file.c 89 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410
  1. // SPDX-License-Identifier: GPL-2.0
  2. /*
  3. * Copyright (C) 2007 Oracle. All rights reserved.
  4. */
  5. #include <linux/fs.h>
  6. #include <linux/pagemap.h>
  7. #include <linux/time.h>
  8. #include <linux/init.h>
  9. #include <linux/string.h>
  10. #include <linux/backing-dev.h>
  11. #include <linux/falloc.h>
  12. #include <linux/writeback.h>
  13. #include <linux/compat.h>
  14. #include <linux/slab.h>
  15. #include <linux/btrfs.h>
  16. #include <linux/uio.h>
  17. #include <linux/iversion.h>
  18. #include "ctree.h"
  19. #include "disk-io.h"
  20. #include "transaction.h"
  21. #include "btrfs_inode.h"
  22. #include "print-tree.h"
  23. #include "tree-log.h"
  24. #include "locking.h"
  25. #include "volumes.h"
  26. #include "qgroup.h"
  27. #include "compression.h"
  28. static struct kmem_cache *btrfs_inode_defrag_cachep;
  29. /*
  30. * when auto defrag is enabled we
  31. * queue up these defrag structs to remember which
  32. * inodes need defragging passes
  33. */
  34. struct inode_defrag {
  35. struct rb_node rb_node;
  36. /* objectid */
  37. u64 ino;
  38. /*
  39. * transid where the defrag was added, we search for
  40. * extents newer than this
  41. */
  42. u64 transid;
  43. /* root objectid */
  44. u64 root;
  45. /* last offset we were able to defrag */
  46. u64 last_offset;
  47. /* if we've wrapped around back to zero once already */
  48. int cycled;
  49. };
  50. static int __compare_inode_defrag(struct inode_defrag *defrag1,
  51. struct inode_defrag *defrag2)
  52. {
  53. if (defrag1->root > defrag2->root)
  54. return 1;
  55. else if (defrag1->root < defrag2->root)
  56. return -1;
  57. else if (defrag1->ino > defrag2->ino)
  58. return 1;
  59. else if (defrag1->ino < defrag2->ino)
  60. return -1;
  61. else
  62. return 0;
  63. }
  64. /* pop a record for an inode into the defrag tree. The lock
  65. * must be held already
  66. *
  67. * If you're inserting a record for an older transid than an
  68. * existing record, the transid already in the tree is lowered
  69. *
  70. * If an existing record is found the defrag item you
  71. * pass in is freed
  72. */
  73. static int __btrfs_add_inode_defrag(struct btrfs_inode *inode,
  74. struct inode_defrag *defrag)
  75. {
  76. struct btrfs_fs_info *fs_info = inode->root->fs_info;
  77. struct inode_defrag *entry;
  78. struct rb_node **p;
  79. struct rb_node *parent = NULL;
  80. int ret;
  81. p = &fs_info->defrag_inodes.rb_node;
  82. while (*p) {
  83. parent = *p;
  84. entry = rb_entry(parent, struct inode_defrag, rb_node);
  85. ret = __compare_inode_defrag(defrag, entry);
  86. if (ret < 0)
  87. p = &parent->rb_left;
  88. else if (ret > 0)
  89. p = &parent->rb_right;
  90. else {
  91. /* if we're reinserting an entry for
  92. * an old defrag run, make sure to
  93. * lower the transid of our existing record
  94. */
  95. if (defrag->transid < entry->transid)
  96. entry->transid = defrag->transid;
  97. if (defrag->last_offset > entry->last_offset)
  98. entry->last_offset = defrag->last_offset;
  99. return -EEXIST;
  100. }
  101. }
  102. set_bit(BTRFS_INODE_IN_DEFRAG, &inode->runtime_flags);
  103. rb_link_node(&defrag->rb_node, parent, p);
  104. rb_insert_color(&defrag->rb_node, &fs_info->defrag_inodes);
  105. return 0;
  106. }
  107. static inline int __need_auto_defrag(struct btrfs_fs_info *fs_info)
  108. {
  109. if (!btrfs_test_opt(fs_info, AUTO_DEFRAG))
  110. return 0;
  111. if (btrfs_fs_closing(fs_info))
  112. return 0;
  113. return 1;
  114. }
  115. /*
  116. * insert a defrag record for this inode if auto defrag is
  117. * enabled
  118. */
  119. int btrfs_add_inode_defrag(struct btrfs_trans_handle *trans,
  120. struct btrfs_inode *inode)
  121. {
  122. struct btrfs_root *root = inode->root;
  123. struct btrfs_fs_info *fs_info = root->fs_info;
  124. struct inode_defrag *defrag;
  125. u64 transid;
  126. int ret;
  127. if (!__need_auto_defrag(fs_info))
  128. return 0;
  129. if (test_bit(BTRFS_INODE_IN_DEFRAG, &inode->runtime_flags))
  130. return 0;
  131. if (trans)
  132. transid = trans->transid;
  133. else
  134. transid = inode->root->last_trans;
  135. defrag = kmem_cache_zalloc(btrfs_inode_defrag_cachep, GFP_NOFS);
  136. if (!defrag)
  137. return -ENOMEM;
  138. defrag->ino = btrfs_ino(inode);
  139. defrag->transid = transid;
  140. defrag->root = root->root_key.objectid;
  141. spin_lock(&fs_info->defrag_inodes_lock);
  142. if (!test_bit(BTRFS_INODE_IN_DEFRAG, &inode->runtime_flags)) {
  143. /*
  144. * If we set IN_DEFRAG flag and evict the inode from memory,
  145. * and then re-read this inode, this new inode doesn't have
  146. * IN_DEFRAG flag. At the case, we may find the existed defrag.
  147. */
  148. ret = __btrfs_add_inode_defrag(inode, defrag);
  149. if (ret)
  150. kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
  151. } else {
  152. kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
  153. }
  154. spin_unlock(&fs_info->defrag_inodes_lock);
  155. return 0;
  156. }
  157. /*
  158. * Requeue the defrag object. If there is a defrag object that points to
  159. * the same inode in the tree, we will merge them together (by
  160. * __btrfs_add_inode_defrag()) and free the one that we want to requeue.
  161. */
  162. static void btrfs_requeue_inode_defrag(struct btrfs_inode *inode,
  163. struct inode_defrag *defrag)
  164. {
  165. struct btrfs_fs_info *fs_info = inode->root->fs_info;
  166. int ret;
  167. if (!__need_auto_defrag(fs_info))
  168. goto out;
  169. /*
  170. * Here we don't check the IN_DEFRAG flag, because we need merge
  171. * them together.
  172. */
  173. spin_lock(&fs_info->defrag_inodes_lock);
  174. ret = __btrfs_add_inode_defrag(inode, defrag);
  175. spin_unlock(&fs_info->defrag_inodes_lock);
  176. if (ret)
  177. goto out;
  178. return;
  179. out:
  180. kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
  181. }
  182. /*
  183. * pick the defragable inode that we want, if it doesn't exist, we will get
  184. * the next one.
  185. */
  186. static struct inode_defrag *
  187. btrfs_pick_defrag_inode(struct btrfs_fs_info *fs_info, u64 root, u64 ino)
  188. {
  189. struct inode_defrag *entry = NULL;
  190. struct inode_defrag tmp;
  191. struct rb_node *p;
  192. struct rb_node *parent = NULL;
  193. int ret;
  194. tmp.ino = ino;
  195. tmp.root = root;
  196. spin_lock(&fs_info->defrag_inodes_lock);
  197. p = fs_info->defrag_inodes.rb_node;
  198. while (p) {
  199. parent = p;
  200. entry = rb_entry(parent, struct inode_defrag, rb_node);
  201. ret = __compare_inode_defrag(&tmp, entry);
  202. if (ret < 0)
  203. p = parent->rb_left;
  204. else if (ret > 0)
  205. p = parent->rb_right;
  206. else
  207. goto out;
  208. }
  209. if (parent && __compare_inode_defrag(&tmp, entry) > 0) {
  210. parent = rb_next(parent);
  211. if (parent)
  212. entry = rb_entry(parent, struct inode_defrag, rb_node);
  213. else
  214. entry = NULL;
  215. }
  216. out:
  217. if (entry)
  218. rb_erase(parent, &fs_info->defrag_inodes);
  219. spin_unlock(&fs_info->defrag_inodes_lock);
  220. return entry;
  221. }
  222. void btrfs_cleanup_defrag_inodes(struct btrfs_fs_info *fs_info)
  223. {
  224. struct inode_defrag *defrag;
  225. struct rb_node *node;
  226. spin_lock(&fs_info->defrag_inodes_lock);
  227. node = rb_first(&fs_info->defrag_inodes);
  228. while (node) {
  229. rb_erase(node, &fs_info->defrag_inodes);
  230. defrag = rb_entry(node, struct inode_defrag, rb_node);
  231. kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
  232. cond_resched_lock(&fs_info->defrag_inodes_lock);
  233. node = rb_first(&fs_info->defrag_inodes);
  234. }
  235. spin_unlock(&fs_info->defrag_inodes_lock);
  236. }
  237. #define BTRFS_DEFRAG_BATCH 1024
  238. static int __btrfs_run_defrag_inode(struct btrfs_fs_info *fs_info,
  239. struct inode_defrag *defrag)
  240. {
  241. struct btrfs_root *inode_root;
  242. struct inode *inode;
  243. struct btrfs_key key;
  244. struct btrfs_ioctl_defrag_range_args range;
  245. int num_defrag;
  246. int index;
  247. int ret;
  248. /* get the inode */
  249. key.objectid = defrag->root;
  250. key.type = BTRFS_ROOT_ITEM_KEY;
  251. key.offset = (u64)-1;
  252. index = srcu_read_lock(&fs_info->subvol_srcu);
  253. inode_root = btrfs_read_fs_root_no_name(fs_info, &key);
  254. if (IS_ERR(inode_root)) {
  255. ret = PTR_ERR(inode_root);
  256. goto cleanup;
  257. }
  258. key.objectid = defrag->ino;
  259. key.type = BTRFS_INODE_ITEM_KEY;
  260. key.offset = 0;
  261. inode = btrfs_iget(fs_info->sb, &key, inode_root, NULL);
  262. if (IS_ERR(inode)) {
  263. ret = PTR_ERR(inode);
  264. goto cleanup;
  265. }
  266. srcu_read_unlock(&fs_info->subvol_srcu, index);
  267. /* do a chunk of defrag */
  268. clear_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags);
  269. memset(&range, 0, sizeof(range));
  270. range.len = (u64)-1;
  271. range.start = defrag->last_offset;
  272. sb_start_write(fs_info->sb);
  273. num_defrag = btrfs_defrag_file(inode, NULL, &range, defrag->transid,
  274. BTRFS_DEFRAG_BATCH);
  275. sb_end_write(fs_info->sb);
  276. /*
  277. * if we filled the whole defrag batch, there
  278. * must be more work to do. Queue this defrag
  279. * again
  280. */
  281. if (num_defrag == BTRFS_DEFRAG_BATCH) {
  282. defrag->last_offset = range.start;
  283. btrfs_requeue_inode_defrag(BTRFS_I(inode), defrag);
  284. } else if (defrag->last_offset && !defrag->cycled) {
  285. /*
  286. * we didn't fill our defrag batch, but
  287. * we didn't start at zero. Make sure we loop
  288. * around to the start of the file.
  289. */
  290. defrag->last_offset = 0;
  291. defrag->cycled = 1;
  292. btrfs_requeue_inode_defrag(BTRFS_I(inode), defrag);
  293. } else {
  294. kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
  295. }
  296. iput(inode);
  297. return 0;
  298. cleanup:
  299. srcu_read_unlock(&fs_info->subvol_srcu, index);
  300. kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
  301. return ret;
  302. }
  303. /*
  304. * run through the list of inodes in the FS that need
  305. * defragging
  306. */
  307. int btrfs_run_defrag_inodes(struct btrfs_fs_info *fs_info)
  308. {
  309. struct inode_defrag *defrag;
  310. u64 first_ino = 0;
  311. u64 root_objectid = 0;
  312. atomic_inc(&fs_info->defrag_running);
  313. while (1) {
  314. /* Pause the auto defragger. */
  315. if (test_bit(BTRFS_FS_STATE_REMOUNTING,
  316. &fs_info->fs_state))
  317. break;
  318. if (!__need_auto_defrag(fs_info))
  319. break;
  320. /* find an inode to defrag */
  321. defrag = btrfs_pick_defrag_inode(fs_info, root_objectid,
  322. first_ino);
  323. if (!defrag) {
  324. if (root_objectid || first_ino) {
  325. root_objectid = 0;
  326. first_ino = 0;
  327. continue;
  328. } else {
  329. break;
  330. }
  331. }
  332. first_ino = defrag->ino + 1;
  333. root_objectid = defrag->root;
  334. __btrfs_run_defrag_inode(fs_info, defrag);
  335. }
  336. atomic_dec(&fs_info->defrag_running);
  337. /*
  338. * during unmount, we use the transaction_wait queue to
  339. * wait for the defragger to stop
  340. */
  341. wake_up(&fs_info->transaction_wait);
  342. return 0;
  343. }
  344. /* simple helper to fault in pages and copy. This should go away
  345. * and be replaced with calls into generic code.
  346. */
  347. static noinline int btrfs_copy_from_user(loff_t pos, size_t write_bytes,
  348. struct page **prepared_pages,
  349. struct iov_iter *i)
  350. {
  351. size_t copied = 0;
  352. size_t total_copied = 0;
  353. int pg = 0;
  354. int offset = pos & (PAGE_SIZE - 1);
  355. while (write_bytes > 0) {
  356. size_t count = min_t(size_t,
  357. PAGE_SIZE - offset, write_bytes);
  358. struct page *page = prepared_pages[pg];
  359. /*
  360. * Copy data from userspace to the current page
  361. */
  362. copied = iov_iter_copy_from_user_atomic(page, i, offset, count);
  363. /* Flush processor's dcache for this page */
  364. flush_dcache_page(page);
  365. /*
  366. * if we get a partial write, we can end up with
  367. * partially up to date pages. These add
  368. * a lot of complexity, so make sure they don't
  369. * happen by forcing this copy to be retried.
  370. *
  371. * The rest of the btrfs_file_write code will fall
  372. * back to page at a time copies after we return 0.
