| 1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238 | /* * Block multiqueue core code * * Copyright (C) 2013-2014 Jens Axboe * Copyright (C) 2013-2014 Christoph Hellwig */#include <linux/kernel.h>#include <linux/module.h>#include <linux/backing-dev.h>#include <linux/bio.h>#include <linux/blkdev.h>#include <linux/kmemleak.h>#include <linux/mm.h>#include <linux/init.h>#include <linux/slab.h>#include <linux/workqueue.h>#include <linux/smp.h>#include <linux/llist.h>#include <linux/list_sort.h>#include <linux/cpu.h>#include <linux/cache.h>#include <linux/sched/sysctl.h>#include <linux/sched/topology.h>#include <linux/sched/signal.h>#include <linux/delay.h>#include <linux/crash_dump.h>#include <linux/prefetch.h>#include <trace/events/block.h>#include <linux/blk-mq.h>#include "blk.h"#include "blk-mq.h"#include "blk-mq-debugfs.h"#include "blk-mq-tag.h"#include "blk-stat.h"#include "blk-mq-sched.h"#include "blk-rq-qos.h"static bool blk_mq_poll(struct request_queue *q, blk_qc_t cookie);static void blk_mq_poll_stats_start(struct request_queue *q);static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb);static int blk_mq_poll_stats_bkt(const struct request *rq){	int ddir, bytes, bucket;	ddir = rq_data_dir(rq);	bytes = blk_rq_bytes(rq);	bucket = ddir + 2*(ilog2(bytes) - 9);	if (bucket < 0)		return -1;	else if (bucket >= BLK_MQ_POLL_STATS_BKTS)		return ddir + BLK_MQ_POLL_STATS_BKTS - 2;	return bucket;}/* * Check if any of the ctx's have pending work in this hardware queue */static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx){	return !list_empty_careful(&hctx->dispatch) ||		sbitmap_any_bit_set(&hctx->ctx_map) ||			blk_mq_sched_has_work(hctx);}/* * Mark this ctx as having pending work in this hardware queue */static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,				     struct blk_mq_ctx *ctx){	if (!sbitmap_test_bit(&hctx->ctx_map, ctx->index_hw))		sbitmap_set_bit(&hctx->ctx_map, ctx->index_hw);}static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,				      struct blk_mq_ctx *ctx){	sbitmap_clear_bit(&hctx->ctx_map, ctx->index_hw);}struct mq_inflight {	struct hd_struct *part;	unsigned int *inflight;};static void blk_mq_check_inflight(struct blk_mq_hw_ctx *hctx,				  struct request *rq, void *priv,				  bool reserved){	struct mq_inflight *mi = priv;	/*	 * index[0] counts the specific partition that was asked for. index[1]	 * counts the ones that are active on the whole device, so increment	 * that if mi->part is indeed a partition, and not a whole device.	 */	if (rq->part == mi->part)		mi->inflight[0]++;	if (mi->part->partno)		mi->inflight[1]++;}void blk_mq_in_flight(struct request_queue *q, struct hd_struct *part,		      unsigned int inflight[2]){	struct mq_inflight mi = { .part = part, .inflight = inflight, };	inflight[0] = inflight[1] = 0;	blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);}static void blk_mq_check_inflight_rw(struct blk_mq_hw_ctx *hctx,				     struct request *rq, void *priv,				     bool reserved){	struct mq_inflight *mi = priv;	if (rq->part == mi->part)		mi->inflight[rq_data_dir(rq)]++;}void blk_mq_in_flight_rw(struct request_queue *q, struct hd_struct *part,			 unsigned int inflight[2]){	struct mq_inflight mi = { .part = part, .inflight = inflight, };	inflight[0] = inflight[1] = 0;	blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight_rw, &mi);}void blk_freeze_queue_start(struct request_queue *q){	int freeze_depth;	freeze_depth = atomic_inc_return(&q->mq_freeze_depth);	if (freeze_depth == 1) {		