relocation.c 112 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711
  1. // SPDX-License-Identifier: GPL-2.0
  2. /*
  3. * Copyright (C) 2009 Oracle. All rights reserved.
  4. */
  5. #include <linux/sched.h>
  6. #include <linux/pagemap.h>
  7. #include <linux/writeback.h>
  8. #include <linux/blkdev.h>
  9. #include <linux/rbtree.h>
  10. #include <linux/slab.h>
  11. #include "ctree.h"
  12. #include "disk-io.h"
  13. #include "transaction.h"
  14. #include "volumes.h"
  15. #include "locking.h"
  16. #include "btrfs_inode.h"
  17. #include "async-thread.h"
  18. #include "free-space-cache.h"
  19. #include "inode-map.h"
  20. #include "qgroup.h"
  21. #include "print-tree.h"
  22. /*
  23. * backref_node, mapping_node and tree_block start with this
  24. */
  25. struct tree_entry {
  26. struct rb_node rb_node;
  27. u64 bytenr;
  28. };
  29. /*
  30. * present a tree block in the backref cache
  31. */
  32. struct backref_node {
  33. struct rb_node rb_node;
  34. u64 bytenr;
  35. u64 new_bytenr;
  36. /* objectid of tree block owner, can be not uptodate */
  37. u64 owner;
  38. /* link to pending, changed or detached list */
  39. struct list_head list;
  40. /* list of upper level blocks reference this block */
  41. struct list_head upper;
  42. /* list of child blocks in the cache */
  43. struct list_head lower;
  44. /* NULL if this node is not tree root */
  45. struct btrfs_root *root;
  46. /* extent buffer got by COW the block */
  47. struct extent_buffer *eb;
  48. /* level of tree block */
  49. unsigned int level:8;
  50. /* is the block in non-reference counted tree */
  51. unsigned int cowonly:1;
  52. /* 1 if no child node in the cache */
  53. unsigned int lowest:1;
  54. /* is the extent buffer locked */
  55. unsigned int locked:1;
  56. /* has the block been processed */
  57. unsigned int processed:1;
  58. /* have backrefs of this block been checked */
  59. unsigned int checked:1;
  60. /*
  61. * 1 if corresponding block has been cowed but some upper
  62. * level block pointers may not point to the new location
  63. */
  64. unsigned int pending:1;
  65. /*
  66. * 1 if the backref node isn't connected to any other
  67. * backref node.
  68. */
  69. unsigned int detached:1;
  70. };
  71. /*
  72. * present a block pointer in the backref cache
  73. */
  74. struct backref_edge {
  75. struct list_head list[2];
  76. struct backref_node *node[2];
  77. };
  78. #define LOWER 0
  79. #define UPPER 1
  80. #define RELOCATION_RESERVED_NODES 256
  81. struct backref_cache {
  82. /* red black tree of all backref nodes in the cache */
  83. struct rb_root rb_root;
  84. /* for passing backref nodes to btrfs_reloc_cow_block */
  85. struct backref_node *path[BTRFS_MAX_LEVEL];
  86. /*
  87. * list of blocks that have been cowed but some block
  88. * pointers in upper level blocks may not reflect the
  89. * new location
  90. */
  91. struct list_head pending[BTRFS_MAX_LEVEL];
  92. /* list of backref nodes with no child node */
  93. struct list_head leaves;
  94. /* list of blocks that have been cowed in current transaction */
  95. struct list_head changed;
  96. /* list of detached backref node. */
  97. struct list_head detached;
  98. u64 last_trans;
  99. int nr_nodes;
  100. int nr_edges;
  101. };
  102. /*
  103. * map address of tree root to tree
  104. */
  105. struct mapping_node {
  106. struct rb_node rb_node;
  107. u64 bytenr;
  108. void *data;
  109. };
  110. struct mapping_tree {
  111. struct rb_root rb_root;
  112. spinlock_t lock;
  113. };
  114. /*
  115. * present a tree block to process
  116. */
  117. struct tree_block {
  118. struct rb_node rb_node;
  119. u64 bytenr;
  120. struct btrfs_key key;
  121. unsigned int level:8;
  122. unsigned int key_ready:1;
  123. };
  124. #define MAX_EXTENTS 128
  125. struct file_extent_cluster {
  126. u64 start;
  127. u64 end;
  128. u64 boundary[MAX_EXTENTS];
  129. unsigned int nr;
  130. };
  131. struct reloc_control {
  132. /* block group to relocate */
  133. struct btrfs_block_group_cache *block_group;
  134. /* extent tree */
  135. struct btrfs_root *extent_root;
  136. /* inode for moving data */
  137. struct inode *data_inode;
  138. struct btrfs_block_rsv *block_rsv;
  139. struct backref_cache backref_cache;
  140. struct file_extent_cluster cluster;
  141. /* tree blocks have been processed */
  142. struct extent_io_tree processed_blocks;
  143. /* map start of tree root to corresponding reloc tree */
  144. struct mapping_tree reloc_root_tree;
  145. /* list of reloc trees */
  146. struct list_head reloc_roots;
  147. /* size of metadata reservation for merging reloc trees */
  148. u64 merging_rsv_size;
  149. /* size of relocated tree nodes */
  150. u64 nodes_relocated;
  151. /* reserved size for block group relocation*/
  152. u64 reserved_bytes;
  153. u64 search_start;
  154. u64 extents_found;
  155. unsigned int stage:8;
  156. unsigned int create_reloc_tree:1;
  157. unsigned int merge_reloc_tree:1;
  158. unsigned int found_file_extent:1;
  159. };
  160. /* stages of data relocation */
  161. #define MOVE_DATA_EXTENTS 0
  162. #define UPDATE_DATA_PTRS 1
  163. static void remove_backref_node(struct backref_cache *cache,
  164. struct backref_node *node);
  165. static void __mark_block_processed(struct reloc_control *rc,
  166. struct backref_node *node);
  167. static void mapping_tree_init(struct mapping_tree *tree)
  168. {
  169. tree->rb_root = RB_ROOT;
  170. spin_lock_init(&tree->lock);
  171. }
  172. static void backref_cache_init(struct backref_cache *cache)
  173. {
  174. int i;
  175. cache->rb_root = RB_ROOT;
  176. for (i = 0; i < BTRFS_MAX_LEVEL; i++)
  177. INIT_LIST_HEAD(&cache->pending[i]);
  178. INIT_LIST_HEAD(&cache->changed);
  179. INIT_LIST_HEAD(&cache->detached);
  180. INIT_LIST_HEAD(&cache->leaves);
  181. }
  182. static void backref_cache_cleanup(struct backref_cache *cache)
  183. {
  184. struct backref_node *node;
  185. int i;
  186. while (!list_empty(&cache->detached)) {
  187. node = list_entry(cache->detached.next,
  188. struct backref_node, list);
  189. remove_backref_node(cache, node);
  190. }
  191. while (!list_empty(&cache->leaves)) {
  192. node = list_entry(cache->leaves.next,
  193. struct backref_node, lower);
  194. remove_backref_node(cache, node);
  195. }
  196. cache->last_trans = 0;
  197. for (i = 0; i < BTRFS_MAX_LEVEL; i++)
  198. ASSERT(list_empty(&cache->pending[i]));
  199. ASSERT(list_empty(&cache->changed));
  200. ASSERT(list_empty(&cache->detached));
  201. ASSERT(RB_EMPTY_ROOT(&cache->rb_root));
  202. ASSERT(!cache->nr_nodes);
  203. ASSERT(!cache->nr_edges);
  204. }
  205. static struct backref_node *alloc_backref_node(struct backref_cache *cache)
  206. {
  207. struct backref_node *node;
  208. node = kzalloc(sizeof(*node), GFP_NOFS);
  209. if (node) {
  210. INIT_LIST_HEAD(&node->list);
  211. INIT_LIST_HEAD(&node->upper);
  212. INIT_LIST_HEAD(&node->lower);
  213. RB_CLEAR_NODE(&node->rb_node);
  214. cache->nr_nodes++;
  215. }
  216. return node;
  217. }
  218. static void free_backref_node(struct backref_cache *cache,
  219. struct backref_node *node)
  220. {
  221. if (node) {
  222. cache->nr_nodes--;
  223. kfree(node);
  224. }
  225. }
  226. static struct backref_edge *alloc_backref_edge(struct backref_cache *cache)
  227. {
  228. struct backref_edge *edge;
  229. edge = kzalloc(sizeof(*edge), GFP_NOFS);
  230. if (edge)
  231. cache->nr_edges++;
  232. return edge;
  233. }
  234. static void free_backref_edge(struct backref_cache *cache,
  235. struct backref_edge *edge)
  236. {
  237. if (edge) {
  238. cache->nr_edges--;
  239. kfree(edge);
  240. }
  241. }
  242. static struct rb_node *tree_insert(struct rb_root *root, u64 bytenr,
  243. struct rb_node *node)
  244. {
  245. struct rb_node **p = &root->rb_node;
  246. struct rb_node *parent = NULL;
  247. struct tree_entry *entry;
  248. while (*p) {
  249. parent = *p;
  250. entry = rb_entry(parent, struct tree_entry, rb_node);
  251. if (bytenr < entry->bytenr)
  252. p = &(*p)->rb_left;
  253. else if (bytenr > entry->bytenr)
  254. p = &(*p)->rb_right;
  255. else
  256. return parent;
  257. }
  258. rb_link_node(node, parent, p);
  259. rb_insert_color(node, root);
  260. return NULL;
  261. }
  262. static struct rb_node *tree_search(struct rb_root *root, u64 bytenr)
  263. {
  264. struct rb_node *n = root->rb_node;
  265. struct tree_entry *entry;
  266. while (n) {
  267. entry = rb_entry(n, struct tree_entry, rb_node);
  268. if (bytenr < entry->bytenr)
  269. n = n->rb_left;
  270. else if (bytenr > entry->bytenr)
  271. n = n->rb_right;
  272. else
  273. return n;
  274. }
  275. return NULL;
  276. }
  277. static void backref_tree_panic(struct rb_node *rb_node, int errno, u64 bytenr)
  278. {
  279. struct btrfs_fs_info *fs_info = NULL;
  280. struct backref_node *bnode = rb_entry(rb_node, struct backref_node,
  281. rb_node);
  282. if (bnode->root)
  283. fs_info = bnode->root->fs_info;
  284. btrfs_panic(fs_info, errno,
  285. "Inconsistency in backref cache found at offset %llu",
  286. bytenr);
  287. }
  288. /*
  289. * walk up backref nodes until reach node presents tree root
  290. */
  291. static struct backref_node *walk_up_backref(struct backref_node *node,
  292. struct backref_edge *edges[],
  293. int *index)
  294. {
  295. struct backref_edge *edge;
  296. int idx = *index;
  297. while (!list_empty(&node->upper)) {
  298. edge = list_entry(node->upper.next,
  299. struct backref_edge, list[LOWER]);
  300. edges[idx++] = edge;
  301. node = edge->node[UPPER];
  302. }
  303. BUG_ON(node->detached);
  304. *index = idx;
  305. return node;
  306. }
  307. /*
  308. * walk down backref nodes to find start of next reference path
  309. */
  310. static struct backref_node *walk_down_backref(struct backref_edge *edges[],
  311. int *index)
  312. {
  313. struct backref_edge *edge;
  314. struct backref_node *lower;
  315. int idx = *index;
  316. while (idx > 0) {
  317. edge = edges[idx - 1];
  318. lower = edge->node[LOWER];
  319. if (list_is_last(&edge->list[LOWER], &lower->upper)) {
  320. idx--;
  321. continue;
  322. }
  323. edge = list_entry(edge->list[LOWER].next,
  324. struct backref_edge, list[LOWER]);
  325. edges[idx - 1] = edge;
  326. *index = idx;
  327. return edge->node[UPPER];
  328. }
  329. *index = 0;
  330. return NULL;
  331. }
  332. static void unlock_node_buffer(struct backref_node *node)
  333. {
  334. if (node->locked) {
  335. btrfs_tree_unlock(node->eb);
  336. node->locked = 0;
  337. }
  338. }
  339. static void drop_node_buffer(struct backref_node *node)
  340. {
  341. if (node->eb) {
  342. unlock_node_buffer(node);
  343. free_extent_buffer(node->eb);
  344. node->eb = NULL;
  345. }
  346. }
  347. static void drop_backref_node(struct backref_cache *tree,
  348. struct backref_node *node)
  349. {
  350. BUG_ON(!list_empty(&node->upper));
  351. drop_node_buffer(node);
  352. list_del(&node->list);
  353. list_del(&node->lower);
  354. if (!RB_EMPTY_NODE(&node->rb_node))
  355. rb_erase(&node->rb_node, &tree->rb_root);
  356. free_backref_node(tree, node);
  357. }
  358. /*
  359. * remove a backref node from the backref cache
  360. */
  361. static void remove_backref_node(struct backref_cache *cache,
  362. struct backref_node *node)
  363. {
  364. struct backref_node *upper;
  365. struct backref_edge *edge;
  366. if (!node)
  367. return;
  368. BUG_ON(!node->lowest && !node->detached);
  369. while (!list_empty(&node->upper)) {
  370. edge = list_entry(node->upper.next, struct backref_edge,
  371. list[LOWER]);
  372. upper = edge->node[UPPER];
  373. list_del(&edge->list[LOWER]);
  374. list_del(&edge->list[UPPER]);
  375. free_backref_edge(cache, edge);
  376. if (RB_EMPTY_NODE(&upper->rb_node)) {
  377. BUG_ON(!list_empty(&node->upper));
  378. drop_backref_node(cache, node);
  379. node = upper;
  380. node->lowest = 1;
  381. continue;
  382. }
  383. /*
  384. * add the node to leaf node list if no other
  385. * child block cached.
  386. */
  387. if (list_empty(&upper->lower)) {
  388. list_add_tail(&upper->lower, &cache->leaves);
  389. upper->lowest = 1;
  390. }
  391. }
  392. drop_backref_node(cache, node);
  393. }
  394. static void update_backref_node(struct backref_cache *cache,
  395. struct backref_node *node, u64 bytenr)
  396. {
  397. struct rb_node *rb_node;
  398. rb_erase(&node->rb_node, &cache->rb_root);
  399. node->bytenr = bytenr;
  400. rb_node = tree_insert(&cache->rb_root, node->bytenr, &node->rb_node);
  401. if (rb_node)
  402. backref_tree_panic(rb_node, -EEXIST, bytenr);
  403. }
  404. /*
  405. * update backref cache after a transaction commit
  406. */
  407. static int update_backref_cache(struct btrfs_trans_handle *trans,
  408. struct backref_cache *cache)
  409. {
  410. struct backref_node *node;
  411. int level = 0;
  412. if (cache->last_trans == 0) {
  413. cache->last_trans = trans->transid;
  414. return 0;
  415. }
  416. if (cache->last_trans == trans->transid)
  417. return 0;
  418. /*
  419. * detached nodes are used to avoid unnecessary backref
  420. * lookup. transaction commit changes the extent tree.
  421. * so the detached nodes are no longer useful.
  422. */
  423. while (!list_empty(&cache->detached)) {
  424. node = list_entry(cache->detached.next,
  425. struct backref_node, list);
  426. remove_backref_node(cache, node);
  427. }
  428. while (!list_empty(&cache->changed)) {
  429. node = list_entry(cache->changed.next,
  430. struct backref_node, list);
  431. list_del_init(&node->list);
  432. BUG_ON(node->pending);
  433. update_backref_node(cache, node, node->new_bytenr);
  434. }
  435. /*
  436. * some nodes can be left in the pending list if there were
  437. * errors during processing the pending nodes.
  438. */
  439. for (level = 0; level < BTRFS_MAX_LEVEL; level++) {
  440. list_for_each_entry(node, &cache->pending[level], list) {
  441. BUG_ON(!node->pending);
  442. if (node->bytenr == node->new_bytenr)
  443. continue;
  444. update_backref_node(cache, node, node->new_bytenr);
  445. }
  446. }
  447. cache->last_trans = 0;
  448. return 1;
  449. }
  450. static int should_ignore_root(struct btrfs_root *root)
  451. {
  452. struct btrfs_root *reloc_root;
  453. if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state))
  454. return 0;
  455. reloc_root = root->reloc_root;
  456. if (!reloc_root)
  457. return 0;
  458. if (btrfs_header_generation(reloc_root->commit_root) ==
  459. root->fs_info->running_transaction->transid)
  460. return 0;
  461. /*
  462. * if there is reloc tree and it was created in previous
  463. * transaction backref lookup can find the reloc tree,
  464. * so backref node for the fs tree root is useless for
  465. * relocation.
  466. */
  467. return 1;
  468. }
  469. /*
  470. * find reloc tree by address of tree root
  471. */
  472. static struct btrfs_root *find_reloc_root(struct reloc_control *rc,
  473. u64 bytenr)
  474. {
  475. struct rb_node *rb_node;
  476. struct mapping_node *node;
  477. struct btrfs_root *root = NULL;
  478. spin_lock(&rc->reloc_root_tree.lock);
  479. rb_node = tree_search(&rc->reloc_root_tree.rb_root, bytenr);
  480. if (rb_node) {
  481. node = rb_entry(rb_node, struct mapping_node, rb_node);
  482. root = (struct btrfs_root *)node->data;
  483. }
  484. spin_unlock(&rc->reloc_root_tree.lock);
  485. return root;
  486. }
  487. static int is_cowonly_root(u64 root_objectid)
  488. {
  489. if (root_objectid == BTRFS_ROOT_TREE_OBJECTID ||
  490. root_objectid == BTRFS_EXTENT_TREE_OBJECTID ||
  491. root_objectid == BTRFS_CHUNK_TREE_OBJECTID ||
  492. root_objectid == BTRFS_DEV_TREE_OBJECTID ||
  493. root_objectid == BTRFS_TREE_LOG_OBJECTID ||
  494. root_objectid == BTRFS_CSUM_TREE_OBJECTID ||
  495. root_objectid == BTRFS_UUID_TREE_OBJECTID ||
  496. root_objectid == BTRFS_QUOTA_TREE_OBJECTID ||
  497. root_objectid == BTRFS_FREE_SPACE_TREE_OBJECTID)
  498. return 1;
  499. return 0;
  500. }
  501. static struct btrfs_root *read_fs_root(struct btrfs_fs_info *fs_info,
  502. u64 root_objectid)
  503. {
  504. struct btrfs_key key;
  505. key.objectid = root_objectid;
  506. key.type = BTRFS_ROOT_ITEM_KEY;
  507. if (is_cowonly_root(root_objectid))
  508. key.offset = 0;
  509. else
  510. key.offset = (u64)-1;
  511. return btrfs_get_fs_root(fs_info, &key, false);
  512. }
  513. static noinline_for_stack
  514. int find_inline_backref(struct extent_buffer *leaf, int slot,
  515. unsigned long *ptr, unsigned long *end)
  516. {
  517. struct btrfs_key key;
  518. struct btrfs_extent_item *ei;
  519. struct btrfs_tree_block_info *bi;
  520. u32 item_size;
  521. btrfs_item_key_to_cpu(leaf, &key, slot);
  522. item_size = btrfs_item_size_nr(leaf, slot);
  523. if (item_size < sizeof(*ei)) {
  524. btrfs_print_v0_err(leaf->fs_info);
  525. btrfs_handle_fs_error(leaf->fs_info, -EINVAL, NULL);
  526. return 1;
  527. }
  528. ei = btrfs_item_ptr(leaf, slot, struct btrfs_extent_item);
  529. WARN_ON(!(btrfs_extent_flags(leaf, ei) &
  530. BTRFS_EXTENT_FLAG_TREE_BLOCK));
  531. if (key.type == BTRFS_EXTENT_ITEM_KEY &&
  532. item_size <= sizeof(*ei) + sizeof(*bi)) {
  533. WARN_ON(item_size < sizeof(*ei) + sizeof(*bi));
  534. return 1;
  535. }
  536. if (key.type == BTRFS_METADATA_ITEM_KEY &&
  537. item_size <= sizeof(*ei)) {
  538. WARN_ON(item_size < sizeof(*ei));
  539. return 1;
  540. }
  541. if (key.type == BTRFS_EXTENT_ITEM_KEY) {
  542. bi = (struct btrfs_tree_block_info *)(ei + 1);
  543. *ptr = (unsigned long)(bi + 1);
  544. } else {
  545. *ptr = (unsigned long)(ei + 1);
  546. }
  547. *end = (unsigned long)ei + item_size;
  548. return 0;
  549. }
  550. /*
  551. * build backref tree for a given tree block. root of the backref tree
  552. * corresponds the tree block, leaves of the backref tree correspond
  553. * roots of b-trees that reference the tree block.
  554. *
  555. * the basic idea of this function is check backrefs of a given block
  556. * to find upper level blocks that reference the block, and then check
  557. * backrefs of these upper level blocks recursively. the recursion stop
  558. * when tree root is reached or backrefs for the block is cached.