  373. */
  374. if (!PageUptodate(page) && copied < count)
  375. copied = 0;
  376. iov_iter_advance(i, copied);
  377. write_bytes -= copied;
  378. total_copied += copied;
  379. /* Return to btrfs_file_write_iter to fault page */
  380. if (unlikely(copied == 0))
  381. break;
  382. if (copied < PAGE_SIZE - offset) {
  383. offset += copied;
  384. } else {
  385. pg++;
  386. offset = 0;
  387. }
  388. }
  389. return total_copied;
  390. }
  391. /*
  392. * unlocks pages after btrfs_file_write is done with them
  393. */
  394. static void btrfs_drop_pages(struct page **pages, size_t num_pages)
  395. {
  396. size_t i;
  397. for (i = 0; i < num_pages; i++) {
  398. /* page checked is some magic around finding pages that
  399. * have been modified without going through btrfs_set_page_dirty
  400. * clear it here. There should be no need to mark the pages
  401. * accessed as prepare_pages should have marked them accessed
  402. * in prepare_pages via find_or_create_page()
  403. */
  404. ClearPageChecked(pages[i]);
  405. unlock_page(pages[i]);
  406. put_page(pages[i]);
  407. }
  408. }
  409. static int btrfs_find_new_delalloc_bytes(struct btrfs_inode *inode,
  410. const u64 start,
  411. const u64 len,
  412. struct extent_state **cached_state)
  413. {
  414. u64 search_start = start;
  415. const u64 end = start + len - 1;
  416. while (search_start < end) {
  417. const u64 search_len = end - search_start + 1;
  418. struct extent_map *em;
  419. u64 em_len;
  420. int ret = 0;
  421. em = btrfs_get_extent(inode, NULL, 0, search_start,
  422. search_len, 0);
  423. if (IS_ERR(em))
  424. return PTR_ERR(em);
  425. if (em->block_start != EXTENT_MAP_HOLE)
  426. goto next;
  427. em_len = em->len;
  428. if (em->start < search_start)
  429. em_len -= search_start - em->start;
  430. if (em_len > search_len)
  431. em_len = search_len;
  432. ret = set_extent_bit(&inode->io_tree, search_start,
  433. search_start + em_len - 1,
  434. EXTENT_DELALLOC_NEW,
  435. NULL, cached_state, GFP_NOFS);
  436. next:
  437. search_start = extent_map_end(em);
  438. free_extent_map(em);
  439. if (ret)
  440. return ret;
  441. }
  442. return 0;
  443. }
  444. /*
  445. * after copy_from_user, pages need to be dirtied and we need to make
  446. * sure holes are created between the current EOF and the start of
  447. * any next extents (if required).
  448. *
  449. * this also makes the decision about creating an inline extent vs
  450. * doing real data extents, marking pages dirty and delalloc as required.
  451. */
  452. int btrfs_dirty_pages(struct inode *inode, struct page **pages,
  453. size_t num_pages, loff_t pos, size_t write_bytes,
  454. struct extent_state **cached)
  455. {
  456. struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
  457. int err = 0;
  458. int i;
  459. u64 num_bytes;
  460. u64 start_pos;
  461. u64 end_of_last_block;
  462. u64 end_pos = pos + write_bytes;
  463. loff_t isize = i_size_read(inode);
  464. unsigned int extra_bits = 0;
  465. start_pos = pos & ~((u64) fs_info->sectorsize - 1);
  466. num_bytes = round_up(write_bytes + pos - start_pos,
  467. fs_info->sectorsize);
  468. end_of_last_block = start_pos + num_bytes - 1;
  469. /*
  470. * The pages may have already been dirty, clear out old accounting so
  471. * we can set things up properly
  472. */
  473. clear_extent_bit(&BTRFS_I(inode)->io_tree, start_pos, end_of_last_block,
  474. EXTENT_DIRTY | EXTENT_DELALLOC |
  475. EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 0, 0, cached);
  476. if (!btrfs_is_free_space_inode(BTRFS_I(inode))) {
  477. if (start_pos >= isize &&
  478. !(BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC)) {
  479. /*
  480. * There can't be any extents following eof in this case
  481. * so just set the delalloc new bit for the range
  482. * directly.
  483. */
  484. extra_bits |= EXTENT_DELALLOC_NEW;
  485. } else {
  486. err = btrfs_find_new_delalloc_bytes(BTRFS_I(inode),
  487. start_pos,
  488. num_bytes, cached);
  489. if (err)
  490. return err;
  491. }
  492. }
  493. err = btrfs_set_extent_delalloc(inode, start_pos, end_of_last_block,
  494. extra_bits, cached, 0);
  495. if (err)
  496. return err;
  497. for (i = 0; i < num_pages; i++) {
  498. struct page *p = pages[i];
  499. SetPageUptodate(p);
  500. ClearPageChecked(p);
  501. set_page_dirty(p);
  502. }
  503. /*
  504. * we've only changed i_size in ram, and we haven't updated
  505. * the disk i_size. There is no need to log the inode
  506. * at this time.
  507. */
  508. if (end_pos > isize)
  509. i_size_write(inode, end_pos);
  510. return 0;
  511. }
  512. /*
  513. * this drops all the extents in the cache that intersect the range
  514. * [start, end]. Existing extents are split as required.
  515. */
  516. void btrfs_drop_extent_cache(struct btrfs_inode *inode, u64 start, u64 end,
  517. int skip_pinned)
  518. {
  519. struct extent_map *em;
  520. struct extent_map *split = NULL;
  521. struct extent_map *split2 = NULL;
  522. struct extent_map_tree *em_tree = &inode->extent_tree;
  523. u64 len = end - start + 1;
  524. u64 gen;
  525. int ret;
  526. int testend = 1;
  527. unsigned long flags;
  528. int compressed = 0;
  529. bool modified;
  530. WARN_ON(end < start);
  531. if (end == (u64)-1) {
  532. len = (u64)-1;
  533. testend = 0;
  534. }
  535. while (1) {
  536. int no_splits = 0;
  537. modified = false;
  538. if (!split)
  539. split = alloc_extent_map();
  540. if (!split2)
  541. split2 = alloc_extent_map();
  542. if (!split || !split2)
  543. no_splits = 1;
  544. write_lock(&em_tree->lock);
  545. em = lookup_extent_mapping(em_tree, start, len);
  546. if (!em) {
  547. write_unlock(&em_tree->lock);
  548. break;
  549. }
  550. flags = em->flags;
  551. gen = em->generation;
  552. if (skip_pinned && test_bit(EXTENT_FLAG_PINNED, &em->flags)) {
  553. if (testend && em->start + em->len >= start + len) {
  554. free_extent_map(em);
  555. write_unlock(&em_tree->lock);
  556. break;
  557. }
  558. start = em->start + em->len;
  559. if (testend)
  560. len = start + len - (em->start + em->len);
  561. free_extent_map(em);
  562. write_unlock(&em_tree->lock);
  563. continue;
  564. }
  565. compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
  566. clear_bit(EXTENT_FLAG_PINNED, &em->flags);
  567. clear_bit(EXTENT_FLAG_LOGGING, &flags);
  568. modified = !list_empty(&em->list);
  569. if (no_splits)
  570. goto next;
  571. if (em->start < start) {
  572. split->start = em->start;
  573. split->len = start - em->start;
  574. if (em->block_start < EXTENT_MAP_LAST_BYTE) {
  575. split->orig_start = em->orig_start;
  576. split->block_start = em->block_start;
  577. if (compressed)
  578. split->block_len = em->block_len;
  579. else
  580. split->block_len = split->len;
  581. split->orig_block_len = max(split->block_len,
  582. em->orig_block_len);
  583. split->ram_bytes = em->ram_bytes;
  584. } else {
  585. split->orig_start = split->start;
  586. split->block_len = 0;
  587. split->block_start = em->block_start;
  588. split->orig_block_len = 0;
  589. split->ram_bytes = split->len;
  590. }
  591. split->generation = gen;
  592. split->bdev = em->bdev;
  593. split->flags = flags;
  594. split->compress_type = em->compress_type;
  595. replace_extent_mapping(em_tree, em, split, modified);
  596. free_extent_map(split);
  597. split = split2;
  598. split2 = NULL;
  599. }
  600. if (testend && em->start + em->len > start + len) {
  601. u64 diff = start + len - em->start;
  602. split->start = start + len;
  603. split->len = em->start + em->len - (start + len);
  604. split->bdev = em->bdev;
  605. split->flags = flags;
  606. split->compress_type = em->compress_type;
  607. split->generation = gen;
  608. if (em->block_start < EXTENT_MAP_LAST_BYTE) {
  609. split->orig_block_len = max(em->block_len,
  610. em->orig_block_len);
  611. split->ram_bytes = em->ram_bytes;
  612. if (compressed) {
  613. split->block_len = em->block_len;
  614. split->block_start = em->block_start;
  615. split->orig_start = em->orig_start;
  616. } else {
  617. split->block_len = split->len;
  618. split->block_start = em->block_start
  619. + diff;
  620. split->orig_start = em->orig_start;
  621. }
  622. } else {
  623. split->ram_bytes = split->len;
  624. split->orig_start = split->start;
  625. split->block_len = 0;
  626. split->block_start = em->block_start;
  627. split->orig_block_len = 0;
  628. }
  629. if (extent_map_in_tree(em)) {
  630. replace_extent_mapping(em_tree, em, split,
  631. modified);
  632. } else {
  633. ret = add_extent_mapping(em_tree, split,
  634. modified);
  635. ASSERT(ret == 0); /* Logic error */
  636. }
  637. free_extent_map(split);
  638. split = NULL;
  639. }
  640. next:
  641. if (extent_map_in_tree(em))
  642. remove_extent_mapping(em_tree, em);
  643. write_unlock(&em_tree->lock);
  644. /* once for us */
  645. free_extent_map(em);
  646. /* once for the tree*/
  647. free_extent_map(em);
  648. }
  649. if (split)
  650. free_extent_map(split);
  651. if (split2)
  652. free_extent_map(split2);
  653. }
  654. /*
  655. * this is very complex, but the basic idea is to drop all extents
  656. * in the range start - end. hint_block is filled in with a block number
  657. * that would be a good hint to the block allocator for this file.
  658. *
  659. * If an extent intersects the range but is not entirely inside the range
  660. * it is either truncated or split. Anything entirely inside the range
  661. * is deleted from the tree.
  662. */
  663. int __btrfs_drop_extents(struct btrfs_trans_handle *trans,
  664. struct btrfs_root *root, struct inode *inode,
  665. struct btrfs_path *path, u64 start, u64 end,
  666. u64 *drop_end, int drop_cache,
  667. int replace_extent,
  668. u32 extent_item_size,
  669. int *key_inserted)
  670. {
  671. struct btrfs_fs_info *fs_info = root->fs_info;
  672. struct extent_buffer *leaf;
  673. struct btrfs_file_extent_item *fi;
  674. struct btrfs_key key;
  675. struct btrfs_key new_key;
  676. u64 ino = btrfs_ino(BTRFS_I(inode));
  677. u64 search_start = start;
  678. u64 disk_bytenr = 0;
  679. u64 num_bytes = 0;
  680. u64 extent_offset = 0;
  681. u64 extent_end = 0;
  682. u64 last_end = start;
  683. int del_nr = 0;
  684. int del_slot = 0;
  685. int extent_type;
  686. int recow;
  687. int ret;
  688. int modify_tree = -1;
  689. int update_refs;
  690. int found = 0;
  691. int leafs_visited = 0;
  692. if (drop_cache)
  693. btrfs_drop_extent_cache(BTRFS_I(inode), start, end - 1, 0);
  694. if (start >= BTRFS_I(inode)->disk_i_size && !replace_extent)
  695. modify_tree = 0;
  696. update_refs = (test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
  697. root == fs_info->tree_root);
  698. while (1) {
  699. recow = 0;
  700. ret = btrfs_lookup_file_extent(trans, root, path, ino,
  701. search_start, modify_tree);
  702. if (ret < 0)
  703. break;
  704. if (ret > 0 && path->slots[0] > 0 && search_start == start) {
  705. leaf = path->nodes[0];
  706. btrfs_item_key_to_cpu(leaf, &key, path->slots[0] - 1);
  707. if (key.objectid == ino &&
  708. key.type == BTRFS_EXTENT_DATA_KEY)
  709. path->slots[0]--;
  710. }
  711. ret = 0;
  712. leafs_visited++;
  713. next_slot:
  714. leaf = path->nodes[0];
  715. if (path->slots[0] >= btrfs_header_nritems(leaf)) {
  716. BUG_ON(del_nr > 0);
  717. ret = btrfs_next_leaf(root, path);
  718. if (ret < 0)
  719. break;
  720. if (ret > 0) {
  721. ret = 0;
  722. break;
  723. }
  724. leafs_visited++;
  725. leaf = path->nodes[0];
  726. recow = 1;
  727. }
  728. btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
  729. if (key.objectid > ino)
  730. break;
  731. if (WARN_ON_ONCE(key.objectid < ino) ||
  732. key.type < BTRFS_EXTENT_DATA_KEY) {
  733. ASSERT(del_nr == 0);
  734. path->slots[0]++;
  735. goto next_slot;
  736. }
  737. if (key.type > BTRFS_EXTENT_DATA_KEY || key.offset >= end)
  738. break;
  739. fi = btrfs_item_ptr(leaf, path->slots[0],
  740. struct btrfs_file_extent_item);
  741. extent_type = btrfs_file_extent_type(leaf, fi);
  742. if (extent_type == BTRFS_FILE_EXTENT_REG ||
  743. extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
  744. disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
  745. num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
  746. extent_offset = btrfs_file_extent_offset(leaf, fi);
  747. extent_end = key.offset +
  748. btrfs_file_extent_num_bytes(leaf, fi);
  749. } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
  750. extent_end = key.offset +
  751. btrfs_file_extent_ram_bytes(leaf, fi);
  752. } else {
  753. /* can't happen */
  754. BUG();
  755. }
  756. /*
  757. * Don't skip extent items representing 0 byte lengths. They
  758. * used to be created (bug) if while punching holes we hit
  759. * -ENOSPC condition. So if we find one here, just ensure we
  760. * delete it, otherwise we would insert a new file extent item
  761. * with the same key (offset) as that 0 bytes length file
  762. * extent item in the call to setup_items_for_insert() later
  763. * in this function.
  764. */
  765. if (extent_end == key.offset && extent_end >= search_start) {
  766. last_end = extent_end;
  767. goto delete_extent_item;
  768. }
  769. if (extent_end <= search_start) {
  770. path->slots[0]++;
  771. goto next_slot;
  772. }
  773. found = 1;
  774. search_start = max(key.offset, start);
  775. if (recow || !modify_tree) {
  776. modify_tree = -1;
  777. btrfs_release_path(path);
  778. continue;
  779. }
  780. /*
  781. * | - range to drop - |
  782. * | -------- extent -------- |
  783. */
  784. if (start > key.offset && end < extent_end) {
  785. BUG_ON(del_nr > 0);
  786. if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
  787. ret = -EOPNOTSUPP;
  788. break;
  789. }
  790. memcpy(&new_key, &key, sizeof(new_key));
  791. new_key.offset = start;
  792. ret = btrfs_duplicate_item(trans, root, path,
  793. &new_key);
  794. if (ret == -EAGAIN) {
  795. btrfs_release_path(path);
  796. continue;
  797. }
  798. if (ret < 0)
  799. break;
  800. leaf = path->nodes[0];
  801. fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
  802. struct btrfs_file_extent_item);
  803. btrfs_set_file_extent_num_bytes(leaf, fi,
  804. start - key.offset);
  805. fi = btrfs_item_ptr(leaf, path->slots[0],
  806. struct btrfs_file_extent_item);
  807. extent_offset += start - key.offset;
  808. btrfs_set_file_extent_offset(leaf, fi, extent_offset);
  809. btrfs_set_file_extent_num_bytes(leaf, fi,
  810. extent_end - start);
  811. btrfs_mark_buffer_dirty(leaf);
  812. if (update_refs && disk_bytenr > 0) {
  813. ret = btrfs_inc_extent_ref(trans, root,
  814. disk_bytenr, num_bytes, 0,
  815. root->root_key.objectid,
  816. new_key.objectid,
  817. start - extent_offset);
  818. BUG_ON(ret); /* -ENOMEM */
  819. }
  820. key.offset = start;
  821. }
  822. /*
  823. * From here on out we will have actually dropped something, so
  824. * last_end can be updated.