percpu_ref_kill(&q->q_usage_counter);		if (q->mq_ops)			blk_mq_run_hw_queues(q, false);	}}EXPORT_SYMBOL_GPL(blk_freeze_queue_start);void blk_mq_freeze_queue_wait(struct request_queue *q){	wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));}EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait);int blk_mq_freeze_queue_wait_timeout(struct request_queue *q,				     unsigned long timeout){	return wait_event_timeout(q->mq_freeze_wq,					percpu_ref_is_zero(&q->q_usage_counter),					timeout);}EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout);/* * Guarantee no request is in use, so we can change any data structure of * the queue afterward. */void blk_freeze_queue(struct request_queue *q){	/*	 * In the !blk_mq case we are only calling this to kill the	 * q_usage_counter, otherwise this increases the freeze depth	 * and waits for it to return to zero.  For this reason there is	 * no blk_unfreeze_queue(), and blk_freeze_queue() is not	 * exported to drivers as the only user for unfreeze is blk_mq.	 */	blk_freeze_queue_start(q);	if (!q->mq_ops)		blk_drain_queue(q);	blk_mq_freeze_queue_wait(q);}void blk_mq_freeze_queue(struct request_queue *q){	/*	 * ...just an alias to keep freeze and unfreeze actions balanced	 * in the blk_mq_* namespace	 */	blk_freeze_queue(q);}EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);void blk_mq_unfreeze_queue(struct request_queue *q){	int freeze_depth;	freeze_depth = atomic_dec_return(&q->mq_freeze_depth);	WARN_ON_ONCE(freeze_depth < 0);	if (!freeze_depth) {		percpu_ref_reinit(&q->q_usage_counter);		wake_up_all(&q->mq_freeze_wq);	}}EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);/* * FIXME: replace the scsi_internal_device_*block_nowait() calls in the * mpt3sas driver such that this function can be removed. */void blk_mq_quiesce_queue_nowait(struct request_queue *q){	blk_queue_flag_set(QUEUE_FLAG_QUIESCED, q);}EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue_nowait);/** * blk_mq_quiesce_queue() - wait until all ongoing dispatches have finished * @q: request queue. * * Note: this function does not prevent that the struct request end_io() * callback function is invoked. Once this function is returned, we make * sure no dispatch can happen until the queue is unquiesced via * blk_mq_unquiesce_queue(). */void blk_mq_quiesce_queue(struct request_queue *q){	struct blk_mq_hw_ctx *hctx;	unsigned int i;	bool rcu = false;	blk_mq_quiesce_queue_nowait(q);	queue_for_each_hw_ctx(q, hctx, i) {		if (hctx->flags & BLK_MQ_F_BLOCKING)			synchronize_srcu(hctx->srcu);		else			rcu = true;	}	if (rcu)		synchronize_rcu();}EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue);/* * blk_mq_unquiesce_queue() - counterpart of blk_mq_quiesce_queue() * @q: request queue. * * This function recovers queue into the state before quiescing * which is done by blk_mq_quiesce_queue. */void blk_mq_unquiesce_queue(struct request_queue *q){	blk_queue_flag_clear(QUEUE_FLAG_QUIESCED, q);	/* dispatch requests which are inserted during quiescing */	blk_mq_run_hw_queues(q, true);}EXPORT_SYMBOL_GPL(blk_mq_unquiesce_queue);void blk_mq_wake_waiters(struct request_queue *q){	struct blk_mq_hw_ctx *hctx;	unsigned int i;	queue_for_each_hw_ctx(q, hctx, i)		if (blk_mq_hw_queue_mapped(hctx))			blk_mq_tag_wakeup_all(hctx->tags, true);}bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx){	return blk_mq_has_free_tags(hctx->tags);}EXPORT_SYMBOL(blk_mq_can_queue);static struct request *blk_mq_rq_ctx_init(struct blk_mq_alloc_data *data,		unsigned