12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622 |
- // SPDX-License-Identifier: GPL-2.0
- /*
- * Copyright (C) 2008 Oracle. All rights reserved.
- */
- #include <linux/kernel.h>
- #include <linux/bio.h>
- #include <linux/file.h>
- #include <linux/fs.h>
- #include <linux/pagemap.h>
- #include <linux/highmem.h>
- #include <linux/time.h>
- #include <linux/init.h>
- #include <linux/string.h>
- #include <linux/backing-dev.h>
- #include <linux/writeback.h>
- #include <linux/slab.h>
- #include <linux/sched/mm.h>
- #include <linux/log2.h>
- #include "ctree.h"
- #include "disk-io.h"
- #include "transaction.h"
- #include "btrfs_inode.h"
- #include "volumes.h"
- #include "ordered-data.h"
- #include "compression.h"
- #include "extent_io.h"
- #include "extent_map.h"
- static const char* const btrfs_compress_types[] = { "", "zlib", "lzo", "zstd" };
- const char* btrfs_compress_type2str(enum btrfs_compression_type type)
- {
- switch (type) {
- case BTRFS_COMPRESS_ZLIB:
- case BTRFS_COMPRESS_LZO:
- case BTRFS_COMPRESS_ZSTD:
- case BTRFS_COMPRESS_NONE:
- return btrfs_compress_types[type];
- }
- return NULL;
- }
- bool btrfs_compress_is_valid_type(const char *str, size_t len)
- {
- int i;
- for (i = 1; i < ARRAY_SIZE(btrfs_compress_types); i++) {
- size_t comp_len = strlen(btrfs_compress_types[i]);
- if (len < comp_len)
- continue;
- if (!strncmp(btrfs_compress_types[i], str, comp_len))
- return true;
- }
- return false;
- }
- static int btrfs_decompress_bio(struct compressed_bio *cb);
- static inline int compressed_bio_size(struct btrfs_fs_info *fs_info,
- unsigned long disk_size)
- {
- u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
- return sizeof(struct compressed_bio) +
- (DIV_ROUND_UP(disk_size, fs_info->sectorsize)) * csum_size;
- }
- static int check_compressed_csum(struct btrfs_inode *inode,
- struct compressed_bio *cb,
- u64 disk_start)
- {
- int ret;
- struct page *page;
- unsigned long i;
- char *kaddr;
- u32 csum;
- u32 *cb_sum = &cb->sums;
- if (inode->flags & BTRFS_INODE_NODATASUM)
- return 0;
- for (i = 0; i < cb->nr_pages; i++) {
- page = cb->compressed_pages[i];
- csum = ~(u32)0;
- kaddr = kmap_atomic(page);
- csum = btrfs_csum_data(kaddr, csum, PAGE_SIZE);
- btrfs_csum_final(csum, (u8 *)&csum);
- kunmap_atomic(kaddr);
- if (csum != *cb_sum) {
- btrfs_print_data_csum_error(inode, disk_start, csum,
- *cb_sum, cb->mirror_num);
- ret = -EIO;
- goto fail;
- }
- cb_sum++;
- }
- ret = 0;
- fail:
- return ret;
- }
- /* when we finish reading compressed pages from the disk, we
- * decompress them and then run the bio end_io routines on the
- * decompressed pages (in the inode address space).
- *
- * This allows the checksumming and other IO error handling routines
- * to work normally
- *
- * The compressed pages are freed here, and it must be run
- * in process context
- */
- static void end_compressed_bio_read(struct bio *bio)
- {
- struct compressed_bio *cb = bio->bi_private;
- struct inode *inode;
- struct page *page;
- unsigned long index;
- unsigned int mirror = btrfs_io_bio(bio)->mirror_num;
- int ret = 0;
- if (bio->bi_status)
- cb->errors = 1;
- /* if there are more bios still pending for this compressed
- * extent, just exit
- */
- if (!refcount_dec_and_test(&cb->pending_bios))
- goto out;
- /*
- * Record the correct mirror_num in cb->orig_bio so that
- * read-repair can work properly.
- */
- ASSERT(btrfs_io_bio(cb->orig_bio));
- btrfs_io_bio(cb->orig_bio)->mirror_num = mirror;
- cb->mirror_num = mirror;
- /*
- * Some IO in this cb have failed, just skip checksum as there
- * is no way it could be correct.
- */
- if (cb->errors == 1)
- goto csum_failed;
- inode = cb->inode;
- ret = check_compressed_csum(BTRFS_I(inode), cb,
- (u64)bio->bi_iter.bi_sector << 9);
- if (ret)
- goto csum_failed;
- /* ok, we're the last bio for this extent, lets start
- * the decompression.
- */
- ret = btrfs_decompress_bio(cb);
- csum_failed:
- if (ret)
- cb->errors = 1;
- /* release the compressed pages */
- index = 0;
- for (index = 0; index < cb->nr_pages; index++) {
- page = cb->compressed_pages[index];
- page->mapping = NULL;
- put_page(page);
- }
- /* do io completion on the original bio */
- if (cb->errors) {
- bio_io_error(cb->orig_bio);
- } else {
- int i;
- struct bio_vec *bvec;
- /*
- * we have verified the checksum already, set page
- * checked so the end_io handlers know about it
- */
- ASSERT(!bio_flagged(bio, BIO_CLONED));
- bio_for_each_segment_all(bvec, cb->orig_bio, i)
- SetPageChecked(bvec->bv_page);
- bio_endio(cb->orig_bio);
- }
- /* finally free the cb struct */
- kfree(cb->compressed_pages);
- kfree(cb);
- out:
- bio_put(bio);
- }
- /*
- * Clear the writeback bits on all of the file
- * pages for a compressed write
- */
- static noinline void end_compressed_writeback(struct inode *inode,
- const struct compressed_bio *cb)
- {
- unsigned long index = cb->start >> PAGE_SHIFT;
- unsigned long end_index = (cb->start + cb->len - 1) >> PAGE_SHIFT;
- struct page *pages[16];
- unsigned long nr_pages = end_index - index + 1;
- int i;
- int ret;
- if (cb->errors)
- mapping_set_error(inode->i_mapping, -EIO);
- while (nr_pages > 0) {
- ret = find_get_pages_contig(inode->i_mapping, index,
- min_t(unsigned long,
- nr_pages, ARRAY_SIZE(pages)), pages);
- if (ret == 0) {
- nr_pages -= 1;
- index += 1;
- continue;
- }
- for (i = 0; i < ret; i++) {
- if (cb->errors)
- SetPageError(pages[i]);
- end_page_writeback(pages[i]);
- put_page(pages[i]);
- }
- nr_pages -= ret;
- index += ret;
- }
- /* the inode may be gone now */
- }
- /*
- * do the cleanup once all the compressed pages hit the disk.
