mtk-eint.c 12 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497
  1. // SPDX-License-Identifier: GPL-2.0
  2. // Copyright (c) 2014-2018 MediaTek Inc.
  3. /*
  4. * Library for MediaTek External Interrupt Support
  5. *
  6. * Author: Maoguang Meng <maoguang.meng@mediatek.com>
  7. * Sean Wang <sean.wang@mediatek.com>
  8. *
  9. */
  10. #include <linux/delay.h>
  11. #include <linux/err.h>
  12. #include <linux/gpio.h>
  13. #include <linux/io.h>
  14. #include <linux/irqchip/chained_irq.h>
  15. #include <linux/irqdomain.h>
  16. #include <linux/of_irq.h>
  17. #include <linux/platform_device.h>
  18. #include "mtk-eint.h"
  19. #define MTK_EINT_EDGE_SENSITIVE 0
  20. #define MTK_EINT_LEVEL_SENSITIVE 1
  21. #define MTK_EINT_DBNC_SET_DBNC_BITS 4
  22. #define MTK_EINT_DBNC_RST_BIT (0x1 << 1)
  23. #define MTK_EINT_DBNC_SET_EN (0x1 << 0)
  24. static const struct mtk_eint_regs mtk_generic_eint_regs = {
  25. .stat = 0x000,
  26. .ack = 0x040,
  27. .mask = 0x080,
  28. .mask_set = 0x0c0,
  29. .mask_clr = 0x100,
  30. .sens = 0x140,
  31. .sens_set = 0x180,
  32. .sens_clr = 0x1c0,
  33. .soft = 0x200,
  34. .soft_set = 0x240,
  35. .soft_clr = 0x280,
  36. .pol = 0x300,
  37. .pol_set = 0x340,
  38. .pol_clr = 0x380,
  39. .dom_en = 0x400,
  40. .dbnc_ctrl = 0x500,
  41. .dbnc_set = 0x600,
  42. .dbnc_clr = 0x700,
  43. };
  44. static void __iomem *mtk_eint_get_offset(struct mtk_eint *eint,
  45. unsigned int eint_num,
  46. unsigned int offset)
  47. {
  48. unsigned int eint_base = 0;
  49. void __iomem *reg;
  50. if (eint_num >= eint->hw->ap_num)
  51. eint_base = eint->hw->ap_num;
  52. reg = eint->base + offset + ((eint_num - eint_base) / 32) * 4;
  53. return reg;
  54. }
  55. static unsigned int mtk_eint_can_en_debounce(struct mtk_eint *eint,
  56. unsigned int eint_num)
  57. {
  58. unsigned int sens;
  59. unsigned int bit = BIT(eint_num % 32);
  60. void __iomem *reg = mtk_eint_get_offset(eint, eint_num,
  61. eint->regs->sens);
  62. if (readl(reg) & bit)
  63. sens = MTK_EINT_LEVEL_SENSITIVE;
  64. else
  65. sens = MTK_EINT_EDGE_SENSITIVE;
  66. if (eint_num < eint->hw->db_cnt && sens != MTK_EINT_EDGE_SENSITIVE)
  67. return 1;
  68. else
  69. return 0;
  70. }
  71. static int mtk_eint_flip_edge(struct mtk_eint *eint, int hwirq)
  72. {
  73. int start_level, curr_level;
  74. unsigned int reg_offset;
  75. u32 mask = BIT(hwirq & 0x1f);
  76. u32 port = (hwirq >> 5) & eint->hw->port_mask;
  77. void __iomem *reg = eint->base + (port << 2);
  78. curr_level = eint->gpio_xlate->get_gpio_state(eint->pctl, hwirq);
  79. do {
  80. start_level = curr_level;
  81. if (start_level)
  82. reg_offset = eint->regs->pol_clr;
  83. else
  84. reg_offset = eint->regs->pol_set;
  85. writel(mask, reg + reg_offset);
  86. curr_level = eint->gpio_xlate->get_gpio_state(eint->pctl,
  87. hwirq);
  88. } while (start_level != curr_level);
  89. return start_level;
  90. }
  91. static void mtk_eint_mask(struct irq_data *d)
  92. {
  93. struct mtk_eint *eint = irq_data_get_irq_chip_data(d);
  94. u32 mask = BIT(d->hwirq & 0x1f);
  95. void __iomem *reg = mtk_eint_get_offset(eint, d->hwirq,
  96. eint->regs->mask_set);
  97. eint->cur_mask[d->hwirq >> 5] &= ~mask;
  98. writel(mask, reg);
  99. }
  100. static void mtk_eint_unmask(struct irq_data *d)
  101. {
  102. struct mtk_eint *eint = irq_data_get_irq_chip_data(d);
  103. u32 mask = BIT(d->hwirq & 0x1f);
  104. void __iomem *reg = mtk_eint_get_offset(eint, d->hwirq,
  105. eint->regs->mask_clr);