  559. *
  560. * NOTE: if we find backrefs for a block are cached, we know backrefs
  561. * for all upper level blocks that directly/indirectly reference the
  562. * block are also cached.
  563. */
  564. static noinline_for_stack
  565. struct backref_node *build_backref_tree(struct reloc_control *rc,
  566. struct btrfs_key *node_key,
  567. int level, u64 bytenr)
  568. {
  569. struct backref_cache *cache = &rc->backref_cache;
  570. struct btrfs_path *path1;
  571. struct btrfs_path *path2;
  572. struct extent_buffer *eb;
  573. struct btrfs_root *root;
  574. struct backref_node *cur;
  575. struct backref_node *upper;
  576. struct backref_node *lower;
  577. struct backref_node *node = NULL;
  578. struct backref_node *exist = NULL;
  579. struct backref_edge *edge;
  580. struct rb_node *rb_node;
  581. struct btrfs_key key;
  582. unsigned long end;
  583. unsigned long ptr;
  584. LIST_HEAD(list);
  585. LIST_HEAD(useless);
  586. int cowonly;
  587. int ret;
  588. int err = 0;
  589. bool need_check = true;
  590. path1 = btrfs_alloc_path();
  591. path2 = btrfs_alloc_path();
  592. if (!path1 || !path2) {
  593. err = -ENOMEM;
  594. goto out;
  595. }
  596. path1->reada = READA_FORWARD;
  597. path2->reada = READA_FORWARD;
  598. node = alloc_backref_node(cache);
  599. if (!node) {
  600. err = -ENOMEM;
  601. goto out;
  602. }
  603. node->bytenr = bytenr;
  604. node->level = level;
  605. node->lowest = 1;
  606. cur = node;
  607. again:
  608. end = 0;
  609. ptr = 0;
  610. key.objectid = cur->bytenr;
  611. key.type = BTRFS_METADATA_ITEM_KEY;
  612. key.offset = (u64)-1;
  613. path1->search_commit_root = 1;
  614. path1->skip_locking = 1;
  615. ret = btrfs_search_slot(NULL, rc->extent_root, &key, path1,
  616. 0, 0);
  617. if (ret < 0) {
  618. err = ret;
  619. goto out;
  620. }
  621. ASSERT(ret);
  622. ASSERT(path1->slots[0]);
  623. path1->slots[0]--;
  624. WARN_ON(cur->checked);
  625. if (!list_empty(&cur->upper)) {
  626. /*
  627. * the backref was added previously when processing
  628. * backref of type BTRFS_TREE_BLOCK_REF_KEY
  629. */
  630. ASSERT(list_is_singular(&cur->upper));
  631. edge = list_entry(cur->upper.next, struct backref_edge,
  632. list[LOWER]);
  633. ASSERT(list_empty(&edge->list[UPPER]));
  634. exist = edge->node[UPPER];
  635. /*
  636. * add the upper level block to pending list if we need
  637. * check its backrefs
  638. */
  639. if (!exist->checked)
  640. list_add_tail(&edge->list[UPPER], &list);
  641. } else {
  642. exist = NULL;
  643. }
  644. while (1) {
  645. cond_resched();
  646. eb = path1->nodes[0];
  647. if (ptr >= end) {
  648. if (path1->slots[0] >= btrfs_header_nritems(eb)) {
  649. ret = btrfs_next_leaf(rc->extent_root, path1);
  650. if (ret < 0) {
  651. err = ret;
  652. goto out;
  653. }
  654. if (ret > 0)
  655. break;
  656. eb = path1->nodes[0];
  657. }
  658. btrfs_item_key_to_cpu(eb, &key, path1->slots[0]);
  659. if (key.objectid != cur->bytenr) {
  660. WARN_ON(exist);
  661. break;
  662. }
  663. if (key.type == BTRFS_EXTENT_ITEM_KEY ||
  664. key.type == BTRFS_METADATA_ITEM_KEY) {
  665. ret = find_inline_backref(eb, path1->slots[0],
  666. &ptr, &end);
  667. if (ret)
  668. goto next;
  669. }
  670. }
  671. if (ptr < end) {
  672. /* update key for inline back ref */
  673. struct btrfs_extent_inline_ref *iref;
  674. int type;
  675. iref = (struct btrfs_extent_inline_ref *)ptr;
  676. type = btrfs_get_extent_inline_ref_type(eb, iref,
  677. BTRFS_REF_TYPE_BLOCK);
  678. if (type == BTRFS_REF_TYPE_INVALID) {
  679. err = -EUCLEAN;
  680. goto out;
  681. }
  682. key.type = type;
  683. key.offset = btrfs_extent_inline_ref_offset(eb, iref);
  684. WARN_ON(key.type != BTRFS_TREE_BLOCK_REF_KEY &&
  685. key.type != BTRFS_SHARED_BLOCK_REF_KEY);
  686. }
  687. if (exist &&
  688. ((key.type == BTRFS_TREE_BLOCK_REF_KEY &&
  689. exist->owner == key.offset) ||
  690. (key.type == BTRFS_SHARED_BLOCK_REF_KEY &&
  691. exist->bytenr == key.offset))) {
  692. exist = NULL;
  693. goto next;
  694. }
  695. if (key.type == BTRFS_SHARED_BLOCK_REF_KEY) {
  696. if (key.objectid == key.offset) {
  697. /*
  698. * only root blocks of reloc trees use
  699. * backref of this type.
  700. */
  701. root = find_reloc_root(rc, cur->bytenr);
  702. ASSERT(root);
  703. cur->root = root;
  704. break;
  705. }
  706. edge = alloc_backref_edge(cache);
  707. if (!edge) {
  708. err = -ENOMEM;
  709. goto out;
  710. }
  711. rb_node = tree_search(&cache->rb_root, key.offset);
  712. if (!rb_node) {
  713. upper = alloc_backref_node(cache);
  714. if (!upper) {
  715. free_backref_edge(cache, edge);
  716. err = -ENOMEM;
  717. goto out;
  718. }
  719. upper->bytenr = key.offset;
  720. upper->level = cur->level + 1;
  721. /*
  722. * backrefs for the upper level block isn't
  723. * cached, add the block to pending list
  724. */
  725. list_add_tail(&edge->list[UPPER], &list);
  726. } else {
  727. upper = rb_entry(rb_node, struct backref_node,
  728. rb_node);
  729. ASSERT(upper->checked);
  730. INIT_LIST_HEAD(&edge->list[UPPER]);
  731. }
  732. list_add_tail(&edge->list[LOWER], &cur->upper);
  733. edge->node[LOWER] = cur;
  734. edge->node[UPPER] = upper;
  735. goto next;
  736. } else if (unlikely(key.type == BTRFS_EXTENT_REF_V0_KEY)) {
  737. err = -EINVAL;
  738. btrfs_print_v0_err(rc->extent_root->fs_info);
  739. btrfs_handle_fs_error(rc->extent_root->fs_info, err,
  740. NULL);
  741. goto out;
  742. } else if (key.type != BTRFS_TREE_BLOCK_REF_KEY) {
  743. goto next;
  744. }
  745. /* key.type == BTRFS_TREE_BLOCK_REF_KEY */
  746. root = read_fs_root(rc->extent_root->fs_info, key.offset);
  747. if (IS_ERR(root)) {
  748. err = PTR_ERR(root);
  749. goto out;
  750. }
  751. if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state))
  752. cur->cowonly = 1;
  753. if (btrfs_root_level(&root->root_item) == cur->level) {
  754. /* tree root */
  755. ASSERT(btrfs_root_bytenr(&root->root_item) ==
  756. cur->bytenr);
  757. if (should_ignore_root(root))
  758. list_add(&cur->list, &useless);
  759. else
  760. cur->root = root;
  761. break;
  762. }
  763. level = cur->level + 1;
  764. /*
  765. * searching the tree to find upper level blocks
  766. * reference the block.
  767. */
  768. path2->search_commit_root = 1;
  769. path2->skip_locking = 1;
  770. path2->lowest_level = level;
  771. ret = btrfs_search_slot(NULL, root, node_key, path2, 0, 0);
  772. path2->lowest_level = 0;
  773. if (ret < 0) {
  774. err = ret;
  775. goto out;
  776. }
  777. if (ret > 0 && path2->slots[level] > 0)
  778. path2->slots[level]--;
  779. eb = path2->nodes[level];
  780. if (btrfs_node_blockptr(eb, path2->slots[level]) !=
  781. cur->bytenr) {
  782. btrfs_err(root->fs_info,
  783. "couldn't find block (%llu) (level %d) in tree (%llu) with key (%llu %u %llu)",
  784. cur->bytenr, level - 1, root->objectid,
  785. node_key->objectid, node_key->type,
  786. node_key->offset);
  787. err = -ENOENT;
  788. goto out;
  789. }
  790. lower = cur;
  791. need_check = true;
  792. for (; level < BTRFS_MAX_LEVEL; level++) {
  793. if (!path2->nodes[level]) {
  794. ASSERT(btrfs_root_bytenr(&root->root_item) ==
  795. lower->bytenr);
  796. if (should_ignore_root(root))
  797. list_add(&lower->list, &useless);
  798. else
  799. lower->root = root;
  800. break;
  801. }
  802. edge = alloc_backref_edge(cache);
  803. if (!edge) {
  804. err = -ENOMEM;
  805. goto out;
  806. }
  807. eb = path2->nodes[level];
  808. rb_node = tree_search(&cache->rb_root, eb->start);
  809. if (!rb_node) {
  810. upper = alloc_backref_node(cache);
  811. if (!upper) {
  812. free_backref_edge(cache, edge);
  813. err = -ENOMEM;
  814. goto out;
  815. }
  816. upper->bytenr = eb->start;
  817. upper->owner = btrfs_header_owner(eb);
  818. upper->level = lower->level + 1;
  819. if (!test_bit(BTRFS_ROOT_REF_COWS,
  820. &root->state))
  821. upper->cowonly = 1;
  822. /*
  823. * if we know the block isn't shared
  824. * we can void checking its backrefs.
  825. */
  826. if (btrfs_block_can_be_shared(root, eb))
  827. upper->checked = 0;
  828. else
  829. upper->checked = 1;
  830. /*
  831. * add the block to pending list if we
  832. * need check its backrefs, we only do this once
  833. * while walking up a tree as we will catch
  834. * anything else later on.
  835. */
  836. if (!upper->checked && need_check) {
  837. need_check = false;
  838. list_add_tail(&edge->list[UPPER],
  839. &list);
  840. } else {
  841. if (upper->checked)
  842. need_check = true;
  843. INIT_LIST_HEAD(&edge->list[UPPER]);
  844. }
  845. } else {
  846. upper = rb_entry(rb_node, struct backref_node,
  847. rb_node);
  848. ASSERT(upper->checked);
  849. INIT_LIST_HEAD(&edge->list[UPPER]);
  850. if (!upper->owner)
  851. upper->owner = btrfs_header_owner(eb);
  852. }
  853. list_add_tail(&edge->list[LOWER], &lower->upper);
  854. edge->node[LOWER] = lower;
  855. edge->node[UPPER] = upper;
  856. if (rb_node)
  857. break;
  858. lower = upper;
  859. upper = NULL;
  860. }
  861. btrfs_release_path(path2);
  862. next:
  863. if (ptr < end) {
  864. ptr += btrfs_extent_inline_ref_size(key.type);
  865. if (ptr >= end) {
  866. WARN_ON(ptr > end);
  867. ptr = 0;
  868. end = 0;
  869. }
  870. }
  871. if (ptr >= end)
  872. path1->slots[0]++;
  873. }
  874. btrfs_release_path(path1);
  875. cur->checked = 1;
  876. WARN_ON(exist);
  877. /* the pending list isn't empty, take the first block to process */
  878. if (!list_empty(&list)) {
  879. edge = list_entry(list.next, struct backref_edge, list[UPPER]);
  880. list_del_init(&edge->list[UPPER]);
  881. cur = edge->node[UPPER];
  882. goto again;
  883. }
  884. /*
  885. * everything goes well, connect backref nodes and insert backref nodes
  886. * into the cache.
  887. */
  888. ASSERT(node->checked);
  889. cowonly = node->cowonly;
  890. if (!cowonly) {
  891. rb_node = tree_insert(&cache->rb_root, node->bytenr,
  892. &node->rb_node);
  893. if (rb_node)
  894. backref_tree_panic(rb_node, -EEXIST, node->bytenr);
  895. list_add_tail(&node->lower, &cache->leaves);
  896. }
  897. list_for_each_entry(edge, &node->upper, list[LOWER])
  898. list_add_tail(&edge->list[UPPER], &list);
  899. while (!list_empty(&list)) {
  900. edge = list_entry(list.next, struct backref_edge, list[UPPER]);
  901. list_del_init(&edge->list[UPPER]);
  902. upper = edge->node[UPPER];
  903. if (upper->detached) {
  904. list_del(&edge->list[LOWER]);
  905. lower = edge->node[LOWER];
  906. free_backref_edge(cache, edge);
  907. if (list_empty(&lower->upper))
  908. list_add(&lower->list, &useless);
  909. continue;
  910. }
  911. if (!RB_EMPTY_NODE(&upper->rb_node)) {
  912. if (upper->lowest) {
  913. list_del_init(&upper->lower);
  914. upper->lowest = 0;
  915. }
  916. list_add_tail(&edge->list[UPPER], &upper->lower);
  917. continue;
  918. }
  919. if (!upper->checked) {
  920. /*
  921. * Still want to blow up for developers since this is a
  922. * logic bug.
  923. */
  924. ASSERT(0);
  925. err = -EINVAL;
  926. goto out;
  927. }
  928. if (cowonly != upper->cowonly) {
  929. ASSERT(0);
  930. err = -EINVAL;
  931. goto out;
  932. }
  933. if (!cowonly) {
  934. rb_node = tree_insert(&cache->rb_root, upper->bytenr,
  935. &upper->rb_node);
  936. if (rb_node)
  937. backref_tree_panic(rb_node, -EEXIST,
  938. upper->bytenr);
  939. }
  940. list_add_tail(&edge->list[UPPER], &upper->lower);
  941. list_for_each_entry(edge, &upper->upper, list[LOWER])
  942. list_add_tail(&edge->list[UPPER], &list);
  943. }
  944. /*
  945. * process useless backref nodes. backref nodes for tree leaves
  946. * are deleted from the cache. backref nodes for upper level
  947. * tree blocks are left in the cache to avoid unnecessary backref
  948. * lookup.
  949. */
  950. while (!list_empty(&useless)) {
  951. upper = list_entry(useless.next, struct backref_node, list);
  952. list_del_init(&upper->list);
  953. ASSERT(list_empty(&upper->upper));
  954. if (upper == node)
  955. node = NULL;
  956. if (upper->lowest) {
  957. list_del_init(&upper->lower);
  958. upper->lowest = 0;
  959. }
  960. while (!list_empty(&upper->lower)) {
  961. edge = list_entry(upper->lower.next,
  962. struct backref_edge, list[UPPER]);
  963. list_del(&edge->list[UPPER]);
  964. list_del(&edge->list[LOWER]);
  965. lower = edge->node[LOWER];
  966. free_backref_edge(cache, edge);
  967. if (list_empty(&lower->upper))
  968. list_add(&lower->list, &useless);
  969. }
  970. __mark_block_processed(rc, upper);
  971. if (upper->level > 0) {
  972. list_add(&upper->list, &cache->detached);
  973. upper->detached = 1;
  974. } else {
  975. rb_erase(&upper->rb_node, &cache->rb_root);
  976. free_backref_node(cache, upper);
  977. }
  978. }
  979. out:
  980. btrfs_free_path(path1);
  981. btrfs_free_path(path2);
  982. if (err) {
  983. while (!list_empty(&useless)) {
  984. lower = list_entry(useless.next,
  985. struct backref_node, list);
  986. list_del_init(&lower->list);
  987. }
  988. while (!list_empty(&list)) {
  989. edge = list_first_entry(&list, struct backref_edge,
  990. list[UPPER]);
  991. list_del(&edge->list[UPPER]);
  992. list_del(&edge->list[LOWER]);
  993. lower = edge->node[LOWER];
  994. upper = edge->node[UPPER];
  995. free_backref_edge(cache, edge);
  996. /*
  997. * Lower is no longer linked to any upper backref nodes
  998. * and isn't in the cache, we can free it ourselves.
  999. */
  1000. if (list_empty(&lower->upper) &&
  1001. RB_EMPTY_NODE(&lower->rb_node))
  1002. list_add(&lower->list, &useless);
  1003. if (!RB_EMPTY_NODE(&upper->rb_node))
  1004. continue;
  1005. /* Add this guy's upper edges to the list to process */
  1006. list_for_each_entry(edge, &upper->upper, list[LOWER])
  1007. list_add_tail(&edge->list[UPPER], &list);
  1008. if (list_empty(&upper->upper))
  1009. list_add(&upper->list, &useless);
  1010. }
  1011. while (!list_empty(&useless)) {
  1012. lower = list_entry(useless.next,
  1013. struct backref_node, list);
  1014. list_del_init(&lower->list);
  1015. if (lower == node)
  1016. node = NULL;
  1017. free_backref_node(cache, lower);
  1018. }
  1019. remove_backref_node(cache, node);
  1020. return ERR_PTR(err);
  1021. }
  1022. ASSERT(!node || !node->detached);
  1023. return node;
  1024. }
  1025. /*
  1026. * helper to add backref node for the newly created snapshot.