- * This will clear writeback on the file pages and free the compressed
- * pages.
- *
- * This also calls the writeback end hooks for the file pages so that
- * metadata and checksums can be updated in the file.
- */
- static void end_compressed_bio_write(struct bio *bio)
- {
- struct extent_io_tree *tree;
- struct compressed_bio *cb = bio->bi_private;
- struct inode *inode;
- struct page *page;
- unsigned long index;
- if (bio->bi_status)
- cb->errors = 1;
- /* if there are more bios still pending for this compressed
- * extent, just exit
- */
- if (!refcount_dec_and_test(&cb->pending_bios))
- goto out;
- /* ok, we're the last bio for this extent, step one is to
- * call back into the FS and do all the end_io operations
- */
- inode = cb->inode;
- tree = &BTRFS_I(inode)->io_tree;
- cb->compressed_pages[0]->mapping = cb->inode->i_mapping;
- tree->ops->writepage_end_io_hook(cb->compressed_pages[0],
- cb->start,
- cb->start + cb->len - 1,
- NULL,
- bio->bi_status ?
- BLK_STS_OK : BLK_STS_NOTSUPP);
- cb->compressed_pages[0]->mapping = NULL;
- end_compressed_writeback(inode, cb);
- /* note, our inode could be gone now */
- /*
- * release the compressed pages, these came from alloc_page and
- * are not attached to the inode at all
- */
- index = 0;
- for (index = 0; index < cb->nr_pages; index++) {
- page = cb->compressed_pages[index];
- page->mapping = NULL;
- put_page(page);
- }
- /* finally free the cb struct */
- kfree(cb->compressed_pages);
- kfree(cb);
- out:
- bio_put(bio);
- }
- /*
- * worker function to build and submit bios for previously compressed pages.
- * The corresponding pages in the inode should be marked for writeback
- * and the compressed pages should have a reference on them for dropping
- * when the IO is complete.
- *
- * This also checksums the file bytes and gets things ready for
- * the end io hooks.
- */
- blk_status_t btrfs_submit_compressed_write(struct inode *inode, u64 start,
- unsigned long len, u64 disk_start,
- unsigned long compressed_len,
- struct page **compressed_pages,
- unsigned long nr_pages,
- unsigned int write_flags)
- {
- struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
- struct bio *bio = NULL;
- struct compressed_bio *cb;
- unsigned long bytes_left;
- int pg_index = 0;
- struct page *page;
- u64 first_byte = disk_start;
- struct block_device *bdev;
- blk_status_t ret;
- int skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
- WARN_ON(start & ((u64)PAGE_SIZE - 1));
- cb = kmalloc(compressed_bio_size(fs_info, compressed_len), GFP_NOFS);
- if (!cb)
- return BLK_STS_RESOURCE;
- refcount_set(&cb->pending_bios, 0);
- cb->errors = 0;
- cb->inode = inode;
- cb->start = start;
- cb->len = len;
- cb->mirror_num = 0;
- cb->compressed_pages = compressed_pages;
- cb->compressed_len = compressed_len;
- cb->orig_bio = NULL;
- cb->nr_pages = nr_pages;
- bdev = fs_info->fs_devices->latest_bdev;
- bio = btrfs_bio_alloc(bdev, first_byte);
- bio->bi_opf = REQ_OP_WRITE | write_flags;
- bio->bi_private = cb;
- bio->bi_end_io = end_compressed_bio_write;
- refcount_set(&cb->pending_bios, 1);
- /* create and submit bios for the compressed pages */
- bytes_left = compressed_len;
- for (pg_index = 0; pg_index < cb->nr_pages; pg_index++) {
- int submit = 0;
- page = compressed_pages[pg_index];
- page->mapping = inode->i_mapping;
- if (bio->bi_iter.bi_size)
- submit = btrfs_merge_bio_hook(page, 0, PAGE_SIZE, bio, 0);
- page->mapping = NULL;
- if (submit || bio_add_page(bio, page, PAGE_SIZE, 0) <
- PAGE_SIZE) {
- /*
- * inc the count before we submit the bio so
- * we know the end IO handler won't happen before
- * we inc the count. Otherwise, the cb might get
- * freed before we're done setting it up
- */
- refcount_inc(&cb->pending_bios);
- ret = btrfs_bio_wq_end_io(fs_info, bio,
- BTRFS_WQ_ENDIO_DATA);
- BUG_ON(ret); /* -ENOMEM */
- if (!skip_sum) {
- ret = btrfs_csum_one_bio(inode, bio, start, 1);
- BUG_ON(ret); /* -ENOMEM */
- }
- ret = btrfs_map_bio(fs_info, bio, 0, 1);
- if (ret) {
- bio->bi_status = ret;
- bio_endio(bio);
- }
- bio = btrfs_bio_alloc(bdev, first_byte);
- bio->bi_opf = REQ_OP_WRITE | write_flags;
- bio->bi_private = cb;
- bio->bi_end_io = end_compressed_bio_write;
- bio_add_page(bio, page, PAGE_SIZE, 0);
- }
- if (bytes_left < PAGE_SIZE) {
- btrfs_info(fs_info,
- "bytes left %lu compress len %lu nr %lu",
- bytes_left, cb->compressed_len, cb->nr_pages);
- }
- bytes_left -= PAGE_SIZE;
- first_byte += PAGE_SIZE;
- cond_resched();
- }
- ret = btrfs_bio_wq_end_io(fs_info, bio, BTRFS_WQ_ENDIO_DATA);
- BUG_ON(ret); /* -ENOMEM */
- if (!skip_sum) {
- ret = btrfs_csum_one_bio(inode, bio, start, 1);
- BUG_ON(ret); /* -ENOMEM */
- }
- ret = btrfs_map_bio(fs_info, bio, 0, 1);
- if (ret) {
- bio->bi_status = ret;
- bio_endio(bio);
- }
- return 0;
- }
- static u64 bio_end_offset(struct bio *bio)
- {
- struct bio_vec *last = bio_last_bvec_all(bio);
- return page_offset(last->bv_page) + last->bv_len + last->bv_offset;
- }
- static noinline int add_ra_bio_pages(struct inode *inode,
- u64 compressed_end,
- struct compressed_bio *cb)
- {
- unsigned long end_index;
- unsigned long pg_index;
- u64 last_offset;
- u64 isize = i_size_read(inode);
- int ret;
- struct page *page;
- unsigned long nr_pages = 0;
- struct extent_map *em;
- struct address_space *mapping = inode->i_mapping;
- struct extent_map_tree *em_tree;
- struct extent_io_tree *tree;
- u64 end;
- int misses = 0;
- last_offset = bio_end_offset(cb->orig_bio);
- em_tree = &BTRFS_I(inode)->extent_tree;
- tree = &BTRFS_I(inode)->io_tree;
- if (isize == 0)
- return 0;
- end_index = (i_size_read(inode) - 1) >> PAGE_SHIFT;
- while (last_offset < compressed_end) {
- pg_index = last_offset >> PAGE_SHIFT;
- if (pg_index > end_index)
- break;
- rcu_read_lock();
- page = radix_tree_lookup(&mapping->i_pages, pg_index);
- rcu_read_unlock();
- if (page && !radix_tree_exceptional_entry(page)) {
- misses++;
- if (misses > 4)
- break;
- goto next;
- }
- page = __page_cache_alloc(mapping_gfp_constraint(mapping,
- ~__GFP_FS));
- if (!page)
- break;
- if (add_to_page_cache_lru(page, mapping, pg_index, GFP_NOFS)) {
- put_page(page);
- goto next;
- }
- end = last_offset + PAGE_SIZE - 1;
- /*
- * at this point, we have a locked page in the page cache
- * for these bytes in the file. But, we have to make
- * sure they map to this compressed extent on disk.