  106. eint->cur_mask[d->hwirq >> 5] |= mask;
  107. writel(mask, reg);
  108. if (eint->dual_edge[d->hwirq])
  109. mtk_eint_flip_edge(eint, d->hwirq);
  110. }
  111. static unsigned int mtk_eint_get_mask(struct mtk_eint *eint,
  112. unsigned int eint_num)
  113. {
  114. unsigned int bit = BIT(eint_num % 32);
  115. void __iomem *reg = mtk_eint_get_offset(eint, eint_num,
  116. eint->regs->mask);
  117. return !!(readl(reg) & bit);
  118. }
  119. static void mtk_eint_ack(struct irq_data *d)
  120. {
  121. struct mtk_eint *eint = irq_data_get_irq_chip_data(d);
  122. u32 mask = BIT(d->hwirq & 0x1f);
  123. void __iomem *reg = mtk_eint_get_offset(eint, d->hwirq,
  124. eint->regs->ack);
  125. writel(mask, reg);
  126. }
  127. static int mtk_eint_set_type(struct irq_data *d, unsigned int type)
  128. {
  129. struct mtk_eint *eint = irq_data_get_irq_chip_data(d);
  130. u32 mask = BIT(d->hwirq & 0x1f);
  131. void __iomem *reg;
  132. if (((type & IRQ_TYPE_EDGE_BOTH) && (type & IRQ_TYPE_LEVEL_MASK)) ||
  133. ((type & IRQ_TYPE_LEVEL_MASK) == IRQ_TYPE_LEVEL_MASK)) {
  134. dev_err(eint->dev,
  135. "Can't configure IRQ%d (EINT%lu) for type 0x%X\n",
  136. d->irq, d->hwirq, type);
  137. return -EINVAL;
  138. }
  139. if ((type & IRQ_TYPE_EDGE_BOTH) == IRQ_TYPE_EDGE_BOTH)
  140. eint->dual_edge[d->hwirq] = 1;
  141. else
  142. eint->dual_edge[d->hwirq] = 0;
  143. if (type & (IRQ_TYPE_LEVEL_LOW | IRQ_TYPE_EDGE_FALLING)) {
  144. reg = mtk_eint_get_offset(eint, d->hwirq, eint->regs->pol_clr);
  145. writel(mask, reg);
  146. } else {
  147. reg = mtk_eint_get_offset(eint, d->hwirq, eint->regs->pol_set);
  148. writel(mask, reg);
  149. }
  150. if (type & (IRQ_TYPE_EDGE_RISING | IRQ_TYPE_EDGE_FALLING)) {
  151. reg = mtk_eint_get_offset(eint, d->hwirq, eint->regs->sens_clr);
  152. writel(mask, reg);
  153. } else {
  154. reg = mtk_eint_get_offset(eint, d->hwirq, eint->regs->sens_set);
  155. writel(mask, reg);
  156. }
  157. if (eint->dual_edge[d->hwirq])
  158. mtk_eint_flip_edge(eint, d->hwirq);
  159. return 0;
  160. }
  161. static int mtk_eint_irq_set_wake(struct irq_data *d, unsigned int on)
  162. {
  163. struct mtk_eint *eint = irq_data_get_irq_chip_data(d);
  164. int shift = d->hwirq & 0x1f;
  165. int reg = d->hwirq >> 5;
  166. if (on)
  167. eint->wake_mask[reg] |= BIT(shift);
  168. else
  169. eint->wake_mask[reg] &= ~BIT(shift);
  170. return 0;
  171. }
  172. static void mtk_eint_chip_write_mask(const struct mtk_eint *eint,
  173. void __iomem *base, u32 *buf)
  174. {
  175. int port;
  176. void __iomem *reg;
  177. for (port = 0; port < eint->hw->ports; port++) {
  178. reg = base + (port << 2);
  179. writel_relaxed(~buf[port], reg + eint->regs->mask_set);
  180. writel_relaxed(buf[port], reg + eint->regs->mask_clr);
  181. }
  182. }
  183. static int mtk_eint_irq_request_resources(struct irq_data *d)
  184. {
  185. struct mtk_eint *eint = irq_data_get_irq_chip_data(d);
  186. struct gpio_chip *gpio_c;
  187. unsigned int gpio_n;
  188. int err;
  189. err = eint->gpio_xlate->get_gpio_n(eint->pctl, d->hwirq,
  190. &gpio_n, &gpio_c);
  191. if (err < 0) {
  192. dev_err(eint->dev, "Can not find pin\n");
  193. return err;
  194. }
  195. err = gpiochip_lock_as_irq(gpio_c, gpio_n);
  196. if (err < 0) {
  197. dev_err(eint->dev, "unable to lock HW IRQ %lu for IRQ\n",
  198. irqd_to_hwirq(d));
  199. return err;
  200. }
  201. err = eint->gpio_xlate->set_gpio_as_eint(eint->pctl, d->hwirq);
  202. if (err < 0) {