  825. */
  826. last_end = extent_end;
  827. /*
  828. * | ---- range to drop ----- |
  829. * | -------- extent -------- |
  830. */
  831. if (start <= key.offset && end < extent_end) {
  832. if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
  833. ret = -EOPNOTSUPP;
  834. break;
  835. }
  836. memcpy(&new_key, &key, sizeof(new_key));
  837. new_key.offset = end;
  838. btrfs_set_item_key_safe(fs_info, path, &new_key);
  839. extent_offset += end - key.offset;
  840. btrfs_set_file_extent_offset(leaf, fi, extent_offset);
  841. btrfs_set_file_extent_num_bytes(leaf, fi,
  842. extent_end - end);
  843. btrfs_mark_buffer_dirty(leaf);
  844. if (update_refs && disk_bytenr > 0)
  845. inode_sub_bytes(inode, end - key.offset);
  846. break;
  847. }
  848. search_start = extent_end;
  849. /*
  850. * | ---- range to drop ----- |
  851. * | -------- extent -------- |
  852. */
  853. if (start > key.offset && end >= extent_end) {
  854. BUG_ON(del_nr > 0);
  855. if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
  856. ret = -EOPNOTSUPP;
  857. break;
  858. }
  859. btrfs_set_file_extent_num_bytes(leaf, fi,
  860. start - key.offset);
  861. btrfs_mark_buffer_dirty(leaf);
  862. if (update_refs && disk_bytenr > 0)
  863. inode_sub_bytes(inode, extent_end - start);
  864. if (end == extent_end)
  865. break;
  866. path->slots[0]++;
  867. goto next_slot;
  868. }
  869. /*
  870. * | ---- range to drop ----- |
  871. * | ------ extent ------ |
  872. */
  873. if (start <= key.offset && end >= extent_end) {
  874. delete_extent_item:
  875. if (del_nr == 0) {
  876. del_slot = path->slots[0];
  877. del_nr = 1;
  878. } else {
  879. BUG_ON(del_slot + del_nr != path->slots[0]);
  880. del_nr++;
  881. }
  882. if (update_refs &&
  883. extent_type == BTRFS_FILE_EXTENT_INLINE) {
  884. inode_sub_bytes(inode,
  885. extent_end - key.offset);
  886. extent_end = ALIGN(extent_end,
  887. fs_info->sectorsize);
  888. } else if (update_refs && disk_bytenr > 0) {
  889. ret = btrfs_free_extent(trans, root,
  890. disk_bytenr, num_bytes, 0,
  891. root->root_key.objectid,
  892. key.objectid, key.offset -
  893. extent_offset);
  894. BUG_ON(ret); /* -ENOMEM */
  895. inode_sub_bytes(inode,
  896. extent_end - key.offset);
  897. }
  898. if (end == extent_end)
  899. break;
  900. if (path->slots[0] + 1 < btrfs_header_nritems(leaf)) {
  901. path->slots[0]++;
  902. goto next_slot;
  903. }
  904. ret = btrfs_del_items(trans, root, path, del_slot,
  905. del_nr);
  906. if (ret) {
  907. btrfs_abort_transaction(trans, ret);
  908. break;
  909. }
  910. del_nr = 0;
  911. del_slot = 0;
  912. btrfs_release_path(path);
  913. continue;
  914. }
  915. BUG_ON(1);
  916. }
  917. if (!ret && del_nr > 0) {
  918. /*
  919. * Set path->slots[0] to first slot, so that after the delete
  920. * if items are move off from our leaf to its immediate left or
  921. * right neighbor leafs, we end up with a correct and adjusted
  922. * path->slots[0] for our insertion (if replace_extent != 0).
  923. */
  924. path->slots[0] = del_slot;
  925. ret = btrfs_del_items(trans, root, path, del_slot, del_nr);
  926. if (ret)
  927. btrfs_abort_transaction(trans, ret);
  928. }
  929. leaf = path->nodes[0];
  930. /*
  931. * If btrfs_del_items() was called, it might have deleted a leaf, in
  932. * which case it unlocked our path, so check path->locks[0] matches a
  933. * write lock.
  934. */
  935. if (!ret && replace_extent && leafs_visited == 1 &&
  936. (path->locks[0] == BTRFS_WRITE_LOCK_BLOCKING ||
  937. path->locks[0] == BTRFS_WRITE_LOCK) &&
  938. btrfs_leaf_free_space(fs_info, leaf) >=
  939. sizeof(struct btrfs_item) + extent_item_size) {
  940. key.objectid = ino;
  941. key.type = BTRFS_EXTENT_DATA_KEY;
  942. key.offset = start;
  943. if (!del_nr && path->slots[0] < btrfs_header_nritems(leaf)) {
  944. struct btrfs_key slot_key;
  945. btrfs_item_key_to_cpu(leaf, &slot_key, path->slots[0]);
  946. if (btrfs_comp_cpu_keys(&key, &slot_key) > 0)
  947. path->slots[0]++;
  948. }
  949. setup_items_for_insert(root, path, &key,
  950. &extent_item_size,
  951. extent_item_size,
  952. sizeof(struct btrfs_item) +
  953. extent_item_size, 1);
  954. *key_inserted = 1;
  955. }
  956. if (!replace_extent || !(*key_inserted))
  957. btrfs_release_path(path);
  958. if (drop_end)
  959. *drop_end = found ? min(end, last_end) : end;
  960. return ret;
  961. }
  962. int btrfs_drop_extents(struct btrfs_trans_handle *trans,
  963. struct btrfs_root *root, struct inode *inode, u64 start,
  964. u64 end, int drop_cache)
  965. {
  966. struct btrfs_path *path;
  967. int ret;
  968. path = btrfs_alloc_path();
  969. if (!path)
  970. return -ENOMEM;
  971. ret = __btrfs_drop_extents(trans, root, inode, path, start, end, NULL,
  972. drop_cache, 0, 0, NULL);
  973. btrfs_free_path(path);
  974. return ret;
  975. }
  976. static int extent_mergeable(struct extent_buffer *leaf, int slot,
  977. u64 objectid, u64 bytenr, u64 orig_offset,
  978. u64 *start, u64 *end)
  979. {
  980. struct btrfs_file_extent_item *fi;
  981. struct btrfs_key key;
  982. u64 extent_end;
  983. if (slot < 0 || slot >= btrfs_header_nritems(leaf))
  984. return 0;
  985. btrfs_item_key_to_cpu(leaf, &key, slot);
  986. if (key.objectid != objectid || key.type != BTRFS_EXTENT_DATA_KEY)
  987. return 0;
  988. fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
  989. if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG ||
  990. btrfs_file_extent_disk_bytenr(leaf, fi) != bytenr ||
  991. btrfs_file_extent_offset(leaf, fi) != key.offset - orig_offset ||
  992. btrfs_file_extent_compression(leaf, fi) ||
  993. btrfs_file_extent_encryption(leaf, fi) ||
  994. btrfs_file_extent_other_encoding(leaf, fi))
  995. return 0;
  996. extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
  997. if ((*start && *start != key.offset) || (*end && *end != extent_end))
  998. return 0;
  999. *start = key.offset;
  1000. *end = extent_end;
  1001. return 1;
  1002. }
  1003. /*
  1004. * Mark extent in the range start - end as written.
  1005. *
  1006. * This changes extent type from 'pre-allocated' to 'regular'. If only
  1007. * part of extent is marked as written, the extent will be split into
  1008. * two or three.
  1009. */
  1010. int btrfs_mark_extent_written(struct btrfs_trans_handle *trans,
  1011. struct btrfs_inode *inode, u64 start, u64 end)
  1012. {
  1013. struct btrfs_fs_info *fs_info = trans->fs_info;
  1014. struct btrfs_root *root = inode->root;
  1015. struct extent_buffer *leaf;
  1016. struct btrfs_path *path;
  1017. struct btrfs_file_extent_item *fi;
  1018. struct btrfs_key key;
  1019. struct btrfs_key new_key;
  1020. u64 bytenr;
  1021. u64 num_bytes;
  1022. u64 extent_end;
  1023. u64 orig_offset;
  1024. u64 other_start;
  1025. u64 other_end;
  1026. u64 split;
  1027. int del_nr = 0;
  1028. int del_slot = 0;
  1029. int recow;
  1030. int ret;
  1031. u64 ino = btrfs_ino(inode);
  1032. path = btrfs_alloc_path();
  1033. if (!path)
  1034. return -ENOMEM;
  1035. again:
  1036. recow = 0;
  1037. split = start;
  1038. key.objectid = ino;
  1039. key.type = BTRFS_EXTENT_DATA_KEY;
  1040. key.offset = split;
  1041. ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
  1042. if (ret < 0)
  1043. goto out;
  1044. if (ret > 0 && path->slots[0] > 0)
  1045. path->slots[0]--;
  1046. leaf = path->nodes[0];
  1047. btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
  1048. if (key.objectid != ino ||
  1049. key.type != BTRFS_EXTENT_DATA_KEY) {
  1050. ret = -EINVAL;
  1051. btrfs_abort_transaction(trans, ret);
  1052. goto out;
  1053. }
  1054. fi = btrfs_item_ptr(leaf, path->slots[0],
  1055. struct btrfs_file_extent_item);
  1056. if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_PREALLOC) {
  1057. ret = -EINVAL;
  1058. btrfs_abort_transaction(trans, ret);
  1059. goto out;
  1060. }
  1061. extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
  1062. if (key.offset > start || extent_end < end) {
  1063. ret = -EINVAL;
  1064. btrfs_abort_transaction(trans, ret);
  1065. goto out;
  1066. }
  1067. bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
  1068. num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
  1069. orig_offset = key.offset - btrfs_file_extent_offset(leaf, fi);
  1070. memcpy(&new_key, &key, sizeof(new_key));
  1071. if (start == key.offset && end < extent_end) {
  1072. other_start = 0;
  1073. other_end = start;
  1074. if (extent_mergeable(leaf, path->slots[0] - 1,
  1075. ino, bytenr, orig_offset,
  1076. &other_start, &other_end)) {
  1077. new_key.offset = end;
  1078. btrfs_set_item_key_safe(fs_info, path, &new_key);
  1079. fi = btrfs_item_ptr(leaf, path->slots[0],
  1080. struct btrfs_file_extent_item);
  1081. btrfs_set_file_extent_generation(leaf, fi,
  1082. trans->transid);
  1083. btrfs_set_file_extent_num_bytes(leaf, fi,
  1084. extent_end - end);
  1085. btrfs_set_file_extent_offset(leaf, fi,
  1086. end - orig_offset);
  1087. fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
  1088. struct btrfs_file_extent_item);
  1089. btrfs_set_file_extent_generation(leaf, fi,
  1090. trans->transid);
  1091. btrfs_set_file_extent_num_bytes(leaf, fi,
  1092. end - other_start);
  1093. btrfs_mark_buffer_dirty(leaf);
  1094. goto out;
  1095. }
  1096. }
  1097. if (start > key.offset && end == extent_end) {
  1098. other_start = end;
  1099. other_end = 0;
  1100. if (extent_mergeable(leaf, path->slots[0] + 1,
  1101. ino, bytenr, orig_offset,
  1102. &other_start, &other_end)) {
  1103. fi = btrfs_item_ptr(leaf, path->slots[0],
  1104. struct btrfs_file_extent_item);
  1105. btrfs_set_file_extent_num_bytes(leaf, fi,
  1106. start - key.offset);
  1107. btrfs_set_file_extent_generation(leaf, fi,
  1108. trans->transid);
  1109. path->slots[0]++;
  1110. new_key.offset = start;
  1111. btrfs_set_item_key_safe(fs_info, path, &new_key);
  1112. fi = btrfs_item_ptr(leaf, path->slots[0],
  1113. struct btrfs_file_extent_item);
  1114. btrfs_set_file_extent_generation(leaf, fi,
  1115. trans->transid);
  1116. btrfs_set_file_extent_num_bytes(leaf, fi,
  1117. other_end - start);
  1118. btrfs_set_file_extent_offset(leaf, fi,
  1119. start - orig_offset);
  1120. btrfs_mark_buffer_dirty(leaf);
  1121. goto out;
  1122. }
  1123. }
  1124. while (start > key.offset || end < extent_end) {
  1125. if (key.offset == start)
  1126. split = end;
  1127. new_key.offset = split;
  1128. ret = btrfs_duplicate_item(trans, root, path, &new_key);
  1129. if (ret == -EAGAIN) {
  1130. btrfs_release_path(path);
  1131. goto again;
  1132. }
  1133. if (ret < 0) {
  1134. btrfs_abort_transaction(trans, ret);
  1135. goto out;
  1136. }
  1137. leaf = path->nodes[0];
  1138. fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
  1139. struct btrfs_file_extent_item);
  1140. btrfs_set_file_extent_generation(leaf, fi, trans->transid);
  1141. btrfs_set_file_extent_num_bytes(leaf, fi,
  1142. split - key.offset);
  1143. fi = btrfs_item_ptr(leaf, path->slots[0],
  1144. struct btrfs_file_extent_item);
  1145. btrfs_set_file_extent_generation(leaf, fi, trans->transid);
  1146. btrfs_set_file_extent_offset(leaf, fi, split - orig_offset);
  1147. btrfs_set_file_extent_num_bytes(leaf, fi,
  1148. extent_end - split);
  1149. btrfs_mark_buffer_dirty(leaf);
  1150. ret = btrfs_inc_extent_ref(trans, root, bytenr, num_bytes,
  1151. 0, root->root_key.objectid,
  1152. ino, orig_offset);
  1153. if (ret) {
  1154. btrfs_abort_transaction(trans, ret);
  1155. goto out;
  1156. }
  1157. if (split == start) {
  1158. key.offset = start;
  1159. } else {
  1160. if (start != key.offset) {
  1161. ret = -EINVAL;
  1162. btrfs_abort_transaction(trans, ret);
  1163. goto out;
  1164. }
  1165. path->slots[0]--;
  1166. extent_end = end;
  1167. }
  1168. recow = 1;
  1169. }
  1170. other_start = end;
  1171. other_end = 0;
  1172. if (extent_mergeable(leaf, path->slots[0] + 1,
  1173. ino, bytenr, orig_offset,
  1174. &other_start, &other_end)) {
  1175. if (recow) {
  1176. btrfs_release_path(path);
  1177. goto again;
  1178. }
  1179. extent_end = other_end;
  1180. del_slot = path->slots[0] + 1;
  1181. del_nr++;
  1182. ret = btrfs_free_extent(trans, root, bytenr, num_bytes,
  1183. 0, root->root_key.objectid,
  1184. ino, orig_offset);
  1185. if (ret) {
  1186. btrfs_abort_transaction(trans, ret);
  1187. goto out;
  1188. }
  1189. }
  1190. other_start = 0;
  1191. other_end = start;
  1192. if (extent_mergeable(leaf, path->slots[0] - 1,
  1193. ino, bytenr, orig_offset,
  1194. &other_start, &other_end)) {
  1195. if (recow) {
  1196. btrfs_release_path(path);
  1197. goto again;
  1198. }
  1199. key.offset = other_start;
  1200. del_slot = path->slots[0];
  1201. del_nr++;
  1202. ret = btrfs_free_extent(trans, root, bytenr, num_bytes,
  1203. 0, root->root_key.objectid,
  1204. ino, orig_offset);
  1205. if (ret) {
  1206. btrfs_abort_transaction(trans, ret);
  1207. goto out;
  1208. }
  1209. }
  1210. if (del_nr == 0) {
  1211. fi = btrfs_item_ptr(leaf, path->slots[0],
  1212. struct btrfs_file_extent_item);
  1213. btrfs_set_file_extent_type(leaf, fi,
  1214. BTRFS_FILE_EXTENT_REG);
  1215. btrfs_set_file_extent_generation(leaf, fi, trans->transid);
  1216. btrfs_mark_buffer_dirty(leaf);
  1217. } else {
  1218. fi = btrfs_item_ptr(leaf, del_slot - 1,
  1219. struct btrfs_file_extent_item);
  1220. btrfs_set_file_extent_type(leaf, fi,
  1221. BTRFS_FILE_EXTENT_REG);
  1222. btrfs_set_file_extent_generation(leaf, fi, trans->transid);
  1223. btrfs_set_file_extent_num_bytes(leaf, fi,
  1224. extent_end - key.offset);
  1225. btrfs_mark_buffer_dirty(leaf);
  1226. ret = btrfs_del_items(trans, root, path, del_slot, del_nr);
  1227. if (ret < 0) {
  1228. btrfs_abort_transaction(trans, ret);
  1229. goto out;
  1230. }
  1231. }
  1232. out:
  1233. btrfs_free_path(path);
  1234. return 0;
  1235. }
  1236. /*
  1237. * on error we return an unlocked page and the error value
  1238. * on success we return a locked page and 0
  1239. */
  1240. static int prepare_uptodate_page(struct inode *inode,
  1241. struct page *page, u64 pos,
  1242. bool force_uptodate)
  1243. {
  1244. int ret = 0;
  1245. if (((pos & (PAGE_SIZE - 1)) || force_uptodate) &&
  1246. !PageUptodate(page)) {
  1247. ret = btrfs_readpage(NULL, page);
  1248. if (ret)
  1249. return ret;
  1250. lock_page(page);
  1251. if (!PageUptodate(page)) {
  1252. unlock_page(page);
  1253. return -EIO;
  1254. }
  1255. if (page->mapping != inode->i_mapping) {
  1256. unlock_page(page);
  1257. return -EAGAIN;
  1258. }
  1259. }
  1260. return 0;
  1261. }
  1262. /*
  1263. * this just gets pages into the page cache and locks them down.