- */
- set_page_extent_mapped(page);
- lock_extent(tree, last_offset, end);
- read_lock(&em_tree->lock);
- em = lookup_extent_mapping(em_tree, last_offset,
- PAGE_SIZE);
- read_unlock(&em_tree->lock);
- if (!em || last_offset < em->start ||
- (last_offset + PAGE_SIZE > extent_map_end(em)) ||
- (em->block_start >> 9) != cb->orig_bio->bi_iter.bi_sector) {
- free_extent_map(em);
- unlock_extent(tree, last_offset, end);
- unlock_page(page);
- put_page(page);
- break;
- }
- free_extent_map(em);
- if (page->index == end_index) {
- char *userpage;
- size_t zero_offset = isize & (PAGE_SIZE - 1);
- if (zero_offset) {
- int zeros;
- zeros = PAGE_SIZE - zero_offset;
- userpage = kmap_atomic(page);
- memset(userpage + zero_offset, 0, zeros);
- flush_dcache_page(page);
- kunmap_atomic(userpage);
- }
- }
- ret = bio_add_page(cb->orig_bio, page,
- PAGE_SIZE, 0);
- if (ret == PAGE_SIZE) {
- nr_pages++;
- put_page(page);
- } else {
- unlock_extent(tree, last_offset, end);
- unlock_page(page);
- put_page(page);
- break;
- }
- next:
- last_offset += PAGE_SIZE;
- }
- return 0;
- }
- /*
- * for a compressed read, the bio we get passed has all the inode pages
- * in it. We don't actually do IO on those pages but allocate new ones
- * to hold the compressed pages on disk.
- *
- * bio->bi_iter.bi_sector points to the compressed extent on disk
- * bio->bi_io_vec points to all of the inode pages
- *
- * After the compressed pages are read, we copy the bytes into the
- * bio we were passed and then call the bio end_io calls
- */
- blk_status_t btrfs_submit_compressed_read(struct inode *inode, struct bio *bio,
- int mirror_num, unsigned long bio_flags)
- {
- struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
- struct extent_io_tree *tree;
- struct extent_map_tree *em_tree;
- struct compressed_bio *cb;
- unsigned long compressed_len;
- unsigned long nr_pages;
- unsigned long pg_index;
- struct page *page;
- struct block_device *bdev;
- struct bio *comp_bio;
- u64 cur_disk_byte = (u64)bio->bi_iter.bi_sector << 9;
- u64 em_len;
- u64 em_start;
- struct extent_map *em;
- blk_status_t ret = BLK_STS_RESOURCE;
- int faili = 0;
- u32 *sums;
- tree = &BTRFS_I(inode)->io_tree;
- em_tree = &BTRFS_I(inode)->extent_tree;
- /* we need the actual starting offset of this extent in the file */
- read_lock(&em_tree->lock);
- em = lookup_extent_mapping(em_tree,
- page_offset(bio_first_page_all(bio)),
- PAGE_SIZE);
- read_unlock(&em_tree->lock);
- if (!em)
- return BLK_STS_IOERR;
- compressed_len = em->block_len;
- cb = kmalloc(compressed_bio_size(fs_info, compressed_len), GFP_NOFS);
- if (!cb)
- goto out;
- refcount_set(&cb->pending_bios, 0);
- cb->errors = 0;
- cb->inode = inode;
- cb->mirror_num = mirror_num;
- sums = &cb->sums;
- cb->start = em->orig_start;
- em_len = em->len;
- em_start = em->start;
- free_extent_map(em);
- em = NULL;
- cb->len = bio->bi_iter.bi_size;
- cb->compressed_len = compressed_len;
- cb->compress_type = extent_compress_type(bio_flags);
- cb->orig_bio = bio;
- nr_pages = DIV_ROUND_UP(compressed_len, PAGE_SIZE);
- cb->compressed_pages = kcalloc(nr_pages, sizeof(struct page *),
- GFP_NOFS);
- if (!cb->compressed_pages)
- goto fail1;
- bdev = fs_info->fs_devices->latest_bdev;
- for (pg_index = 0; pg_index < nr_pages; pg_index++) {
- cb->compressed_pages[pg_index] = alloc_page(GFP_NOFS |
- __GFP_HIGHMEM);
- if (!cb->compressed_pages[pg_index]) {
- faili = pg_index - 1;
- ret = BLK_STS_RESOURCE;
- goto fail2;
- }
- }
- faili = nr_pages - 1;
- cb->nr_pages = nr_pages;
- add_ra_bio_pages(inode, em_start + em_len, cb);
- /* include any pages we added in add_ra-bio_pages */
- cb->len = bio->bi_iter.bi_size;
- comp_bio = btrfs_bio_alloc(bdev, cur_disk_byte);
- comp_bio->bi_opf = REQ_OP_READ;
- comp_bio->bi_private = cb;
- comp_bio->bi_end_io = end_compressed_bio_read;
- refcount_set(&cb->pending_bios, 1);
- for (pg_index = 0; pg_index < nr_pages; pg_index++) {
- int submit = 0;
- page = cb->compressed_pages[pg_index];
- page->mapping = inode->i_mapping;
- page->index = em_start >> PAGE_SHIFT;
- if (comp_bio->bi_iter.bi_size)
- submit = btrfs_merge_bio_hook(page, 0, PAGE_SIZE,
- comp_bio, 0);
- page->mapping = NULL;
- if (submit || bio_add_page(comp_bio, page, PAGE_SIZE, 0) <
- PAGE_SIZE) {
- ret = btrfs_bio_wq_end_io(fs_info, comp_bio,
- BTRFS_WQ_ENDIO_DATA);
- BUG_ON(ret); /* -ENOMEM */
- /*
- * inc the count before we submit the bio so
- * we know the end IO handler won't happen before
- * we inc the count. Otherwise, the cb might get
- * freed before we're done setting it up
- */
- refcount_inc(&cb->pending_bios);
- if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
- ret = btrfs_lookup_bio_sums(inode, comp_bio,
- sums);
- BUG_ON(ret); /* -ENOMEM */
- }
- sums += DIV_ROUND_UP(comp_bio->bi_iter.bi_size,
- fs_info->sectorsize);
- ret = btrfs_map_bio(fs_info, comp_bio, mirror_num, 0);
- if (ret) {
- comp_bio->bi_status = ret;
- bio_endio(comp_bio);
- }
- comp_bio = btrfs_bio_alloc(bdev, cur_disk_byte);
