raw;		nand_chip->ecc.write_page_raw = zynq_nand_write_page_raw;		nand_chip->ecc.read_oob = zynq_nand_read_oob;		nand_chip->ecc.write_oob = zynq_nand_write_oob;		nand_chip->ecc.size = mtd->writesize;		nand_chip->ecc.bytes = 0;		/* NAND with on-die ECC supports subpage reads */		nand_chip->options |= NAND_SUBPAGE_READ;		/* On-Die ECC spare bytes offset 8 is used for ECC codes */		if (ondie_ecc_enabled) {			nand_chip->ecc.layout = &ondie_nand_oob_64;			/* Use the BBT pattern descriptors */			nand_chip->bbt_td = &bbt_main_descr;			nand_chip->bbt_md = &bbt_mirror_descr;		}	} else {		/* Hardware ECC generates 3 bytes ECC code for each 512 bytes */		nand_chip->ecc.mode = NAND_ECC_HW;		nand_chip->ecc.strength = 1;		nand_chip->ecc.size = ZYNQ_NAND_ECC_SIZE;		nand_chip->ecc.bytes = 3;		nand_chip->ecc.calculate = zynq_nand_calculate_hwecc;		nand_chip->ecc.correct = zynq_nand_correct_data;		nand_chip->ecc.hwctl = NULL;		nand_chip->ecc.read_page = zynq_nand_read_page_hwecc;		nand_chip->ecc.write_page = zynq_nand_write_page_hwecc;		nand_chip->ecc.read_page_raw = zynq_nand_read_page_raw;		nand_chip->ecc.write_page_raw = zynq_nand_write_page_raw;		nand_chip->ecc.read_oob = zynq_nand_read_oob;		nand_chip->ecc.write_oob = zynq_nand_write_oob;		switch (mtd->writesize) {		case 512:			ecc_page_size = 0x1;			/* Set the ECC memory config register */			writel((ZYNQ_NAND_ECC_CONFIG | ecc_page_size),			       &zynq_nand_smc_base->emcr);			break;		case 1024:			ecc_page_size = 0x2;			/* Set the ECC memory config register */			writel((ZYNQ_NAND_ECC_CONFIG | ecc_page_size),			       &zynq_nand_smc_base->emcr);			break;		case 2048:			ecc_page_size = 0x3;			/* Set the ECC memory config register */			writel((ZYNQ_NAND_ECC_CONFIG | ecc_page_size),			       &zynq_nand_smc_base->emcr);			break;		default:			nand_chip->ecc.mode = NAND_ECC_SOFT;			nand_chip->ecc.calculate = nand_calculate_ecc;			nand_chip->ecc.correct = nand_correct_data;			nand_chip->ecc.read_page = zynq_nand_read_page_swecc;			nand_chip->ecc.write_page = zynq_nand_write_page_swecc;			nand_chip->ecc.size = 256;			break;		}		if (mtd->oobsize == 16)			nand_chip->ecc.layout = &nand_oob_16;		else if (mtd->oobsize == 64)			nand_chip->ecc.layout = &nand_oob_64;		else			printf("%s: No oob layout found\n", __func__);	}	/* Second phase scan */	if (nand_scan_tail(mtd)) {		printf("%s: nand_scan_tail failed\n", __func__);		goto fail;	}	if (nand_register(devnum, mtd))		goto fail;	return 0;fail:	free(xnand);	return err;}static struct nand_chip nand_chip[CONFIG_SYS_MAX_NAND_DEVICE];void board_nand_init(void){	struct nand_chip *nand = &nand_chip[0];	if (zynq_nand_init(nand, 0))		puts("ZYNQ NAND init failed\n");}
 |