  1264. */
  1265. static noinline int prepare_pages(struct inode *inode, struct page **pages,
  1266. size_t num_pages, loff_t pos,
  1267. size_t write_bytes, bool force_uptodate)
  1268. {
  1269. int i;
  1270. unsigned long index = pos >> PAGE_SHIFT;
  1271. gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
  1272. int err = 0;
  1273. int faili;
  1274. for (i = 0; i < num_pages; i++) {
  1275. again:
  1276. pages[i] = find_or_create_page(inode->i_mapping, index + i,
  1277. mask | __GFP_WRITE);
  1278. if (!pages[i]) {
  1279. faili = i - 1;
  1280. err = -ENOMEM;
  1281. goto fail;
  1282. }
  1283. if (i == 0)
  1284. err = prepare_uptodate_page(inode, pages[i], pos,
  1285. force_uptodate);
  1286. if (!err && i == num_pages - 1)
  1287. err = prepare_uptodate_page(inode, pages[i],
  1288. pos + write_bytes, false);
  1289. if (err) {
  1290. put_page(pages[i]);
  1291. if (err == -EAGAIN) {
  1292. err = 0;
  1293. goto again;
  1294. }
  1295. faili = i - 1;
  1296. goto fail;
  1297. }
  1298. wait_on_page_writeback(pages[i]);
  1299. }
  1300. return 0;
  1301. fail:
  1302. while (faili >= 0) {
  1303. unlock_page(pages[faili]);
  1304. put_page(pages[faili]);
  1305. faili--;
  1306. }
  1307. return err;
  1308. }
  1309. /*
  1310. * This function locks the extent and properly waits for data=ordered extents
  1311. * to finish before allowing the pages to be modified if need.
  1312. *
  1313. * The return value:
  1314. * 1 - the extent is locked
  1315. * 0 - the extent is not locked, and everything is OK
  1316. * -EAGAIN - need re-prepare the pages
  1317. * the other < 0 number - Something wrong happens
  1318. */
  1319. static noinline int
  1320. lock_and_cleanup_extent_if_need(struct btrfs_inode *inode, struct page **pages,
  1321. size_t num_pages, loff_t pos,
  1322. size_t write_bytes,
  1323. u64 *lockstart, u64 *lockend,
  1324. struct extent_state **cached_state)
  1325. {
  1326. struct btrfs_fs_info *fs_info = inode->root->fs_info;
  1327. u64 start_pos;
  1328. u64 last_pos;
  1329. int i;
  1330. int ret = 0;
  1331. start_pos = round_down(pos, fs_info->sectorsize);
  1332. last_pos = start_pos
  1333. + round_up(pos + write_bytes - start_pos,
  1334. fs_info->sectorsize) - 1;
  1335. if (start_pos < inode->vfs_inode.i_size) {
  1336. struct btrfs_ordered_extent *ordered;
  1337. lock_extent_bits(&inode->io_tree, start_pos, last_pos,
  1338. cached_state);
  1339. ordered = btrfs_lookup_ordered_range(inode, start_pos,
  1340. last_pos - start_pos + 1);
  1341. if (ordered &&
  1342. ordered->file_offset + ordered->len > start_pos &&
  1343. ordered->file_offset <= last_pos) {
  1344. unlock_extent_cached(&inode->io_tree, start_pos,
  1345. last_pos, cached_state);
  1346. for (i = 0; i < num_pages; i++) {
  1347. unlock_page(pages[i]);
  1348. put_page(pages[i]);
  1349. }
  1350. btrfs_start_ordered_extent(&inode->vfs_inode,
  1351. ordered, 1);
  1352. btrfs_put_ordered_extent(ordered);
  1353. return -EAGAIN;
  1354. }
  1355. if (ordered)
  1356. btrfs_put_ordered_extent(ordered);
  1357. *lockstart = start_pos;
  1358. *lockend = last_pos;
  1359. ret = 1;
  1360. }
  1361. /*
  1362. * It's possible the pages are dirty right now, but we don't want
  1363. * to clean them yet because copy_from_user may catch a page fault
  1364. * and we might have to fall back to one page at a time. If that
  1365. * happens, we'll unlock these pages and we'd have a window where
  1366. * reclaim could sneak in and drop the once-dirty page on the floor
  1367. * without writing it.
  1368. *
  1369. * We have the pages locked and the extent range locked, so there's
  1370. * no way someone can start IO on any dirty pages in this range.
  1371. *
  1372. * We'll call btrfs_dirty_pages() later on, and that will flip around
  1373. * delalloc bits and dirty the pages as required.
  1374. */
  1375. for (i = 0; i < num_pages; i++) {
  1376. set_page_extent_mapped(pages[i]);
  1377. WARN_ON(!PageLocked(pages[i]));
  1378. }
  1379. return ret;
  1380. }
  1381. static noinline int check_can_nocow(struct btrfs_inode *inode, loff_t pos,
  1382. size_t *write_bytes)
  1383. {
  1384. struct btrfs_fs_info *fs_info = inode->root->fs_info;
  1385. struct btrfs_root *root = inode->root;
  1386. struct btrfs_ordered_extent *ordered;
  1387. u64 lockstart, lockend;
  1388. u64 num_bytes;
  1389. int ret;
  1390. ret = btrfs_start_write_no_snapshotting(root);
  1391. if (!ret)
  1392. return -ENOSPC;
  1393. lockstart = round_down(pos, fs_info->sectorsize);
  1394. lockend = round_up(pos + *write_bytes,
  1395. fs_info->sectorsize) - 1;
  1396. while (1) {
  1397. lock_extent(&inode->io_tree, lockstart, lockend);
  1398. ordered = btrfs_lookup_ordered_range(inode, lockstart,
  1399. lockend - lockstart + 1);
  1400. if (!ordered) {
  1401. break;
  1402. }
  1403. unlock_extent(&inode->io_tree, lockstart, lockend);
  1404. btrfs_start_ordered_extent(&inode->vfs_inode, ordered, 1);
  1405. btrfs_put_ordered_extent(ordered);
  1406. }
  1407. num_bytes = lockend - lockstart + 1;
  1408. ret = can_nocow_extent(&inode->vfs_inode, lockstart, &num_bytes,
  1409. NULL, NULL, NULL);
  1410. if (ret <= 0) {
  1411. ret = 0;
  1412. btrfs_end_write_no_snapshotting(root);
  1413. } else {
  1414. *write_bytes = min_t(size_t, *write_bytes ,
  1415. num_bytes - pos + lockstart);
  1416. }
  1417. unlock_extent(&inode->io_tree, lockstart, lockend);
  1418. return ret;
  1419. }
  1420. static noinline ssize_t btrfs_buffered_write(struct kiocb *iocb,
  1421. struct iov_iter *i)
  1422. {
  1423. struct file *file = iocb->ki_filp;
  1424. loff_t pos = iocb->ki_pos;
  1425. struct inode *inode = file_inode(file);
  1426. struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
  1427. struct btrfs_root *root = BTRFS_I(inode)->root;
  1428. struct page **pages = NULL;
  1429. struct extent_changeset *data_reserved = NULL;
  1430. u64 release_bytes = 0;
  1431. u64 lockstart;
  1432. u64 lockend;
  1433. size_t num_written = 0;
  1434. int nrptrs;
  1435. int ret = 0;
  1436. bool only_release_metadata = false;
  1437. bool force_page_uptodate = false;
  1438. nrptrs = min(DIV_ROUND_UP(iov_iter_count(i), PAGE_SIZE),
  1439. PAGE_SIZE / (sizeof(struct page *)));
  1440. nrptrs = min(nrptrs, current->nr_dirtied_pause - current->nr_dirtied);
  1441. nrptrs = max(nrptrs, 8);
  1442. pages = kmalloc_array(nrptrs, sizeof(struct page *), GFP_KERNEL);
  1443. if (!pages)
  1444. return -ENOMEM;
  1445. while (iov_iter_count(i) > 0) {
  1446. size_t offset = pos & (PAGE_SIZE - 1);
  1447. struct extent_state *cached_state = NULL;
  1448. size_t sector_offset;
  1449. size_t write_bytes = min(iov_iter_count(i),
  1450. nrptrs * (size_t)PAGE_SIZE -
  1451. offset);
  1452. size_t num_pages = DIV_ROUND_UP(write_bytes + offset,
  1453. PAGE_SIZE);
  1454. size_t reserve_bytes;
  1455. size_t dirty_pages;
  1456. size_t copied;
  1457. size_t dirty_sectors;
  1458. size_t num_sectors;
  1459. int extents_locked;
  1460. WARN_ON(num_pages > nrptrs);
  1461. /*
  1462. * Fault pages before locking them in prepare_pages
  1463. * to avoid recursive lock
  1464. */
  1465. if (unlikely(iov_iter_fault_in_readable(i, write_bytes))) {
  1466. ret = -EFAULT;
  1467. break;
  1468. }
  1469. only_release_metadata = false;
  1470. sector_offset = pos & (fs_info->sectorsize - 1);
  1471. reserve_bytes = round_up(write_bytes + sector_offset,
  1472. fs_info->sectorsize);
  1473. extent_changeset_release(data_reserved);
  1474. ret = btrfs_check_data_free_space(inode, &data_reserved, pos,
  1475. write_bytes);
  1476. if (ret < 0) {
  1477. if ((BTRFS_I(inode)->flags & (BTRFS_INODE_NODATACOW |
  1478. BTRFS_INODE_PREALLOC)) &&
  1479. check_can_nocow(BTRFS_I(inode), pos,
  1480. &write_bytes) > 0) {
  1481. /*
  1482. * For nodata cow case, no need to reserve
  1483. * data space.
  1484. */
  1485. only_release_metadata = true;
  1486. /*
  1487. * our prealloc extent may be smaller than
  1488. * write_bytes, so scale down.
  1489. */
  1490. num_pages = DIV_ROUND_UP(write_bytes + offset,
  1491. PAGE_SIZE);
  1492. reserve_bytes = round_up(write_bytes +
  1493. sector_offset,
  1494. fs_info->sectorsize);
  1495. } else {
  1496. break;
  1497. }
  1498. }
  1499. WARN_ON(reserve_bytes == 0);
  1500. ret = btrfs_delalloc_reserve_metadata(BTRFS_I(inode),
  1501. reserve_bytes);
  1502. if (ret) {
  1503. if (!only_release_metadata)
  1504. btrfs_free_reserved_data_space(inode,
  1505. data_reserved, pos,
  1506. write_bytes);
  1507. else
  1508. btrfs_end_write_no_snapshotting(root);
  1509. break;
  1510. }
  1511. release_bytes = reserve_bytes;
  1512. again:
  1513. /*
  1514. * This is going to setup the pages array with the number of
  1515. * pages we want, so we don't really need to worry about the
  1516. * contents of pages from loop to loop
  1517. */
  1518. ret = prepare_pages(inode, pages, num_pages,
  1519. pos, write_bytes,
  1520. force_page_uptodate);
  1521. if (ret) {
  1522. btrfs_delalloc_release_extents(BTRFS_I(inode),
  1523. reserve_bytes);
  1524. break;
  1525. }
  1526. extents_locked = lock_and_cleanup_extent_if_need(
  1527. BTRFS_I(inode), pages,
  1528. num_pages, pos, write_bytes, &lockstart,
  1529. &lockend, &cached_state);
  1530. if (extents_locked < 0) {
  1531. if (extents_locked == -EAGAIN)
  1532. goto again;
  1533. btrfs_delalloc_release_extents(BTRFS_I(inode),
  1534. reserve_bytes);
  1535. ret = extents_locked;
  1536. break;
  1537. }
  1538. copied = btrfs_copy_from_user(pos, write_bytes, pages, i);
  1539. num_sectors = BTRFS_BYTES_TO_BLKS(fs_info, reserve_bytes);
  1540. dirty_sectors = round_up(copied + sector_offset,
  1541. fs_info->sectorsize);
  1542. dirty_sectors = BTRFS_BYTES_TO_BLKS(fs_info, dirty_sectors);
  1543. /*
  1544. * if we have trouble faulting in the pages, fall
  1545. * back to one page at a time
  1546. */
  1547. if (copied < write_bytes)
  1548. nrptrs = 1;
  1549. if (copied == 0) {
  1550. force_page_uptodate = true;
  1551. dirty_sectors = 0;
  1552. dirty_pages = 0;
  1553. } else {
  1554. force_page_uptodate = false;
  1555. dirty_pages = DIV_ROUND_UP(copied + offset,
  1556. PAGE_SIZE);
  1557. }
  1558. if (num_sectors > dirty_sectors) {
  1559. /* release everything except the sectors we dirtied */
  1560. release_bytes -= dirty_sectors <<
  1561. fs_info->sb->s_blocksize_bits;
  1562. if (only_release_metadata) {
  1563. btrfs_delalloc_release_metadata(BTRFS_I(inode),
  1564. release_bytes, true);
  1565. } else {
  1566. u64 __pos;
  1567. __pos = round_down(pos,
  1568. fs_info->sectorsize) +
  1569. (dirty_pages << PAGE_SHIFT);
  1570. btrfs_delalloc_release_space(inode,
  1571. data_reserved, __pos,
  1572. release_bytes, true);
  1573. }
  1574. }
  1575. release_bytes = round_up(copied + sector_offset,
  1576. fs_info->sectorsize);
  1577. if (copied > 0)
  1578. ret = btrfs_dirty_pages(inode, pages, dirty_pages,
  1579. pos, copied, &cached_state);
  1580. /*
  1581. * If we have not locked the extent range, because the range's
  1582. * start offset is >= i_size, we might still have a non-NULL
  1583. * cached extent state, acquired while marking the extent range
  1584. * as delalloc through btrfs_dirty_pages(). Therefore free any
  1585. * possible cached extent state to avoid a memory leak.