- comp_bio->bi_opf = REQ_OP_READ;
- comp_bio->bi_private = cb;
- comp_bio->bi_end_io = end_compressed_bio_read;
- bio_add_page(comp_bio, page, PAGE_SIZE, 0);
- }
- cur_disk_byte += PAGE_SIZE;
- }
- ret = btrfs_bio_wq_end_io(fs_info, comp_bio, BTRFS_WQ_ENDIO_DATA);
- BUG_ON(ret); /* -ENOMEM */
- if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
- ret = btrfs_lookup_bio_sums(inode, comp_bio, sums);
- BUG_ON(ret); /* -ENOMEM */
- }
- ret = btrfs_map_bio(fs_info, comp_bio, mirror_num, 0);
- if (ret) {
- comp_bio->bi_status = ret;
- bio_endio(comp_bio);
- }
- return 0;
- fail2:
- while (faili >= 0) {
- __free_page(cb->compressed_pages[faili]);
- faili--;
- }
- kfree(cb->compressed_pages);
- fail1:
- kfree(cb);
- out:
- free_extent_map(em);
- return ret;
- }
- /*
- * Heuristic uses systematic sampling to collect data from the input data
- * range, the logic can be tuned by the following constants:
- *
- * @SAMPLING_READ_SIZE - how many bytes will be copied from for each sample
- * @SAMPLING_INTERVAL - range from which the sampled data can be collected
- */
- #define SAMPLING_READ_SIZE (16)
- #define SAMPLING_INTERVAL (256)
- /*
- * For statistical analysis of the input data we consider bytes that form a
- * Galois Field of 256 objects. Each object has an attribute count, ie. how
- * many times the object appeared in the sample.
- */
- #define BUCKET_SIZE (256)
- /*
- * The size of the sample is based on a statistical sampling rule of thumb.
- * The common way is to perform sampling tests as long as the number of
- * elements in each cell is at least 5.
- *
- * Instead of 5, we choose 32 to obtain more accurate results.
- * If the data contain the maximum number of symbols, which is 256, we obtain a
- * sample size bound by 8192.
- *
- * For a sample of at most 8KB of data per data range: 16 consecutive bytes
- * from up to 512 locations.
- */
- #define MAX_SAMPLE_SIZE (BTRFS_MAX_UNCOMPRESSED * \
- SAMPLING_READ_SIZE / SAMPLING_INTERVAL)
- struct bucket_item {
- u32 count;
- };
- struct heuristic_ws {
- /* Partial copy of input data */
- u8 *sample;
- u32 sample_size;
- /* Buckets store counters for each byte value */
- struct bucket_item *bucket;
- /* Sorting buffer */
- struct bucket_item *bucket_b;
- struct list_head list;
- };
- static void free_heuristic_ws(struct list_head *ws)
- {
- struct heuristic_ws *workspace;
- workspace = list_entry(ws, struct heuristic_ws, list);
- kvfree(workspace->sample);
- kfree(workspace->bucket);
- kfree(workspace->bucket_b);
- kfree(workspace);
- }
- static struct list_head *alloc_heuristic_ws(void)
- {
- struct heuristic_ws *ws;
- ws = kzalloc(sizeof(*ws), GFP_KERNEL);
- if (!ws)
- return ERR_PTR(-ENOMEM);
- ws->sample = kvmalloc(MAX_SAMPLE_SIZE, GFP_KERNEL);
- if (!ws->sample)
- goto fail;
- ws->bucket = kcalloc(BUCKET_SIZE, sizeof(*ws->bucket), GFP_KERNEL);
- if (!ws->bucket)
- goto fail;
- ws->bucket_b = kcalloc(BUCKET_SIZE, sizeof(*ws->bucket_b), GFP_KERNEL);
- if (!ws->bucket_b)
- goto fail;
- INIT_LIST_HEAD(&ws->list);
- return &ws->list;
- fail:
- free_heuristic_ws(&ws->list);
- return ERR_PTR(-ENOMEM);
- }
- struct workspaces_list {
- struct list_head idle_ws;
- spinlock_t ws_lock;
- /* Number of free workspaces */
- int free_ws;
- /* Total number of allocated workspaces */
- atomic_t total_ws;
- /* Waiters for a free workspace */
- wait_queue_head_t ws_wait;
- };
- static struct workspaces_list btrfs_comp_ws[BTRFS_COMPRESS_TYPES];
- static struct workspaces_list btrfs_heuristic_ws;
- static const struct btrfs_compress_op * const btrfs_compress_op[] = {
- &btrfs_zlib_compress,
- &btrfs_lzo_compress,
- &btrfs_zstd_compress,
- };
- void __init btrfs_init_compress(void)
- {
- struct list_head *workspace;
- int i;
- INIT_LIST_HEAD(&btrfs_heuristic_ws.idle_ws);
- spin_lock_init(&btrfs_heuristic_ws.ws_lock);
- atomic_set(&btrfs_heuristic_ws.total_ws, 0);
- init_waitqueue_head(&btrfs_heuristic_ws.ws_wait);
- workspace = alloc_heuristic_ws();
- if (IS_ERR(workspace)) {
- pr_warn(
- "BTRFS: cannot preallocate heuristic workspace, will try later\n");
- } else {
- atomic_set(&btrfs_heuristic_ws.total_ws, 1);
- btrfs_heuristic_ws.free_ws = 1;
- list_add(workspace, &btrfs_heuristic_ws.idle_ws);
- }
- for (i = 0; i < BTRFS_COMPRESS_TYPES; i++) {
- INIT_LIST_HEAD(&btrfs_comp_ws[i].idle_ws);
- spin_lock_init(&btrfs_comp_ws[i].ws_lock);
- atomic_set(&btrfs_comp_ws[i].total_ws, 0);
- init_waitqueue_head(&btrfs_comp_ws[i].ws_wait);
- /*
- * Preallocate one workspace for each compression type so
- * we can guarantee forward progress in the worst case
- */
- workspace = btrfs_compress_op[i]->alloc_workspace();
- if (IS_ERR(workspace)) {
- pr_warn("BTRFS: cannot preallocate compression workspace, will try later\n");
- } else {
- atomic_set(&btrfs_comp_ws[i].total_ws, 1);
- btrfs_comp_ws[i].free_ws = 1;
- list_add(workspace, &btrfs_comp_ws[i].idle_ws);
- }
- }
- }
- /*
- * This finds an available workspace or allocates a new one.