  1027. * the backref node is created by cloning backref node that
  1028. * corresponds to root of source tree
  1029. */
  1030. static int clone_backref_node(struct btrfs_trans_handle *trans,
  1031. struct reloc_control *rc,
  1032. struct btrfs_root *src,
  1033. struct btrfs_root *dest)
  1034. {
  1035. struct btrfs_root *reloc_root = src->reloc_root;
  1036. struct backref_cache *cache = &rc->backref_cache;
  1037. struct backref_node *node = NULL;
  1038. struct backref_node *new_node;
  1039. struct backref_edge *edge;
  1040. struct backref_edge *new_edge;
  1041. struct rb_node *rb_node;
  1042. if (cache->last_trans > 0)
  1043. update_backref_cache(trans, cache);
  1044. rb_node = tree_search(&cache->rb_root, src->commit_root->start);
  1045. if (rb_node) {
  1046. node = rb_entry(rb_node, struct backref_node, rb_node);
  1047. if (node->detached)
  1048. node = NULL;
  1049. else
  1050. BUG_ON(node->new_bytenr != reloc_root->node->start);
  1051. }
  1052. if (!node) {
  1053. rb_node = tree_search(&cache->rb_root,
  1054. reloc_root->commit_root->start);
  1055. if (rb_node) {
  1056. node = rb_entry(rb_node, struct backref_node,
  1057. rb_node);
  1058. BUG_ON(node->detached);
  1059. }
  1060. }
  1061. if (!node)
  1062. return 0;
  1063. new_node = alloc_backref_node(cache);
  1064. if (!new_node)
  1065. return -ENOMEM;
  1066. new_node->bytenr = dest->node->start;
  1067. new_node->level = node->level;
  1068. new_node->lowest = node->lowest;
  1069. new_node->checked = 1;
  1070. new_node->root = dest;
  1071. if (!node->lowest) {
  1072. list_for_each_entry(edge, &node->lower, list[UPPER]) {
  1073. new_edge = alloc_backref_edge(cache);
  1074. if (!new_edge)
  1075. goto fail;
  1076. new_edge->node[UPPER] = new_node;
  1077. new_edge->node[LOWER] = edge->node[LOWER];
  1078. list_add_tail(&new_edge->list[UPPER],
  1079. &new_node->lower);
  1080. }
  1081. } else {
  1082. list_add_tail(&new_node->lower, &cache->leaves);
  1083. }
  1084. rb_node = tree_insert(&cache->rb_root, new_node->bytenr,
  1085. &new_node->rb_node);
  1086. if (rb_node)
  1087. backref_tree_panic(rb_node, -EEXIST, new_node->bytenr);
  1088. if (!new_node->lowest) {
  1089. list_for_each_entry(new_edge, &new_node->lower, list[UPPER]) {
  1090. list_add_tail(&new_edge->list[LOWER],
  1091. &new_edge->node[LOWER]->upper);
  1092. }
  1093. }
  1094. return 0;
  1095. fail:
  1096. while (!list_empty(&new_node->lower)) {
  1097. new_edge = list_entry(new_node->lower.next,
  1098. struct backref_edge, list[UPPER]);
  1099. list_del(&new_edge->list[UPPER]);
  1100. free_backref_edge(cache, new_edge);
  1101. }
  1102. free_backref_node(cache, new_node);
  1103. return -ENOMEM;
  1104. }
  1105. /*
  1106. * helper to add 'address of tree root -> reloc tree' mapping
  1107. */
  1108. static int __must_check __add_reloc_root(struct btrfs_root *root)
  1109. {
  1110. struct btrfs_fs_info *fs_info = root->fs_info;
  1111. struct rb_node *rb_node;
  1112. struct mapping_node *node;
  1113. struct reloc_control *rc = fs_info->reloc_ctl;
  1114. node = kmalloc(sizeof(*node), GFP_NOFS);
  1115. if (!node)
  1116. return -ENOMEM;
  1117. node->bytenr = root->commit_root->start;
  1118. node->data = root;
  1119. spin_lock(&rc->reloc_root_tree.lock);
  1120. rb_node = tree_insert(&rc->reloc_root_tree.rb_root,
  1121. node->bytenr, &node->rb_node);
  1122. spin_unlock(&rc->reloc_root_tree.lock);
  1123. if (rb_node) {
  1124. btrfs_panic(fs_info, -EEXIST,
  1125. "Duplicate root found for start=%llu while inserting into relocation tree",
  1126. node->bytenr);
  1127. }
  1128. list_add_tail(&root->root_list, &rc->reloc_roots);
  1129. return 0;
  1130. }
  1131. /*
  1132. * helper to delete the 'address of tree root -> reloc tree'
  1133. * mapping
  1134. */
  1135. static void __del_reloc_root(struct btrfs_root *root)
  1136. {
  1137. struct btrfs_fs_info *fs_info = root->fs_info;
  1138. struct rb_node *rb_node;
  1139. struct mapping_node *node = NULL;
  1140. struct reloc_control *rc = fs_info->reloc_ctl;
  1141. if (rc && root->node) {
  1142. spin_lock(&rc->reloc_root_tree.lock);
  1143. rb_node = tree_search(&rc->reloc_root_tree.rb_root,
  1144. root->commit_root->start);
  1145. if (rb_node) {
  1146. node = rb_entry(rb_node, struct mapping_node, rb_node);
  1147. rb_erase(&node->rb_node, &rc->reloc_root_tree.rb_root);
  1148. RB_CLEAR_NODE(&node->rb_node);
  1149. }
  1150. spin_unlock(&rc->reloc_root_tree.lock);
  1151. ASSERT(!node || (struct btrfs_root *)node->data == root);
  1152. }
  1153. spin_lock(&fs_info->trans_lock);
  1154. list_del_init(&root->root_list);
  1155. spin_unlock(&fs_info->trans_lock);
  1156. kfree(node);
  1157. }
  1158. /*
  1159. * helper to update the 'address of tree root -> reloc tree'
  1160. * mapping
  1161. */
  1162. static int __update_reloc_root(struct btrfs_root *root)
  1163. {
  1164. struct btrfs_fs_info *fs_info = root->fs_info;
  1165. struct rb_node *rb_node;
  1166. struct mapping_node *node = NULL;
  1167. struct reloc_control *rc = fs_info->reloc_ctl;
  1168. spin_lock(&rc->reloc_root_tree.lock);
  1169. rb_node = tree_search(&rc->reloc_root_tree.rb_root,
  1170. root->commit_root->start);
  1171. if (rb_node) {
  1172. node = rb_entry(rb_node, struct mapping_node, rb_node);
  1173. rb_erase(&node->rb_node, &rc->reloc_root_tree.rb_root);
  1174. }
  1175. spin_unlock(&rc->reloc_root_tree.lock);
  1176. if (!node)
  1177. return 0;
  1178. BUG_ON((struct btrfs_root *)node->data != root);
  1179. spin_lock(&rc->reloc_root_tree.lock);
  1180. node->bytenr = root->node->start;
  1181. rb_node = tree_insert(&rc->reloc_root_tree.rb_root,
  1182. node->bytenr, &node->rb_node);
  1183. spin_unlock(&rc->reloc_root_tree.lock);
  1184. if (rb_node)
  1185. backref_tree_panic(rb_node, -EEXIST, node->bytenr);
  1186. return 0;
  1187. }
  1188. static struct btrfs_root *create_reloc_root(struct btrfs_trans_handle *trans,
  1189. struct btrfs_root *root, u64 objectid)
  1190. {
  1191. struct btrfs_fs_info *fs_info = root->fs_info;
  1192. struct btrfs_root *reloc_root;
  1193. struct extent_buffer *eb;
  1194. struct btrfs_root_item *root_item;
  1195. struct btrfs_key root_key;
  1196. int ret;
  1197. root_item = kmalloc(sizeof(*root_item), GFP_NOFS);
  1198. BUG_ON(!root_item);
  1199. root_key.objectid = BTRFS_TREE_RELOC_OBJECTID;
  1200. root_key.type = BTRFS_ROOT_ITEM_KEY;
  1201. root_key.offset = objectid;
  1202. if (root->root_key.objectid == objectid) {
  1203. u64 commit_root_gen;
  1204. /* called by btrfs_init_reloc_root */
  1205. ret = btrfs_copy_root(trans, root, root->commit_root, &eb,
  1206. BTRFS_TREE_RELOC_OBJECTID);
  1207. BUG_ON(ret);
  1208. /*
  1209. * Set the last_snapshot field to the generation of the commit
  1210. * root - like this ctree.c:btrfs_block_can_be_shared() behaves
  1211. * correctly (returns true) when the relocation root is created
  1212. * either inside the critical section of a transaction commit
  1213. * (through transaction.c:qgroup_account_snapshot()) and when
  1214. * it's created before the transaction commit is started.
  1215. */
  1216. commit_root_gen = btrfs_header_generation(root->commit_root);
  1217. btrfs_set_root_last_snapshot(&root->root_item, commit_root_gen);
  1218. } else {
  1219. /*
  1220. * called by btrfs_reloc_post_snapshot_hook.
  1221. * the source tree is a reloc tree, all tree blocks
  1222. * modified after it was created have RELOC flag
  1223. * set in their headers. so it's OK to not update
  1224. * the 'last_snapshot'.
  1225. */
  1226. ret = btrfs_copy_root(trans, root, root->node, &eb,
  1227. BTRFS_TREE_RELOC_OBJECTID);
  1228. BUG_ON(ret);
  1229. }
  1230. memcpy(root_item, &root->root_item, sizeof(*root_item));
  1231. btrfs_set_root_bytenr(root_item, eb->start);
  1232. btrfs_set_root_level(root_item, btrfs_header_level(eb));
  1233. btrfs_set_root_generation(root_item, trans->transid);
  1234. if (root->root_key.objectid == objectid) {
  1235. btrfs_set_root_refs(root_item, 0);
  1236. memset(&root_item->drop_progress, 0,
  1237. sizeof(struct btrfs_disk_key));
  1238. root_item->drop_level = 0;
  1239. }
  1240. btrfs_tree_unlock(eb);
  1241. free_extent_buffer(eb);
  1242. ret = btrfs_insert_root(trans, fs_info->tree_root,
  1243. &root_key, root_item);
  1244. BUG_ON(ret);
  1245. kfree(root_item);
  1246. reloc_root = btrfs_read_fs_root(fs_info->tree_root, &root_key);
  1247. BUG_ON(IS_ERR(reloc_root));
  1248. reloc_root->last_trans = trans->transid;
  1249. return reloc_root;
  1250. }
  1251. /*
  1252. * create reloc tree for a given fs tree. reloc tree is just a
  1253. * snapshot of the fs tree with special root objectid.
  1254. */
  1255. int btrfs_init_reloc_root(struct btrfs_trans_handle *trans,
  1256. struct btrfs_root *root)
  1257. {
  1258. struct btrfs_fs_info *fs_info = root->fs_info;
  1259. struct btrfs_root *reloc_root;
  1260. struct reloc_control *rc = fs_info->reloc_ctl;
  1261. struct btrfs_block_rsv *rsv;
  1262. int clear_rsv = 0;
  1263. int ret;
  1264. if (root->reloc_root) {
  1265. reloc_root = root->reloc_root;
  1266. reloc_root->last_trans = trans->transid;
  1267. return 0;
  1268. }
  1269. if (!rc || !rc->create_reloc_tree ||
  1270. root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
  1271. return 0;
  1272. if (!trans->reloc_reserved) {
  1273. rsv = trans->block_rsv;
  1274. trans->block_rsv = rc->block_rsv;
  1275. clear_rsv = 1;
  1276. }
  1277. reloc_root = create_reloc_root(trans, root, root->root_key.objectid);
  1278. if (clear_rsv)
  1279. trans->block_rsv = rsv;
  1280. ret = __add_reloc_root(reloc_root);
  1281. BUG_ON(ret < 0);
  1282. root->reloc_root = reloc_root;
  1283. return 0;
  1284. }
  1285. /*
  1286. * update root item of reloc tree
  1287. */
  1288. int btrfs_update_reloc_root(struct btrfs_trans_handle *trans,
  1289. struct btrfs_root *root)
  1290. {
  1291. struct btrfs_fs_info *fs_info = root->fs_info;
  1292. struct btrfs_root *reloc_root;
  1293. struct btrfs_root_item *root_item;
  1294. int ret;
  1295. if (!root->reloc_root)
  1296. goto out;
  1297. reloc_root = root->reloc_root;
  1298. root_item = &reloc_root->root_item;
  1299. if (fs_info->reloc_ctl->merge_reloc_tree &&
  1300. btrfs_root_refs(root_item) == 0) {
  1301. root->reloc_root = NULL;
  1302. __del_reloc_root(reloc_root);
  1303. }
  1304. if (reloc_root->commit_root != reloc_root->node) {
  1305. __update_reloc_root(reloc_root);
  1306. btrfs_set_root_node(root_item, reloc_root->node);
  1307. free_extent_buffer(reloc_root->commit_root);
  1308. reloc_root->commit_root = btrfs_root_node(reloc_root);
  1309. }
  1310. ret = btrfs_update_root(trans, fs_info->tree_root,
  1311. &reloc_root->root_key, root_item);
  1312. BUG_ON(ret);
  1313. out:
  1314. return 0;
  1315. }
  1316. /*
  1317. * helper to find first cached inode with inode number >= objectid
  1318. * in a subvolume
  1319. */
  1320. static struct inode *find_next_inode(struct btrfs_root *root, u64 objectid)
  1321. {
  1322. struct rb_node *node;
  1323. struct rb_node *prev;
  1324. struct btrfs_inode *entry;
  1325. struct inode *inode;
  1326. spin_lock(&root->inode_lock);
  1327. again:
  1328. node = root->inode_tree.rb_node;
  1329. prev = NULL;
  1330. while (node) {
  1331. prev = node;
  1332. entry = rb_entry(node, struct btrfs_inode, rb_node);
  1333. if (objectid < btrfs_ino(entry))
  1334. node = node->rb_left;
  1335. else if (objectid > btrfs_ino(entry))
  1336. node = node->rb_right;
  1337. else
  1338. break;
  1339. }
  1340. if (!node) {
  1341. while (prev) {
  1342. entry = rb_entry(prev, struct btrfs_inode, rb_node);
  1343. if (objectid <= btrfs_ino(entry)) {
  1344. node = prev;
  1345. break;
  1346. }
  1347. prev = rb_next(prev);
  1348. }
  1349. }
  1350. while (node) {
  1351. entry = rb_entry(node, struct btrfs_inode, rb_node);
  1352. inode = igrab(&entry->vfs_inode);
  1353. if (inode) {
  1354. spin_unlock(&root->inode_lock);
  1355. return inode;
  1356. }
  1357. objectid = btrfs_ino(entry) + 1;
  1358. if (cond_resched_lock(&root->inode_lock))
  1359. goto again;
  1360. node = rb_next(node);
  1361. }
  1362. spin_unlock(&root->inode_lock);
  1363. return NULL;
  1364. }
  1365. static int in_block_group(u64 bytenr,
  1366. struct btrfs_block_group_cache *block_group)
  1367. {
  1368. if (bytenr >= block_group->key.objectid &&
  1369. bytenr < block_group->key.objectid + block_group->key.offset)
  1370. return 1;
  1371. return 0;
  1372. }
  1373. /*
  1374. * get new location of data
  1375. */
  1376. static int get_new_location(struct inode *reloc_inode, u64 *new_bytenr,
  1377. u64 bytenr, u64 num_bytes)
  1378. {
  1379. struct btrfs_root *root = BTRFS_I(reloc_inode)->root;
  1380. struct btrfs_path *path;
  1381. struct btrfs_file_extent_item *fi;
  1382. struct extent_buffer *leaf;
  1383. int ret;
  1384. path = btrfs_alloc_path();
  1385. if (!path)
  1386. return -ENOMEM;
  1387. bytenr -= BTRFS_I(reloc_inode)->index_cnt;
  1388. ret = btrfs_lookup_file_extent(NULL, root, path,
  1389. btrfs_ino(BTRFS_I(reloc_inode)), bytenr, 0);
  1390. if (ret < 0)
  1391. goto out;
  1392. if (ret > 0) {
  1393. ret = -ENOENT;
  1394. goto out;
  1395. }
  1396. leaf = path->nodes[0];
  1397. fi = btrfs_item_ptr(leaf, path->slots[0],
  1398. struct btrfs_file_extent_item);
  1399. BUG_ON(btrfs_file_extent_offset(leaf, fi) ||
  1400. btrfs_file_extent_compression(leaf, fi) ||
  1401. btrfs_file_extent_encryption(leaf, fi) ||
  1402. btrfs_file_extent_other_encoding(leaf, fi));
  1403. if (num_bytes != btrfs_file_extent_disk_num_bytes(leaf, fi)) {
  1404. ret = -EINVAL;
  1405. goto out;
  1406. }
  1407. *new_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
  1408. ret = 0;
  1409. out:
  1410. btrfs_free_path(path);
  1411. return ret;
  1412. }
  1413. /*
  1414. * update file extent items in the tree leaf to point to
  1415. * the new locations.
  1416. */
  1417. static noinline_for_stack
  1418. int replace_file_extents(struct btrfs_trans_handle *trans,
  1419. struct reloc_control *rc,
  1420. struct btrfs_root *root,
  1421. struct extent_buffer *leaf)
  1422. {
  1423. struct btrfs_fs_info *fs_info = root->fs_info;
  1424. struct btrfs_key key;
  1425. struct btrfs_file_extent_item *fi;
  1426. struct inode *inode = NULL;
  1427. u64 parent;
  1428. u64 bytenr;
  1429. u64 new_bytenr = 0;
  1430. u64 num_bytes;
  1431. u64 end;
  1432. u32 nritems;
  1433. u32 i;
  1434. int ret = 0;
  1435. int first = 1;
  1436. int dirty = 0;
  1437. if (rc->stage != UPDATE_DATA_PTRS)
  1438. return 0;
  1439. /* reloc trees always use full backref */
  1440. if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
  1441. parent = leaf->start;
  1442. else
  1443. parent = 0;
  1444. nritems = btrfs_header_nritems(leaf);
  1445. for (i = 0; i < nritems; i++) {
  1446. cond_resched();
  1447. btrfs_item_key_to_cpu(leaf, &key, i);
  1448. if (key.type != BTRFS_EXTENT_DATA_KEY)
  1449. continue;
  1450. fi = btrfs_item_ptr(leaf, i, struct btrfs_file_extent_item);
  1451. if (btrfs_file_extent_type(leaf, fi) ==
  1452. BTRFS_FILE_EXTENT_INLINE)
  1453. continue;
  1454. bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
  1455. num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
  1456. if (bytenr == 0)
  1457. continue;
  1458. if (!in_block_group(bytenr, rc->block_group))
  1459. continue;
  1460. /*
  1461. * if we are modifying block in fs tree, wait for readpage
  1462. * to complete and drop the extent cache
  1463. */
  1464. if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) {
  1465. if (first) {
  1466. inode = find_next_inode(root, key.objectid);
  1467. first = 0;
  1468. } else if (inode && btrfs_ino(BTRFS_I(inode)) < key.objectid) {
  1469. btrfs_add_delayed_iput(inode);
  1470. inode = find_next_inode(root, key.objectid);
  1471. }
  1472. if (inode && btrfs_ino(BTRFS_I(inode)) == key.objectid) {
  1473. end = key.offset +
  1474. btrfs_file_extent_num_bytes(leaf, fi);
  1475. WARN_ON(!IS_ALIGNED(key.offset,
  1476. fs_info->sectorsize));
  1477. WARN_ON(!IS_ALIGNED(end, fs_info->sectorsize));
  1478. end--;
  1479. ret = try_lock_extent(&BTRFS_I(inode)->io_tree,
  1480. key.offset, end);
  1481. if (!ret)
  1482. continue;
  1483. btrfs_drop_extent_cache(BTRFS_I(inode),
  1484. key.offset, end, 1);
  1485. unlock_extent(&BTRFS_I(inode)->io_tree,
  1486. key.offset, end);
  1487. }
  1488. }
  1489. ret = get_new_location(rc->data_inode, &new_bytenr,
  1490. bytenr, num_bytes);
  1491. if (ret) {
  1492. /*
  1493. * Don't have to abort since we've not changed anything
  1494. * in the file extent yet.
  1495. */
  1496. break;
  1497. }
  1498. btrfs_set_file_extent_disk_bytenr(leaf, fi, new_bytenr);
  1499. dirty = 1;
  1500. key.offset -= btrfs_file_extent_offset(leaf, fi);
  1501. ret = btrfs_inc_extent_ref(trans, root, new_bytenr,
  1502. num_bytes, parent,
  1503. btrfs_header_owner(leaf),
  1504. key.objectid, key.offset);
  1505. if (ret) {
  1506. btrfs_abort_transaction(trans, ret);
  1507. break;
  1508. }
  1509. ret = btrfs_free_extent(trans, root, bytenr, num_bytes,
  1510. parent, btrfs_header_owner(leaf),
  1511. key.objectid, key.offset);
  1512. if (ret) {
  1513. btrfs_abort_transaction(trans, ret);
  1514. break;
  1515. }
  1516. }
  1517. if (dirty)
  1518. btrfs_mark_buffer_dirty(leaf);
  1519. if (inode)
  1520. btrfs_add_delayed_iput(inode);
  1521. return ret;
  1522. }
  1523. static noinline_for_stack
  1524. int memcmp_node_keys(struct extent_buffer *eb, int slot,
  1525. struct btrfs_path *path, int level)
  1526. {
  1527. struct btrfs_disk_key key1;
  1528. struct btrfs_disk_key key2;
  1529. btrfs_node_key(eb, &key1, slot);
  1530. btrfs_node_key(path->nodes[level], &key2, path->slots[level]);
  1531. return memcmp(&key1, &key2, sizeof(key1));
  1532. }
  1533. /*
  1534. * try to replace tree blocks in fs tree with the new blocks
  1535. * in reloc tree. tree blocks haven't been modified since the
  1536. * reloc tree was create can be replaced.
  1537. *
  1538. * if a block was replaced, level of the block + 1 is returned.
  1539. * if no block got replaced, 0 is returned. if there are other
  1540. * errors, a negative error number is returned.
