| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185 | /* * Copyright (C) 2003 Bernardo Innocenti <bernie@develer.com> * * Based on former do_div() implementation from asm-parisc/div64.h: *	Copyright (C) 1999 Hewlett-Packard Co *	Copyright (C) 1999 David Mosberger-Tang <davidm@hpl.hp.com> * * * Generic C version of 64bit/32bit division and modulo, with * 64bit result and 32bit remainder. * * The fast case for (n>>32 == 0) is handled inline by do_div(). * * Code generated for this function might be very inefficient * for some CPUs. __div64_32() can be overridden by linking arch-specific * assembly versions such as arch/ppc/lib/div64.S and arch/sh/lib/div64.S * or by defining a preprocessor macro in arch/include/asm/div64.h. */#include <linux/compat.h>#include <linux/kernel.h>#include <linux/math64.h>/* Not needed on 64bit architectures */#if BITS_PER_LONG == 32#ifndef __div64_32uint32_t __attribute__((weak)) __div64_32(uint64_t *n, uint32_t base){	uint64_t rem = *n;	uint64_t b = base;	uint64_t res, d = 1;	uint32_t high = rem >> 32;	/* Reduce the thing a bit first */	res = 0;	if (high >= base) {		high /= base;		res = (uint64_t) high << 32;		rem -= (uint64_t) (high*base) << 32;	}	while ((int64_t)b > 0 && b < rem) {		b = b+b;		d = d+d;	}	do {		if (rem >= b) {			rem -= b;			res += d;		}		b >>= 1;		d >>= 1;	} while (d);	*n = res;	return rem;}EXPORT_SYMBOL(__div64_32);#endif#ifndef div_s64_rems64 div_s64_rem(s64 dividend, s32 divisor, s32 *remainder){	u64 quotient;	if (dividend < 0) {		quotient = div_u64_rem(-dividend, abs(divisor), (u32 *)remainder);		*remainder = -*remainder;		if (divisor > 0)			quotient = -quotient;	} else {		quotient = div_u64_rem(dividend, abs(divisor), (u32 *)remainder);		if (divisor < 0)			quotient = -quotient;	}	return quotient;}EXPORT_SYMBOL(div_s64_rem);#endif/** * div64_u64_rem - unsigned 64bit divide with 64bit divisor and remainder * @dividend:	64bit dividend * @divisor:	64bit divisor * @remainder:  64bit remainder * * This implementation is a comparable to algorithm used by div64_u64. * But this operation, which includes math for calculating the remainder, * is kept distinct to avoid slowing down the div64_u64 operation on 32bit * systems. */#ifndef div64_u64_remu64 div64_u64_rem(u64 dividend, u64 divisor, u64 *remainder){	u32 high = divisor >> 32;	u64 quot;	if (high == 0) {		u32 rem32;		quot = div_u64_rem(dividend, divisor, &rem32);		*remainder = rem32;	} else {		int n = 1 + fls(high);		quot = div_u64(dividend >> n, divisor >> n);		if (quot != 0)			quot--;		*remainder = dividend - quot * divisor;		if (*remainder >= divisor) {			quot++;			*remainder -= divisor;		}	}	return quot;}EXPORT_SYMBOL(div64_u64_rem);#endif/** * div64_u64 - unsigned 64bit divide with 64bit divisor * @dividend:	64bit dividend * @divisor:	64bit divisor * * This implementation is a modified version of the algorithm proposed * by the book 'Hacker's Delight'.  The original source and full proof * can be found here and is available for use without restriction. * * 'http://www.hackersdelight.org/hdcodetxt/divDouble.c.txt' */#ifndef div64_u64u64 div64_u64(u64 dividend, u64 divisor){	u32 high = divisor >> 32;	u64 quot;	if (high == 0) {		quot = div_u64(dividend, divisor);	} else {		int n = 1 + fls(high);		quot = div_u64(dividend >> n, divisor >> n);		if (quot != 0)			quot--;		if ((dividend - quot * divisor) >= divisor)			quot++;	}	return quot;}EXPORT_SYMBOL(div64_u64);#endif/** * div64_s64 - signed 64bit divide with 64bit divisor * @dividend:	64bit dividend * @divisor:	64bit divisor */#ifndef div64_s64s64 div64_s64(s64 dividend, s64 divisor){	s64 quot, t;	quot = div64_u64(abs(dividend), abs(divisor));	t = (dividend ^ divisor) >> 63;	return (quot ^ t) - t;}EXPORT_SYMBOL(div64_s64);#endif#endif /* BITS_PER_LONG == 32 *//* * Iterative div/mod for use when dividend is not expected to be much * bigger than divisor. */u32 iter_div_u64_rem(u64 dividend, u32 divisor, u64 *remainder){	return __iter_div_u64_rem(dividend, divisor, remainder);}EXPORT_SYMBOL(iter_div_u64_rem);
 |