  1586. */
  1587. if (extents_locked)
  1588. unlock_extent_cached(&BTRFS_I(inode)->io_tree,
  1589. lockstart, lockend, &cached_state);
  1590. else
  1591. free_extent_state(cached_state);
  1592. btrfs_delalloc_release_extents(BTRFS_I(inode), reserve_bytes);
  1593. if (ret) {
  1594. btrfs_drop_pages(pages, num_pages);
  1595. break;
  1596. }
  1597. release_bytes = 0;
  1598. if (only_release_metadata)
  1599. btrfs_end_write_no_snapshotting(root);
  1600. if (only_release_metadata && copied > 0) {
  1601. lockstart = round_down(pos,
  1602. fs_info->sectorsize);
  1603. lockend = round_up(pos + copied,
  1604. fs_info->sectorsize) - 1;
  1605. set_extent_bit(&BTRFS_I(inode)->io_tree, lockstart,
  1606. lockend, EXTENT_NORESERVE, NULL,
  1607. NULL, GFP_NOFS);
  1608. }
  1609. btrfs_drop_pages(pages, num_pages);
  1610. cond_resched();
  1611. balance_dirty_pages_ratelimited(inode->i_mapping);
  1612. if (dirty_pages < (fs_info->nodesize >> PAGE_SHIFT) + 1)
  1613. btrfs_btree_balance_dirty(fs_info);
  1614. pos += copied;
  1615. num_written += copied;
  1616. }
  1617. kfree(pages);
  1618. if (release_bytes) {
  1619. if (only_release_metadata) {
  1620. btrfs_end_write_no_snapshotting(root);
  1621. btrfs_delalloc_release_metadata(BTRFS_I(inode),
  1622. release_bytes, true);
  1623. } else {
  1624. btrfs_delalloc_release_space(inode, data_reserved,
  1625. round_down(pos, fs_info->sectorsize),
  1626. release_bytes, true);
  1627. }
  1628. }
  1629. extent_changeset_free(data_reserved);
  1630. return num_written ? num_written : ret;
  1631. }
  1632. static ssize_t __btrfs_direct_write(struct kiocb *iocb, struct iov_iter *from)
  1633. {
  1634. struct file *file = iocb->ki_filp;
  1635. struct inode *inode = file_inode(file);
  1636. loff_t pos;
  1637. ssize_t written;
  1638. ssize_t written_buffered;
  1639. loff_t endbyte;
  1640. int err;
  1641. written = generic_file_direct_write(iocb, from);
  1642. if (written < 0 || !iov_iter_count(from))
  1643. return written;
  1644. pos = iocb->ki_pos;
  1645. written_buffered = btrfs_buffered_write(iocb, from);
  1646. if (written_buffered < 0) {
  1647. err = written_buffered;
  1648. goto out;
  1649. }
  1650. /*
  1651. * Ensure all data is persisted. We want the next direct IO read to be
  1652. * able to read what was just written.
  1653. */
  1654. endbyte = pos + written_buffered - 1;
  1655. err = btrfs_fdatawrite_range(inode, pos, endbyte);
  1656. if (err)
  1657. goto out;
  1658. err = filemap_fdatawait_range(inode->i_mapping, pos, endbyte);
  1659. if (err)
  1660. goto out;
  1661. written += written_buffered;
  1662. iocb->ki_pos = pos + written_buffered;
  1663. invalidate_mapping_pages(file->f_mapping, pos >> PAGE_SHIFT,
  1664. endbyte >> PAGE_SHIFT);
  1665. out:
  1666. return written ? written : err;
  1667. }
  1668. static void update_time_for_write(struct inode *inode)
  1669. {
  1670. struct timespec64 now;
  1671. if (IS_NOCMTIME(inode))
  1672. return;
  1673. now = current_time(inode);
  1674. if (!timespec64_equal(&inode->i_mtime, &now))
  1675. inode->i_mtime = now;
  1676. if (!timespec64_equal(&inode->i_ctime, &now))
  1677. inode->i_ctime = now;
  1678. if (IS_I_VERSION(inode))
  1679. inode_inc_iversion(inode);
  1680. }
  1681. static ssize_t btrfs_file_write_iter(struct kiocb *iocb,
  1682. struct iov_iter *from)
  1683. {
  1684. struct file *file = iocb->ki_filp;
  1685. struct inode *inode = file_inode(file);
  1686. struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
  1687. struct btrfs_root *root = BTRFS_I(inode)->root;
  1688. u64 start_pos;
  1689. u64 end_pos;
  1690. ssize_t num_written = 0;
  1691. bool sync = (file->f_flags & O_DSYNC) || IS_SYNC(file->f_mapping->host);
  1692. ssize_t err;
  1693. loff_t pos;
  1694. size_t count;
  1695. loff_t oldsize;
  1696. int clean_page = 0;
  1697. if (!(iocb->ki_flags & IOCB_DIRECT) &&
  1698. (iocb->ki_flags & IOCB_NOWAIT))
  1699. return -EOPNOTSUPP;
  1700. if (iocb->ki_flags & IOCB_NOWAIT) {
  1701. if (!inode_trylock(inode))
  1702. return -EAGAIN;
  1703. } else {
  1704. inode_lock(inode);
  1705. }
  1706. err = generic_write_checks(iocb, from);
  1707. if (err <= 0) {
  1708. inode_unlock(inode);
  1709. return err;
  1710. }
  1711. pos = iocb->ki_pos;
  1712. count = iov_iter_count(from);
  1713. if (iocb->ki_flags & IOCB_NOWAIT) {
  1714. /*
  1715. * We will allocate space in case nodatacow is not set,
  1716. * so bail
  1717. */
  1718. if (!(BTRFS_I(inode)->flags & (BTRFS_INODE_NODATACOW |
  1719. BTRFS_INODE_PREALLOC)) ||
  1720. check_can_nocow(BTRFS_I(inode), pos, &count) <= 0) {
  1721. inode_unlock(inode);
  1722. return -EAGAIN;
  1723. }
  1724. }
  1725. current->backing_dev_info = inode_to_bdi(inode);
  1726. err = file_remove_privs(file);
  1727. if (err) {
  1728. inode_unlock(inode);
  1729. goto out;
  1730. }
  1731. /*
  1732. * If BTRFS flips readonly due to some impossible error
  1733. * (fs_info->fs_state now has BTRFS_SUPER_FLAG_ERROR),
  1734. * although we have opened a file as writable, we have
  1735. * to stop this write operation to ensure FS consistency.
  1736. */
  1737. if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
  1738. inode_unlock(inode);
  1739. err = -EROFS;
  1740. goto out;
  1741. }
  1742. /*
  1743. * We reserve space for updating the inode when we reserve space for the
  1744. * extent we are going to write, so we will enospc out there. We don't
  1745. * need to start yet another transaction to update the inode as we will
  1746. * update the inode when we finish writing whatever data we write.
  1747. */
  1748. update_time_for_write(inode);
  1749. start_pos = round_down(pos, fs_info->sectorsize);
  1750. oldsize = i_size_read(inode);
  1751. if (start_pos > oldsize) {
  1752. /* Expand hole size to cover write data, preventing empty gap */
  1753. end_pos = round_up(pos + count,
  1754. fs_info->sectorsize);
  1755. err = btrfs_cont_expand(inode, oldsize, end_pos);
  1756. if (err) {
  1757. inode_unlock(inode);
  1758. goto out;
  1759. }
  1760. if (start_pos > round_up(oldsize, fs_info->sectorsize))
  1761. clean_page = 1;
  1762. }
  1763. if (sync)
  1764. atomic_inc(&BTRFS_I(inode)->sync_writers);
  1765. if (iocb->ki_flags & IOCB_DIRECT) {
  1766. num_written = __btrfs_direct_write(iocb, from);
  1767. } else {
  1768. num_written = btrfs_buffered_write(iocb, from);
  1769. if (num_written > 0)
  1770. iocb->ki_pos = pos + num_written;
  1771. if (clean_page)
  1772. pagecache_isize_extended(inode, oldsize,
  1773. i_size_read(inode));
  1774. }
  1775. inode_unlock(inode);
  1776. /*
  1777. * We also have to set last_sub_trans to the current log transid,
  1778. * otherwise subsequent syncs to a file that's been synced in this
  1779. * transaction will appear to have already occurred.
  1780. */
  1781. spin_lock(&BTRFS_I(inode)->lock);
  1782. BTRFS_I(inode)->last_sub_trans = root->log_transid;
  1783. spin_unlock(&BTRFS_I(inode)->lock);
  1784. if (num_written > 0)
  1785. num_written = generic_write_sync(iocb, num_written);
  1786. if (sync)
  1787. atomic_dec(&BTRFS_I(inode)->sync_writers);
  1788. out:
  1789. current->backing_dev_info = NULL;
  1790. return num_written ? num_written : err;
  1791. }
  1792. int btrfs_release_file(struct inode *inode, struct file *filp)
  1793. {
  1794. struct btrfs_file_private *private = filp->private_data;
  1795. if (private && private->filldir_buf)
  1796. kfree(private->filldir_buf);
  1797. kfree(private);
  1798. filp->private_data = NULL;
  1799. /*
  1800. * ordered_data_close is set by settattr when we are about to truncate
  1801. * a file from a non-zero size to a zero size. This tries to
  1802. * flush down new bytes that may have been written if the
  1803. * application were using truncate to replace a file in place.
  1804. */
  1805. if (test_and_clear_bit(BTRFS_INODE_ORDERED_DATA_CLOSE,
  1806. &BTRFS_I(inode)->runtime_flags))
  1807. filemap_flush(inode->i_mapping);
  1808. return 0;
  1809. }
  1810. static int start_ordered_ops(struct inode *inode, loff_t start, loff_t end)
  1811. {
  1812. int ret;
  1813. struct blk_plug plug;
  1814. /*
  1815. * This is only called in fsync, which would do synchronous writes, so
  1816. * a plug can merge adjacent IOs as much as possible. Esp. in case of
  1817. * multiple disks using raid profile, a large IO can be split to
  1818. * several segments of stripe length (currently 64K).
  1819. */
  1820. blk_start_plug(&plug);
  1821. atomic_inc(&BTRFS_I(inode)->sync_writers);
  1822. ret = btrfs_fdatawrite_range(inode, start, end);
  1823. atomic_dec(&BTRFS_I(inode)->sync_writers);
  1824. blk_finish_plug(&plug);
  1825. return ret;
  1826. }
  1827. /*
  1828. * fsync call for both files and directories. This logs the inode into
  1829. * the tree log instead of forcing full commits whenever possible.
  1830. *
  1831. * It needs to call filemap_fdatawait so that all ordered extent updates are
  1832. * in the metadata btree are up to date for copying to the log.
  1833. *
  1834. * It drops the inode mutex before doing the tree log commit. This is an
  1835. * important optimization for directories because holding the mutex prevents
  1836. * new operations on the dir while we write to disk.
  1837. */
  1838. int btrfs_sync_file(struct file *file, loff_t start, loff_t end, int datasync)
  1839. {
  1840. struct dentry *dentry = file_dentry(file);
  1841. struct inode *inode = d_inode(dentry);
  1842. struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
  1843. struct btrfs_root *root = BTRFS_I(inode)->root;
  1844. struct btrfs_trans_handle *trans;
  1845. struct btrfs_log_ctx ctx;
  1846. int ret = 0, err;
  1847. trace_btrfs_sync_file(file, datasync);
  1848. btrfs_init_log_ctx(&ctx, inode);
  1849. /*
  1850. * Set the range to full if the NO_HOLES feature is not enabled.
  1851. * This is to avoid missing file extent items representing holes after
  1852. * replaying the log.
  1853. */
  1854. if (!btrfs_fs_incompat(fs_info, NO_HOLES)) {
  1855. start = 0;
  1856. end = LLONG_MAX;
  1857. }
  1858. /*
  1859. * We write the dirty pages in the range and wait until they complete
  1860. * out of the ->i_mutex. If so, we can flush the dirty pages by
  1861. * multi-task, and make the performance up. See
  1862. * btrfs_wait_ordered_range for an explanation of the ASYNC check.
  1863. */
  1864. ret = start_ordered_ops(inode, start, end);
  1865. if (ret)
  1866. goto out;
  1867. inode_lock(inode);
  1868. /*
  1869. * We take the dio_sem here because the tree log stuff can race with
  1870. * lockless dio writes and get an extent map logged for an extent we
  1871. * never waited on. We need it this high up for lockdep reasons.
  1872. */
  1873. down_write(&BTRFS_I(inode)->dio_sem);
  1874. atomic_inc(&root->log_batch);
  1875. /*
  1876. * If the inode needs a full sync, make sure we use a full range to
  1877. * avoid log tree corruption, due to hole detection racing with ordered
  1878. * extent completion for adjacent ranges, and assertion failures during
  1879. * hole detection. Do this while holding the inode lock, to avoid races
  1880. * with other tasks.
  1881. */
  1882. if (test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
  1883. &BTRFS_I(inode)->runtime_flags)) {
  1884. start = 0;
  1885. end = LLONG_MAX;
  1886. }
  1887. /*
  1888. * Before we acquired the inode's lock, someone may have dirtied more
  1889. * pages in the target range. We need to make sure that writeback for
  1890. * any such pages does not start while we are logging the inode, because
  1891. * if it does, any of the following might happen when we are not doing a
  1892. * full inode sync:
  1893. *
  1894. * 1) We log an extent after its writeback finishes but before its
  1895. * checksums are added to the csum tree, leading to -EIO errors
  1896. * when attempting to read the extent after a log replay.
  1897. *
  1898. * 2) We can end up logging an extent before its writeback finishes.
  1899. * Therefore after the log replay we will have a file extent item
  1900. * pointing to an unwritten extent (and no data checksums as well).
  1901. *
  1902. * So trigger writeback for any eventual new dirty pages and then we
  1903. * wait for all ordered extents to complete below.
  1904. */
  1905. ret = start_ordered_ops(inode, start, end);
  1906. if (ret) {
  1907. up_write(&BTRFS_I(inode)->dio_sem);
  1908. inode_unlock(inode);
  1909. goto out;
  1910. }
  1911. /*
  1912. * We have to do this here to avoid the priority inversion of waiting on
  1913. * IO of a lower priority task while holding a transaciton open.
  1914. *
  1915. * Also, the range length can be represented by u64, we have to do the
  1916. * typecasts to avoid signed overflow if it's [0, LLONG_MAX].
  1917. */
  1918. ret = btrfs_wait_ordered_range(inode, start, (u64)end - (u64)start + 1);
  1919. if (ret) {
  1920. up_write(&BTRFS_I(inode)->dio_sem);
  1921. inode_unlock(inode);
  1922. goto out;
  1923. }
  1924. atomic_inc(&root->log_batch);
  1925. smp_mb();
  1926. if (btrfs_inode_in_log(BTRFS_I(inode), fs_info->generation) ||
  1927. BTRFS_I(inode)->last_trans <= fs_info->last_trans_committed) {
  1928. /*
  1929. * We've had everything committed since the last time we were
  1930. * modified so clear this flag in case it was set for whatever
  1931. * reason, it's no longer relevant.
