| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550 | // SPDX-License-Identifier: GPL-2.0+/*  Red Black Trees  (C) 1999  Andrea Arcangeli <andrea@suse.de>  (C) 2002  David Woodhouse <dwmw2@infradead.org>  (C) 2012  Michel Lespinasse <walken@google.com>  linux/lib/rbtree.c*/#include <linux/rbtree_augmented.h>#ifndef __UBOOT__#include <linux/export.h>#else#include <ubi_uboot.h>#endif/* * red-black trees properties:  http://en.wikipedia.org/wiki/Rbtree * *  1) A node is either red or black *  2) The root is black *  3) All leaves (NULL) are black *  4) Both children of every red node are black *  5) Every simple path from root to leaves contains the same number *     of black nodes. * *  4 and 5 give the O(log n) guarantee, since 4 implies you cannot have two *  consecutive red nodes in a path and every red node is therefore followed by *  a black. So if B is the number of black nodes on every simple path (as per *  5), then the longest possible path due to 4 is 2B. * *  We shall indicate color with case, where black nodes are uppercase and red *  nodes will be lowercase. Unknown color nodes shall be drawn as red within *  parentheses and have some accompanying text comment. */static inline void rb_set_black(struct rb_node *rb){	rb->__rb_parent_color |= RB_BLACK;}static inline struct rb_node *rb_red_parent(struct rb_node *red){	return (struct rb_node *)red->__rb_parent_color;}/* * Helper function for rotations: * - old's parent and color get assigned to new * - old gets assigned new as a parent and 'color' as a color. */static inline void__rb_rotate_set_parents(struct rb_node *old, struct rb_node *new,			struct rb_root *root, int color){	struct rb_node *parent = rb_parent(old);	new->__rb_parent_color = old->__rb_parent_color;	rb_set_parent_color(old, new, color);	__rb_change_child(old, new, parent, root);}static __always_inline void__rb_insert(struct rb_node *node, struct rb_root *root,	    void (*augment_rotate)(struct rb_node *old, struct rb_node *new)){	struct rb_node *parent = rb_red_parent(node), *gparent, *tmp;	while (true) {		/*		 * Loop invariant: node is red		 *		 * If there is a black parent, we are done.		 * Otherwise, take some corrective action as we don't		 * want a red root or two consecutive red nodes.		 */		if (!parent) {			rb_set_parent_color(node, NULL, RB_BLACK);			break;		} else if (rb_is_black(parent))			break;		gparent = rb_red_parent(parent);		tmp = gparent->rb_right;		if (parent != tmp) {	/* parent == gparent->rb_left */			if (tmp && rb_is_red(tmp)) {				/*				 * Case 1 - color flips				 *				 *       G            g				 *      / \          / \				 *     p   u  -->   P   U				 *    /            /				 *   n            N				 *				 * However, since g's parent might be red, and				 * 4) does not allow this, we need to recurse				 * at g.				 */				rb_set_parent_color(tmp, gparent, RB_BLACK);				rb_set_parent_color(parent, gparent, RB_BLACK);				node = gparent;				parent = rb_parent(node);				rb_set_parent_color(node, parent, RB_RED);				continue;			}			tmp = parent->rb_right;			if (node == tmp) {				/*				 * Case 2 - left rotate at parent				 *				 *      G             G				 *     / \           / \				 *    p   U  -->    n   U				 *     \           /				 *      n         p				 *				 * This still leaves us in violation of 4), the				 * continuation into Case 3 will fix that.				 */				parent->rb_right = tmp = node->rb_left;				node->rb_left = parent;				if (tmp)					rb_set_parent_color(tmp, parent,							    RB_BLACK);				rb_set_parent_color(parent, node, RB_RED);				augment_rotate(parent, node);				parent = node;				tmp = node->rb_right;			}			/*			 * Case 3 - right rotate at gparent			 *			 *        G           P			 *       / \         / \			 *      p   U  -->  n   g			 *     /                 \			 *    n                   U			 */			gparent->rb_left = tmp;  /* == parent->rb_right */			parent->rb_right = gparent;			if (tmp)				rb_set_parent_color(tmp, gparent, RB_BLACK);			__rb_rotate_set_parents(gparent, parent, root, RB_RED);			augment_rotate(gparent, parent);			break;		} else {			tmp = gparent->rb_left;			if (tmp && rb_is_red(tmp)) {				/* Case 1 - color flips */				rb_set_parent_color(tmp, gparent, RB_BLACK);				rb_set_parent_color(parent, gparent, RB_BLACK);				node = gparent;				parent = rb_parent(node);				rb_set_parent_color(node, parent, RB_RED);				continue;			}			tmp = parent->rb_left;			if (node == tmp) {				/* Case 2 - right rotate at parent */				parent->rb_left = tmp = node->rb_right;				node->rb_right = parent;				if (tmp)					rb_set_parent_color(tmp, parent,							    RB_BLACK);				rb_set_parent_color(parent, node, RB_RED);				augment_rotate(parent, node);				parent = node;				tmp = node->rb_left;			}			/* Case 3 - left rotate at gparent */			gparent->rb_right = tmp;  /* == parent->rb_left */			parent->rb_left = gparent;			if (tmp)				rb_set_parent_color(tmp, gparent, RB_BLACK);			__rb_rotate_set_parents(gparent, parent, root, RB_RED);			augment_rotate(gparent, parent);			break;		}	}}/* * Inline version for rb_erase() use - we want to be able to inline * and eliminate the dummy_rotate callback there */static __always_inline void____rb_erase_color(struct rb_node *parent, struct rb_root *root,	void (*augment_rotate)(struct rb_node *old, struct rb_node *new)){	struct rb_node *node = NULL, *sibling, *tmp1, *tmp2;	while (true) {		/*		 * Loop invariants:		 * - node is black (or NULL on first iteration)		 * - node is not the root (parent is not NULL)		 * - All leaf paths going through parent and node have a		 *   black node count that is 1 lower than other leaf paths.		 */		sibling = parent->rb_right;		if (node != sibling) {	/* node == parent->rb_left */			if (rb_is_red(sibling)) {				/*				 * Case 1 - left rotate at parent				 *				 *     P               S				 *    / \             / \				 *   N   s    -->    p   Sr				 *      / \         / \				 *     Sl  Sr      N   Sl				 */				parent->rb_right = tmp1 = sibling->rb_left;				sibling->rb_left = parent;				rb_set_parent_color(tmp1, parent, RB_BLACK);				__rb_rotate_set_parents(parent, sibling, root,							RB_RED);				augment_rotate(parent, sibling);				sibling = tmp1;			}			tmp1 = sibling->rb_right;			if (!tmp1 || rb_is_black(tmp1)) {				tmp2 = sibling->rb_left;				if (!tmp2 || rb_is_black(tmp2)) {					/*					 * Case 2 - sibling color flip					 * (p could be either color here)					 *					 *    (p)           (p)					 *    / \           / \					 *   N   S    -->  N   s					 *      / \           / \					 *     Sl  Sr        Sl  Sr					 *					 * This leaves us violating 5) which					 * can be fixed by flipping p to black					 * if it was red, or by recursing at p.					 * p is red when coming from Case 1.					 */					rb_set_parent_color(sibling, parent,							    RB_RED);					if (rb_is_red(parent))						rb_set_black(parent);					else {						node = parent;						parent = rb_parent(node);						if (parent)							continue;					}					break;				}				/*				 * Case 3 - right rotate at sibling				 * (p could be either color here)				 *				 *   (p)           (p)				 *   / \           / \				 *  N   S    -->  N   Sl				 *     / \             \				 *    sl  Sr            s				 *                       \				 *                        Sr				 */				sibling->rb_left = tmp1 = tmp2->rb_right;				tmp2->rb_right = sibling;				parent->rb_right = tmp2;				if (tmp1)					rb_set_parent_color(tmp1, sibling,							    RB_BLACK);				augment_rotate(sibling, tmp2);				tmp1 = sibling;				sibling = tmp2;			}			/*			 * Case 4 - left rotate at parent + color flips			 * (p and sl could be either color here.			 *  After rotation, p becomes black, s acquires			 *  p's color, and sl keeps its color)			 *			 *      (p)             (s)			 *      / \             / \			 *     N   S     -->   P   Sr			 *        / \         / \			 *      (sl) sr      N  (sl)			 */			parent->rb_right = tmp2 = sibling->rb_left;			sibling->rb_left = parent;			rb_set_parent_color(tmp1, sibling, RB_BLACK);			if (tmp2)				rb_set_parent(tmp2, parent);			__rb_rotate_set_parents(parent, sibling, root,						RB_BLACK);			augment_rotate(parent, sibling);			break;		} else {			sibling = parent->rb_left;			if (rb_is_red(sibling)) {				/* Case 1 - right rotate at parent */				parent->rb_left = tmp1 = sibling->rb_right;				sibling->rb_right = parent;				rb_set_parent_color(tmp1, parent, RB_BLACK);				__rb_rotate_set_parents(parent, sibling, root,							RB_RED);				augment_rotate(parent, sibling);				sibling = tmp1;			}			tmp1 = sibling->rb_left;			if (!tmp1 || rb_is_black(tmp1)) {				tmp2 = sibling->rb_right;				if (!tmp2 || rb_is_black(tmp2)) {					/* Case 2 - sibling color flip */					rb_set_parent_color(sibling, parent,							    RB_RED);					if (rb_is_red(parent))						rb_set_black(parent);					else {						node = parent;						parent = rb_parent(node);						if (parent)							continue;					}					break;				}				/* Case 3 - right rotate at sibling */				sibling->rb_right = tmp1 = tmp2->rb_left;				tmp2->rb_left = sibling;				parent->rb_left = tmp2;				if (tmp1)					rb_set_parent_color(tmp1, sibling,							    RB_BLACK);				augment_rotate(sibling, tmp2);				tmp1 = sibling;				sibling = tmp2;			}			/* Case 4 - left rotate at parent + color flips */			parent->rb_left = tmp2 = sibling->rb_right;			sibling->rb_right = parent;			rb_set_parent_color(tmp1, sibling, RB_BLACK);			if (tmp2)				rb_set_parent(tmp2, parent);			__rb_rotate_set_parents(parent, sibling, root,						RB_BLACK);			augment_rotate(parent, sibling);			break;		}	}}/* Non-inline version for rb_erase_augmented() use */void __rb_erase_color(struct rb_node *parent, struct rb_root *root,	void (*augment_rotate)(struct rb_node *old, struct rb_node *new)){	____rb_erase_color(parent, root, augment_rotate);}EXPORT_SYMBOL(__rb_erase_color);/* * Non-augmented rbtree manipulation functions. * * We use dummy augmented callbacks here, and have the compiler optimize them * out of the rb_insert_color() and rb_erase() function definitions. */static inline void dummy_propagate(struct rb_node *node, struct rb_node *stop) {}static inline void dummy_copy(struct rb_node *old, struct rb_node *new) {}static inline void dummy_rotate(struct rb_node *old, struct rb_node *new) {}static const struct rb_augment_callbacks dummy_callbacks = {	dummy_propagate, dummy_copy, dummy_rotate};void rb_insert_color(struct rb_node *node, struct rb_root *root){	__rb_insert(node, root, dummy_rotate);}EXPORT_SYMBOL(rb_insert_color);void rb_erase(struct rb_node *node, struct rb_root *root){	struct rb_node *rebalance;	rebalance = __rb_erase_augmented(node, root, &dummy_callbacks);	if (rebalance)		____rb_erase_color(rebalance, root, dummy_rotate);}EXPORT_SYMBOL(rb_erase);/* * Augmented rbtree manipulation