- * If it's not possible to allocate a new one, waits until there's one.
- * Preallocation makes a forward progress guarantees and we do not return
- * errors.
- */
- static struct list_head *__find_workspace(int type, bool heuristic)
- {
- struct list_head *workspace;
- int cpus = num_online_cpus();
- int idx = type - 1;
- unsigned nofs_flag;
- struct list_head *idle_ws;
- spinlock_t *ws_lock;
- atomic_t *total_ws;
- wait_queue_head_t *ws_wait;
- int *free_ws;
- if (heuristic) {
- idle_ws = &btrfs_heuristic_ws.idle_ws;
- ws_lock = &btrfs_heuristic_ws.ws_lock;
- total_ws = &btrfs_heuristic_ws.total_ws;
- ws_wait = &btrfs_heuristic_ws.ws_wait;
- free_ws = &btrfs_heuristic_ws.free_ws;
- } else {
- idle_ws = &btrfs_comp_ws[idx].idle_ws;
- ws_lock = &btrfs_comp_ws[idx].ws_lock;
- total_ws = &btrfs_comp_ws[idx].total_ws;
- ws_wait = &btrfs_comp_ws[idx].ws_wait;
- free_ws = &btrfs_comp_ws[idx].free_ws;
- }
- again:
- spin_lock(ws_lock);
- if (!list_empty(idle_ws)) {
- workspace = idle_ws->next;
- list_del(workspace);
- (*free_ws)--;
- spin_unlock(ws_lock);
- return workspace;
- }
- if (atomic_read(total_ws) > cpus) {
- DEFINE_WAIT(wait);
- spin_unlock(ws_lock);
- prepare_to_wait(ws_wait, &wait, TASK_UNINTERRUPTIBLE);
- if (atomic_read(total_ws) > cpus && !*free_ws)
- schedule();
- finish_wait(ws_wait, &wait);
- goto again;
- }
- atomic_inc(total_ws);
- spin_unlock(ws_lock);
- /*
- * Allocation helpers call vmalloc that can't use GFP_NOFS, so we have
- * to turn it off here because we might get called from the restricted
- * context of btrfs_compress_bio/btrfs_compress_pages
- */
- nofs_flag = memalloc_nofs_save();
- if (heuristic)
- workspace = alloc_heuristic_ws();
- else
- workspace = btrfs_compress_op[idx]->alloc_workspace();
- memalloc_nofs_restore(nofs_flag);
- if (IS_ERR(workspace)) {
- atomic_dec(total_ws);
- wake_up(ws_wait);
- /*
- * Do not return the error but go back to waiting. There's a
- * workspace preallocated for each type and the compression
- * time is bounded so we get to a workspace eventually. This
- * makes our caller's life easier.
- *
- * To prevent silent and low-probability deadlocks (when the
- * initial preallocation fails), check if there are any
- * workspaces at all.
- */
- if (atomic_read(total_ws) == 0) {
- static DEFINE_RATELIMIT_STATE(_rs,
- /* once per minute */ 60 * HZ,
- /* no burst */ 1);
- if (__ratelimit(&_rs)) {
- pr_warn("BTRFS: no compression workspaces, low memory, retrying\n");
- }
- }
- goto again;
- }
- return workspace;
- }
- static struct list_head *find_workspace(int type)
- {
- return __find_workspace(type, false);
- }
- /*
- * put a workspace struct back on the list or free it if we have enough
- * idle ones sitting around
- */
- static void __free_workspace(int type, struct list_head *workspace,
- bool heuristic)
- {
- int idx = type - 1;
- struct list_head *idle_ws;
- spinlock_t *ws_lock;
- atomic_t *total_ws;
- wait_queue_head_t *ws_wait;
- int *free_ws;
- if (heuristic) {
- idle_ws = &btrfs_heuristic_ws.idle_ws;
- ws_lock = &btrfs_heuristic_ws.ws_lock;
- total_ws = &btrfs_heuristic_ws.total_ws;
- ws_wait = &btrfs_heuristic_ws.ws_wait;
- free_ws = &btrfs_heuristic_ws.free_ws;
- } else {
- idle_ws = &btrfs_comp_ws[idx].idle_ws;
- ws_lock = &btrfs_comp_ws[idx].ws_lock;
- total_ws = &btrfs_comp_ws[idx].total_ws;
- ws_wait = &btrfs_comp_ws[idx].ws_wait;
- free_ws = &btrfs_comp_ws[idx].free_ws;
- }
- spin_lock(ws_lock);
- if (*free_ws <= num_online_cpus()) {
- list_add(workspace, idle_ws);
- (*free_ws)++;
- spin_unlock(ws_lock);
- goto wake;
- }
- spin_unlock(ws_lock);
- if (heuristic)
- free_heuristic_ws(workspace);
- else
- btrfs_compress_op[idx]->free_workspace(workspace);
- atomic_dec(total_ws);
- wake:
- cond_wake_up(ws_wait);
- }
- static void free_workspace(int type, struct list_head *ws)
- {
- return __free_workspace(type, ws, false);
- }
- /*
- * cleanup function for module exit
- */
- static void free_workspaces(void)
- {
- struct list_head *workspace;
- int i;
- while (!list_empty(&btrfs_heuristic_ws.idle_ws)) {
- workspace = btrfs_heuristic_ws.idle_ws.next;
- list_del(workspace);
- free_heuristic_ws(workspace);
- atomic_dec(&btrfs_heuristic_ws.total_ws);
- }
- for (i = 0; i < BTRFS_COMPRESS_TYPES; i++) {
- while (!list_empty(&btrfs_comp_ws[i].idle_ws)) {
- workspace = btrfs_comp_ws[i].idle_ws.next;
- list_del(workspace);
- btrfs_compress_op[i]->free_workspace(workspace);
- atomic_dec(&btrfs_comp_ws[i].total_ws);
- }
- }
- }
- /*
- * Given an address space and start and length, compress the bytes into @pages
- * that are allocated on demand.