  1932. */
  1933. clear_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
  1934. &BTRFS_I(inode)->runtime_flags);
  1935. /*
  1936. * An ordered extent might have started before and completed
  1937. * already with io errors, in which case the inode was not
  1938. * updated and we end up here. So check the inode's mapping
  1939. * for any errors that might have happened since we last
  1940. * checked called fsync.
  1941. */
  1942. ret = filemap_check_wb_err(inode->i_mapping, file->f_wb_err);
  1943. up_write(&BTRFS_I(inode)->dio_sem);
  1944. inode_unlock(inode);
  1945. goto out;
  1946. }
  1947. /*
  1948. * We use start here because we will need to wait on the IO to complete
  1949. * in btrfs_sync_log, which could require joining a transaction (for
  1950. * example checking cross references in the nocow path). If we use join
  1951. * here we could get into a situation where we're waiting on IO to
  1952. * happen that is blocked on a transaction trying to commit. With start
  1953. * we inc the extwriter counter, so we wait for all extwriters to exit
  1954. * before we start blocking join'ers. This comment is to keep somebody
  1955. * from thinking they are super smart and changing this to
  1956. * btrfs_join_transaction *cough*Josef*cough*.
  1957. */
  1958. trans = btrfs_start_transaction(root, 0);
  1959. if (IS_ERR(trans)) {
  1960. ret = PTR_ERR(trans);
  1961. up_write(&BTRFS_I(inode)->dio_sem);
  1962. inode_unlock(inode);
  1963. goto out;
  1964. }
  1965. trans->sync = true;
  1966. ret = btrfs_log_dentry_safe(trans, dentry, start, end, &ctx);
  1967. if (ret < 0) {
  1968. /* Fallthrough and commit/free transaction. */
  1969. ret = 1;
  1970. }
  1971. /* we've logged all the items and now have a consistent
  1972. * version of the file in the log. It is possible that
  1973. * someone will come in and modify the file, but that's
  1974. * fine because the log is consistent on disk, and we
  1975. * have references to all of the file's extents
  1976. *
  1977. * It is possible that someone will come in and log the
  1978. * file again, but that will end up using the synchronization
  1979. * inside btrfs_sync_log to keep things safe.
  1980. */
  1981. up_write(&BTRFS_I(inode)->dio_sem);
  1982. inode_unlock(inode);
  1983. /*
  1984. * If any of the ordered extents had an error, just return it to user
  1985. * space, so that the application knows some writes didn't succeed and
  1986. * can take proper action (retry for e.g.). Blindly committing the
  1987. * transaction in this case, would fool userspace that everything was
  1988. * successful. And we also want to make sure our log doesn't contain
  1989. * file extent items pointing to extents that weren't fully written to -
  1990. * just like in the non fast fsync path, where we check for the ordered
  1991. * operation's error flag before writing to the log tree and return -EIO
  1992. * if any of them had this flag set (btrfs_wait_ordered_range) -
  1993. * therefore we need to check for errors in the ordered operations,
  1994. * which are indicated by ctx.io_err.
  1995. */
  1996. if (ctx.io_err) {
  1997. btrfs_end_transaction(trans);
  1998. ret = ctx.io_err;
  1999. goto out;
  2000. }
  2001. if (ret != BTRFS_NO_LOG_SYNC) {
  2002. if (!ret) {
  2003. ret = btrfs_sync_log(trans, root, &ctx);
  2004. if (!ret) {
  2005. ret = btrfs_end_transaction(trans);
  2006. goto out;
  2007. }
  2008. }
  2009. ret = btrfs_commit_transaction(trans);
  2010. } else {
  2011. ret = btrfs_end_transaction(trans);
  2012. }
  2013. out:
  2014. ASSERT(list_empty(&ctx.list));
  2015. err = file_check_and_advance_wb_err(file);
  2016. if (!ret)
  2017. ret = err;
  2018. return ret > 0 ? -EIO : ret;
  2019. }
  2020. static const struct vm_operations_struct btrfs_file_vm_ops = {
  2021. .fault = filemap_fault,
  2022. .map_pages = filemap_map_pages,
  2023. .page_mkwrite = btrfs_page_mkwrite,
  2024. };
  2025. static int btrfs_file_mmap(struct file *filp, struct vm_area_struct *vma)
  2026. {
  2027. struct address_space *mapping = filp->f_mapping;
  2028. if (!mapping->a_ops->readpage)
  2029. return -ENOEXEC;
  2030. file_accessed(filp);
  2031. vma->vm_ops = &btrfs_file_vm_ops;
  2032. return 0;
  2033. }
  2034. static int hole_mergeable(struct btrfs_inode *inode, struct extent_buffer *leaf,
  2035. int slot, u64 start, u64 end)
  2036. {
  2037. struct btrfs_file_extent_item *fi;
  2038. struct btrfs_key key;
  2039. if (slot < 0 || slot >= btrfs_header_nritems(leaf))
  2040. return 0;
  2041. btrfs_item_key_to_cpu(leaf, &key, slot);
  2042. if (key.objectid != btrfs_ino(inode) ||
  2043. key.type != BTRFS_EXTENT_DATA_KEY)
  2044. return 0;
  2045. fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
  2046. if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG)
  2047. return 0;
  2048. if (btrfs_file_extent_disk_bytenr(leaf, fi))
  2049. return 0;
  2050. if (key.offset == end)
  2051. return 1;
  2052. if (key.offset + btrfs_file_extent_num_bytes(leaf, fi) == start)
  2053. return 1;
  2054. return 0;
  2055. }
  2056. static int fill_holes(struct btrfs_trans_handle *trans,
  2057. struct btrfs_inode *inode,
  2058. struct btrfs_path *path, u64 offset, u64 end)
  2059. {
  2060. struct btrfs_fs_info *fs_info = trans->fs_info;
  2061. struct btrfs_root *root = inode->root;
  2062. struct extent_buffer *leaf;
  2063. struct btrfs_file_extent_item *fi;
  2064. struct extent_map *hole_em;
  2065. struct extent_map_tree *em_tree = &inode->extent_tree;
  2066. struct btrfs_key key;
  2067. int ret;
  2068. if (btrfs_fs_incompat(fs_info, NO_HOLES))
  2069. goto out;
  2070. key.objectid = btrfs_ino(inode);
  2071. key.type = BTRFS_EXTENT_DATA_KEY;
  2072. key.offset = offset;
  2073. ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
  2074. if (ret <= 0) {
  2075. /*
  2076. * We should have dropped this offset, so if we find it then
  2077. * something has gone horribly wrong.
  2078. */
  2079. if (ret == 0)
  2080. ret = -EINVAL;
  2081. return ret;
  2082. }
  2083. leaf = path->nodes[0];
  2084. if (hole_mergeable(inode, leaf, path->slots[0] - 1, offset, end)) {
  2085. u64 num_bytes;
  2086. path->slots[0]--;
  2087. fi = btrfs_item_ptr(leaf, path->slots[0],
  2088. struct btrfs_file_extent_item);
  2089. num_bytes = btrfs_file_extent_num_bytes(leaf, fi) +
  2090. end - offset;
  2091. btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
  2092. btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes);
  2093. btrfs_set_file_extent_offset(leaf, fi, 0);
  2094. btrfs_mark_buffer_dirty(leaf);
  2095. goto out;
  2096. }
  2097. if (hole_mergeable(inode, leaf, path->slots[0], offset, end)) {
  2098. u64 num_bytes;
  2099. key.offset = offset;
  2100. btrfs_set_item_key_safe(fs_info, path, &key);
  2101. fi = btrfs_item_ptr(leaf, path->slots[0],
  2102. struct btrfs_file_extent_item);
  2103. num_bytes = btrfs_file_extent_num_bytes(leaf, fi) + end -
  2104. offset;
  2105. btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
  2106. btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes);
  2107. btrfs_set_file_extent_offset(leaf, fi, 0);
  2108. btrfs_mark_buffer_dirty(leaf);
  2109. goto out;
  2110. }
  2111. btrfs_release_path(path);
  2112. ret = btrfs_insert_file_extent(trans, root, btrfs_ino(inode),
  2113. offset, 0, 0, end - offset, 0, end - offset, 0, 0, 0);
  2114. if (ret)
  2115. return ret;
  2116. out:
  2117. btrfs_release_path(path);
  2118. hole_em = alloc_extent_map();
  2119. if (!hole_em) {
  2120. btrfs_drop_extent_cache(inode, offset, end - 1, 0);
  2121. set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags);
  2122. } else {
  2123. hole_em->start = offset;
  2124. hole_em->len = end - offset;
  2125. hole_em->ram_bytes = hole_em->len;
  2126. hole_em->orig_start = offset;
  2127. hole_em->block_start = EXTENT_MAP_HOLE;
  2128. hole_em->block_len = 0;
  2129. hole_em->orig_block_len = 0;
  2130. hole_em->bdev = fs_info->fs_devices->latest_bdev;
  2131. hole_em->compress_type = BTRFS_COMPRESS_NONE;
  2132. hole_em->generation = trans->transid;
  2133. do {
  2134. btrfs_drop_extent_cache(inode, offset, end - 1, 0);
  2135. write_lock(&em_tree->lock);
  2136. ret = add_extent_mapping(em_tree, hole_em, 1);
  2137. write_unlock(&em_tree->lock);
  2138. } while (ret == -EEXIST);
  2139. free_extent_map(hole_em);
  2140. if (ret)
  2141. set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
  2142. &inode->runtime_flags);
  2143. }
  2144. return 0;
  2145. }
  2146. /*
  2147. * Find a hole extent on given inode and change start/len to the end of hole
  2148. * extent.(hole/vacuum extent whose em->start <= start &&
  2149. * em->start + em->len > start)
  2150. * When a hole extent is found, return 1 and modify start/len.
  2151. */
  2152. static int find_first_non_hole(struct inode *inode, u64 *start, u64 *len)
  2153. {
  2154. struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
  2155. struct extent_map *em;
  2156. int ret = 0;
  2157. em = btrfs_get_extent(BTRFS_I(inode), NULL, 0,
  2158. round_down(*start, fs_info->sectorsize),
  2159. round_up(*len, fs_info->sectorsize), 0);
  2160. if (IS_ERR(em))
  2161. return PTR_ERR(em);
  2162. /* Hole or vacuum extent(only exists in no-hole mode) */
  2163. if (em->block_start == EXTENT_MAP_HOLE) {
  2164. ret = 1;
  2165. *len = em->start + em->len > *start + *len ?
  2166. 0 : *start + *len - em->start - em->len;
  2167. *start = em->start + em->len;
  2168. }
  2169. free_extent_map(em);
  2170. return ret;
  2171. }
  2172. static int btrfs_punch_hole_lock_range(struct inode *inode,
  2173. const u64 lockstart,
  2174. const u64 lockend,
  2175. struct extent_state **cached_state)
  2176. {
  2177. while (1) {
  2178. struct btrfs_ordered_extent *ordered;
  2179. int ret;
  2180. truncate_pagecache_range(inode, lockstart, lockend);
  2181. lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
  2182. cached_state);
  2183. ordered = btrfs_lookup_first_ordered_extent(inode, lockend);
  2184. /*
  2185. * We need to make sure we have no ordered extents in this range
  2186. * and nobody raced in and read a page in this range, if we did
  2187. * we need to try again.
  2188. */
  2189. if ((!ordered ||
  2190. (ordered->file_offset + ordered->len <= lockstart ||
  2191. ordered->file_offset > lockend)) &&
  2192. !filemap_range_has_page(inode->i_mapping,
  2193. lockstart, lockend)) {
  2194. if (ordered)
  2195. btrfs_put_ordered_extent(ordered);
  2196. break;
  2197. }
  2198. if (ordered)
  2199. btrfs_put_ordered_extent(ordered);
  2200. unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart,
  2201. lockend, cached_state);
  2202. ret = btrfs_wait_ordered_range(inode, lockstart,
  2203. lockend - lockstart + 1);
  2204. if (ret)
  2205. return ret;
  2206. }
  2207. return 0;
  2208. }
  2209. static int btrfs_punch_hole(struct inode *inode, loff_t offset, loff_t len)
  2210. {
  2211. struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
  2212. struct btrfs_root *root = BTRFS_I(inode)->root;
  2213. struct extent_state *cached_state = NULL;
  2214. struct btrfs_path *path;
  2215. struct btrfs_block_rsv *rsv;
  2216. struct btrfs_trans_handle *trans;
  2217. u64 lockstart;
  2218. u64 lockend;
  2219. u64 tail_start;
  2220. u64 tail_len;
  2221. u64 orig_start = offset;
  2222. u64 cur_offset;
  2223. u64 min_size = btrfs_calc_trans_metadata_size(fs_info, 1);
  2224. u64 drop_end;
  2225. int ret = 0;
  2226. int err = 0;
  2227. unsigned int rsv_count;
  2228. bool same_block;
  2229. bool no_holes = btrfs_fs_incompat(fs_info, NO_HOLES);
  2230. u64 ino_size;
  2231. bool truncated_block = false;
  2232. bool updated_inode = false;
  2233. ret = btrfs_wait_ordered_range(inode, offset, len);
  2234. if (ret)
  2235. return ret;
  2236. inode_lock(inode);
  2237. ino_size = round_up(inode->i_size, fs_info->sectorsize);
  2238. ret = find_first_non_hole(inode, &offset, &len);
  2239. if (ret < 0)
  2240. goto out_only_mutex;
  2241. if (ret && !len) {
  2242. /* Already in a large hole */
  2243. ret = 0;
  2244. goto out_only_mutex;
  2245. }
  2246. lockstart = round_up(offset, btrfs_inode_sectorsize(inode));
  2247. lockend = round_down(offset + len,
  2248. btrfs_inode_sectorsize(inode)) - 1;
  2249. same_block = (BTRFS_BYTES_TO_BLKS(fs_info, offset))
  2250. == (BTRFS_BYTES_TO_BLKS(fs_info, offset + len - 1));
  2251. /*
  2252. * We needn't truncate any block which is beyond the end of the file
  2253. * because we are sure there is no data there.
  2254. */
  2255. /*
  2256. * Only do this if we are in the same block and we aren't doing the
  2257. * entire block.