  1541. */
  1542. static noinline_for_stack
  1543. int replace_path(struct btrfs_trans_handle *trans,
  1544. struct btrfs_root *dest, struct btrfs_root *src,
  1545. struct btrfs_path *path, struct btrfs_key *next_key,
  1546. int lowest_level, int max_level)
  1547. {
  1548. struct btrfs_fs_info *fs_info = dest->fs_info;
  1549. struct extent_buffer *eb;
  1550. struct extent_buffer *parent;
  1551. struct btrfs_key key;
  1552. u64 old_bytenr;
  1553. u64 new_bytenr;
  1554. u64 old_ptr_gen;
  1555. u64 new_ptr_gen;
  1556. u64 last_snapshot;
  1557. u32 blocksize;
  1558. int cow = 0;
  1559. int level;
  1560. int ret;
  1561. int slot;
  1562. ASSERT(src->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID);
  1563. ASSERT(dest->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
  1564. last_snapshot = btrfs_root_last_snapshot(&src->root_item);
  1565. again:
  1566. slot = path->slots[lowest_level];
  1567. btrfs_node_key_to_cpu(path->nodes[lowest_level], &key, slot);
  1568. eb = btrfs_lock_root_node(dest);
  1569. btrfs_set_lock_blocking(eb);
  1570. level = btrfs_header_level(eb);
  1571. if (level < lowest_level) {
  1572. btrfs_tree_unlock(eb);
  1573. free_extent_buffer(eb);
  1574. return 0;
  1575. }
  1576. if (cow) {
  1577. ret = btrfs_cow_block(trans, dest, eb, NULL, 0, &eb);
  1578. BUG_ON(ret);
  1579. }
  1580. btrfs_set_lock_blocking(eb);
  1581. if (next_key) {
  1582. next_key->objectid = (u64)-1;
  1583. next_key->type = (u8)-1;
  1584. next_key->offset = (u64)-1;
  1585. }
  1586. parent = eb;
  1587. while (1) {
  1588. struct btrfs_key first_key;
  1589. level = btrfs_header_level(parent);
  1590. ASSERT(level >= lowest_level);
  1591. ret = btrfs_bin_search(parent, &key, level, &slot);
  1592. if (ret && slot > 0)
  1593. slot--;
  1594. if (next_key && slot + 1 < btrfs_header_nritems(parent))
  1595. btrfs_node_key_to_cpu(parent, next_key, slot + 1);
  1596. old_bytenr = btrfs_node_blockptr(parent, slot);
  1597. blocksize = fs_info->nodesize;
  1598. old_ptr_gen = btrfs_node_ptr_generation(parent, slot);
  1599. btrfs_node_key_to_cpu(parent, &first_key, slot);
  1600. if (level <= max_level) {
  1601. eb = path->nodes[level];
  1602. new_bytenr = btrfs_node_blockptr(eb,
  1603. path->slots[level]);
  1604. new_ptr_gen = btrfs_node_ptr_generation(eb,
  1605. path->slots[level]);
  1606. } else {
  1607. new_bytenr = 0;
  1608. new_ptr_gen = 0;
  1609. }
  1610. if (WARN_ON(new_bytenr > 0 && new_bytenr == old_bytenr)) {
  1611. ret = level;
  1612. break;
  1613. }
  1614. if (new_bytenr == 0 || old_ptr_gen > last_snapshot ||
  1615. memcmp_node_keys(parent, slot, path, level)) {
  1616. if (level <= lowest_level) {
  1617. ret = 0;
  1618. break;
  1619. }
  1620. eb = read_tree_block(fs_info, old_bytenr, old_ptr_gen,
  1621. level - 1, &first_key);
  1622. if (IS_ERR(eb)) {
  1623. ret = PTR_ERR(eb);
  1624. break;
  1625. } else if (!extent_buffer_uptodate(eb)) {
  1626. ret = -EIO;
  1627. free_extent_buffer(eb);
  1628. break;
  1629. }
  1630. btrfs_tree_lock(eb);
  1631. if (cow) {
  1632. ret = btrfs_cow_block(trans, dest, eb, parent,
  1633. slot, &eb);
  1634. BUG_ON(ret);
  1635. }
  1636. btrfs_set_lock_blocking(eb);
  1637. btrfs_tree_unlock(parent);
  1638. free_extent_buffer(parent);
  1639. parent = eb;
  1640. continue;
  1641. }
  1642. if (!cow) {
  1643. btrfs_tree_unlock(parent);
  1644. free_extent_buffer(parent);
  1645. cow = 1;
  1646. goto again;
  1647. }
  1648. btrfs_node_key_to_cpu(path->nodes[level], &key,
  1649. path->slots[level]);
  1650. btrfs_release_path(path);
  1651. path->lowest_level = level;
  1652. ret = btrfs_search_slot(trans, src, &key, path, 0, 1);
  1653. path->lowest_level = 0;
  1654. BUG_ON(ret);
  1655. /*
  1656. * Info qgroup to trace both subtrees.
  1657. *
  1658. * We must trace both trees.
  1659. * 1) Tree reloc subtree
  1660. * If not traced, we will leak data numbers
  1661. * 2) Fs subtree
  1662. * If not traced, we will double count old data
  1663. * and tree block numbers, if current trans doesn't free
  1664. * data reloc tree inode.
  1665. */
  1666. ret = btrfs_qgroup_trace_subtree(trans, parent,
  1667. btrfs_header_generation(parent),
  1668. btrfs_header_level(parent));
  1669. if (ret < 0)
  1670. break;
  1671. ret = btrfs_qgroup_trace_subtree(trans, path->nodes[level],
  1672. btrfs_header_generation(path->nodes[level]),
  1673. btrfs_header_level(path->nodes[level]));
  1674. if (ret < 0)
  1675. break;
  1676. /*
  1677. * swap blocks in fs tree and reloc tree.
  1678. */
  1679. btrfs_set_node_blockptr(parent, slot, new_bytenr);
  1680. btrfs_set_node_ptr_generation(parent, slot, new_ptr_gen);
  1681. btrfs_mark_buffer_dirty(parent);
  1682. btrfs_set_node_blockptr(path->nodes[level],
  1683. path->slots[level], old_bytenr);
  1684. btrfs_set_node_ptr_generation(path->nodes[level],
  1685. path->slots[level], old_ptr_gen);
  1686. btrfs_mark_buffer_dirty(path->nodes[level]);
  1687. ret = btrfs_inc_extent_ref(trans, src, old_bytenr,
  1688. blocksize, path->nodes[level]->start,
  1689. src->root_key.objectid, level - 1, 0);
  1690. BUG_ON(ret);
  1691. ret = btrfs_inc_extent_ref(trans, dest, new_bytenr,
  1692. blocksize, 0, dest->root_key.objectid,
  1693. level - 1, 0);
  1694. BUG_ON(ret);
  1695. ret = btrfs_free_extent(trans, src, new_bytenr, blocksize,
  1696. path->nodes[level]->start,
  1697. src->root_key.objectid, level - 1, 0);
  1698. BUG_ON(ret);
  1699. ret = btrfs_free_extent(trans, dest, old_bytenr, blocksize,
  1700. 0, dest->root_key.objectid, level - 1,
  1701. 0);
  1702. BUG_ON(ret);
  1703. btrfs_unlock_up_safe(path, 0);
  1704. ret = level;
  1705. break;
  1706. }
  1707. btrfs_tree_unlock(parent);
  1708. free_extent_buffer(parent);
  1709. return ret;
  1710. }
  1711. /*
  1712. * helper to find next relocated block in reloc tree
  1713. */
  1714. static noinline_for_stack
  1715. int walk_up_reloc_tree(struct btrfs_root *root, struct btrfs_path *path,
  1716. int *level)
  1717. {
  1718. struct extent_buffer *eb;
  1719. int i;
  1720. u64 last_snapshot;
  1721. u32 nritems;
  1722. last_snapshot = btrfs_root_last_snapshot(&root->root_item);
  1723. for (i = 0; i < *level; i++) {
  1724. free_extent_buffer(path->nodes[i]);
  1725. path->nodes[i] = NULL;
  1726. }
  1727. for (i = *level; i < BTRFS_MAX_LEVEL && path->nodes[i]; i++) {
  1728. eb = path->nodes[i];
  1729. nritems = btrfs_header_nritems(eb);
  1730. while (path->slots[i] + 1 < nritems) {
  1731. path->slots[i]++;
  1732. if (btrfs_node_ptr_generation(eb, path->slots[i]) <=
  1733. last_snapshot)
  1734. continue;
  1735. *level = i;
  1736. return 0;
  1737. }
  1738. free_extent_buffer(path->nodes[i]);
  1739. path->nodes[i] = NULL;
  1740. }
  1741. return 1;
  1742. }
  1743. /*
  1744. * walk down reloc tree to find relocated block of lowest level
  1745. */
  1746. static noinline_for_stack
  1747. int walk_down_reloc_tree(struct btrfs_root *root, struct btrfs_path *path,
  1748. int *level)
  1749. {
  1750. struct btrfs_fs_info *fs_info = root->fs_info;
  1751. struct extent_buffer *eb = NULL;
  1752. int i;
  1753. u64 bytenr;
  1754. u64 ptr_gen = 0;
  1755. u64 last_snapshot;
  1756. u32 nritems;
  1757. last_snapshot = btrfs_root_last_snapshot(&root->root_item);
  1758. for (i = *level; i > 0; i--) {
  1759. struct btrfs_key first_key;
  1760. eb = path->nodes[i];
  1761. nritems = btrfs_header_nritems(eb);
  1762. while (path->slots[i] < nritems) {
  1763. ptr_gen = btrfs_node_ptr_generation(eb, path->slots[i]);
  1764. if (ptr_gen > last_snapshot)
  1765. break;
  1766. path->slots[i]++;
  1767. }
  1768. if (path->slots[i] >= nritems) {
  1769. if (i == *level)
  1770. break;
  1771. *level = i + 1;
  1772. return 0;
  1773. }
  1774. if (i == 1) {
  1775. *level = i;
  1776. return 0;
  1777. }
  1778. bytenr = btrfs_node_blockptr(eb, path->slots[i]);
  1779. btrfs_node_key_to_cpu(eb, &first_key, path->slots[i]);
  1780. eb = read_tree_block(fs_info, bytenr, ptr_gen, i - 1,
  1781. &first_key);
  1782. if (IS_ERR(eb)) {
  1783. return PTR_ERR(eb);
  1784. } else if (!extent_buffer_uptodate(eb)) {
  1785. free_extent_buffer(eb);
  1786. return -EIO;
  1787. }
  1788. BUG_ON(btrfs_header_level(eb) != i - 1);
  1789. path->nodes[i - 1] = eb;
  1790. path->slots[i - 1] = 0;
  1791. }
  1792. return 1;
  1793. }
  1794. /*
  1795. * invalidate extent cache for file extents whose key in range of
  1796. * [min_key, max_key)
  1797. */
  1798. static int invalidate_extent_cache(struct btrfs_root *root,
  1799. struct btrfs_key *min_key,
  1800. struct btrfs_key *max_key)
  1801. {
  1802. struct btrfs_fs_info *fs_info = root->fs_info;
  1803. struct inode *inode = NULL;
  1804. u64 objectid;
  1805. u64 start, end;
  1806. u64 ino;
  1807. objectid = min_key->objectid;
  1808. while (1) {
  1809. cond_resched();
  1810. iput(inode);
  1811. if (objectid > max_key->objectid)
  1812. break;
  1813. inode = find_next_inode(root, objectid);
  1814. if (!inode)
  1815. break;
  1816. ino = btrfs_ino(BTRFS_I(inode));
  1817. if (ino > max_key->objectid) {
  1818. iput(inode);
  1819. break;
  1820. }
  1821. objectid = ino + 1;
  1822. if (!S_ISREG(inode->i_mode))
  1823. continue;
  1824. if (unlikely(min_key->objectid == ino)) {
  1825. if (min_key->type > BTRFS_EXTENT_DATA_KEY)
  1826. continue;
  1827. if (min_key->type < BTRFS_EXTENT_DATA_KEY)
  1828. start = 0;
  1829. else {
  1830. start = min_key->offset;
  1831. WARN_ON(!IS_ALIGNED(start, fs_info->sectorsize));
  1832. }
  1833. } else {
  1834. start = 0;
  1835. }
  1836. if (unlikely(max_key->objectid == ino)) {
  1837. if (max_key->type < BTRFS_EXTENT_DATA_KEY)
  1838. continue;
  1839. if (max_key->type > BTRFS_EXTENT_DATA_KEY) {
  1840. end = (u64)-1;
  1841. } else {
  1842. if (max_key->offset == 0)
  1843. continue;
  1844. end = max_key->offset;
  1845. WARN_ON(!IS_ALIGNED(end, fs_info->sectorsize));
  1846. end--;
  1847. }
  1848. } else {
  1849. end = (u64)-1;
  1850. }
  1851. /* the lock_extent waits for readpage to complete */
  1852. lock_extent(&BTRFS_I(inode)->io_tree, start, end);
  1853. btrfs_drop_extent_cache(BTRFS_I(inode), start, end, 1);
  1854. unlock_extent(&BTRFS_I(inode)->io_tree, start, end);
  1855. }
  1856. return 0;
  1857. }
  1858. static int find_next_key(struct btrfs_path *path, int level,
  1859. struct btrfs_key *key)
  1860. {
  1861. while (level < BTRFS_MAX_LEVEL) {
  1862. if (!path->nodes[level])
  1863. break;
  1864. if (path->slots[level] + 1 <
  1865. btrfs_header_nritems(path->nodes[level])) {
  1866. btrfs_node_key_to_cpu(path->nodes[level], key,
  1867. path->slots[level] + 1);
  1868. return 0;
  1869. }
  1870. level++;
  1871. }
  1872. return 1;
  1873. }
  1874. /*
  1875. * merge the relocated tree blocks in reloc tree with corresponding
  1876. * fs tree.
  1877. */
  1878. static noinline_for_stack int merge_reloc_root(struct reloc_control *rc,
  1879. struct btrfs_root *root)
  1880. {
  1881. struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
  1882. LIST_HEAD(inode_list);
  1883. struct btrfs_key key;
  1884. struct btrfs_key next_key;
  1885. struct btrfs_trans_handle *trans = NULL;
  1886. struct btrfs_root *reloc_root;
  1887. struct btrfs_root_item *root_item;
  1888. struct btrfs_path *path;
  1889. struct extent_buffer *leaf;
  1890. int level;
  1891. int max_level;
  1892. int replaced = 0;
  1893. int ret;
  1894. int err = 0;
  1895. u32 min_reserved;
  1896. path = btrfs_alloc_path();
  1897. if (!path)
  1898. return -ENOMEM;
  1899. path->reada = READA_FORWARD;
  1900. reloc_root = root->reloc_root;
  1901. root_item = &reloc_root->root_item;
  1902. if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) {
  1903. level = btrfs_root_level(root_item);
  1904. extent_buffer_get(reloc_root->node);
  1905. path->nodes[level] = reloc_root->node;
  1906. path->slots[level] = 0;
  1907. } else {
  1908. btrfs_disk_key_to_cpu(&key, &root_item->drop_progress);
  1909. level = root_item->drop_level;
  1910. BUG_ON(level == 0);
  1911. path->lowest_level = level;
  1912. ret = btrfs_search_slot(NULL, reloc_root, &key, path, 0, 0);
  1913. path->lowest_level = 0;
  1914. if (ret < 0) {
  1915. btrfs_free_path(path);
  1916. return ret;
  1917. }
  1918. btrfs_node_key_to_cpu(path->nodes[level], &next_key,
  1919. path->slots[level]);
  1920. WARN_ON(memcmp(&key, &next_key, sizeof(key)));
  1921. btrfs_unlock_up_safe(path, 0);
  1922. }
  1923. min_reserved = fs_info->nodesize * (BTRFS_MAX_LEVEL - 1) * 2;
  1924. memset(&next_key, 0, sizeof(next_key));
  1925. while (1) {
  1926. ret = btrfs_block_rsv_refill(root, rc->block_rsv, min_reserved,
  1927. BTRFS_RESERVE_FLUSH_ALL);
  1928. if (ret) {
  1929. err = ret;
  1930. goto out;
  1931. }
  1932. trans = btrfs_start_transaction(root, 0);
  1933. if (IS_ERR(trans)) {
  1934. err = PTR_ERR(trans);
  1935. trans = NULL;
  1936. goto out;
  1937. }
  1938. trans->block_rsv = rc->block_rsv;
  1939. replaced = 0;
  1940. max_level = level;
  1941. ret = walk_down_reloc_tree(reloc_root, path, &level);
  1942. if (ret < 0) {
  1943. err = ret;
  1944. goto out;
  1945. }
  1946. if (ret > 0)
  1947. break;
  1948. if (!find_next_key(path, level, &key) &&
  1949. btrfs_comp_cpu_keys(&next_key, &key) >= 0) {
  1950. ret = 0;
  1951. } else {
  1952. ret = replace_path(trans, root, reloc_root, path,
  1953. &next_key, level, max_level);
  1954. }
  1955. if (ret < 0) {
  1956. err = ret;
  1957. goto out;
  1958. }
  1959. if (ret > 0) {
  1960. level = ret;
  1961. btrfs_node_key_to_cpu(path->nodes[level], &key,
  1962. path->slots[level]);
  1963. replaced = 1;
  1964. }
  1965. ret = walk_up_reloc_tree(reloc_root, path, &level);
  1966. if (ret > 0)
  1967. break;
  1968. BUG_ON(level == 0);
  1969. /*
  1970. * save the merging progress in the drop_progress.
  1971. * this is OK since root refs == 1 in this case.
  1972. */
  1973. btrfs_node_key(path->nodes[level], &root_item->drop_progress,
  1974. path->slots[level]);
  1975. root_item->drop_level = level;
  1976. btrfs_end_transaction_throttle(trans);
  1977. trans = NULL;
  1978. btrfs_btree_balance_dirty(fs_info);
  1979. if (replaced && rc->stage == UPDATE_DATA_PTRS)
  1980. invalidate_extent_cache(root, &key, &next_key);
  1981. }
  1982. /*
  1983. * handle the case only one block in the fs tree need to be
  1984. * relocated and the block is tree root.
  1985. */
  1986. leaf = btrfs_lock_root_node(root);
  1987. ret = btrfs_cow_block(trans, root, leaf, NULL, 0, &leaf);
  1988. btrfs_tree_unlock(leaf);
  1989. free_extent_buffer(leaf);
  1990. if (ret < 0)
  1991. err = ret;
  1992. out:
  1993. btrfs_free_path(path);
  1994. if (err == 0) {
  1995. memset(&root_item->drop_progress, 0,
  1996. sizeof(root_item->drop_progress));
  1997. root_item->drop_level = 0;
  1998. btrfs_set_root_refs(root_item, 0);
  1999. btrfs_update_reloc_root(trans, root);
  2000. }
  2001. if (trans)
  2002. btrfs_end_transaction_throttle(trans);
  2003. btrfs_btree_balance_dirty(fs_info);
  2004. if (replaced && rc->stage == UPDATE_DATA_PTRS)
  2005. invalidate_extent_cache(root, &key, &next_key);
  2006. return err;
  2007. }
  2008. static noinline_for_stack
  2009. int prepare_to_merge(struct reloc_control *rc, int err)
  2010. {
  2011. struct btrfs_root *root = rc->extent_root;
  2012. struct btrfs_fs_info *fs_info = root->fs_info;
  2013. struct btrfs_root *reloc_root;
  2014. struct btrfs_trans_handle *trans;
  2015. LIST_HEAD(reloc_roots);
  2016. u64 num_bytes = 0;
  2017. int ret;
  2018. mutex_lock(&fs_info->reloc_mutex);
  2019. rc->merging_rsv_size += fs_info->nodesize * (BTRFS_MAX_LEVEL - 1) * 2;
  2020. rc->merging_rsv_size += rc->nodes_relocated * 2;
  2021. mutex_unlock(&fs_info->reloc_mutex);
  2022. again:
  2023. if (!err) {
  2024. num_bytes = rc->merging_rsv_size;
  2025. ret = btrfs_block_rsv_add(root, rc->block_rsv, num_bytes,
  2026. BTRFS_RESERVE_FLUSH_ALL);
  2027. if (ret)
  2028. err = ret;
  2029. }
  2030. trans = btrfs_join_transaction(rc->extent_root);
  2031. if (IS_ERR(trans)) {
  2032. if (!err)
  2033. btrfs_block_rsv_release(fs_info, rc->block_rsv,
  2034. num_bytes);
  2035. return PTR_ERR(trans);
  2036. }
  2037. if (!err) {
  2038. if (num_bytes != rc->merging_rsv_size) {
  2039. btrfs_end_transaction(trans);
  2040. btrfs_block_rsv_release(fs_info, rc->block_rsv,
  2041. num_bytes);
  2042. goto again;
  2043. }
  2044. }
  2045. rc->merge_reloc_tree = 1;
  2046. while (!list_empty(&rc->reloc_roots)) {
  2047. reloc_root = list_entry(rc->reloc_roots.next,
  2048. struct btrfs_root, root_list);
  2049. list_del_init(&reloc_root->root_list);
  2050. root = read_fs_root(fs_info, reloc_root->root_key.offset);
  2051. BUG_ON(IS_ERR(root));
  2052. BUG_ON(root->reloc_root != reloc_root);
  2053. /*
  2054. * set reference count to 1, so btrfs_recover_relocation
  2055. * knows it should resumes merging
  2056. */
  2057. if (!err)
  2058. btrfs_set_root_refs(&reloc_root->root_item, 1);
  2059. btrfs_update_reloc_root(trans, root);
  2060. list_add(&reloc_root->root_list, &reloc_roots);
  2061. }
  2062. list_splice(&reloc_roots, &rc->reloc_roots);
  2063. if (!err)
  2064. btrfs_commit_transaction(trans);
  2065. else
  2066. btrfs_end_transaction(trans);
  2067. return err;
  2068. }
  2069. static noinline_for_stack
  2070. void free_reloc_roots(struct list_head *list)
  2071. {
  2072. struct btrfs_root *reloc_root;
  2073. while (!list_empty(list)) {
  2074. reloc_root = list_entry(list->next, struct btrfs_root,
  2075. root_list);
  2076. __del_reloc_root(reloc_root);
  2077. free_extent_buffer(reloc_root->node);
  2078. free_extent_buffer(reloc_root->commit_root);
  2079. reloc_root->node = NULL;
  2080. reloc_root->commit_root = NULL;
  2081. }
  2082. }
  2083. static noinline_for_stack
  2084. void merge_reloc_roots(struct reloc_control *rc)
  2085. {
  2086. struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
  2087. struct btrfs_root *root;
  2088. struct btrfs_root *reloc_root;
  2089. LIST_HEAD(reloc_roots);
  2090. int found = 0;
  2091. int ret = 0;
  2092. again:
  2093. root = rc->extent_root;
  2094. /*
  2095. * this serializes us with btrfs_record_root_in_transaction,
  2096. * we have to make sure nobody is in the middle of
  2097. * adding their roots to the list while we are
  2098. * doing this splice
  2099. */
  2100. mutex_lock(&fs_info->reloc_mutex);
  2101. list_splice_init(&rc->reloc_roots, &reloc_roots);
  2102. mutex_unlock(&fs_info->reloc_mutex);
  2103. while (!list_empty(&reloc_roots)) {
  2104. found = 1;
  2105. reloc_root = list_entry(reloc_roots.next,
  2106. struct btrfs_root, root_list);
  2107. if (btrfs_root_refs(&reloc_root->root_item) > 0) {
  2108. root = read_fs_root(fs_info,
  2109. reloc_root->root_key.offset);
  2110. BUG_ON(IS_ERR(root));
  2111. BUG_ON(root->reloc_root != reloc_root);
  2112. ret = merge_reloc_root(rc, root);
  2113. if (ret) {
  2114. if (list_empty(&reloc_root->root_list))
  2115. list_add_tail(&reloc_root->root_list,
  2116. &reloc_roots);
  2117. goto out;
  2118. }
  2119. } else {
  2120. list_del_init(&reloc_root->root_list);
  2121. }
  2122. ret = btrfs_drop_snapshot(reloc_root, rc->block_rsv, 0, 1);
  2123. if (ret < 0) {
  2124. if (list_empty(&reloc_root->root_list))
  2125. list_add_tail(&reloc_root->root_list,
  2126. &reloc_roots);
  2127. goto out;
  2128. }
  2129. }
  2130. if (found) {
  2131. found = 0;
  2132. goto again;
  2133. }
  2134. out:
  2135. if (ret) {
  2136. btrfs_handle_fs_error(fs_info, ret, NULL);
  2137. if (!list_empty(&reloc_roots))
  2138. free_reloc_roots(&reloc_roots);
  2139. /* new reloc root may be added */
  2140. mutex_lock(&fs_info->reloc_mutex);
  2141. list_splice_init(&rc->reloc_roots, &reloc_roots);
  2142. mutex_unlock(&fs_info->reloc_mutex);
  2143. if (!list_empty(&reloc_roots))
  2144. free_reloc_roots(&reloc_roots);
  2145. }
  2146. /*
  2147. * We used to have
  2148. *
  2149. * BUG_ON(!RB_EMPTY_ROOT(&rc->reloc_root_tree.rb_root));
  2150. *
  2151. * here, but it's wrong. If we fail to start the transaction in
  2152. * prepare_to_merge() we will have only 0 ref reloc roots, none of which
  2153. * have actually been removed from the reloc_root_tree rb tree. This is
  2154. * fine because we're bailing here, and we hold a reference on the root
  2155. * for the list that holds it, so these roots will be cleaned up when we
  2156. * do the reloc_dirty_list afterwards. Meanwhile the root->reloc_root
  2157. * will be cleaned up on unmount.