- *
- * @type_level is encoded algorithm and level, where level 0 means whatever
- * default the algorithm chooses and is opaque here;
- * - compression algo are 0-3
- * - the level are bits 4-7
- *
- * @out_pages is an in/out parameter, holds maximum number of pages to allocate
- * and returns number of actually allocated pages
- *
- * @total_in is used to return the number of bytes actually read. It
- * may be smaller than the input length if we had to exit early because we
- * ran out of room in the pages array or because we cross the
- * max_out threshold.
- *
- * @total_out is an in/out parameter, must be set to the input length and will
- * be also used to return the total number of compressed bytes
- *
- * @max_out tells us the max number of bytes that we're allowed to
- * stuff into pages
- */
- int btrfs_compress_pages(unsigned int type_level, struct address_space *mapping,
- u64 start, struct page **pages,
- unsigned long *out_pages,
- unsigned long *total_in,
- unsigned long *total_out)
- {
- struct list_head *workspace;
- int ret;
- int type = type_level & 0xF;
- workspace = find_workspace(type);
- btrfs_compress_op[type - 1]->set_level(workspace, type_level);
- ret = btrfs_compress_op[type-1]->compress_pages(workspace, mapping,
- start, pages,
- out_pages,
- total_in, total_out);
- free_workspace(type, workspace);
- return ret;
- }
- /*
- * pages_in is an array of pages with compressed data.
- *
- * disk_start is the starting logical offset of this array in the file
- *
- * orig_bio contains the pages from the file that we want to decompress into
- *
- * srclen is the number of bytes in pages_in
- *
- * The basic idea is that we have a bio that was created by readpages.
- * The pages in the bio are for the uncompressed data, and they may not
- * be contiguous. They all correspond to the range of bytes covered by
- * the compressed extent.
- */
- static int btrfs_decompress_bio(struct compressed_bio *cb)
- {
- struct list_head *workspace;
- int ret;
- int type = cb->compress_type;
- workspace = find_workspace(type);
- ret = btrfs_compress_op[type - 1]->decompress_bio(workspace, cb);
- free_workspace(type, workspace);
- return ret;
- }
- /*
- * a less complex decompression routine. Our compressed data fits in a
- * single page, and we want to read a single page out of it.
- * start_byte tells us the offset into the compressed data we're interested in
- */
- int btrfs_decompress(int type, unsigned char *data_in, struct page *dest_page,
- unsigned long start_byte, size_t srclen, size_t destlen)
- {
- struct list_head *workspace;
- int ret;
- workspace = find_workspace(type);
- ret = btrfs_compress_op[type-1]->decompress(workspace, data_in,
- dest_page, start_byte,
- srclen, destlen);
- free_workspace(type, workspace);
- return ret;
- }
- void __cold btrfs_exit_compress(void)
- {
- free_workspaces();
- }
- /*
- * Copy uncompressed data from working buffer to pages.
- *
- * buf_start is the byte offset we're of the start of our workspace buffer.
- *
- * total_out is the last byte of the buffer
- */
- int btrfs_decompress_buf2page(const char *buf, unsigned long buf_start,
- unsigned long total_out, u64 disk_start,
- struct bio *bio)
- {
- unsigned long buf_offset;
- unsigned long current_buf_start;
- unsigned long start_byte;
- unsigned long prev_start_byte;
- unsigned long working_bytes = total_out - buf_start;
- unsigned long bytes;
- char *kaddr;
- struct bio_vec bvec = bio_iter_iovec(bio, bio->bi_iter);
- /*
- * start byte is the first byte of the page we're currently
- * copying into relative to the start of the compressed data.
- */
- start_byte = page_offset(bvec.bv_page) - disk_start;
- /* we haven't yet hit data corresponding to this page */
- if (total_out <= start_byte)
- return 1;
- /*
- * the start of the data we care about is offset into
- * the middle of our working buffer
- */
- if (total_out > start_byte && buf_start < start_byte) {
- buf_offset = start_byte - buf_start;
- working_bytes -= buf_offset;
- } else {
- buf_offset = 0;
- }
- current_buf_start = buf_start;
- /* copy bytes from the working buffer into the pages */
- while (working_bytes > 0) {
- bytes = min_t(unsigned long, bvec.bv_len,
- PAGE_SIZE - buf_offset);
- bytes = min(bytes, working_bytes);
- kaddr = kmap_atomic(bvec.bv_page);
- memcpy(kaddr + bvec.bv_offset, buf + buf_offset, bytes);
- kunmap_atomic(kaddr);
- flush_dcache_page(bvec.bv_page);
- buf_offset += bytes;
- working_bytes -= bytes;
- current_buf_start += bytes;
- /* check if we need to pick another page */
- bio_advance(bio, bytes);
- if (!bio->bi_iter.bi_size)
- return 0;
- bvec = bio_iter_iovec(bio, bio->bi_iter);
- prev_start_byte = start_byte;
- start_byte = page_offset(bvec.bv_page) - disk_start;
- /*
- * We need to make sure we're only adjusting
- * our offset into compression working buffer when
- * we're switching pages. Otherwise we can incorrectly
- * keep copying when we were actually done.
