| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185 | 
							- /*
 
-  * Copyright (C) 2003 Bernardo Innocenti <bernie@develer.com>
 
-  *
 
-  * Based on former do_div() implementation from asm-parisc/div64.h:
 
-  *	Copyright (C) 1999 Hewlett-Packard Co
 
-  *	Copyright (C) 1999 David Mosberger-Tang <davidm@hpl.hp.com>
 
-  *
 
-  *
 
-  * Generic C version of 64bit/32bit division and modulo, with
 
-  * 64bit result and 32bit remainder.
 
-  *
 
-  * The fast case for (n>>32 == 0) is handled inline by do_div().
 
-  *
 
-  * Code generated for this function might be very inefficient
 
-  * for some CPUs. __div64_32() can be overridden by linking arch-specific
 
-  * assembly versions such as arch/ppc/lib/div64.S and arch/sh/lib/div64.S
 
-  * or by defining a preprocessor macro in arch/include/asm/div64.h.
 
-  */
 
- #include <linux/compat.h>
 
- #include <linux/kernel.h>
 
- #include <linux/math64.h>
 
- /* Not needed on 64bit architectures */
 
- #if BITS_PER_LONG == 32
 
- #ifndef __div64_32
 
- uint32_t __attribute__((weak)) __div64_32(uint64_t *n, uint32_t base)
 
- {
 
- 	uint64_t rem = *n;
 
- 	uint64_t b = base;
 
- 	uint64_t res, d = 1;
 
- 	uint32_t high = rem >> 32;
 
- 	/* Reduce the thing a bit first */
 
- 	res = 0;
 
- 	if (high >= base) {
 
- 		high /= base;
 
- 		res = (uint64_t) high << 32;
 
- 		rem -= (uint64_t) (high*base) << 32;
 
- 	}
 
- 	while ((int64_t)b > 0 && b < rem) {
 
- 		b = b+b;
 
- 		d = d+d;
 
- 	}
 
- 	do {
 
- 		if (rem >= b) {
 
- 			rem -= b;
 
- 			res += d;
 
- 		}
 
- 		b >>= 1;
 
- 		d >>= 1;
 
- 	} while (d);
 
- 	*n = res;
 
- 	return rem;
 
- }
 
- EXPORT_SYMBOL(__div64_32);
 
- #endif
 
- #ifndef div_s64_rem
 
- s64 div_s64_rem(s64 dividend, s32 divisor, s32 *remainder)
 
- {
 
- 	u64 quotient;
 
- 	if (dividend < 0) {
 
- 		quotient = div_u64_rem(-dividend, abs(divisor), (u32 *)remainder);
 
- 		*remainder = -*remainder;
 
- 		if (divisor > 0)
 
- 			quotient = -quotient;
 
- 	} else {
 
- 		quotient = div_u64_rem(dividend, abs(divisor), (u32 *)remainder);
 
- 		if (divisor < 0)
 
- 			quotient = -quotient;
 
- 	}
 
- 	return quotient;
 
- }
 
- EXPORT_SYMBOL(div_s64_rem);
 
- #endif
 
- /**
 
-  * div64_u64_rem - unsigned 64bit divide with 64bit divisor and remainder
 
-  * @dividend:	64bit dividend
 
-  * @divisor:	64bit divisor
 
-  * @remainder:  64bit remainder
 
-  *
 
-  * This implementation is a comparable to algorithm used by div64_u64.
 
-  * But this operation, which includes math for calculating the remainder,
 
-  * is kept distinct to avoid slowing down the div64_u64 operation on 32bit
 
-  * systems.
 
-  */
 
- #ifndef div64_u64_rem
 
- u64 div64_u64_rem(u64 dividend, u64 divisor, u64 *remainder)
 
- {
 
- 	u32 high = divisor >> 32;
 
- 	u64 quot;
 
- 	if (high == 0) {
 
- 		u32 rem32;
 
- 		quot = div_u64_rem(dividend, divisor, &rem32);
 
- 		*remainder = rem32;
 
- 	} else {
 
- 		int n = 1 + fls(high);
 
- 		quot = div_u64(dividend >> n, divisor >> n);
 
- 		if (quot != 0)
 
- 			quot--;
 
- 		*remainder = dividend - quot * divisor;
 
- 		if (*remainder >= divisor) {
 
- 			quot++;
 
- 			*remainder -= divisor;
 
- 		}
 
- 	}
 
- 	return quot;
 
- }
 
- EXPORT_SYMBOL(div64_u64_rem);
 
- #endif
 
- /**
 
-  * div64_u64 - unsigned 64bit divide with 64bit divisor
 
-  * @dividend:	64bit dividend
 
-  * @divisor:	64bit divisor
 
-  *
 
-  * This implementation is a modified version of the algorithm proposed
 
-  * by the book 'Hacker's Delight'.  The original source and full proof
 
-  * can be found here and is available for use without restriction.
 
-  *
 
-  * 'http://www.hackersdelight.org/hdcodetxt/divDouble.c.txt'
 
-  */
 
- #ifndef div64_u64
 
- u64 div64_u64(u64 dividend, u64 divisor)
 
- {
 
- 	u32 high = divisor >> 32;
 
- 	u64 quot;
 
- 	if (high == 0) {
 
- 		quot = div_u64(dividend, divisor);
 
- 	} else {
 
- 		int n = 1 + fls(high);
 
- 		quot = div_u64(dividend >> n, divisor >> n);
 
- 		if (quot != 0)
 
- 			quot--;
 
- 		if ((dividend - quot * divisor) >= divisor)
 
- 			quot++;
 
- 	}
 
- 	return quot;
 
- }
 
- EXPORT_SYMBOL(div64_u64);
 
- #endif
 
- /**
 
-  * div64_s64 - signed 64bit divide with 64bit divisor
 
-  * @dividend:	64bit dividend
 
-  * @divisor:	64bit divisor
 
-  */
 
- #ifndef div64_s64
 
- s64 div64_s64(s64 dividend, s64 divisor)
 
- {
 
- 	s64 quot, t;
 
- 	quot = div64_u64(abs(dividend), abs(divisor));
 
- 	t = (dividend ^ divisor) >> 63;
 
- 	return (quot ^ t) - t;
 
- }
 
- EXPORT_SYMBOL(div64_s64);
 
- #endif
 
- #endif /* BITS_PER_LONG == 32 */
 
- /*
 
-  * Iterative div/mod for use when dividend is not expected to be much
 
-  * bigger than divisor.
 
-  */
 
- u32 iter_div_u64_rem(u64 dividend, u32 divisor, u64 *remainder)
 
- {
 
- 	return __iter_div_u64_rem(dividend, divisor, remainder);
 
- }
 
- EXPORT_SYMBOL(iter_div_u64_rem);
 
 
  |