  2158. *
  2159. * The remaining nodes will be cleaned up by free_reloc_control.
  2160. */
  2161. }
  2162. static void free_block_list(struct rb_root *blocks)
  2163. {
  2164. struct tree_block *block;
  2165. struct rb_node *rb_node;
  2166. while ((rb_node = rb_first(blocks))) {
  2167. block = rb_entry(rb_node, struct tree_block, rb_node);
  2168. rb_erase(rb_node, blocks);
  2169. kfree(block);
  2170. }
  2171. }
  2172. static int record_reloc_root_in_trans(struct btrfs_trans_handle *trans,
  2173. struct btrfs_root *reloc_root)
  2174. {
  2175. struct btrfs_fs_info *fs_info = reloc_root->fs_info;
  2176. struct btrfs_root *root;
  2177. if (reloc_root->last_trans == trans->transid)
  2178. return 0;
  2179. root = read_fs_root(fs_info, reloc_root->root_key.offset);
  2180. BUG_ON(IS_ERR(root));
  2181. BUG_ON(root->reloc_root != reloc_root);
  2182. return btrfs_record_root_in_trans(trans, root);
  2183. }
  2184. static noinline_for_stack
  2185. struct btrfs_root *select_reloc_root(struct btrfs_trans_handle *trans,
  2186. struct reloc_control *rc,
  2187. struct backref_node *node,
  2188. struct backref_edge *edges[])
  2189. {
  2190. struct backref_node *next;
  2191. struct btrfs_root *root;
  2192. int index = 0;
  2193. next = node;
  2194. while (1) {
  2195. cond_resched();
  2196. next = walk_up_backref(next, edges, &index);
  2197. root = next->root;
  2198. BUG_ON(!root);
  2199. BUG_ON(!test_bit(BTRFS_ROOT_REF_COWS, &root->state));
  2200. if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) {
  2201. record_reloc_root_in_trans(trans, root);
  2202. break;
  2203. }
  2204. btrfs_record_root_in_trans(trans, root);
  2205. root = root->reloc_root;
  2206. if (next->new_bytenr != root->node->start) {
  2207. BUG_ON(next->new_bytenr);
  2208. BUG_ON(!list_empty(&next->list));
  2209. next->new_bytenr = root->node->start;
  2210. next->root = root;
  2211. list_add_tail(&next->list,
  2212. &rc->backref_cache.changed);
  2213. __mark_block_processed(rc, next);
  2214. break;
  2215. }
  2216. WARN_ON(1);
  2217. root = NULL;
  2218. next = walk_down_backref(edges, &index);
  2219. if (!next || next->level <= node->level)
  2220. break;
  2221. }
  2222. if (!root)
  2223. return NULL;
  2224. next = node;
  2225. /* setup backref node path for btrfs_reloc_cow_block */
  2226. while (1) {
  2227. rc->backref_cache.path[next->level] = next;
  2228. if (--index < 0)
  2229. break;
  2230. next = edges[index]->node[UPPER];
  2231. }
  2232. return root;
  2233. }
  2234. /*
  2235. * select a tree root for relocation. return NULL if the block
  2236. * is reference counted. we should use do_relocation() in this
  2237. * case. return a tree root pointer if the block isn't reference
  2238. * counted. return -ENOENT if the block is root of reloc tree.
  2239. */
  2240. static noinline_for_stack
  2241. struct btrfs_root *select_one_root(struct backref_node *node)
  2242. {
  2243. struct backref_node *next;
  2244. struct btrfs_root *root;
  2245. struct btrfs_root *fs_root = NULL;
  2246. struct backref_edge *edges[BTRFS_MAX_LEVEL - 1];
  2247. int index = 0;
  2248. next = node;
  2249. while (1) {
  2250. cond_resched();
  2251. next = walk_up_backref(next, edges, &index);
  2252. root = next->root;
  2253. BUG_ON(!root);
  2254. /* no other choice for non-references counted tree */
  2255. if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state))
  2256. return root;
  2257. if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID)
  2258. fs_root = root;
  2259. if (next != node)
  2260. return NULL;
  2261. next = walk_down_backref(edges, &index);
  2262. if (!next || next->level <= node->level)
  2263. break;
  2264. }
  2265. if (!fs_root)
  2266. return ERR_PTR(-ENOENT);
  2267. return fs_root;
  2268. }
  2269. static noinline_for_stack
  2270. u64 calcu_metadata_size(struct reloc_control *rc,
  2271. struct backref_node *node, int reserve)
  2272. {
  2273. struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
  2274. struct backref_node *next = node;
  2275. struct backref_edge *edge;
  2276. struct backref_edge *edges[BTRFS_MAX_LEVEL - 1];
  2277. u64 num_bytes = 0;
  2278. int index = 0;
  2279. BUG_ON(reserve && node->processed);
  2280. while (next) {
  2281. cond_resched();
  2282. while (1) {
  2283. if (next->processed && (reserve || next != node))
  2284. break;
  2285. num_bytes += fs_info->nodesize;
  2286. if (list_empty(&next->upper))
  2287. break;
  2288. edge = list_entry(next->upper.next,
  2289. struct backref_edge, list[LOWER]);
  2290. edges[index++] = edge;
  2291. next = edge->node[UPPER];
  2292. }
  2293. next = walk_down_backref(edges, &index);
  2294. }
  2295. return num_bytes;
  2296. }
  2297. static int reserve_metadata_space(struct btrfs_trans_handle *trans,
  2298. struct reloc_control *rc,
  2299. struct backref_node *node)
  2300. {
  2301. struct btrfs_root *root = rc->extent_root;
  2302. struct btrfs_fs_info *fs_info = root->fs_info;
  2303. u64 num_bytes;
  2304. int ret;
  2305. u64 tmp;
  2306. num_bytes = calcu_metadata_size(rc, node, 1) * 2;
  2307. trans->block_rsv = rc->block_rsv;
  2308. rc->reserved_bytes += num_bytes;
  2309. /*
  2310. * We are under a transaction here so we can only do limited flushing.
  2311. * If we get an enospc just kick back -EAGAIN so we know to drop the
  2312. * transaction and try to refill when we can flush all the things.
  2313. */
  2314. ret = btrfs_block_rsv_refill(root, rc->block_rsv, num_bytes,
  2315. BTRFS_RESERVE_FLUSH_LIMIT);
  2316. if (ret) {
  2317. tmp = fs_info->nodesize * RELOCATION_RESERVED_NODES;
  2318. while (tmp <= rc->reserved_bytes)
  2319. tmp <<= 1;
  2320. /*
  2321. * only one thread can access block_rsv at this point,
  2322. * so we don't need hold lock to protect block_rsv.
  2323. * we expand more reservation size here to allow enough
  2324. * space for relocation and we will return eailer in
  2325. * enospc case.
  2326. */
  2327. rc->block_rsv->size = tmp + fs_info->nodesize *
  2328. RELOCATION_RESERVED_NODES;
  2329. return -EAGAIN;
  2330. }
  2331. return 0;
  2332. }
  2333. /*
  2334. * relocate a block tree, and then update pointers in upper level
  2335. * blocks that reference the block to point to the new location.
  2336. *
  2337. * if called by link_to_upper, the block has already been relocated.
  2338. * in that case this function just updates pointers.
  2339. */
  2340. static int do_relocation(struct btrfs_trans_handle *trans,
  2341. struct reloc_control *rc,
  2342. struct backref_node *node,
  2343. struct btrfs_key *key,
  2344. struct btrfs_path *path, int lowest)
  2345. {
  2346. struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
  2347. struct backref_node *upper;
  2348. struct backref_edge *edge;
  2349. struct backref_edge *edges[BTRFS_MAX_LEVEL - 1];
  2350. struct btrfs_root *root;
  2351. struct extent_buffer *eb;
  2352. u32 blocksize;
  2353. u64 bytenr;
  2354. u64 generation;
  2355. int slot;
  2356. int ret;
  2357. int err = 0;
  2358. BUG_ON(lowest && node->eb);
  2359. path->lowest_level = node->level + 1;
  2360. rc->backref_cache.path[node->level] = node;
  2361. list_for_each_entry(edge, &node->upper, list[LOWER]) {
  2362. struct btrfs_key first_key;
  2363. cond_resched();
  2364. upper = edge->node[UPPER];
  2365. root = select_reloc_root(trans, rc, upper, edges);
  2366. BUG_ON(!root);
  2367. if (upper->eb && !upper->locked) {
  2368. if (!lowest) {
  2369. ret = btrfs_bin_search(upper->eb, key,
  2370. upper->level, &slot);
  2371. BUG_ON(ret);
  2372. bytenr = btrfs_node_blockptr(upper->eb, slot);
  2373. if (node->eb->start == bytenr)
  2374. goto next;
  2375. }
  2376. drop_node_buffer(upper);
  2377. }
  2378. if (!upper->eb) {
  2379. ret = btrfs_search_slot(trans, root, key, path, 0, 1);
  2380. if (ret) {
  2381. if (ret < 0)
  2382. err = ret;
  2383. else
  2384. err = -ENOENT;
  2385. btrfs_release_path(path);
  2386. break;
  2387. }
  2388. if (!upper->eb) {
  2389. upper->eb = path->nodes[upper->level];
  2390. path->nodes[upper->level] = NULL;
  2391. } else {
  2392. BUG_ON(upper->eb != path->nodes[upper->level]);
  2393. }
  2394. upper->locked = 1;
  2395. path->locks[upper->level] = 0;
  2396. slot = path->slots[upper->level];
  2397. btrfs_release_path(path);
  2398. } else {
  2399. ret = btrfs_bin_search(upper->eb, key, upper->level,
  2400. &slot);
  2401. BUG_ON(ret);
  2402. }
  2403. bytenr = btrfs_node_blockptr(upper->eb, slot);
  2404. if (lowest) {
  2405. if (bytenr != node->bytenr) {
  2406. btrfs_err(root->fs_info,
  2407. "lowest leaf/node mismatch: bytenr %llu node->bytenr %llu slot %d upper %llu",
  2408. bytenr, node->bytenr, slot,
  2409. upper->eb->start);
  2410. err = -EIO;
  2411. goto next;
  2412. }
  2413. } else {
  2414. if (node->eb->start == bytenr)
  2415. goto next;
  2416. }
  2417. blocksize = root->fs_info->nodesize;
  2418. generation = btrfs_node_ptr_generation(upper->eb, slot);
  2419. btrfs_node_key_to_cpu(upper->eb, &first_key, slot);
  2420. eb = read_tree_block(fs_info, bytenr, generation,
  2421. upper->level - 1, &first_key);
  2422. if (IS_ERR(eb)) {
  2423. err = PTR_ERR(eb);
  2424. goto next;
  2425. } else if (!extent_buffer_uptodate(eb)) {
  2426. free_extent_buffer(eb);
  2427. err = -EIO;
  2428. goto next;
  2429. }
  2430. btrfs_tree_lock(eb);
  2431. btrfs_set_lock_blocking(eb);
  2432. if (!node->eb) {
  2433. ret = btrfs_cow_block(trans, root, eb, upper->eb,
  2434. slot, &eb);
  2435. btrfs_tree_unlock(eb);
  2436. free_extent_buffer(eb);
  2437. if (ret < 0) {
  2438. err = ret;
  2439. goto next;
  2440. }
  2441. BUG_ON(node->eb != eb);
  2442. } else {
  2443. btrfs_set_node_blockptr(upper->eb, slot,
  2444. node->eb->start);
  2445. btrfs_set_node_ptr_generation(upper->eb, slot,
  2446. trans->transid);
  2447. btrfs_mark_buffer_dirty(upper->eb);
  2448. ret = btrfs_inc_extent_ref(trans, root,
  2449. node->eb->start, blocksize,
  2450. upper->eb->start,
  2451. btrfs_header_owner(upper->eb),
  2452. node->level, 0);
  2453. BUG_ON(ret);
  2454. ret = btrfs_drop_subtree(trans, root, eb, upper->eb);
  2455. BUG_ON(ret);
  2456. }
  2457. next:
  2458. if (!upper->pending)
  2459. drop_node_buffer(upper);
  2460. else
  2461. unlock_node_buffer(upper);
  2462. if (err)
  2463. break;
  2464. }
  2465. if (!err && node->pending) {
  2466. drop_node_buffer(node);
  2467. list_move_tail(&node->list, &rc->backref_cache.changed);
  2468. node->pending = 0;
  2469. }
  2470. path->lowest_level = 0;
  2471. BUG_ON(err == -ENOSPC);
  2472. return err;
  2473. }
  2474. static int link_to_upper(struct btrfs_trans_handle *trans,
  2475. struct reloc_control *rc,
  2476. struct backref_node *node,
  2477. struct btrfs_path *path)
  2478. {
  2479. struct btrfs_key key;
  2480. btrfs_node_key_to_cpu(node->eb, &key, 0);
  2481. return do_relocation(trans, rc, node, &key, path, 0);
  2482. }
  2483. static int finish_pending_nodes(struct btrfs_trans_handle *trans,
  2484. struct reloc_control *rc,
  2485. struct btrfs_path *path, int err)
  2486. {
  2487. LIST_HEAD(list);
  2488. struct backref_cache *cache = &rc->backref_cache;
  2489. struct backref_node *node;
  2490. int level;
  2491. int ret;
  2492. for (level = 0; level < BTRFS_MAX_LEVEL; level++) {
  2493. while (!list_empty(&cache->pending[level])) {
  2494. node = list_entry(cache->pending[level].next,
  2495. struct backref_node, list);
  2496. list_move_tail(&node->list, &list);
  2497. BUG_ON(!node->pending);
  2498. if (!err) {
  2499. ret = link_to_upper(trans, rc, node, path);
  2500. if (ret < 0)
  2501. err = ret;
  2502. }
  2503. }
  2504. list_splice_init(&list, &cache->pending[level]);
  2505. }
  2506. return err;
  2507. }
  2508. static void mark_block_processed(struct reloc_control *rc,
  2509. u64 bytenr, u32 blocksize)
  2510. {
  2511. set_extent_bits(&rc->processed_blocks, bytenr, bytenr + blocksize - 1,
  2512. EXTENT_DIRTY);
  2513. }
  2514. static void __mark_block_processed(struct reloc_control *rc,
  2515. struct backref_node *node)
  2516. {
  2517. u32 blocksize;
  2518. if (node->level == 0 ||
  2519. in_block_group(node->bytenr, rc->block_group)) {
  2520. blocksize = rc->extent_root->fs_info->nodesize;
  2521. mark_block_processed(rc, node->bytenr, blocksize);
  2522. }
  2523. node->processed = 1;
  2524. }
  2525. /*
  2526. * mark a block and all blocks directly/indirectly reference the block
  2527. * as processed.