- */
- if (start_byte != prev_start_byte) {
- /*
- * make sure our new page is covered by this
- * working buffer
- */
- if (total_out <= start_byte)
- return 1;
- /*
- * the next page in the biovec might not be adjacent
- * to the last page, but it might still be found
- * inside this working buffer. bump our offset pointer
- */
- if (total_out > start_byte &&
- current_buf_start < start_byte) {
- buf_offset = start_byte - buf_start;
- working_bytes = total_out - start_byte;
- current_buf_start = buf_start + buf_offset;
- }
- }
- }
- return 1;
- }
- /*
- * Shannon Entropy calculation
- *
- * Pure byte distribution analysis fails to determine compressiability of data.
- * Try calculating entropy to estimate the average minimum number of bits
- * needed to encode the sampled data.
- *
- * For convenience, return the percentage of needed bits, instead of amount of
- * bits directly.
- *
- * @ENTROPY_LVL_ACEPTABLE - below that threshold, sample has low byte entropy
- * and can be compressible with high probability
- *
- * @ENTROPY_LVL_HIGH - data are not compressible with high probability
- *
- * Use of ilog2() decreases precision, we lower the LVL to 5 to compensate.
- */
- #define ENTROPY_LVL_ACEPTABLE (65)
- #define ENTROPY_LVL_HIGH (80)
- /*
- * For increasead precision in shannon_entropy calculation,
- * let's do pow(n, M) to save more digits after comma:
- *
- * - maximum int bit length is 64
- * - ilog2(MAX_SAMPLE_SIZE) -> 13
- * - 13 * 4 = 52 < 64 -> M = 4
- *
- * So use pow(n, 4).
- */
- static inline u32 ilog2_w(u64 n)
- {
- return ilog2(n * n * n * n);
- }
- static u32 shannon_entropy(struct heuristic_ws *ws)
- {
- const u32 entropy_max = 8 * ilog2_w(2);
- u32 entropy_sum = 0;
- u32 p, p_base, sz_base;
- u32 i;
- sz_base = ilog2_w(ws->sample_size);
- for (i = 0; i < BUCKET_SIZE && ws->bucket[i].count > 0; i++) {
- p = ws->bucket[i].count;
- p_base = ilog2_w(p);
- entropy_sum += p * (sz_base - p_base);
- }
- entropy_sum /= ws->sample_size;
- return entropy_sum * 100 / entropy_max;
- }
- #define RADIX_BASE 4U
- #define COUNTERS_SIZE (1U << RADIX_BASE)
- static u8 get4bits(u64 num, int shift) {
- u8 low4bits;
- num >>= shift;
- /* Reverse order */
- low4bits = (COUNTERS_SIZE - 1) - (num % COUNTERS_SIZE);
- return low4bits;
- }
- /*
- * Use 4 bits as radix base
- * Use 16 u32 counters for calculating new possition in buf array
- *
- * @array - array that will be sorted
- * @array_buf - buffer array to store sorting results
- * must be equal in size to @array
- * @num - array size
- */
- static void radix_sort(struct bucket_item *array, struct bucket_item *array_buf,
- int num)
- {
- u64 max_num;
- u64 buf_num;
- u32 counters[COUNTERS_SIZE];
- u32 new_addr;
- u32 addr;
- int bitlen;
- int shift;
- int i;
- /*
- * Try avoid useless loop iterations for small numbers stored in big
- * counters. Example: 48 33 4 ... in 64bit array
- */
- max_num = array[0].count;
- for (i = 1; i < num; i++) {
- buf_num = array[i].count;
- if (buf_num > max_num)
- max_num = buf_num;
- }
- buf_num = ilog2(max_num);
- bitlen = ALIGN(buf_num, RADIX_BASE * 2);
- shift = 0;
- while (shift < bitlen) {
- memset(counters, 0, sizeof(counters));
- for (i = 0; i < num; i++) {
- buf_num = array[i].count;
- addr = get4bits(buf_num, shift);
- counters[addr]++;
- }
- for (i = 1; i < COUNTERS_SIZE; i++)
- counters[i] += counters[i - 1];
- for (i = num - 1; i >= 0; i--) {
- buf_num = array[i].count;
- addr = get4bits(buf_num, shift);
- counters[addr]--;
- new_addr = counters[addr];
- array_buf[new_addr] = array[i];
- }
- shift += RADIX_BASE;
- /*
- * Normal radix expects to move data from a temporary array, to
- * the main one. But that requires some CPU time. Avoid that
- * by doing another sort iteration to original array instead of
- * memcpy()
- */
- memset(counters, 0, sizeof(counters));
- for (i = 0; i < num; i ++) {
- buf_num = array_buf[i].count;
- addr = get4bits(buf_num, shift);
- counters[addr]++;
- }
- for (i = 1; i < COUNTERS_SIZE; i++)
- counters[i] += counters[i - 1];
- for (i = num - 1; i >= 0; i--) {
- buf_num = array_buf[i].count;
- addr = get4bits(buf_num, shift);
- counters[addr]--;
- new_addr = counters[addr];
- array[new_addr] = array_buf[i];
- }
- shift += RADIX_BASE;
- }
- }
- /*
- * Size of the core byte set - how many bytes cover 90% of the sample
- *
- * There are several types of structured binary data that use nearly all byte
- * values. The distribution can be uniform and counts in all buckets will be
- * nearly the same (eg. encrypted data). Unlikely to be compressible.
- *
- * Other possibility is normal (Gaussian) distribution, where the data could
- * be potentially compressible, but we have to take a few more steps to decide
- * how much.
- *
- * @BYTE_CORE_SET_LOW - main part of byte values repeated frequently,
- * compression algo can easy fix that
- * @BYTE_CORE_SET_HIGH - data have uniform distribution and with high
- * probability is not compressible
- */
- #define BYTE_CORE_SET_LOW (64)
- #define BYTE_CORE_SET_HIGH (200)
- static int byte_core_set_size(struct heuristic_ws *ws)
- {
- u32 i;
- u32 coreset_sum = 0;
- const u32 core_set_threshold = ws->sample_size * 90 / 100;
- struct bucket_item *bucket = ws->bucket;
- /* Sort in reverse order */
- radix_sort(ws->bucket, ws->bucket_b, BUCKET_SIZE);
- for (i = 0; i < BYTE_CORE_SET_LOW; i++)
- coreset_sum += bucket[i].count;
- if (coreset_sum > core_set_threshold)
- return i;
- for (; i < BYTE_CORE_SET_HIGH && bucket[i].count > 0; i++) {
- coreset_sum += bucket[i].count;
- if (coreset_sum > core_set_threshold)
- break;
- }
- return i;
- }
- /*
- * Count byte values in buckets.