  2258. */
  2259. if (same_block && len < fs_info->sectorsize) {
  2260. if (offset < ino_size) {
  2261. truncated_block = true;
  2262. ret = btrfs_truncate_block(inode, offset, len, 0);
  2263. } else {
  2264. ret = 0;
  2265. }
  2266. goto out_only_mutex;
  2267. }
  2268. /* zero back part of the first block */
  2269. if (offset < ino_size) {
  2270. truncated_block = true;
  2271. ret = btrfs_truncate_block(inode, offset, 0, 0);
  2272. if (ret) {
  2273. inode_unlock(inode);
  2274. return ret;
  2275. }
  2276. }
  2277. /* Check the aligned pages after the first unaligned page,
  2278. * if offset != orig_start, which means the first unaligned page
  2279. * including several following pages are already in holes,
  2280. * the extra check can be skipped */
  2281. if (offset == orig_start) {
  2282. /* after truncate page, check hole again */
  2283. len = offset + len - lockstart;
  2284. offset = lockstart;
  2285. ret = find_first_non_hole(inode, &offset, &len);
  2286. if (ret < 0)
  2287. goto out_only_mutex;
  2288. if (ret && !len) {
  2289. ret = 0;
  2290. goto out_only_mutex;
  2291. }
  2292. lockstart = offset;
  2293. }
  2294. /* Check the tail unaligned part is in a hole */
  2295. tail_start = lockend + 1;
  2296. tail_len = offset + len - tail_start;
  2297. if (tail_len) {
  2298. ret = find_first_non_hole(inode, &tail_start, &tail_len);
  2299. if (unlikely(ret < 0))
  2300. goto out_only_mutex;
  2301. if (!ret) {
  2302. /* zero the front end of the last page */
  2303. if (tail_start + tail_len < ino_size) {
  2304. truncated_block = true;
  2305. ret = btrfs_truncate_block(inode,
  2306. tail_start + tail_len,
  2307. 0, 1);
  2308. if (ret)
  2309. goto out_only_mutex;
  2310. }
  2311. }
  2312. }
  2313. if (lockend < lockstart) {
  2314. ret = 0;
  2315. goto out_only_mutex;
  2316. }
  2317. ret = btrfs_punch_hole_lock_range(inode, lockstart, lockend,
  2318. &cached_state);
  2319. if (ret)
  2320. goto out_only_mutex;
  2321. path = btrfs_alloc_path();
  2322. if (!path) {
  2323. ret = -ENOMEM;
  2324. goto out;
  2325. }
  2326. rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP);
  2327. if (!rsv) {
  2328. ret = -ENOMEM;
  2329. goto out_free;
  2330. }
  2331. rsv->size = btrfs_calc_trans_metadata_size(fs_info, 1);
  2332. rsv->failfast = 1;
  2333. /*
  2334. * 1 - update the inode
  2335. * 1 - removing the extents in the range
  2336. * 1 - adding the hole extent if no_holes isn't set
  2337. */
  2338. rsv_count = no_holes ? 2 : 3;
  2339. trans = btrfs_start_transaction(root, rsv_count);
  2340. if (IS_ERR(trans)) {
  2341. err = PTR_ERR(trans);
  2342. goto out_free;
  2343. }
  2344. ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, rsv,
  2345. min_size, 0);
  2346. BUG_ON(ret);
  2347. trans->block_rsv = rsv;
  2348. cur_offset = lockstart;
  2349. len = lockend - cur_offset;
  2350. while (cur_offset < lockend) {
  2351. ret = __btrfs_drop_extents(trans, root, inode, path,
  2352. cur_offset, lockend + 1,
  2353. &drop_end, 1, 0, 0, NULL);
  2354. if (ret != -ENOSPC)
  2355. break;
  2356. trans->block_rsv = &fs_info->trans_block_rsv;
  2357. if (cur_offset < drop_end && cur_offset < ino_size) {
  2358. ret = fill_holes(trans, BTRFS_I(inode), path,
  2359. cur_offset, drop_end);
  2360. if (ret) {
  2361. /*
  2362. * If we failed then we didn't insert our hole
  2363. * entries for the area we dropped, so now the
  2364. * fs is corrupted, so we must abort the
  2365. * transaction.
  2366. */
  2367. btrfs_abort_transaction(trans, ret);
  2368. err = ret;
  2369. break;
  2370. }
  2371. }
  2372. cur_offset = drop_end;
  2373. ret = btrfs_update_inode(trans, root, inode);
  2374. if (ret) {
  2375. err = ret;
  2376. break;
  2377. }
  2378. btrfs_end_transaction(trans);
  2379. btrfs_btree_balance_dirty(fs_info);
  2380. trans = btrfs_start_transaction(root, rsv_count);
  2381. if (IS_ERR(trans)) {
  2382. ret = PTR_ERR(trans);
  2383. trans = NULL;
  2384. break;
  2385. }
  2386. ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv,
  2387. rsv, min_size, 0);
  2388. BUG_ON(ret); /* shouldn't happen */
  2389. trans->block_rsv = rsv;
  2390. ret = find_first_non_hole(inode, &cur_offset, &len);
  2391. if (unlikely(ret < 0))
  2392. break;
  2393. if (ret && !len) {
  2394. ret = 0;
  2395. break;
  2396. }
  2397. }
  2398. if (ret) {
  2399. err = ret;
  2400. goto out_trans;
  2401. }
  2402. trans->block_rsv = &fs_info->trans_block_rsv;
  2403. /*
  2404. * If we are using the NO_HOLES feature we might have had already an
  2405. * hole that overlaps a part of the region [lockstart, lockend] and
  2406. * ends at (or beyond) lockend. Since we have no file extent items to
  2407. * represent holes, drop_end can be less than lockend and so we must
  2408. * make sure we have an extent map representing the existing hole (the
  2409. * call to __btrfs_drop_extents() might have dropped the existing extent
  2410. * map representing the existing hole), otherwise the fast fsync path
  2411. * will not record the existence of the hole region
  2412. * [existing_hole_start, lockend].
  2413. */
  2414. if (drop_end <= lockend)
  2415. drop_end = lockend + 1;
  2416. /*
  2417. * Don't insert file hole extent item if it's for a range beyond eof
  2418. * (because it's useless) or if it represents a 0 bytes range (when
  2419. * cur_offset == drop_end).
  2420. */
  2421. if (cur_offset < ino_size && cur_offset < drop_end) {
  2422. ret = fill_holes(trans, BTRFS_I(inode), path,
  2423. cur_offset, drop_end);
  2424. if (ret) {
  2425. /* Same comment as above. */
  2426. btrfs_abort_transaction(trans, ret);
  2427. err = ret;
  2428. goto out_trans;
  2429. }
  2430. }
  2431. out_trans:
  2432. if (!trans)
  2433. goto out_free;
  2434. inode_inc_iversion(inode);
  2435. inode->i_mtime = inode->i_ctime = current_time(inode);
  2436. trans->block_rsv = &fs_info->trans_block_rsv;
  2437. ret = btrfs_update_inode(trans, root, inode);
  2438. updated_inode = true;
  2439. btrfs_end_transaction(trans);
  2440. btrfs_btree_balance_dirty(fs_info);
  2441. out_free:
  2442. btrfs_free_path(path);
  2443. btrfs_free_block_rsv(fs_info, rsv);
  2444. out:
  2445. unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
  2446. &cached_state);
  2447. out_only_mutex:
  2448. if (!updated_inode && truncated_block && !ret && !err) {
  2449. /*
  2450. * If we only end up zeroing part of a page, we still need to
  2451. * update the inode item, so that all the time fields are
  2452. * updated as well as the necessary btrfs inode in memory fields
  2453. * for detecting, at fsync time, if the inode isn't yet in the
  2454. * log tree or it's there but not up to date.
  2455. */
  2456. struct timespec64 now = current_time(inode);
  2457. inode_inc_iversion(inode);
  2458. inode->i_mtime = now;
  2459. inode->i_ctime = now;
  2460. trans = btrfs_start_transaction(root, 1);
  2461. if (IS_ERR(trans)) {
  2462. err = PTR_ERR(trans);
  2463. } else {
  2464. err = btrfs_update_inode(trans, root, inode);
  2465. ret = btrfs_end_transaction(trans);
  2466. }
  2467. }
  2468. inode_unlock(inode);
  2469. if (ret && !err)
  2470. err = ret;
  2471. return err;
  2472. }
  2473. /* Helper structure to record which range is already reserved */
  2474. struct falloc_range {
  2475. struct list_head list;
  2476. u64 start;
  2477. u64 len;
  2478. };
  2479. /*
  2480. * Helper function to add falloc range
  2481. *
  2482. * Caller should have locked the larger range of extent containing
  2483. * [start, len)
  2484. */
  2485. static int add_falloc_range(struct list_head *head, u64 start, u64 len)
  2486. {
  2487. struct falloc_range *prev = NULL;
  2488. struct falloc_range *range = NULL;
  2489. if (list_empty(head))
  2490. goto insert;
  2491. /*
  2492. * As fallocate iterate by bytenr order, we only need to check
  2493. * the last range.
  2494. */
  2495. prev = list_entry(head->prev, struct falloc_range, list);
  2496. if (prev->start + prev->len == start) {
  2497. prev->len += len;
  2498. return 0;
  2499. }
  2500. insert:
  2501. range = kmalloc(sizeof(*range), GFP_KERNEL);
  2502. if (!range)
  2503. return -ENOMEM;
  2504. range->start = start;
  2505. range->len = len;
  2506. list_add_tail(&range->list, head);
  2507. return 0;
  2508. }
  2509. static int btrfs_fallocate_update_isize(struct inode *inode,
  2510. const u64 end,
  2511. const int mode)
  2512. {
  2513. struct btrfs_trans_handle *trans;
  2514. struct btrfs_root *root = BTRFS_I(inode)->root;
  2515. int ret;
  2516. int ret2;
  2517. if (mode & FALLOC_FL_KEEP_SIZE || end <= i_size_read(inode))
  2518. return 0;
  2519. trans = btrfs_start_transaction(root, 1);
  2520. if (IS_ERR(trans))
  2521. return PTR_ERR(trans);
  2522. inode->i_ctime = current_time(inode);
  2523. i_size_write(inode, end);
  2524. btrfs_ordered_update_i_size(inode, end, NULL);
  2525. ret = btrfs_update_inode(trans, root, inode);
  2526. ret2 = btrfs_end_transaction(trans);
  2527. return ret ? ret : ret2;
  2528. }
  2529. enum {
  2530. RANGE_BOUNDARY_WRITTEN_EXTENT = 0,
  2531. RANGE_BOUNDARY_PREALLOC_EXTENT = 1,
  2532. RANGE_BOUNDARY_HOLE = 2,
  2533. };
  2534. static int btrfs_zero_range_check_range_boundary(struct inode *inode,
  2535. u64 offset)
  2536. {
  2537. const u64 sectorsize = btrfs_inode_sectorsize(inode);
  2538. struct extent_map *em;
  2539. int ret;
  2540. offset = round_down(offset, sectorsize);
  2541. em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, offset, sectorsize, 0);
  2542. if (IS_ERR(em))
  2543. return PTR_ERR(em);
  2544. if (em->block_start == EXTENT_MAP_HOLE)
  2545. ret = RANGE_BOUNDARY_HOLE;
  2546. else if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
  2547. ret = RANGE_BOUNDARY_PREALLOC_EXTENT;
  2548. else
  2549. ret = RANGE_BOUNDARY_WRITTEN_EXTENT;
  2550. free_extent_map(em);
  2551. return ret;
  2552. }
  2553. static int btrfs_zero_range(struct inode *inode,
  2554. loff_t offset,
  2555. loff_t len,
  2556. const int mode)
  2557. {
  2558. struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
  2559. struct extent_map *em;
  2560. struct extent_changeset *data_reserved = NULL;
  2561. int ret;
  2562. u64 alloc_hint = 0;
  2563. const u64 sectorsize = btrfs_inode_sectorsize(inode);
  2564. u64 alloc_start = round_down(offset, sectorsize);
  2565. u64 alloc_end = round_up(offset + len, sectorsize);
  2566. u64 bytes_to_reserve = 0;
  2567. bool space_reserved = false;
  2568. inode_dio_wait(inode);
  2569. em = btrfs_get_extent(BTRFS_I(inode), NULL, 0,
  2570. alloc_start, alloc_end - alloc_start, 0);
  2571. if (IS_ERR(em)) {
  2572. ret = PTR_ERR(em);
  2573. goto out;
  2574. }
  2575. /*
  2576. * Avoid hole punching and extent allocation for some cases. More cases
  2577. * could be considered, but these are unlikely common and we keep things
  2578. * as simple as possible for now. Also, intentionally, if the target
  2579. * range contains one or more prealloc extents together with regular
  2580. * extents and holes, we drop all the existing extents and allocate a
  2581. * new prealloc extent, so that we get a larger contiguous disk extent.
  2582. */
  2583. if (em->start <= alloc_start &&
  2584. test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
  2585. const u64 em_end = em->start + em->len;
  2586. if (em_end >= offset + len) {
  2587. /*
  2588. * The whole range is already a prealloc extent,
  2589. * do nothing except updating the inode's i_size if
  2590. * needed.
  2591. */
  2592. free_extent_map(em);
  2593. ret = btrfs_fallocate_update_isize(inode, offset + len,
  2594. mode);
  2595. goto out;
  2596. }
  2597. /*
  2598. * Part of the range is already a prealloc extent, so operate
  2599. * only on the remaining part of the range.
  2600. */
  2601. alloc_start = em_end;
  2602. ASSERT(IS_ALIGNED(alloc_start, sectorsize));
  2603. len = offset + len - alloc_start;
  2604. offset = alloc_start;
  2605. alloc_hint = em->block_start + em->len;
  2606. }
  2607. free_extent_map(em);
  2608. if (BTRFS_BYTES_TO_BLKS(fs_info, offset) ==
  2609. BTRFS_BYTES_TO_BLKS(fs_info, offset + len - 1)) {
  2610. em = btrfs_get_extent(BTRFS_I(inode), NULL, 0,
  2611. alloc_start, sectorsize, 0);
  2612. if (IS_ERR(em)) {
  2613. ret = PTR_ERR(em);
  2614. goto out;
  2615. }
  2616. if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
  2617. free_extent_map(em);
  2618. ret = btrfs_fallocate_update_isize(inode, offset + len,
  2619. mode);
  2620. goto out;
  2621. }
  2622. if (len < sectorsize && em->block_start != EXTENT_MAP_HOLE) {
  2623. free_extent_map(em);
  2624. ret = btrfs_truncate_block(inode, offset, len, 0);
  2625. if (!ret)
  2626. ret = btrfs_fallocate_update_isize(inode,
  2627. offset + len,
  2628. mode);
  2629. return ret;
  2630. }
  2631. free_extent_map(em);
  2632. alloc_start = round_down(offset, sectorsize);
  2633. alloc_end = alloc_start + sectorsize;
  2634. goto reserve_space;
  2635. }
  2636. alloc_start = round_up(offset, sectorsize);
  2637. alloc_end = round_down(offset + len, sectorsize);
  2638. /*
  2639. * For unaligned ranges, check the pages at the boundaries, they might
  2640. * map to an extent, in which case we need to partially zero them, or
  2641. * they might map to a hole, in which case we need our allocation range
  2642. * to cover them.