  2528. */
  2529. static void update_processed_blocks(struct reloc_control *rc,
  2530. struct backref_node *node)
  2531. {
  2532. struct backref_node *next = node;
  2533. struct backref_edge *edge;
  2534. struct backref_edge *edges[BTRFS_MAX_LEVEL - 1];
  2535. int index = 0;
  2536. while (next) {
  2537. cond_resched();
  2538. while (1) {
  2539. if (next->processed)
  2540. break;
  2541. __mark_block_processed(rc, next);
  2542. if (list_empty(&next->upper))
  2543. break;
  2544. edge = list_entry(next->upper.next,
  2545. struct backref_edge, list[LOWER]);
  2546. edges[index++] = edge;
  2547. next = edge->node[UPPER];
  2548. }
  2549. next = walk_down_backref(edges, &index);
  2550. }
  2551. }
  2552. static int tree_block_processed(u64 bytenr, struct reloc_control *rc)
  2553. {
  2554. u32 blocksize = rc->extent_root->fs_info->nodesize;
  2555. if (test_range_bit(&rc->processed_blocks, bytenr,
  2556. bytenr + blocksize - 1, EXTENT_DIRTY, 1, NULL))
  2557. return 1;
  2558. return 0;
  2559. }
  2560. static int get_tree_block_key(struct btrfs_fs_info *fs_info,
  2561. struct tree_block *block)
  2562. {
  2563. struct extent_buffer *eb;
  2564. BUG_ON(block->key_ready);
  2565. eb = read_tree_block(fs_info, block->bytenr, block->key.offset,
  2566. block->level, NULL);
  2567. if (IS_ERR(eb)) {
  2568. return PTR_ERR(eb);
  2569. } else if (!extent_buffer_uptodate(eb)) {
  2570. free_extent_buffer(eb);
  2571. return -EIO;
  2572. }
  2573. WARN_ON(btrfs_header_level(eb) != block->level);
  2574. if (block->level == 0)
  2575. btrfs_item_key_to_cpu(eb, &block->key, 0);
  2576. else
  2577. btrfs_node_key_to_cpu(eb, &block->key, 0);
  2578. free_extent_buffer(eb);
  2579. block->key_ready = 1;
  2580. return 0;
  2581. }
  2582. /*
  2583. * helper function to relocate a tree block
  2584. */
  2585. static int relocate_tree_block(struct btrfs_trans_handle *trans,
  2586. struct reloc_control *rc,
  2587. struct backref_node *node,
  2588. struct btrfs_key *key,
  2589. struct btrfs_path *path)
  2590. {
  2591. struct btrfs_root *root;
  2592. int ret = 0;
  2593. if (!node)
  2594. return 0;
  2595. BUG_ON(node->processed);
  2596. root = select_one_root(node);
  2597. if (root == ERR_PTR(-ENOENT)) {
  2598. update_processed_blocks(rc, node);
  2599. goto out;
  2600. }
  2601. if (!root || test_bit(BTRFS_ROOT_REF_COWS, &root->state)) {
  2602. ret = reserve_metadata_space(trans, rc, node);
  2603. if (ret)
  2604. goto out;
  2605. }
  2606. if (root) {
  2607. if (test_bit(BTRFS_ROOT_REF_COWS, &root->state)) {
  2608. BUG_ON(node->new_bytenr);
  2609. BUG_ON(!list_empty(&node->list));
  2610. btrfs_record_root_in_trans(trans, root);
  2611. root = root->reloc_root;
  2612. node->new_bytenr = root->node->start;
  2613. node->root = root;
  2614. list_add_tail(&node->list, &rc->backref_cache.changed);
  2615. } else {
  2616. path->lowest_level = node->level;
  2617. ret = btrfs_search_slot(trans, root, key, path, 0, 1);
  2618. btrfs_release_path(path);
  2619. if (ret > 0)
  2620. ret = 0;
  2621. }
  2622. if (!ret)
  2623. update_processed_blocks(rc, node);
  2624. } else {
  2625. ret = do_relocation(trans, rc, node, key, path, 1);
  2626. }
  2627. out:
  2628. if (ret || node->level == 0 || node->cowonly)
  2629. remove_backref_node(&rc->backref_cache, node);
  2630. return ret;
  2631. }
  2632. /*
  2633. * relocate a list of blocks
  2634. */
  2635. static noinline_for_stack
  2636. int relocate_tree_blocks(struct btrfs_trans_handle *trans,
  2637. struct reloc_control *rc, struct rb_root *blocks)
  2638. {
  2639. struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
  2640. struct backref_node *node;
  2641. struct btrfs_path *path;
  2642. struct tree_block *block;
  2643. struct rb_node *rb_node;
  2644. int ret;
  2645. int err = 0;
  2646. path = btrfs_alloc_path();
  2647. if (!path) {
  2648. err = -ENOMEM;
  2649. goto out_free_blocks;
  2650. }
  2651. rb_node = rb_first(blocks);
  2652. while (rb_node) {
  2653. block = rb_entry(rb_node, struct tree_block, rb_node);
  2654. if (!block->key_ready)
  2655. readahead_tree_block(fs_info, block->bytenr);
  2656. rb_node = rb_next(rb_node);
  2657. }
  2658. rb_node = rb_first(blocks);
  2659. while (rb_node) {
  2660. block = rb_entry(rb_node, struct tree_block, rb_node);
  2661. if (!block->key_ready) {
  2662. err = get_tree_block_key(fs_info, block);
  2663. if (err)
  2664. goto out_free_path;
  2665. }
  2666. rb_node = rb_next(rb_node);
  2667. }
  2668. rb_node = rb_first(blocks);
  2669. while (rb_node) {
  2670. block = rb_entry(rb_node, struct tree_block, rb_node);
  2671. node = build_backref_tree(rc, &block->key,
  2672. block->level, block->bytenr);
  2673. if (IS_ERR(node)) {
  2674. err = PTR_ERR(node);
  2675. goto out;
  2676. }
  2677. ret = relocate_tree_block(trans, rc, node, &block->key,
  2678. path);
  2679. if (ret < 0) {
  2680. if (ret != -EAGAIN || rb_node == rb_first(blocks))
  2681. err = ret;
  2682. goto out;
  2683. }
  2684. rb_node = rb_next(rb_node);
  2685. }
  2686. out:
  2687. err = finish_pending_nodes(trans, rc, path, err);
  2688. out_free_path:
  2689. btrfs_free_path(path);
  2690. out_free_blocks:
  2691. free_block_list(blocks);
  2692. return err;
  2693. }
  2694. static noinline_for_stack
  2695. int prealloc_file_extent_cluster(struct inode *inode,
  2696. struct file_extent_cluster *cluster)
  2697. {
  2698. u64 alloc_hint = 0;
  2699. u64 start;
  2700. u64 end;
  2701. u64 offset = BTRFS_I(inode)->index_cnt;
  2702. u64 num_bytes;
  2703. int nr = 0;
  2704. int ret = 0;
  2705. u64 prealloc_start = cluster->start - offset;
  2706. u64 prealloc_end = cluster->end - offset;
  2707. u64 cur_offset;
  2708. struct extent_changeset *data_reserved = NULL;
  2709. BUG_ON(cluster->start != cluster->boundary[0]);
  2710. inode_lock(inode);
  2711. ret = btrfs_check_data_free_space(inode, &data_reserved, prealloc_start,
  2712. prealloc_end + 1 - prealloc_start);
  2713. if (ret)
  2714. goto out;
  2715. cur_offset = prealloc_start;
  2716. while (nr < cluster->nr) {
  2717. start = cluster->boundary[nr] - offset;
  2718. if (nr + 1 < cluster->nr)
  2719. end = cluster->boundary[nr + 1] - 1 - offset;
  2720. else
  2721. end = cluster->end - offset;
  2722. lock_extent(&BTRFS_I(inode)->io_tree, start, end);
  2723. num_bytes = end + 1 - start;
  2724. if (cur_offset < start)
  2725. btrfs_free_reserved_data_space(inode, data_reserved,
  2726. cur_offset, start - cur_offset);
  2727. ret = btrfs_prealloc_file_range(inode, 0, start,
  2728. num_bytes, num_bytes,
  2729. end + 1, &alloc_hint);
  2730. cur_offset = end + 1;
  2731. unlock_extent(&BTRFS_I(inode)->io_tree, start, end);
  2732. if (ret)
  2733. break;
  2734. nr++;
  2735. }
  2736. if (cur_offset < prealloc_end)
  2737. btrfs_free_reserved_data_space(inode, data_reserved,
  2738. cur_offset, prealloc_end + 1 - cur_offset);
  2739. out:
  2740. inode_unlock(inode);
  2741. extent_changeset_free(data_reserved);
  2742. return ret;
  2743. }
  2744. static noinline_for_stack
  2745. int setup_extent_mapping(struct inode *inode, u64 start, u64 end,
  2746. u64 block_start)
  2747. {
  2748. struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
  2749. struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
  2750. struct extent_map *em;
  2751. int ret = 0;
  2752. em = alloc_extent_map();
  2753. if (!em)
  2754. return -ENOMEM;
  2755. em->start = start;
  2756. em->len = end + 1 - start;
  2757. em->block_len = em->len;
  2758. em->block_start = block_start;
  2759. em->bdev = fs_info->fs_devices->latest_bdev;
  2760. set_bit(EXTENT_FLAG_PINNED, &em->flags);
  2761. lock_extent(&BTRFS_I(inode)->io_tree, start, end);
  2762. while (1) {
  2763. write_lock(&em_tree->lock);
  2764. ret = add_extent_mapping(em_tree, em, 0);
  2765. write_unlock(&em_tree->lock);
  2766. if (ret != -EEXIST) {
  2767. free_extent_map(em);
  2768. break;
  2769. }
  2770. btrfs_drop_extent_cache(BTRFS_I(inode), start, end, 0);
  2771. }
  2772. unlock_extent(&BTRFS_I(inode)->io_tree, start, end);
  2773. return ret;
  2774. }
  2775. static int relocate_file_extent_cluster(struct inode *inode,
  2776. struct file_extent_cluster *cluster)
  2777. {
  2778. struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
  2779. u64 page_start;
  2780. u64 page_end;
  2781. u64 offset = BTRFS_I(inode)->index_cnt;
  2782. unsigned long index;
  2783. unsigned long last_index;
  2784. struct page *page;
  2785. struct file_ra_state *ra;
  2786. gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
  2787. int nr = 0;
  2788. int ret = 0;
  2789. if (!cluster->nr)
  2790. return 0;
  2791. ra = kzalloc(sizeof(*ra), GFP_NOFS);
  2792. if (!ra)
  2793. return -ENOMEM;
  2794. ret = prealloc_file_extent_cluster(inode, cluster);
  2795. if (ret)
  2796. goto out;
  2797. file_ra_state_init(ra, inode->i_mapping);
  2798. ret = setup_extent_mapping(inode, cluster->start - offset,
  2799. cluster->end - offset, cluster->start);
  2800. if (ret)
  2801. goto out;
  2802. index = (cluster->start - offset) >> PAGE_SHIFT;
  2803. last_index = (cluster->end - offset) >> PAGE_SHIFT;
  2804. while (index <= last_index) {
  2805. ret = btrfs_delalloc_reserve_metadata(BTRFS_I(inode),
  2806. PAGE_SIZE);
  2807. if (ret)
  2808. goto out;
  2809. page = find_lock_page(inode->i_mapping, index);
  2810. if (!page) {
  2811. page_cache_sync_readahead(inode->i_mapping,
  2812. ra, NULL, index,
  2813. last_index + 1 - index);
  2814. page = find_or_create_page(inode->i_mapping, index,
  2815. mask);
  2816. if (!page) {
  2817. btrfs_delalloc_release_metadata(BTRFS_I(inode),
  2818. PAGE_SIZE, true);
  2819. btrfs_delalloc_release_extents(BTRFS_I(inode),
  2820. PAGE_SIZE);
  2821. ret = -ENOMEM;
  2822. goto out;
  2823. }
  2824. }
  2825. if (PageReadahead(page)) {
  2826. page_cache_async_readahead(inode->i_mapping,
  2827. ra, NULL, page, index,
  2828. last_index + 1 - index);
  2829. }
  2830. if (!PageUptodate(page)) {
  2831. btrfs_readpage(NULL, page);
  2832. lock_page(page);
  2833. if (!PageUptodate(page)) {
  2834. unlock_page(page);
  2835. put_page(page);
  2836. btrfs_delalloc_release_metadata(BTRFS_I(inode),
  2837. PAGE_SIZE, true);
  2838. btrfs_delalloc_release_extents(BTRFS_I(inode),
  2839. PAGE_SIZE);
  2840. ret = -EIO;
  2841. goto out;
  2842. }
  2843. }
  2844. page_start = page_offset(page);
  2845. page_end = page_start + PAGE_SIZE - 1;
  2846. lock_extent(&BTRFS_I(inode)->io_tree, page_start, page_end);
  2847. set_page_extent_mapped(page);
  2848. if (nr < cluster->nr &&
  2849. page_start + offset == cluster->boundary[nr]) {
  2850. set_extent_bits(&BTRFS_I(inode)->io_tree,
  2851. page_start, page_end,
  2852. EXTENT_BOUNDARY);
  2853. nr++;
  2854. }
  2855. ret = btrfs_set_extent_delalloc(inode, page_start, page_end, 0,
  2856. NULL, 0);
  2857. if (ret) {
  2858. unlock_page(page);
  2859. put_page(page);
  2860. btrfs_delalloc_release_metadata(BTRFS_I(inode),
  2861. PAGE_SIZE, true);
  2862. btrfs_delalloc_release_extents(BTRFS_I(inode),
  2863. PAGE_SIZE);
  2864. clear_extent_bits(&BTRFS_I(inode)->io_tree,
  2865. page_start, page_end,
  2866. EXTENT_LOCKED | EXTENT_BOUNDARY);
  2867. goto out;
  2868. }
  2869. set_page_dirty(page);
  2870. unlock_extent(&BTRFS_I(inode)->io_tree,
  2871. page_start, page_end);
  2872. unlock_page(page);
  2873. put_page(page);
  2874. index++;
  2875. btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE);
  2876. balance_dirty_pages_ratelimited(inode->i_mapping);
  2877. btrfs_throttle(fs_info);
  2878. }
  2879. WARN_ON(nr != cluster->nr);
  2880. out:
  2881. kfree(ra);
  2882. return ret;
  2883. }
  2884. static noinline_for_stack
  2885. int relocate_data_extent(struct inode *inode, struct btrfs_key *extent_key,
  2886. struct file_extent_cluster *cluster)
  2887. {
  2888. int ret;
  2889. if (cluster->nr > 0 && extent_key->objectid != cluster->end + 1) {
  2890. ret = relocate_file_extent_cluster(inode, cluster);
  2891. if (ret)
  2892. return ret;
  2893. cluster->nr = 0;
  2894. }
  2895. if (!cluster->nr)
  2896. cluster->start = extent_key->objectid;
  2897. else
  2898. BUG_ON(cluster->nr >= MAX_EXTENTS);
  2899. cluster->end = extent_key->objectid + extent_key->offset - 1;
  2900. cluster->boundary[cluster->nr] = extent_key->objectid;
  2901. cluster->nr++;
  2902. if (cluster->nr >= MAX_EXTENTS) {
  2903. ret = relocate_file_extent_cluster(inode, cluster);
  2904. if (ret)
  2905. return ret;
  2906. cluster->nr = 0;
  2907. }
  2908. return 0;
  2909. }
  2910. /*
  2911. * helper to add a tree block to the list.
  2912. * the major work is getting the generation and level of the block
  2913. */
  2914. static int add_tree_block(struct reloc_control *rc,
  2915. struct btrfs_key *extent_key,
  2916. struct btrfs_path *path,
  2917. struct rb_root *blocks)
  2918. {
  2919. struct extent_buffer *eb;
  2920. struct btrfs_extent_item *ei;
  2921. struct btrfs_tree_block_info *bi;
  2922. struct tree_block *block;
  2923. struct rb_node *rb_node;
  2924. u32 item_size;
  2925. int level = -1;
  2926. u64 generation;
  2927. eb = path->nodes[0];
  2928. item_size = btrfs_item_size_nr(eb, path->slots[0]);
  2929. if (extent_key->type == BTRFS_METADATA_ITEM_KEY ||
  2930. item_size >= sizeof(*ei) + sizeof(*bi)) {
  2931. ei = btrfs_item_ptr(eb, path->slots[0],
  2932. struct btrfs_extent_item);
  2933. if (extent_key->type == BTRFS_EXTENT_ITEM_KEY) {
  2934. bi = (struct btrfs_tree_block_info *)(ei + 1);
  2935. level = btrfs_tree_block_level(eb, bi);
  2936. } else {
  2937. level = (int)extent_key->offset;
  2938. }
  2939. generation = btrfs_extent_generation(eb, ei);
  2940. } else if (unlikely(item_size == sizeof(struct btrfs_extent_item_v0))) {
  2941. btrfs_print_v0_err(eb->fs_info);
  2942. btrfs_handle_fs_error(eb->fs_info, -EINVAL, NULL);
  2943. return -EINVAL;
  2944. } else {
  2945. BUG();
  2946. }
  2947. btrfs_release_path(path);
  2948. BUG_ON(level == -1);
  2949. block = kmalloc(sizeof(*block), GFP_NOFS);
  2950. if (!block)
  2951. return -ENOMEM;
  2952. block->bytenr = extent_key->objectid;
  2953. block->key.objectid = rc->extent_root->fs_info->nodesize;
  2954. block->key.offset = generation;
  2955. block->level = level;
  2956. block->key_ready = 0;
  2957. rb_node = tree_insert(blocks, block->bytenr, &block->rb_node);
  2958. if (rb_node)
  2959. backref_tree_panic(rb_node, -EEXIST, block->bytenr);
  2960. return 0;
  2961. }
  2962. /*
  2963. * helper to add tree blocks for backref of type BTRFS_SHARED_DATA_REF_KEY
  2964. */
  2965. static int __add_tree_block(struct reloc_control *rc,
  2966. u64 bytenr, u32 blocksize,
  2967. struct rb_root *blocks)
  2968. {
  2969. struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
  2970. struct btrfs_path *path;
  2971. struct btrfs_key key;
  2972. int ret;
  2973. bool skinny = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
  2974. if (tree_block_processed(bytenr, rc))
  2975. return 0;
  2976. if (tree_search(blocks, bytenr))
  2977. return 0;
  2978. path = btrfs_alloc_path();
  2979. if (!path)
  2980. return -ENOMEM;
  2981. again:
  2982. key.objectid = bytenr;
  2983. if (skinny) {
  2984. key.type = BTRFS_METADATA_ITEM_KEY;
  2985. key.offset = (u64)-1;
  2986. } else {
  2987. key.type = BTRFS_EXTENT_ITEM_KEY;
  2988. key.offset = blocksize;
  2989. }
  2990. path->search_commit_root = 1;
  2991. path->skip_locking = 1;
  2992. ret = btrfs_search_slot(NULL, rc->extent_root, &key, path, 0, 0);
  2993. if (ret < 0)
  2994. goto out;
  2995. if (ret > 0 && skinny) {
  2996. if (path->slots[0]) {
  2997. path->slots[0]--;
  2998. btrfs_item_key_to_cpu(path->nodes[0], &key,
  2999. path->slots[0]);
  3000. if (key.objectid == bytenr &&
  3001. (key.type == BTRFS_METADATA_ITEM_KEY ||
  3002. (key.type == BTRFS_EXTENT_ITEM_KEY &&
  3003. key.offset == blocksize)))
  3004. ret = 0;
  3005. }
  3006. if (ret) {
  3007. skinny = false;
  3008. btrfs_release_path(path);
  3009. goto again;
  3010. }
  3011. }
  3012. if (ret) {
  3013. ASSERT(ret == 1);
  3014. btrfs_print_leaf(path->nodes[0]);
  3015. btrfs_err(fs_info,
  3016. "tree block extent item (%llu) is not found in extent tree",
  3017. bytenr);
  3018. WARN_ON(1);
  3019. ret = -EINVAL;
  3020. goto out;
  3021. }
  3022. ret = add_tree_block(rc, &key, path, blocks);
  3023. out:
  3024. btrfs_free_path(path);
  3025. return ret;
  3026. }
  3027. /*
  3028. * helper to check if the block use full backrefs for pointers in it
  3029. */
  3030. static int block_use_full_backref(struct reloc_control *rc,
  3031. struct extent_buffer *eb)
  3032. {
  3033. u64 flags;
  3034. int ret;
  3035. if (btrfs_header_flag(eb, BTRFS_HEADER_FLAG_RELOC) ||
  3036. btrfs_header_backref_rev(eb) < BTRFS_MIXED_BACKREF_REV)
  3037. return 1;
  3038. ret = btrfs_lookup_extent_info(NULL, rc->extent_root->fs_info,
  3039. eb->start, btrfs_header_level(eb), 1,
  3040. NULL, &flags);
  3041. BUG_ON(ret);
  3042. if (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)
  3043. ret = 1;
  3044. else
  3045. ret = 0;
  3046. return ret;
  3047. }
  3048. static int delete_block_group_cache(struct btrfs_fs_info *fs_info,
  3049. struct btrfs_block_group_cache *block_group,
  3050. struct inode *inode,
  3051. u64 ino)
  3052. {
  3053. struct btrfs_key key;
  3054. struct btrfs_root *root = fs_info->tree_root;
  3055. struct btrfs_trans_handle *trans;
  3056. int ret = 0;
  3057. if (inode)
  3058. goto truncate;
  3059. key.objectid = ino;
  3060. key.type = BTRFS_INODE_ITEM_KEY;
  3061. key.offset = 0;
  3062. inode = btrfs_iget(fs_info->sb, &key, root, NULL);
  3063. if (IS_ERR(inode))
  3064. return -ENOENT;
  3065. truncate:
  3066. ret = btrfs_check_trunc_cache_free_space(fs_info,
  3067. &fs_info->global_block_rsv);
  3068. if (ret)
  3069. goto out;
  3070. trans = btrfs_join_transaction(root);
  3071. if (IS_ERR(trans)) {
  3072. ret = PTR_ERR(trans);
  3073. goto out;
  3074. }
  3075. ret = btrfs_truncate_free_space_cache(trans, block_group, inode);
  3076. btrfs_end_transaction(trans);
  3077. btrfs_btree_balance_dirty(fs_info);
  3078. out:
  3079. iput(inode);
  3080. return ret;
  3081. }
  3082. /*
  3083. * helper to add tree blocks for backref of type BTRFS_EXTENT_DATA_REF_KEY
  3084. * this function scans fs tree to find blocks reference the data extent
  3085. */
  3086. static int find_data_references(struct reloc_control *rc,
  3087. struct btrfs_key *extent_key,
  3088. struct extent_buffer *leaf,
  3089. struct btrfs_extent_data_ref *ref,
  3090. struct rb_root *blocks)
  3091. {
  3092. struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
  3093. struct btrfs_path *path;
  3094. struct tree_block *block;
  3095. struct btrfs_root *root;
  3096. struct btrfs_file_extent_item *fi;
  3097. struct rb_node *rb_node;
  3098. struct btrfs_key key;
  3099. u64 ref_root;
  3100. u64 ref_objectid;
  3101. u64 ref_offset;
  3102. u32 ref_count;
  3103. u32 nritems;
  3104. int err = 0;
  3105. int added = 0;
  3106. int counted;
  3107. int ret;
  3108. ref_root = btrfs_extent_data_ref_root(leaf, ref);
  3109. ref_objectid = btrfs_extent_data_ref_objectid(leaf, ref);
  3110. ref_offset = btrfs_extent_data_ref_offset(leaf, ref);
  3111. ref_count = btrfs_extent_data_ref_count(leaf, ref);
  3112. /*
  3113. * This is an extent belonging to the free space cache, lets just delete
  3114. * it and redo the search.