- * This heuristic can detect textual data (configs, xml, json, html, etc).
- * Because in most text-like data byte set is restricted to limited number of
- * possible characters, and that restriction in most cases makes data easy to
- * compress.
- *
- * @BYTE_SET_THRESHOLD - consider all data within this byte set size:
- * less - compressible
- * more - need additional analysis
- */
- #define BYTE_SET_THRESHOLD (64)
- static u32 byte_set_size(const struct heuristic_ws *ws)
- {
- u32 i;
- u32 byte_set_size = 0;
- for (i = 0; i < BYTE_SET_THRESHOLD; i++) {
- if (ws->bucket[i].count > 0)
- byte_set_size++;
- }
- /*
- * Continue collecting count of byte values in buckets. If the byte
- * set size is bigger then the threshold, it's pointless to continue,
- * the detection technique would fail for this type of data.
- */
- for (; i < BUCKET_SIZE; i++) {
- if (ws->bucket[i].count > 0) {
- byte_set_size++;
- if (byte_set_size > BYTE_SET_THRESHOLD)
- return byte_set_size;
- }
- }
- return byte_set_size;
- }
- static bool sample_repeated_patterns(struct heuristic_ws *ws)
- {
- const u32 half_of_sample = ws->sample_size / 2;
- const u8 *data = ws->sample;
- return memcmp(&data[0], &data[half_of_sample], half_of_sample) == 0;
- }
- static void heuristic_collect_sample(struct inode *inode, u64 start, u64 end,
- struct heuristic_ws *ws)
- {
- struct page *page;
- u64 index, index_end;
- u32 i, curr_sample_pos;
- u8 *in_data;
- /*
- * Compression handles the input data by chunks of 128KiB
- * (defined by BTRFS_MAX_UNCOMPRESSED)
- *
- * We do the same for the heuristic and loop over the whole range.
- *
- * MAX_SAMPLE_SIZE - calculated under assumption that heuristic will
- * process no more than BTRFS_MAX_UNCOMPRESSED at a time.
- */
- if (end - start > BTRFS_MAX_UNCOMPRESSED)
- end = start + BTRFS_MAX_UNCOMPRESSED;
- index = start >> PAGE_SHIFT;
- index_end = end >> PAGE_SHIFT;
- /* Don't miss unaligned end */
- if (!IS_ALIGNED(end, PAGE_SIZE))
- index_end++;
- curr_sample_pos = 0;
- while (index < index_end) {
- page = find_get_page(inode->i_mapping, index);
- in_data = kmap(page);
- /* Handle case where the start is not aligned to PAGE_SIZE */
- i = start % PAGE_SIZE;
- while (i < PAGE_SIZE - SAMPLING_READ_SIZE) {
- /* Don't sample any garbage from the last page */
- if (start > end - SAMPLING_READ_SIZE)
- break;
- memcpy(&ws->sample[curr_sample_pos], &in_data[i],
- SAMPLING_READ_SIZE);
- i += SAMPLING_INTERVAL;
- start += SAMPLING_INTERVAL;
- curr_sample_pos += SAMPLING_READ_SIZE;
- }
- kunmap(page);
- put_page(page);
- index++;
- }
- ws->sample_size = curr_sample_pos;
- }
- /*
- * Compression heuristic.
- *
- * For now is's a naive and optimistic 'return true', we'll extend the logic to
- * quickly (compared to direct compression) detect data characteristics
- * (compressible/uncompressible) to avoid wasting CPU time on uncompressible
- * data.
- *
- * The following types of analysis can be performed:
- * - detect mostly zero data
- * - detect data with low "byte set" size (text, etc)
- * - detect data with low/high "core byte" set
- *
- * Return non-zero if the compression should be done, 0 otherwise.
- */
- int btrfs_compress_heuristic(struct inode *inode, u64 start, u64 end)
- {
- struct list_head *ws_list = __find_workspace(0, true);
- struct heuristic_ws *ws;
- u32 i;
- u8 byte;
- int ret = 0;
- ws = list_entry(ws_list, struct heuristic_ws, list);
- heuristic_collect_sample(inode, start, end, ws);
- if (sample_repeated_patterns(ws)) {
- ret = 1;
- goto out;
- }
- memset(ws->bucket, 0, sizeof(*ws->bucket)*BUCKET_SIZE);
- for (i = 0; i < ws->sample_size; i++) {
- byte = ws->sample[i];
- ws->bucket[byte].count++;
- }
- i = byte_set_size(ws);
- if (i < BYTE_SET_THRESHOLD) {
- ret = 2;
- goto out;
- }
- i = byte_core_set_size(ws);
- if (i <= BYTE_CORE_SET_LOW) {
- ret = 3;
- goto out;
- }
- if (i >= BYTE_CORE_SET_HIGH) {
- ret = 0;
- goto out;
- }
- i = shannon_entropy(ws);
- if (i <= ENTROPY_LVL_ACEPTABLE) {
- ret = 4;
- goto out;
- }
- /*
- * For the levels below ENTROPY_LVL_HIGH, additional analysis would be
- * needed to give green light to compression.
- *
- * For now just assume that compression at that level is not worth the
- * resources because:
- *
- * 1. it is possible to defrag the data later
- *
- * 2. the data would turn out to be hardly compressible, eg. 150 byte
- * values, every bucket has counter at level ~54. The heuristic would
- * be confused. This can happen when data have some internal repeated
- * patterns like "abbacbbc...". This can be detected by analyzing
- * pairs of bytes, which is too costly.
- */
- if (i < ENTROPY_LVL_HIGH) {
- ret = 5;
- goto out;
- } else {
- ret = 0;
- goto out;
- }
- out:
- __free_workspace(0, ws_list, true);
- return ret;
- }
- unsigned int btrfs_compress_str2level(const char *str)
- {
- if (strncmp(str, "zlib", 4) != 0)
- return 0;
- /* Accepted form: zlib:1 up to zlib:9 and nothing left after the number */
- if (str[4] == ':' && '1' <= str[5] && str[5] <= '9' && str[6] == 0)
- return str[5] - '0';
- return BTRFS_ZLIB_DEFAULT_LEVEL;
- }
|