  203. dev_err(eint->dev, "Can not eint mode\n");
  204. return err;
  205. }
  206. return 0;
  207. }
  208. static void mtk_eint_irq_release_resources(struct irq_data *d)
  209. {
  210. struct mtk_eint *eint = irq_data_get_irq_chip_data(d);
  211. struct gpio_chip *gpio_c;
  212. unsigned int gpio_n;
  213. eint->gpio_xlate->get_gpio_n(eint->pctl, d->hwirq, &gpio_n,
  214. &gpio_c);
  215. gpiochip_unlock_as_irq(gpio_c, gpio_n);
  216. }
  217. static struct irq_chip mtk_eint_irq_chip = {
  218. .name = "mt-eint",
  219. .irq_disable = mtk_eint_mask,
  220. .irq_mask = mtk_eint_mask,
  221. .irq_unmask = mtk_eint_unmask,
  222. .irq_ack = mtk_eint_ack,
  223. .irq_set_type = mtk_eint_set_type,
  224. .irq_set_wake = mtk_eint_irq_set_wake,
  225. .irq_request_resources = mtk_eint_irq_request_resources,
  226. .irq_release_resources = mtk_eint_irq_release_resources,
  227. };
  228. static unsigned int mtk_eint_hw_init(struct mtk_eint *eint)
  229. {
  230. void __iomem *reg = eint->base + eint->regs->dom_en;
  231. unsigned int i;
  232. for (i = 0; i < eint->hw->ap_num; i += 32) {
  233. writel(0xffffffff, reg);
  234. reg += 4;
  235. }
  236. return 0;
  237. }
  238. static inline void
  239. mtk_eint_debounce_process(struct mtk_eint *eint, int index)
  240. {
  241. unsigned int rst, ctrl_offset;
  242. unsigned int bit, dbnc;
  243. ctrl_offset = (index / 4) * 4 + eint->regs->dbnc_ctrl;
  244. dbnc = readl(eint->base + ctrl_offset);
  245. bit = MTK_EINT_DBNC_SET_EN << ((index % 4) * 8);
  246. if ((bit & dbnc) > 0) {
  247. ctrl_offset = (index / 4) * 4 + eint->regs->dbnc_set;
  248. rst = MTK_EINT_DBNC_RST_BIT << ((index % 4) * 8);
  249. writel(rst, eint->base + ctrl_offset);
  250. }
  251. }
  252. static void mtk_eint_irq_handler(struct irq_desc *desc)
  253. {
  254. struct irq_chip *chip = irq_desc_get_chip(desc);
  255. struct mtk_eint *eint = irq_desc_get_handler_data(desc);
  256. unsigned int status, eint_num;
  257. int offset, mask_offset, index, virq;
  258. void __iomem *reg = mtk_eint_get_offset(eint, 0, eint->regs->stat);
  259. int dual_edge, start_level, curr_level;
  260. chained_irq_enter(chip, desc);
  261. for (eint_num = 0; eint_num < eint->hw->ap_num; eint_num += 32,
  262. reg += 4) {
  263. status = readl(reg);
  264. while (status) {
  265. offset = __ffs(status);
  266. mask_offset = eint_num >> 5;
  267. index = eint_num + offset;
  268. virq = irq_find_mapping(eint->domain, index);
  269. status &= ~BIT(offset);
  270. /*
  271. * If we get an interrupt on pin that was only required
  272. * for wake (but no real interrupt requested), mask the
  273. * interrupt (as would mtk_eint_resume do anyway later
  274. * in the resume sequence).
  275. */
  276. if (eint->wake_mask[mask_offset] & BIT(offset) &&
  277. !(eint->cur_mask[mask_offset] & BIT(offset))) {
  278. writel_relaxed(BIT(offset), reg -
  279. eint->regs->stat +
  280. eint->regs->mask_set);
  281. }
  282. dual_edge = eint->dual_edge[index];
  283. if (dual_edge) {
  284. /*
  285. * Clear soft-irq in case we raised it last
  286. * time.
  287. */
  288. writel(BIT(offset), reg - eint->regs->stat +
  289. eint->regs->soft_clr);
  290. start_level =
  291. eint->gpio_xlate->get_gpio_state(eint->pctl,
  292. index);
  293. }
  294. generic_handle_irq(virq);
  295. if (dual_edge) {
  296. curr_level = mtk_eint_flip_edge(eint, index);
  297. /*
  298. * If level changed, we might lost one edge
  299. * interrupt, raised it through soft-irq.