  2643. */
  2644. if (!IS_ALIGNED(offset, sectorsize)) {
  2645. ret = btrfs_zero_range_check_range_boundary(inode, offset);
  2646. if (ret < 0)
  2647. goto out;
  2648. if (ret == RANGE_BOUNDARY_HOLE) {
  2649. alloc_start = round_down(offset, sectorsize);
  2650. ret = 0;
  2651. } else if (ret == RANGE_BOUNDARY_WRITTEN_EXTENT) {
  2652. ret = btrfs_truncate_block(inode, offset, 0, 0);
  2653. if (ret)
  2654. goto out;
  2655. } else {
  2656. ret = 0;
  2657. }
  2658. }
  2659. if (!IS_ALIGNED(offset + len, sectorsize)) {
  2660. ret = btrfs_zero_range_check_range_boundary(inode,
  2661. offset + len);
  2662. if (ret < 0)
  2663. goto out;
  2664. if (ret == RANGE_BOUNDARY_HOLE) {
  2665. alloc_end = round_up(offset + len, sectorsize);
  2666. ret = 0;
  2667. } else if (ret == RANGE_BOUNDARY_WRITTEN_EXTENT) {
  2668. ret = btrfs_truncate_block(inode, offset + len, 0, 1);
  2669. if (ret)
  2670. goto out;
  2671. } else {
  2672. ret = 0;
  2673. }
  2674. }
  2675. reserve_space:
  2676. if (alloc_start < alloc_end) {
  2677. struct extent_state *cached_state = NULL;
  2678. const u64 lockstart = alloc_start;
  2679. const u64 lockend = alloc_end - 1;
  2680. bytes_to_reserve = alloc_end - alloc_start;
  2681. ret = btrfs_alloc_data_chunk_ondemand(BTRFS_I(inode),
  2682. bytes_to_reserve);
  2683. if (ret < 0)
  2684. goto out;
  2685. space_reserved = true;
  2686. ret = btrfs_punch_hole_lock_range(inode, lockstart, lockend,
  2687. &cached_state);
  2688. if (ret)
  2689. goto out;
  2690. ret = btrfs_qgroup_reserve_data(inode, &data_reserved,
  2691. alloc_start, bytes_to_reserve);
  2692. if (ret) {
  2693. unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart,
  2694. lockend, &cached_state);
  2695. goto out;
  2696. }
  2697. ret = btrfs_prealloc_file_range(inode, mode, alloc_start,
  2698. alloc_end - alloc_start,
  2699. i_blocksize(inode),
  2700. offset + len, &alloc_hint);
  2701. unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart,
  2702. lockend, &cached_state);
  2703. /* btrfs_prealloc_file_range releases reserved space on error */
  2704. if (ret) {
  2705. space_reserved = false;
  2706. goto out;
  2707. }
  2708. }
  2709. ret = btrfs_fallocate_update_isize(inode, offset + len, mode);
  2710. out:
  2711. if (ret && space_reserved)
  2712. btrfs_free_reserved_data_space(inode, data_reserved,
  2713. alloc_start, bytes_to_reserve);
  2714. extent_changeset_free(data_reserved);
  2715. return ret;
  2716. }
  2717. static long btrfs_fallocate(struct file *file, int mode,
  2718. loff_t offset, loff_t len)
  2719. {
  2720. struct inode *inode = file_inode(file);
  2721. struct extent_state *cached_state = NULL;
  2722. struct extent_changeset *data_reserved = NULL;
  2723. struct falloc_range *range;
  2724. struct falloc_range *tmp;
  2725. struct list_head reserve_list;
  2726. u64 cur_offset;
  2727. u64 last_byte;
  2728. u64 alloc_start;
  2729. u64 alloc_end;
  2730. u64 alloc_hint = 0;
  2731. u64 locked_end;
  2732. u64 actual_end = 0;
  2733. struct extent_map *em;
  2734. int blocksize = btrfs_inode_sectorsize(inode);
  2735. int ret;
  2736. alloc_start = round_down(offset, blocksize);
  2737. alloc_end = round_up(offset + len, blocksize);
  2738. cur_offset = alloc_start;
  2739. /* Make sure we aren't being give some crap mode */
  2740. if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE |
  2741. FALLOC_FL_ZERO_RANGE))
  2742. return -EOPNOTSUPP;
  2743. if (mode & FALLOC_FL_PUNCH_HOLE)
  2744. return btrfs_punch_hole(inode, offset, len);
  2745. /*
  2746. * Only trigger disk allocation, don't trigger qgroup reserve
  2747. *
  2748. * For qgroup space, it will be checked later.
  2749. */
  2750. if (!(mode & FALLOC_FL_ZERO_RANGE)) {
  2751. ret = btrfs_alloc_data_chunk_ondemand(BTRFS_I(inode),
  2752. alloc_end - alloc_start);
  2753. if (ret < 0)
  2754. return ret;
  2755. }
  2756. inode_lock(inode);
  2757. if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size) {
  2758. ret = inode_newsize_ok(inode, offset + len);
  2759. if (ret)
  2760. goto out;
  2761. }
  2762. /*
  2763. * TODO: Move these two operations after we have checked
  2764. * accurate reserved space, or fallocate can still fail but
  2765. * with page truncated or size expanded.
  2766. *
  2767. * But that's a minor problem and won't do much harm BTW.
  2768. */
  2769. if (alloc_start > inode->i_size) {
  2770. ret = btrfs_cont_expand(inode, i_size_read(inode),
  2771. alloc_start);
  2772. if (ret)
  2773. goto out;
  2774. } else if (offset + len > inode->i_size) {
  2775. /*
  2776. * If we are fallocating from the end of the file onward we
  2777. * need to zero out the end of the block if i_size lands in the
  2778. * middle of a block.
  2779. */
  2780. ret = btrfs_truncate_block(inode, inode->i_size, 0, 0);
  2781. if (ret)
  2782. goto out;
  2783. }
  2784. /*
  2785. * wait for ordered IO before we have any locks. We'll loop again
  2786. * below with the locks held.
  2787. */
  2788. ret = btrfs_wait_ordered_range(inode, alloc_start,
  2789. alloc_end - alloc_start);
  2790. if (ret)
  2791. goto out;
  2792. if (mode & FALLOC_FL_ZERO_RANGE) {
  2793. ret = btrfs_zero_range(inode, offset, len, mode);
  2794. inode_unlock(inode);
  2795. return ret;
  2796. }
  2797. locked_end = alloc_end - 1;
  2798. while (1) {
  2799. struct btrfs_ordered_extent *ordered;
  2800. /* the extent lock is ordered inside the running
  2801. * transaction
  2802. */
  2803. lock_extent_bits(&BTRFS_I(inode)->io_tree, alloc_start,
  2804. locked_end, &cached_state);
  2805. ordered = btrfs_lookup_first_ordered_extent(inode, locked_end);
  2806. if (ordered &&
  2807. ordered->file_offset + ordered->len > alloc_start &&
  2808. ordered->file_offset < alloc_end) {
  2809. btrfs_put_ordered_extent(ordered);
  2810. unlock_extent_cached(&BTRFS_I(inode)->io_tree,
  2811. alloc_start, locked_end,
  2812. &cached_state);
  2813. /*
  2814. * we can't wait on the range with the transaction
  2815. * running or with the extent lock held
  2816. */
  2817. ret = btrfs_wait_ordered_range(inode, alloc_start,
  2818. alloc_end - alloc_start);
  2819. if (ret)
  2820. goto out;
  2821. } else {
  2822. if (ordered)
  2823. btrfs_put_ordered_extent(ordered);
  2824. break;
  2825. }
  2826. }
  2827. /* First, check if we exceed the qgroup limit */
  2828. INIT_LIST_HEAD(&reserve_list);
  2829. while (cur_offset < alloc_end) {
  2830. em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, cur_offset,
  2831. alloc_end - cur_offset, 0);
  2832. if (IS_ERR(em)) {
  2833. ret = PTR_ERR(em);
  2834. break;
  2835. }
  2836. last_byte = min(extent_map_end(em), alloc_end);
  2837. actual_end = min_t(u64, extent_map_end(em), offset + len);
  2838. last_byte = ALIGN(last_byte, blocksize);
  2839. if (em->block_start == EXTENT_MAP_HOLE ||
  2840. (cur_offset >= inode->i_size &&
  2841. !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) {
  2842. ret = add_falloc_range(&reserve_list, cur_offset,
  2843. last_byte - cur_offset);
  2844. if (ret < 0) {
  2845. free_extent_map(em);
  2846. break;
  2847. }
  2848. ret = btrfs_qgroup_reserve_data(inode, &data_reserved,
  2849. cur_offset, last_byte - cur_offset);
  2850. if (ret < 0) {
  2851. cur_offset = last_byte;
  2852. free_extent_map(em);
  2853. break;
  2854. }
  2855. } else {
  2856. /*
  2857. * Do not need to reserve unwritten extent for this
  2858. * range, free reserved data space first, otherwise
  2859. * it'll result in false ENOSPC error.
  2860. */
  2861. btrfs_free_reserved_data_space(inode, data_reserved,
  2862. cur_offset, last_byte - cur_offset);
  2863. }
  2864. free_extent_map(em);
  2865. cur_offset = last_byte;
  2866. }
  2867. /*
  2868. * If ret is still 0, means we're OK to fallocate.
  2869. * Or just cleanup the list and exit.
  2870. */
  2871. list_for_each_entry_safe(range, tmp, &reserve_list, list) {
  2872. if (!ret)
  2873. ret = btrfs_prealloc_file_range(inode, mode,
  2874. range->start,
  2875. range->len, i_blocksize(inode),
  2876. offset + len, &alloc_hint);
  2877. else
  2878. btrfs_free_reserved_data_space(inode,
  2879. data_reserved, range->start,
  2880. range->len);
  2881. list_del(&range->list);
  2882. kfree(range);
  2883. }
  2884. if (ret < 0)
  2885. goto out_unlock;
  2886. /*
  2887. * We didn't need to allocate any more space, but we still extended the
  2888. * size of the file so we need to update i_size and the inode item.
  2889. */
  2890. ret = btrfs_fallocate_update_isize(inode, actual_end, mode);
  2891. out_unlock:
  2892. unlock_extent_cached(&BTRFS_I(inode)->io_tree, alloc_start, locked_end,
  2893. &cached_state);
  2894. out:
  2895. inode_unlock(inode);
  2896. /* Let go of our reservation. */
  2897. if (ret != 0 && !(mode & FALLOC_FL_ZERO_RANGE))
  2898. btrfs_free_reserved_data_space(inode, data_reserved,
  2899. cur_offset, alloc_end - cur_offset);
  2900. extent_changeset_free(data_reserved);
  2901. return ret;
  2902. }
  2903. static int find_desired_extent(struct inode *inode, loff_t *offset, int whence)
  2904. {
  2905. struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
  2906. struct extent_map *em = NULL;
  2907. struct extent_state *cached_state = NULL;
  2908. u64 lockstart;
  2909. u64 lockend;
  2910. u64 start;
  2911. u64 len;
  2912. int ret = 0;
  2913. if (inode->i_size == 0)
  2914. return -ENXIO;
  2915. /*
  2916. * *offset can be negative, in this case we start finding DATA/HOLE from
  2917. * the very start of the file.
  2918. */
  2919. start = max_t(loff_t, 0, *offset);
  2920. lockstart = round_down(start, fs_info->sectorsize);
  2921. lockend = round_up(i_size_read(inode),
  2922. fs_info->sectorsize);
  2923. if (lockend <= lockstart)
  2924. lockend = lockstart + fs_info->sectorsize;
  2925. lockend--;
  2926. len = lockend - lockstart + 1;
  2927. lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
  2928. &cached_state);
  2929. while (start < inode->i_size) {
  2930. em = btrfs_get_extent_fiemap(BTRFS_I(inode), NULL, 0,
  2931. start, len, 0);
  2932. if (IS_ERR(em)) {
  2933. ret = PTR_ERR(em);
  2934. em = NULL;
  2935. break;
  2936. }
  2937. if (whence == SEEK_HOLE &&
  2938. (em->block_start == EXTENT_MAP_HOLE ||
  2939. test_bit(EXTENT_FLAG_PREALLOC, &em->flags)))
  2940. break;
  2941. else if (whence == SEEK_DATA &&
  2942. (em->block_start != EXTENT_MAP_HOLE &&
  2943. !test_bit(EXTENT_FLAG_PREALLOC, &em->flags)))
  2944. break;
  2945. start = em->start + em->len;
  2946. free_extent_map(em);
  2947. em = NULL;
  2948. cond_resched();
  2949. }
  2950. free_extent_map(em);
  2951. if (!ret) {
  2952. if (whence == SEEK_DATA && start >= inode->i_size)
  2953. ret = -ENXIO;
  2954. else
  2955. *offset = min_t(loff_t, start, inode->i_size);
  2956. }
  2957. unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
  2958. &cached_state);
  2959. return ret;
  2960. }
  2961. static loff_t btrfs_file_llseek(struct file *file, loff_t offset, int whence)
  2962. {
  2963. struct inode *inode = file->f_mapping->host;
  2964. int ret;
  2965. inode_lock(inode);
  2966. switch (whence) {
  2967. case SEEK_END:
  2968. case SEEK_CUR:
  2969. offset = generic_file_llseek(file, offset, whence);
  2970. goto out;
  2971. case SEEK_DATA:
  2972. case SEEK_HOLE:
  2973. if (offset >= i_size_read(inode)) {
  2974. inode_unlock(inode);
  2975. return -ENXIO;
  2976. }
  2977. ret = find_desired_extent(inode, &offset, whence);
  2978. if (ret) {
  2979. inode_unlock(inode);
  2980. return ret;
  2981. }
  2982. }
  2983. offset = vfs_setpos(file, offset, inode->i_sb->s_maxbytes);
  2984. out:
  2985. inode_unlock(inode);
  2986. return offset;
  2987. }
  2988. static int btrfs_file_open(struct inode *inode, struct file *filp)
  2989. {
  2990. filp->f_mode |= FMODE_NOWAIT;
  2991. return generic_file_open(inode, filp);
  2992. }
  2993. const struct file_operations btrfs_file_operations = {
  2994. .llseek = btrfs_file_llseek,
  2995. .read_iter = generic_file_read_iter,
  2996. .splice_read = generic_file_splice_read,
  2997. .write_iter = btrfs_file_write_iter,
  2998. .mmap = btrfs_file_mmap,
  2999. .open = btrfs_file_open,
  3000. .release = btrfs_release_file,
  3001. .fsync = btrfs_sync_file,
  3002. .fallocate = btrfs_fallocate,
  3003. .unlocked_ioctl = btrfs_ioctl,
  3004. #ifdef CONFIG_COMPAT
  3005. .compat_ioctl = btrfs_compat_ioctl,
  3006. #endif
  3007. .clone_file_range = btrfs_clone_file_range,
  3008. .dedupe_file_range = btrfs_dedupe_file_range,
  3009. };
  3010. void __cold btrfs_auto_defrag_exit(void)
  3011. {
  3012. kmem_cache_destroy(btrfs_inode_defrag_cachep);
  3013. }
  3014. int __init btrfs_auto_defrag_init(void)
  3015. {
  3016. btrfs_inode_defrag_cachep = kmem_cache_create("btrfs_inode_defrag",
  3017. sizeof(struct inode_defrag), 0,
  3018. SLAB_MEM_SPREAD,
  3019. NULL);
  3020. if (!btrfs_inode_defrag_cachep)
  3021. return -ENOMEM;
  3022. return 0;
  3023. }
  3024. int btrfs_fdatawrite_range(struct inode *inode, loff_t start, loff_t end)
  3025. {
  3026. int ret;
  3027. /*
  3028. * So with compression we will find and lock a dirty page and clear the
  3029. * first one as dirty, setup an async extent, and immediately return
  3030. * with the entire range locked but with nobody actually marked with
  3031. * writeback. So we can't just filemap_write_and_wait_range() and
  3032. * expect it to work since it will just kick off a thread to do the
  3033. * actual work. So we need to call filemap_fdatawrite_range _again_
  3034. * since it will wait on the page lock, which won't be unlocked until
  3035. * after the pages have been marked as writeback and so we're good to go
  3036. * from there. We have to do this otherwise we'll miss the ordered
  3037. * extents and that results in badness. Please Josef, do not think you
  3038. * know better and pull this out at some point in the future, it is
  3039. * right and you are wrong.
  3040. */
  3041. ret = filemap_fdatawrite_range(inode->i_mapping, start, end);
  3042. if (!ret && test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
  3043. &BTRFS_I(inode)->runtime_flags))
  3044. ret = filemap_fdatawrite_range(inode->i_mapping, start, end);
  3045. return ret;
  3046. }