functions. * * This instantiates the same __always_inline functions as in the non-augmented * case, but this time with user-defined callbacks. */void __rb_insert_augmented(struct rb_node *node, struct rb_root *root,	void (*augment_rotate)(struct rb_node *old, struct rb_node *new)){	__rb_insert(node, root, augment_rotate);}EXPORT_SYMBOL(__rb_insert_augmented);/* * This function returns the first node (in sort order) of the tree. */struct rb_node *rb_first(const struct rb_root *root){	struct rb_node	*n;	n = root->rb_node;	if (!n)		return NULL;	while (n->rb_left)		n = n->rb_left;	return n;}EXPORT_SYMBOL(rb_first);struct rb_node *rb_last(const struct rb_root *root){	struct rb_node	*n;	n = root->rb_node;	if (!n)		return NULL;	while (n->rb_right)		n = n->rb_right;	return n;}EXPORT_SYMBOL(rb_last);struct rb_node *rb_next(const struct rb_node *node){	struct rb_node *parent;	if (RB_EMPTY_NODE(node))		return NULL;	/*	 * If we have a right-hand child, go down and then left as far	 * as we can.	 */	if (node->rb_right) {		node = node->rb_right; 		while (node->rb_left)			node=node->rb_left;		return (struct rb_node *)node;	}	/*	 * No right-hand children. Everything down and left is smaller than us,	 * so any 'next' node must be in the general direction of our parent.	 * Go up the tree; any time the ancestor is a right-hand child of its	 * parent, keep going up. First time it's a left-hand child of its	 * parent, said parent is our 'next' node.	 */	while ((parent = rb_parent(node)) && node == parent->rb_right)		node = parent;	return parent;}EXPORT_SYMBOL(rb_next);struct rb_node *rb_prev(const struct rb_node *node){	struct rb_node *parent;	if (RB_EMPTY_NODE(node))		return NULL;	/*	 * If we have a left-hand child, go down and then right as far	 * as we can.	 */	if (node->rb_left) {		node = node->rb_left; 		while (node->rb_right)			node=node->rb_right;		return (struct rb_node *)node;	}	/*	 * No left-hand children. Go up till we find an ancestor which	 * is a right-hand child of its parent.	 */	while ((parent = rb_parent(node)) && node == parent->rb_left)		node = parent;	return parent;}EXPORT_SYMBOL(rb_prev);void rb_replace_node(struct rb_node *victim, struct rb_node *new,		     struct rb_root *root){	struct rb_node *parent = rb_parent(victim);	/* Set the surrounding nodes to point to the replacement */	__rb_change_child(victim, new, parent, root);	if (victim->rb_left)		rb_set_parent(victim->rb_left, new);	if (victim->rb_right)		rb_set_parent(victim->rb_right, new);	/* Copy the pointers/colour from the victim to the replacement */	*new = *victim;}EXPORT_SYMBOL(rb_replace_node);static struct rb_node *rb_left_deepest_node(const struct rb_node *node){	for (;;) {		if (node->rb_left)			node = node->rb_left;		else if (node->rb_right)			node = node->rb_right;		else			return (struct rb_node *)node;	}}struct rb_node *rb_next_postorder(const struct rb_node *node){	const struct rb_node *parent;	if (!node)		return NULL;	parent = rb_parent(node);	/* If we're sitting on node, we've already seen our children */	if (parent && node == parent->rb_left && parent->rb_right) {		/* If we are the parent's left node, go to the parent's right		 * node then all the way down to the left */		return rb_left_deepest_node(parent->rb_right);	} else		/* Otherwise we are the parent's right node, and the parent		 * should be next */		return (struct rb_node *)parent;}EXPORT_SYMBOL(rb_next_postorder);struct rb_node *rb_first_postorder(const struct rb_root *root){	if (!root->rb_node)		return NULL;	return rb_left_deepest_node(root->rb_node);}EXPORT_SYMBOL(rb_first_postorder);
 |