  3115. */
  3116. if (ref_root == BTRFS_ROOT_TREE_OBJECTID) {
  3117. ret = delete_block_group_cache(fs_info, rc->block_group,
  3118. NULL, ref_objectid);
  3119. if (ret != -ENOENT)
  3120. return ret;
  3121. ret = 0;
  3122. }
  3123. path = btrfs_alloc_path();
  3124. if (!path)
  3125. return -ENOMEM;
  3126. path->reada = READA_FORWARD;
  3127. root = read_fs_root(fs_info, ref_root);
  3128. if (IS_ERR(root)) {
  3129. err = PTR_ERR(root);
  3130. goto out;
  3131. }
  3132. key.objectid = ref_objectid;
  3133. key.type = BTRFS_EXTENT_DATA_KEY;
  3134. if (ref_offset > ((u64)-1 << 32))
  3135. key.offset = 0;
  3136. else
  3137. key.offset = ref_offset;
  3138. path->search_commit_root = 1;
  3139. path->skip_locking = 1;
  3140. ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
  3141. if (ret < 0) {
  3142. err = ret;
  3143. goto out;
  3144. }
  3145. leaf = path->nodes[0];
  3146. nritems = btrfs_header_nritems(leaf);
  3147. /*
  3148. * the references in tree blocks that use full backrefs
  3149. * are not counted in
  3150. */
  3151. if (block_use_full_backref(rc, leaf))
  3152. counted = 0;
  3153. else
  3154. counted = 1;
  3155. rb_node = tree_search(blocks, leaf->start);
  3156. if (rb_node) {
  3157. if (counted)
  3158. added = 1;
  3159. else
  3160. path->slots[0] = nritems;
  3161. }
  3162. while (ref_count > 0) {
  3163. while (path->slots[0] >= nritems) {
  3164. ret = btrfs_next_leaf(root, path);
  3165. if (ret < 0) {
  3166. err = ret;
  3167. goto out;
  3168. }
  3169. if (WARN_ON(ret > 0))
  3170. goto out;
  3171. leaf = path->nodes[0];
  3172. nritems = btrfs_header_nritems(leaf);
  3173. added = 0;
  3174. if (block_use_full_backref(rc, leaf))
  3175. counted = 0;
  3176. else
  3177. counted = 1;
  3178. rb_node = tree_search(blocks, leaf->start);
  3179. if (rb_node) {
  3180. if (counted)
  3181. added = 1;
  3182. else
  3183. path->slots[0] = nritems;
  3184. }
  3185. }
  3186. btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
  3187. if (WARN_ON(key.objectid != ref_objectid ||
  3188. key.type != BTRFS_EXTENT_DATA_KEY))
  3189. break;
  3190. fi = btrfs_item_ptr(leaf, path->slots[0],
  3191. struct btrfs_file_extent_item);
  3192. if (btrfs_file_extent_type(leaf, fi) ==
  3193. BTRFS_FILE_EXTENT_INLINE)
  3194. goto next;
  3195. if (btrfs_file_extent_disk_bytenr(leaf, fi) !=
  3196. extent_key->objectid)
  3197. goto next;
  3198. key.offset -= btrfs_file_extent_offset(leaf, fi);
  3199. if (key.offset != ref_offset)
  3200. goto next;
  3201. if (counted)
  3202. ref_count--;
  3203. if (added)
  3204. goto next;
  3205. if (!tree_block_processed(leaf->start, rc)) {
  3206. block = kmalloc(sizeof(*block), GFP_NOFS);
  3207. if (!block) {
  3208. err = -ENOMEM;
  3209. break;
  3210. }
  3211. block->bytenr = leaf->start;
  3212. btrfs_item_key_to_cpu(leaf, &block->key, 0);
  3213. block->level = 0;
  3214. block->key_ready = 1;
  3215. rb_node = tree_insert(blocks, block->bytenr,
  3216. &block->rb_node);
  3217. if (rb_node)
  3218. backref_tree_panic(rb_node, -EEXIST,
  3219. block->bytenr);
  3220. }
  3221. if (counted)
  3222. added = 1;
  3223. else
  3224. path->slots[0] = nritems;
  3225. next:
  3226. path->slots[0]++;
  3227. }
  3228. out:
  3229. btrfs_free_path(path);
  3230. return err;
  3231. }
  3232. /*
  3233. * helper to find all tree blocks that reference a given data extent
  3234. */
  3235. static noinline_for_stack
  3236. int add_data_references(struct reloc_control *rc,
  3237. struct btrfs_key *extent_key,
  3238. struct btrfs_path *path,
  3239. struct rb_root *blocks)
  3240. {
  3241. struct btrfs_key key;
  3242. struct extent_buffer *eb;
  3243. struct btrfs_extent_data_ref *dref;
  3244. struct btrfs_extent_inline_ref *iref;
  3245. unsigned long ptr;
  3246. unsigned long end;
  3247. u32 blocksize = rc->extent_root->fs_info->nodesize;
  3248. int ret = 0;
  3249. int err = 0;
  3250. eb = path->nodes[0];
  3251. ptr = btrfs_item_ptr_offset(eb, path->slots[0]);
  3252. end = ptr + btrfs_item_size_nr(eb, path->slots[0]);
  3253. ptr += sizeof(struct btrfs_extent_item);
  3254. while (ptr < end) {
  3255. iref = (struct btrfs_extent_inline_ref *)ptr;
  3256. key.type = btrfs_get_extent_inline_ref_type(eb, iref,
  3257. BTRFS_REF_TYPE_DATA);
  3258. if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
  3259. key.offset = btrfs_extent_inline_ref_offset(eb, iref);
  3260. ret = __add_tree_block(rc, key.offset, blocksize,
  3261. blocks);
  3262. } else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
  3263. dref = (struct btrfs_extent_data_ref *)(&iref->offset);
  3264. ret = find_data_references(rc, extent_key,
  3265. eb, dref, blocks);
  3266. } else {
  3267. ret = -EUCLEAN;
  3268. btrfs_err(rc->extent_root->fs_info,
  3269. "extent %llu slot %d has an invalid inline ref type",
  3270. eb->start, path->slots[0]);
  3271. }
  3272. if (ret) {
  3273. err = ret;
  3274. goto out;
  3275. }
  3276. ptr += btrfs_extent_inline_ref_size(key.type);
  3277. }
  3278. WARN_ON(ptr > end);
  3279. while (1) {
  3280. cond_resched();
  3281. eb = path->nodes[0];
  3282. if (path->slots[0] >= btrfs_header_nritems(eb)) {
  3283. ret = btrfs_next_leaf(rc->extent_root, path);
  3284. if (ret < 0) {
  3285. err = ret;
  3286. break;
  3287. }
  3288. if (ret > 0)
  3289. break;
  3290. eb = path->nodes[0];
  3291. }
  3292. btrfs_item_key_to_cpu(eb, &key, path->slots[0]);
  3293. if (key.objectid != extent_key->objectid)
  3294. break;
  3295. if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
  3296. ret = __add_tree_block(rc, key.offset, blocksize,
  3297. blocks);
  3298. } else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
  3299. dref = btrfs_item_ptr(eb, path->slots[0],
  3300. struct btrfs_extent_data_ref);
  3301. ret = find_data_references(rc, extent_key,
  3302. eb, dref, blocks);
  3303. } else if (unlikely(key.type == BTRFS_EXTENT_REF_V0_KEY)) {
  3304. btrfs_print_v0_err(eb->fs_info);
  3305. btrfs_handle_fs_error(eb->fs_info, -EINVAL, NULL);
  3306. ret = -EINVAL;
  3307. } else {
  3308. ret = 0;
  3309. }
  3310. if (ret) {
  3311. err = ret;
  3312. break;
  3313. }
  3314. path->slots[0]++;
  3315. }
  3316. out:
  3317. btrfs_release_path(path);
  3318. if (err)
  3319. free_block_list(blocks);
  3320. return err;
  3321. }
  3322. /*
  3323. * helper to find next unprocessed extent
  3324. */
  3325. static noinline_for_stack
  3326. int find_next_extent(struct reloc_control *rc, struct btrfs_path *path,
  3327. struct btrfs_key *extent_key)
  3328. {
  3329. struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
  3330. struct btrfs_key key;
  3331. struct extent_buffer *leaf;
  3332. u64 start, end, last;
  3333. int ret;
  3334. last = rc->block_group->key.objectid + rc->block_group->key.offset;
  3335. while (1) {
  3336. cond_resched();
  3337. if (rc->search_start >= last) {
  3338. ret = 1;
  3339. break;
  3340. }
  3341. key.objectid = rc->search_start;
  3342. key.type = BTRFS_EXTENT_ITEM_KEY;
  3343. key.offset = 0;
  3344. path->search_commit_root = 1;
  3345. path->skip_locking = 1;
  3346. ret = btrfs_search_slot(NULL, rc->extent_root, &key, path,
  3347. 0, 0);
  3348. if (ret < 0)
  3349. break;
  3350. next:
  3351. leaf = path->nodes[0];
  3352. if (path->slots[0] >= btrfs_header_nritems(leaf)) {
  3353. ret = btrfs_next_leaf(rc->extent_root, path);
  3354. if (ret != 0)
  3355. break;
  3356. leaf = path->nodes[0];
  3357. }
  3358. btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
  3359. if (key.objectid >= last) {
  3360. ret = 1;
  3361. break;
  3362. }
  3363. if (key.type != BTRFS_EXTENT_ITEM_KEY &&
  3364. key.type != BTRFS_METADATA_ITEM_KEY) {
  3365. path->slots[0]++;
  3366. goto next;
  3367. }
  3368. if (key.type == BTRFS_EXTENT_ITEM_KEY &&
  3369. key.objectid + key.offset <= rc->search_start) {
  3370. path->slots[0]++;
  3371. goto next;
  3372. }
  3373. if (key.type == BTRFS_METADATA_ITEM_KEY &&
  3374. key.objectid + fs_info->nodesize <=
  3375. rc->search_start) {
  3376. path->slots[0]++;
  3377. goto next;
  3378. }
  3379. ret = find_first_extent_bit(&rc->processed_blocks,
  3380. key.objectid, &start, &end,
  3381. EXTENT_DIRTY, NULL);
  3382. if (ret == 0 && start <= key.objectid) {
  3383. btrfs_release_path(path);
  3384. rc->search_start = end + 1;
  3385. } else {
  3386. if (key.type == BTRFS_EXTENT_ITEM_KEY)
  3387. rc->search_start = key.objectid + key.offset;
  3388. else
  3389. rc->search_start = key.objectid +
  3390. fs_info->nodesize;
  3391. memcpy(extent_key, &key, sizeof(key));
  3392. return 0;
  3393. }
  3394. }
  3395. btrfs_release_path(path);
  3396. return ret;
  3397. }
  3398. static void set_reloc_control(struct reloc_control *rc)
  3399. {
  3400. struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
  3401. mutex_lock(&fs_info->reloc_mutex);
  3402. fs_info->reloc_ctl = rc;
  3403. mutex_unlock(&fs_info->reloc_mutex);
  3404. }
  3405. static void unset_reloc_control(struct reloc_control *rc)
  3406. {
  3407. struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
  3408. mutex_lock(&fs_info->reloc_mutex);
  3409. fs_info->reloc_ctl = NULL;
  3410. mutex_unlock(&fs_info->reloc_mutex);
  3411. }
  3412. static int check_extent_flags(u64 flags)
  3413. {
  3414. if ((flags & BTRFS_EXTENT_FLAG_DATA) &&
  3415. (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK))
  3416. return 1;
  3417. if (!(flags & BTRFS_EXTENT_FLAG_DATA) &&
  3418. !(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK))
  3419. return 1;
  3420. if ((flags & BTRFS_EXTENT_FLAG_DATA) &&
  3421. (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
  3422. return 1;
  3423. return 0;
  3424. }
  3425. static noinline_for_stack
  3426. int prepare_to_relocate(struct reloc_control *rc)
  3427. {
  3428. struct btrfs_trans_handle *trans;
  3429. int ret;
  3430. rc->block_rsv = btrfs_alloc_block_rsv(rc->extent_root->fs_info,
  3431. BTRFS_BLOCK_RSV_TEMP);
  3432. if (!rc->block_rsv)
  3433. return -ENOMEM;
  3434. memset(&rc->cluster, 0, sizeof(rc->cluster));
  3435. rc->search_start = rc->block_group->key.objectid;
  3436. rc->extents_found = 0;
  3437. rc->nodes_relocated = 0;
  3438. rc->merging_rsv_size = 0;
  3439. rc->reserved_bytes = 0;
  3440. rc->block_rsv->size = rc->extent_root->fs_info->nodesize *
  3441. RELOCATION_RESERVED_NODES;
  3442. ret = btrfs_block_rsv_refill(rc->extent_root,
  3443. rc->block_rsv, rc->block_rsv->size,
  3444. BTRFS_RESERVE_FLUSH_ALL);
  3445. if (ret)
  3446. return ret;
  3447. rc->create_reloc_tree = 1;
  3448. set_reloc_control(rc);
  3449. trans = btrfs_join_transaction(rc->extent_root);
  3450. if (IS_ERR(trans)) {
  3451. unset_reloc_control(rc);
  3452. /*
  3453. * extent tree is not a ref_cow tree and has no reloc_root to
  3454. * cleanup. And callers are responsible to free the above
  3455. * block rsv.
  3456. */
  3457. return PTR_ERR(trans);
  3458. }
  3459. btrfs_commit_transaction(trans);
  3460. return 0;
  3461. }
  3462. static noinline_for_stack int relocate_block_group(struct reloc_control *rc)
  3463. {
  3464. struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
  3465. struct rb_root blocks = RB_ROOT;
  3466. struct btrfs_key key;
  3467. struct btrfs_trans_handle *trans = NULL;
  3468. struct btrfs_path *path;
  3469. struct btrfs_extent_item *ei;
  3470. u64 flags;
  3471. u32 item_size;
  3472. int ret;
  3473. int err = 0;
  3474. int progress = 0;
  3475. path = btrfs_alloc_path();
  3476. if (!path)
  3477. return -ENOMEM;
  3478. path->reada = READA_FORWARD;
  3479. ret = prepare_to_relocate(rc);
  3480. if (ret) {
  3481. err = ret;
  3482. goto out_free;
  3483. }
  3484. while (1) {
  3485. rc->reserved_bytes = 0;
  3486. ret = btrfs_block_rsv_refill(rc->extent_root,
  3487. rc->block_rsv, rc->block_rsv->size,
  3488. BTRFS_RESERVE_FLUSH_ALL);
  3489. if (ret) {
  3490. err = ret;
  3491. break;
  3492. }
  3493. progress++;
  3494. trans = btrfs_start_transaction(rc->extent_root, 0);
  3495. if (IS_ERR(trans)) {
  3496. err = PTR_ERR(trans);
  3497. trans = NULL;
  3498. break;
  3499. }
  3500. restart:
  3501. if (update_backref_cache(trans, &rc->backref_cache)) {
  3502. btrfs_end_transaction(trans);
  3503. trans = NULL;
  3504. continue;
  3505. }
  3506. ret = find_next_extent(rc, path, &key);
  3507. if (ret < 0)
  3508. err = ret;
  3509. if (ret != 0)
  3510. break;
  3511. rc->extents_found++;
  3512. ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
  3513. struct btrfs_extent_item);
  3514. item_size = btrfs_item_size_nr(path->nodes[0], path->slots[0]);
  3515. if (item_size >= sizeof(*ei)) {
  3516. flags = btrfs_extent_flags(path->nodes[0], ei);
  3517. ret = check_extent_flags(flags);
  3518. BUG_ON(ret);
  3519. } else if (unlikely(item_size == sizeof(struct btrfs_extent_item_v0))) {
  3520. err = -EINVAL;
  3521. btrfs_print_v0_err(trans->fs_info);
  3522. btrfs_abort_transaction(trans, err);
  3523. break;
  3524. } else {
  3525. BUG();
  3526. }
  3527. if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
  3528. ret = add_tree_block(rc, &key, path, &blocks);
  3529. } else if (rc->stage == UPDATE_DATA_PTRS &&
  3530. (flags & BTRFS_EXTENT_FLAG_DATA)) {
  3531. ret = add_data_references(rc, &key, path, &blocks);
  3532. } else {
  3533. btrfs_release_path(path);
  3534. ret = 0;
  3535. }
  3536. if (ret < 0) {
  3537. err = ret;
  3538. break;
  3539. }
  3540. if (!RB_EMPTY_ROOT(&blocks)) {
  3541. ret = relocate_tree_blocks(trans, rc, &blocks);
  3542. if (ret < 0) {
  3543. /*
  3544. * if we fail to relocate tree blocks, force to update
  3545. * backref cache when committing transaction.
  3546. */
  3547. rc->backref_cache.last_trans = trans->transid - 1;
  3548. if (ret != -EAGAIN) {
  3549. err = ret;
  3550. break;
  3551. }
  3552. rc->extents_found--;
  3553. rc->search_start = key.objectid;
  3554. }
  3555. }
  3556. btrfs_end_transaction_throttle(trans);
  3557. btrfs_btree_balance_dirty(fs_info);
  3558. trans = NULL;
  3559. if (rc->stage == MOVE_DATA_EXTENTS &&
  3560. (flags & BTRFS_EXTENT_FLAG_DATA)) {
  3561. rc->found_file_extent = 1;
  3562. ret = relocate_data_extent(rc->data_inode,
  3563. &key, &rc->cluster);
  3564. if (ret < 0) {
  3565. err = ret;
  3566. break;
  3567. }
  3568. }
  3569. }
  3570. if (trans && progress && err == -ENOSPC) {
  3571. ret = btrfs_force_chunk_alloc(trans, rc->block_group->flags);
  3572. if (ret == 1) {
  3573. err = 0;
  3574. progress = 0;
  3575. goto restart;
  3576. }
  3577. }
  3578. btrfs_release_path(path);
  3579. clear_extent_bits(&rc->processed_blocks, 0, (u64)-1, EXTENT_DIRTY);
  3580. if (trans) {
  3581. btrfs_end_transaction_throttle(trans);
  3582. btrfs_btree_balance_dirty(fs_info);
  3583. }
  3584. if (!err) {
  3585. ret = relocate_file_extent_cluster(rc->data_inode,
  3586. &rc->cluster);
  3587. if (ret < 0)
  3588. err = ret;
  3589. }
  3590. rc->create_reloc_tree = 0;
  3591. set_reloc_control(rc);
  3592. backref_cache_cleanup(&rc->backref_cache);
  3593. btrfs_block_rsv_release(fs_info, rc->block_rsv, (u64)-1);
  3594. err = prepare_to_merge(rc, err);
  3595. merge_reloc_roots(rc);
  3596. rc->merge_reloc_tree = 0;
  3597. unset_reloc_control(rc);
  3598. btrfs_block_rsv_release(fs_info, rc->block_rsv, (u64)-1);
  3599. /* get rid of pinned extents */
  3600. trans = btrfs_join_transaction(rc->extent_root);
  3601. if (IS_ERR(trans)) {
  3602. err = PTR_ERR(trans);
  3603. goto out_free;
  3604. }
  3605. btrfs_commit_transaction(trans);
  3606. out_free:
  3607. btrfs_free_block_rsv(fs_info, rc->block_rsv);
  3608. btrfs_free_path(path);
  3609. return err;
  3610. }
  3611. static int __insert_orphan_inode(struct btrfs_trans_handle *trans,
  3612. struct btrfs_root *root, u64 objectid)
  3613. {
  3614. struct btrfs_path *path;
  3615. struct btrfs_inode_item *item;
  3616. struct extent_buffer *leaf;
  3617. int ret;
  3618. path = btrfs_alloc_path();
  3619. if (!path)
  3620. return -ENOMEM;
  3621. ret = btrfs_insert_empty_inode(trans, root, path, objectid);
  3622. if (ret)
  3623. goto out;
  3624. leaf = path->nodes[0];
  3625. item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_inode_item);
  3626. memzero_extent_buffer(leaf, (unsigned long)item, sizeof(*item));
  3627. btrfs_set_inode_generation(leaf, item, 1);
  3628. btrfs_set_inode_size(leaf, item, 0);
  3629. btrfs_set_inode_mode(leaf, item, S_IFREG | 0600);
  3630. btrfs_set_inode_flags(leaf, item, BTRFS_INODE_NOCOMPRESS |
  3631. BTRFS_INODE_PREALLOC);
  3632. btrfs_mark_buffer_dirty(leaf);
  3633. out:
  3634. btrfs_free_path(path);
  3635. return ret;
  3636. }
  3637. /*
  3638. * helper to create inode for data relocation.