  300. */
  301. if (start_level != curr_level)
  302. writel(BIT(offset), reg -
  303. eint->regs->stat +
  304. eint->regs->soft_set);
  305. }
  306. if (index < eint->hw->db_cnt)
  307. mtk_eint_debounce_process(eint, index);
  308. }
  309. }
  310. chained_irq_exit(chip, desc);
  311. }
  312. int mtk_eint_do_suspend(struct mtk_eint *eint)
  313. {
  314. mtk_eint_chip_write_mask(eint, eint->base, eint->wake_mask);
  315. return 0;
  316. }
  317. int mtk_eint_do_resume(struct mtk_eint *eint)
  318. {
  319. mtk_eint_chip_write_mask(eint, eint->base, eint->cur_mask);
  320. return 0;
  321. }
  322. int mtk_eint_set_debounce(struct mtk_eint *eint, unsigned long eint_num,
  323. unsigned int debounce)
  324. {
  325. int virq, eint_offset;
  326. unsigned int set_offset, bit, clr_bit, clr_offset, rst, i, unmask,
  327. dbnc;
  328. static const unsigned int debounce_time[] = {500, 1000, 16000, 32000,
  329. 64000, 128000, 256000};
  330. struct irq_data *d;
  331. virq = irq_find_mapping(eint->domain, eint_num);
  332. eint_offset = (eint_num % 4) * 8;
  333. d = irq_get_irq_data(virq);
  334. set_offset = (eint_num / 4) * 4 + eint->regs->dbnc_set;
  335. clr_offset = (eint_num / 4) * 4 + eint->regs->dbnc_clr;
  336. if (!mtk_eint_can_en_debounce(eint, eint_num))
  337. return -EINVAL;
  338. dbnc = ARRAY_SIZE(debounce_time);
  339. for (i = 0; i < ARRAY_SIZE(debounce_time); i++) {
  340. if (debounce <= debounce_time[i]) {
  341. dbnc = i;
  342. break;
  343. }
  344. }
  345. if (!mtk_eint_get_mask(eint, eint_num)) {
  346. mtk_eint_mask(d);
  347. unmask = 1;
  348. } else {
  349. unmask = 0;
  350. }
  351. clr_bit = 0xff << eint_offset;
  352. writel(clr_bit, eint->base + clr_offset);
  353. bit = ((dbnc << MTK_EINT_DBNC_SET_DBNC_BITS) | MTK_EINT_DBNC_SET_EN) <<
  354. eint_offset;
  355. rst = MTK_EINT_DBNC_RST_BIT << eint_offset;
  356. writel(rst | bit, eint->base + set_offset);
  357. /*
  358. * Delay a while (more than 2T) to wait for hw debounce counter reset
  359. * work correctly.
  360. */
  361. udelay(1);
  362. if (unmask == 1)
  363. mtk_eint_unmask(d);
  364. return 0;
  365. }
  366. int mtk_eint_find_irq(struct mtk_eint *eint, unsigned long eint_n)
  367. {
  368. int irq;
  369. irq = irq_find_mapping(eint->domain, eint_n);
  370. if (!irq)
  371. return -EINVAL;
  372. return irq;
  373. }
  374. int mtk_eint_do_init(struct mtk_eint *eint)
  375. {
  376. int i;
  377. /* If clients don't assign a specific regs, let's use generic one */
  378. if (!eint->regs)
  379. eint->regs = &mtk_generic_eint_regs;
  380. eint->wake_mask = devm_kcalloc(eint->dev, eint->hw->ports,
  381. sizeof(*eint->wake_mask), GFP_KERNEL);
  382. if (!eint->wake_mask)
  383. return -ENOMEM;
  384. eint->cur_mask = devm_kcalloc(eint->dev, eint->hw->ports,
  385. sizeof(*eint->cur_mask), GFP_KERNEL);
  386. if (!eint->cur_mask)
  387. return -ENOMEM;
  388. eint->dual_edge = devm_kcalloc(eint->dev, eint->hw->ap_num,
  389. sizeof(int), GFP_KERNEL);
  390. if (!eint->dual_edge)
  391. return -ENOMEM;
  392. eint->domain = irq_domain_add_linear(eint->dev->of_node,
  393. eint->hw->ap_num,
  394. &irq_domain_simple_ops, NULL);
  395. if (!eint->domain)
  396. return -ENOMEM;
  397. mtk_eint_hw_init(eint);
  398. for (i = 0; i < eint->hw->ap_num; i++) {
  399. int virq = irq_create_mapping(eint->domain, i);
  400. irq_set_chip_and_handler(virq, &mtk_eint_irq_chip,
  401. handle_level_irq);
  402. irq_set_chip_data(virq, eint);
  403. }
  404. irq_set_chained_handler_and_data(eint->irq, mtk_eint_irq_handler,
  405. eint);
  406. return 0;
  407. }