  3639. * the inode is in data relocation tree and its link count is 0
  3640. */
  3641. static noinline_for_stack
  3642. struct inode *create_reloc_inode(struct btrfs_fs_info *fs_info,
  3643. struct btrfs_block_group_cache *group)
  3644. {
  3645. struct inode *inode = NULL;
  3646. struct btrfs_trans_handle *trans;
  3647. struct btrfs_root *root;
  3648. struct btrfs_key key;
  3649. u64 objectid;
  3650. int err = 0;
  3651. root = read_fs_root(fs_info, BTRFS_DATA_RELOC_TREE_OBJECTID);
  3652. if (IS_ERR(root))
  3653. return ERR_CAST(root);
  3654. trans = btrfs_start_transaction(root, 6);
  3655. if (IS_ERR(trans))
  3656. return ERR_CAST(trans);
  3657. err = btrfs_find_free_objectid(root, &objectid);
  3658. if (err)
  3659. goto out;
  3660. err = __insert_orphan_inode(trans, root, objectid);
  3661. BUG_ON(err);
  3662. key.objectid = objectid;
  3663. key.type = BTRFS_INODE_ITEM_KEY;
  3664. key.offset = 0;
  3665. inode = btrfs_iget(fs_info->sb, &key, root, NULL);
  3666. BUG_ON(IS_ERR(inode));
  3667. BTRFS_I(inode)->index_cnt = group->key.objectid;
  3668. err = btrfs_orphan_add(trans, BTRFS_I(inode));
  3669. out:
  3670. btrfs_end_transaction(trans);
  3671. btrfs_btree_balance_dirty(fs_info);
  3672. if (err) {
  3673. if (inode)
  3674. iput(inode);
  3675. inode = ERR_PTR(err);
  3676. }
  3677. return inode;
  3678. }
  3679. static struct reloc_control *alloc_reloc_control(void)
  3680. {
  3681. struct reloc_control *rc;
  3682. rc = kzalloc(sizeof(*rc), GFP_NOFS);
  3683. if (!rc)
  3684. return NULL;
  3685. INIT_LIST_HEAD(&rc->reloc_roots);
  3686. backref_cache_init(&rc->backref_cache);
  3687. mapping_tree_init(&rc->reloc_root_tree);
  3688. extent_io_tree_init(&rc->processed_blocks, NULL);
  3689. return rc;
  3690. }
  3691. /*
  3692. * Print the block group being relocated
  3693. */
  3694. static void describe_relocation(struct btrfs_fs_info *fs_info,
  3695. struct btrfs_block_group_cache *block_group)
  3696. {
  3697. char buf[128]; /* prefixed by a '|' that'll be dropped */
  3698. u64 flags = block_group->flags;
  3699. /* Shouldn't happen */
  3700. if (!flags) {
  3701. strcpy(buf, "|NONE");
  3702. } else {
  3703. char *bp = buf;
  3704. #define DESCRIBE_FLAG(f, d) \
  3705. if (flags & BTRFS_BLOCK_GROUP_##f) { \
  3706. bp += snprintf(bp, buf - bp + sizeof(buf), "|%s", d); \
  3707. flags &= ~BTRFS_BLOCK_GROUP_##f; \
  3708. }
  3709. DESCRIBE_FLAG(DATA, "data");
  3710. DESCRIBE_FLAG(SYSTEM, "system");
  3711. DESCRIBE_FLAG(METADATA, "metadata");
  3712. DESCRIBE_FLAG(RAID0, "raid0");
  3713. DESCRIBE_FLAG(RAID1, "raid1");
  3714. DESCRIBE_FLAG(DUP, "dup");
  3715. DESCRIBE_FLAG(RAID10, "raid10");
  3716. DESCRIBE_FLAG(RAID5, "raid5");
  3717. DESCRIBE_FLAG(RAID6, "raid6");
  3718. if (flags)
  3719. snprintf(bp, buf - bp + sizeof(buf), "|0x%llx", flags);
  3720. #undef DESCRIBE_FLAG
  3721. }
  3722. btrfs_info(fs_info,
  3723. "relocating block group %llu flags %s",
  3724. block_group->key.objectid, buf + 1);
  3725. }
  3726. /*
  3727. * function to relocate all extents in a block group.
  3728. */
  3729. int btrfs_relocate_block_group(struct btrfs_fs_info *fs_info, u64 group_start)
  3730. {
  3731. struct btrfs_root *extent_root = fs_info->extent_root;
  3732. struct reloc_control *rc;
  3733. struct inode *inode;
  3734. struct btrfs_path *path;
  3735. int ret;
  3736. int rw = 0;
  3737. int err = 0;
  3738. rc = alloc_reloc_control();
  3739. if (!rc)
  3740. return -ENOMEM;
  3741. rc->extent_root = extent_root;
  3742. rc->block_group = btrfs_lookup_block_group(fs_info, group_start);
  3743. BUG_ON(!rc->block_group);
  3744. ret = btrfs_inc_block_group_ro(rc->block_group);
  3745. if (ret) {
  3746. err = ret;
  3747. goto out;
  3748. }
  3749. rw = 1;
  3750. path = btrfs_alloc_path();
  3751. if (!path) {
  3752. err = -ENOMEM;
  3753. goto out;
  3754. }
  3755. inode = lookup_free_space_inode(fs_info, rc->block_group, path);
  3756. btrfs_free_path(path);
  3757. if (!IS_ERR(inode))
  3758. ret = delete_block_group_cache(fs_info, rc->block_group, inode, 0);
  3759. else
  3760. ret = PTR_ERR(inode);
  3761. if (ret && ret != -ENOENT) {
  3762. err = ret;
  3763. goto out;
  3764. }
  3765. rc->data_inode = create_reloc_inode(fs_info, rc->block_group);
  3766. if (IS_ERR(rc->data_inode)) {
  3767. err = PTR_ERR(rc->data_inode);
  3768. rc->data_inode = NULL;
  3769. goto out;
  3770. }
  3771. describe_relocation(fs_info, rc->block_group);
  3772. btrfs_wait_block_group_reservations(rc->block_group);
  3773. btrfs_wait_nocow_writers(rc->block_group);
  3774. btrfs_wait_ordered_roots(fs_info, U64_MAX,
  3775. rc->block_group->key.objectid,
  3776. rc->block_group->key.offset);
  3777. while (1) {
  3778. mutex_lock(&fs_info->cleaner_mutex);
  3779. ret = relocate_block_group(rc);
  3780. mutex_unlock(&fs_info->cleaner_mutex);
  3781. if (ret < 0)
  3782. err = ret;
  3783. /*
  3784. * We may have gotten ENOSPC after we already dirtied some
  3785. * extents. If writeout happens while we're relocating a
  3786. * different block group we could end up hitting the
  3787. * BUG_ON(rc->stage == UPDATE_DATA_PTRS) in
  3788. * btrfs_reloc_cow_block. Make sure we write everything out
  3789. * properly so we don't trip over this problem, and then break
  3790. * out of the loop if we hit an error.
  3791. */
  3792. if (rc->stage == MOVE_DATA_EXTENTS && rc->found_file_extent) {
  3793. ret = btrfs_wait_ordered_range(rc->data_inode, 0,
  3794. (u64)-1);
  3795. if (ret)
  3796. err = ret;
  3797. invalidate_mapping_pages(rc->data_inode->i_mapping,
  3798. 0, -1);
  3799. rc->stage = UPDATE_DATA_PTRS;
  3800. }
  3801. if (err < 0)
  3802. goto out;
  3803. if (rc->extents_found == 0)
  3804. break;
  3805. btrfs_info(fs_info, "found %llu extents", rc->extents_found);
  3806. }
  3807. WARN_ON(rc->block_group->pinned > 0);
  3808. WARN_ON(rc->block_group->reserved > 0);
  3809. WARN_ON(btrfs_block_group_used(&rc->block_group->item) > 0);
  3810. out:
  3811. if (err && rw)
  3812. btrfs_dec_block_group_ro(rc->block_group);
  3813. iput(rc->data_inode);
  3814. btrfs_put_block_group(rc->block_group);
  3815. kfree(rc);
  3816. return err;
  3817. }
  3818. static noinline_for_stack int mark_garbage_root(struct btrfs_root *root)
  3819. {
  3820. struct btrfs_fs_info *fs_info = root->fs_info;
  3821. struct btrfs_trans_handle *trans;
  3822. int ret, err;
  3823. trans = btrfs_start_transaction(fs_info->tree_root, 0);
  3824. if (IS_ERR(trans))
  3825. return PTR_ERR(trans);
  3826. memset(&root->root_item.drop_progress, 0,
  3827. sizeof(root->root_item.drop_progress));
  3828. root->root_item.drop_level = 0;
  3829. btrfs_set_root_refs(&root->root_item, 0);
  3830. ret = btrfs_update_root(trans, fs_info->tree_root,
  3831. &root->root_key, &root->root_item);
  3832. err = btrfs_end_transaction(trans);
  3833. if (err)
  3834. return err;
  3835. return ret;
  3836. }
  3837. /*
  3838. * recover relocation interrupted by system crash.
  3839. *
  3840. * this function resumes merging reloc trees with corresponding fs trees.
  3841. * this is important for keeping the sharing of tree blocks
  3842. */
  3843. int btrfs_recover_relocation(struct btrfs_root *root)
  3844. {
  3845. struct btrfs_fs_info *fs_info = root->fs_info;
  3846. LIST_HEAD(reloc_roots);
  3847. struct btrfs_key key;
  3848. struct btrfs_root *fs_root;
  3849. struct btrfs_root *reloc_root;
  3850. struct btrfs_path *path;
  3851. struct extent_buffer *leaf;
  3852. struct reloc_control *rc = NULL;
  3853. struct btrfs_trans_handle *trans;
  3854. int ret;
  3855. int err = 0;
  3856. path = btrfs_alloc_path();
  3857. if (!path)
  3858. return -ENOMEM;
  3859. path->reada = READA_BACK;
  3860. key.objectid = BTRFS_TREE_RELOC_OBJECTID;
  3861. key.type = BTRFS_ROOT_ITEM_KEY;
  3862. key.offset = (u64)-1;
  3863. while (1) {
  3864. ret = btrfs_search_slot(NULL, fs_info->tree_root, &key,
  3865. path, 0, 0);
  3866. if (ret < 0) {
  3867. err = ret;
  3868. goto out;
  3869. }
  3870. if (ret > 0) {
  3871. if (path->slots[0] == 0)
  3872. break;
  3873. path->slots[0]--;
  3874. }
  3875. leaf = path->nodes[0];
  3876. btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
  3877. btrfs_release_path(path);
  3878. if (key.objectid != BTRFS_TREE_RELOC_OBJECTID ||
  3879. key.type != BTRFS_ROOT_ITEM_KEY)
  3880. break;
  3881. reloc_root = btrfs_read_fs_root(root, &key);
  3882. if (IS_ERR(reloc_root)) {
  3883. err = PTR_ERR(reloc_root);
  3884. goto out;
  3885. }
  3886. list_add(&reloc_root->root_list, &reloc_roots);
  3887. if (btrfs_root_refs(&reloc_root->root_item) > 0) {
  3888. fs_root = read_fs_root(fs_info,
  3889. reloc_root->root_key.offset);
  3890. if (IS_ERR(fs_root)) {
  3891. ret = PTR_ERR(fs_root);
  3892. if (ret != -ENOENT) {
  3893. err = ret;
  3894. goto out;
  3895. }
  3896. ret = mark_garbage_root(reloc_root);
  3897. if (ret < 0) {
  3898. err = ret;
  3899. goto out;
  3900. }
  3901. }
  3902. }
  3903. if (key.offset == 0)
  3904. break;
  3905. key.offset--;
  3906. }
  3907. btrfs_release_path(path);
  3908. if (list_empty(&reloc_roots))
  3909. goto out;
  3910. rc = alloc_reloc_control();
  3911. if (!rc) {
  3912. err = -ENOMEM;
  3913. goto out;
  3914. }
  3915. rc->extent_root = fs_info->extent_root;
  3916. set_reloc_control(rc);
  3917. trans = btrfs_join_transaction(rc->extent_root);
  3918. if (IS_ERR(trans)) {
  3919. unset_reloc_control(rc);
  3920. err = PTR_ERR(trans);
  3921. goto out_free;
  3922. }
  3923. rc->merge_reloc_tree = 1;
  3924. while (!list_empty(&reloc_roots)) {
  3925. reloc_root = list_entry(reloc_roots.next,
  3926. struct btrfs_root, root_list);
  3927. list_del(&reloc_root->root_list);
  3928. if (btrfs_root_refs(&reloc_root->root_item) == 0) {
  3929. list_add_tail(&reloc_root->root_list,
  3930. &rc->reloc_roots);
  3931. continue;
  3932. }
  3933. fs_root = read_fs_root(fs_info, reloc_root->root_key.offset);
  3934. if (IS_ERR(fs_root)) {
  3935. err = PTR_ERR(fs_root);
  3936. list_add_tail(&reloc_root->root_list, &reloc_roots);
  3937. goto out_free;
  3938. }
  3939. err = __add_reloc_root(reloc_root);
  3940. BUG_ON(err < 0); /* -ENOMEM or logic error */
  3941. fs_root->reloc_root = reloc_root;
  3942. }
  3943. err = btrfs_commit_transaction(trans);
  3944. if (err)
  3945. goto out_free;
  3946. merge_reloc_roots(rc);
  3947. unset_reloc_control(rc);
  3948. trans = btrfs_join_transaction(rc->extent_root);
  3949. if (IS_ERR(trans)) {
  3950. err = PTR_ERR(trans);
  3951. goto out_free;
  3952. }
  3953. err = btrfs_commit_transaction(trans);
  3954. out_free:
  3955. kfree(rc);
  3956. out:
  3957. if (!list_empty(&reloc_roots))
  3958. free_reloc_roots(&reloc_roots);
  3959. btrfs_free_path(path);
  3960. if (err == 0) {
  3961. /* cleanup orphan inode in data relocation tree */
  3962. fs_root = read_fs_root(fs_info, BTRFS_DATA_RELOC_TREE_OBJECTID);
  3963. if (IS_ERR(fs_root))
  3964. err = PTR_ERR(fs_root);
  3965. else
  3966. err = btrfs_orphan_cleanup(fs_root);
  3967. }
  3968. return err;
  3969. }
  3970. /*
  3971. * helper to add ordered checksum for data relocation.
  3972. *
  3973. * cloning checksum properly handles the nodatasum extents.
  3974. * it also saves CPU time to re-calculate the checksum.
  3975. */
  3976. int btrfs_reloc_clone_csums(struct inode *inode, u64 file_pos, u64 len)
  3977. {
  3978. struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
  3979. struct btrfs_ordered_sum *sums;
  3980. struct btrfs_ordered_extent *ordered;
  3981. int ret;
  3982. u64 disk_bytenr;
  3983. u64 new_bytenr;
  3984. LIST_HEAD(list);
  3985. ordered = btrfs_lookup_ordered_extent(inode, file_pos);
  3986. BUG_ON(ordered->file_offset != file_pos || ordered->len != len);
  3987. disk_bytenr = file_pos + BTRFS_I(inode)->index_cnt;
  3988. ret = btrfs_lookup_csums_range(fs_info->csum_root, disk_bytenr,
  3989. disk_bytenr + len - 1, &list, 0);
  3990. if (ret)
  3991. goto out;
  3992. while (!list_empty(&list)) {
  3993. sums = list_entry(list.next, struct btrfs_ordered_sum, list);
  3994. list_del_init(&sums->list);
  3995. /*
  3996. * We need to offset the new_bytenr based on where the csum is.
  3997. * We need to do this because we will read in entire prealloc
  3998. * extents but we may have written to say the middle of the
  3999. * prealloc extent, so we need to make sure the csum goes with
  4000. * the right disk offset.
  4001. *
  4002. * We can do this because the data reloc inode refers strictly
  4003. * to the on disk bytes, so we don't have to worry about
  4004. * disk_len vs real len like with real inodes since it's all
  4005. * disk length.
  4006. */
  4007. new_bytenr = ordered->start + (sums->bytenr - disk_bytenr);
  4008. sums->bytenr = new_bytenr;
  4009. btrfs_add_ordered_sum(inode, ordered, sums);
  4010. }
  4011. out:
  4012. btrfs_put_ordered_extent(ordered);
  4013. return ret;
  4014. }
  4015. int btrfs_reloc_cow_block(struct btrfs_trans_handle *trans,
  4016. struct btrfs_root *root, struct extent_buffer *buf,
  4017. struct extent_buffer *cow)
  4018. {
  4019. struct btrfs_fs_info *fs_info = root->fs_info;
  4020. struct reloc_control *rc;
  4021. struct backref_node *node;
  4022. int first_cow = 0;
  4023. int level;
  4024. int ret = 0;
  4025. rc = fs_info->reloc_ctl;
  4026. if (!rc)
  4027. return 0;
  4028. BUG_ON(rc->stage == UPDATE_DATA_PTRS &&
  4029. root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID);
  4030. level = btrfs_header_level(buf);
  4031. if (btrfs_header_generation(buf) <=
  4032. btrfs_root_last_snapshot(&root->root_item))
  4033. first_cow = 1;
  4034. if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID &&
  4035. rc->create_reloc_tree) {
  4036. WARN_ON(!first_cow && level == 0);
  4037. node = rc->backref_cache.path[level];
  4038. BUG_ON(node->bytenr != buf->start &&
  4039. node->new_bytenr != buf->start);
  4040. drop_node_buffer(node);
  4041. extent_buffer_get(cow);
  4042. node->eb = cow;
  4043. node->new_bytenr = cow->start;
  4044. if (!node->pending) {
  4045. list_move_tail(&node->list,
  4046. &rc->backref_cache.pending[level]);
  4047. node->pending = 1;
  4048. }
  4049. if (first_cow)
  4050. __mark_block_processed(rc, node);
  4051. if (first_cow && level > 0)
  4052. rc->nodes_relocated += buf->len;
  4053. }
  4054. if (level == 0 && first_cow && rc->stage == UPDATE_DATA_PTRS)
  4055. ret = replace_file_extents(trans, rc, root, cow);
  4056. return ret;
  4057. }
  4058. /*
  4059. * called before creating snapshot. it calculates metadata reservation
  4060. * required for relocating tree blocks in the snapshot
  4061. */
  4062. void btrfs_reloc_pre_snapshot(struct btrfs_pending_snapshot *pending,
  4063. u64 *bytes_to_reserve)
  4064. {
  4065. struct btrfs_root *root;
  4066. struct reloc_control *rc;
  4067. root = pending->root;
  4068. if (!root->reloc_root)
  4069. return;
  4070. rc = root->fs_info->reloc_ctl;
  4071. if (!rc->merge_reloc_tree)
  4072. return;
  4073. root = root->reloc_root;
  4074. BUG_ON(btrfs_root_refs(&root->root_item) == 0);
  4075. /*
  4076. * relocation is in the stage of merging trees. the space
  4077. * used by merging a reloc tree is twice the size of
  4078. * relocated tree nodes in the worst case. half for cowing
  4079. * the reloc tree, half for cowing the fs tree. the space
  4080. * used by cowing the reloc tree will be freed after the
  4081. * tree is dropped. if we create snapshot, cowing the fs
  4082. * tree may use more space than it frees. so we need
  4083. * reserve extra space.
  4084. */
  4085. *bytes_to_reserve += rc->nodes_relocated;
  4086. }
  4087. /*
  4088. * called after snapshot is created. migrate block reservation
  4089. * and create reloc root for the newly created snapshot
  4090. */
  4091. int btrfs_reloc_post_snapshot(struct btrfs_trans_handle *trans,
  4092. struct btrfs_pending_snapshot *pending)
  4093. {
  4094. struct btrfs_root *root = pending->root;
  4095. struct btrfs_root *reloc_root;
  4096. struct btrfs_root *new_root;
  4097. struct reloc_control *rc;
  4098. int ret;
  4099. if (!root->reloc_root)
  4100. return 0;
  4101. rc = root->fs_info->reloc_ctl;
  4102. rc->merging_rsv_size += rc->nodes_relocated;
  4103. if (rc->merge_reloc_tree) {
  4104. ret = btrfs_block_rsv_migrate(&pending->block_rsv,
  4105. rc->block_rsv,
  4106. rc->nodes_relocated, 1);
  4107. if (ret)
  4108. return ret;
  4109. }
  4110. new_root = pending->snap;
  4111. reloc_root = create_reloc_root(trans, root->reloc_root,
  4112. new_root->root_key.objectid);
  4113. if (IS_ERR(reloc_root))
  4114. return PTR_ERR(reloc_root);
  4115. ret = __add_reloc_root(reloc_root);
  4116. BUG_ON(ret < 0);
  4117. new_root->reloc_root = reloc_root;
  4118. if (rc->create_reloc_tree)
  4119. ret = clone_backref_node(trans, rc, root, reloc_root);
  4120. return ret;
  4121. }