int tag, unsigned int op){	struct blk_mq_tags *tags = blk_mq_tags_from_data(data);	struct request *rq = tags->static_rqs[tag];	req_flags_t rq_flags = 0;	if (data->flags & BLK_MQ_REQ_INTERNAL) {		rq->tag = -1;		rq->internal_tag = tag;	} else {		if (data->hctx->flags & BLK_MQ_F_TAG_SHARED) {			rq_flags = RQF_MQ_INFLIGHT;			atomic_inc(&data->hctx->nr_active);		}		rq->tag = tag;		rq->internal_tag = -1;		data->hctx->tags->rqs[rq->tag] = rq;	}	/* csd/requeue_work/fifo_time is initialized before use */	rq->q = data->q;	rq->mq_ctx = data->ctx;	rq->rq_flags = rq_flags;	rq->cpu = -1;	rq->cmd_flags = op;	if (data->flags & BLK_MQ_REQ_PREEMPT)		rq->rq_flags |= RQF_PREEMPT;	if (blk_queue_io_stat(data->q))		rq->rq_flags |= RQF_IO_STAT;	INIT_LIST_HEAD(&rq->queuelist);	INIT_HLIST_NODE(&rq->hash);	RB_CLEAR_NODE(&rq->rb_node);	rq->rq_disk = NULL;	rq->part = NULL;	rq->start_time_ns = ktime_get_ns();	rq->io_start_time_ns = 0;	rq->nr_phys_segments = 0;#if defined(CONFIG_BLK_DEV_INTEGRITY)	rq->nr_integrity_segments = 0;#endif	rq->special = NULL;	/* tag was already set */	rq->extra_len = 0;	rq->__deadline = 0;	INIT_LIST_HEAD(&rq->timeout_list);	rq->timeout = 0;	rq->end_io = NULL;	rq->end_io_data = NULL;	rq->next_rq = NULL;#ifdef CONFIG_BLK_CGROUP	rq->rl = NULL;#endif	data->ctx->rq_dispatched[op_is_sync(op)]++;	refcount_set(&rq->ref, 1);	return rq;}static struct request *blk_mq_get_request(struct request_queue *q,		struct bio *bio, unsigned int op,		struct blk_mq_alloc_data *data){	struct elevator_queue *e = q->elevator;	struct request *rq;	unsigned int tag;	bool put_ctx_on_error = false;	blk_queue_enter_live(q);	data->q = q;	if (likely(!data->ctx)) {		data->ctx = blk_mq_get_ctx(q);		put_ctx_on_error = true;	}	if (likely(!data->hctx))		data->hctx = blk_mq_map_queue(q, data->ctx->cpu);	if (op & REQ_NOWAIT)		data->flags |= BLK_MQ_REQ_NOWAIT;	if (e) {		data->flags |= BLK_MQ_REQ_INTERNAL;		/*		 * Flush requests are special and go directly to the		 * dispatch list. Don't include reserved tags in the		 * limiting, as it isn't useful.		 */		if (!op_is_flush(op) && e->type->ops.mq.limit_depth &&		    !(data->flags & BLK_MQ_REQ_RESERVED))			e->type->ops.mq.limit_depth(op, data);	} else {		blk_mq_tag_busy(data->hctx);	}	tag = blk_mq_get_tag(data);	if (tag == BLK_MQ_TAG_FAIL) {		if (put_ctx_on_error) {			blk_mq_put_ctx(data->ctx);			data->ctx = NULL;		}		blk_queue_exit(q);		return NULL;	}	rq = blk_mq_rq_ctx_init(data, tag, op);	if (!op_is_flush(op)) {		rq->elv.icq = NULL;		if (e && e->type->ops.mq.prepare_request) {			if (e->type->icq_cache && rq_ioc(bio))				blk_mq_sched_assign_ioc(rq, bio);			e->type->ops.mq.prepare_request(rq, bio);			rq->rq_flags |= RQF_ELVPRIV;		}	}	data->hctx->queued++;	return rq;}struct request *blk_mq_alloc_request(struct request_queue *q, unsigned int op,		blk_mq_req_flags_t flags){	struct blk_mq_alloc_data alloc_data = { .flags = flags };	struct request *rq;	int ret;	ret = blk_queue_enter(q, flags);	if (ret)		return ERR_PTR(ret);	rq = blk_mq_get_request(q, NULL, op, &alloc_data);	blk_queue_exit(q);	if (!rq)		return ERR_PTR(-EWOULDBLOCK);	blk_mq_put_ctx(alloc_data.ctx);	rq->__data_len = 0;	rq->__sector = (sector_t) -1;	rq->bio = rq->biotail = NULL;	return rq;}EXPORT_SYMBOL(blk_mq_alloc_request);struct request *blk_mq_alloc_request_hctx(struct request_queue *q,	unsigned int op, blk_mq_req_flags_t flags, unsigned int hctx_idx){	struct blk_mq_alloc_data alloc_data = { .flags = flags };	struct request *rq;	unsigned int cpu;	int ret;	/*	 * If the tag allocator sleeps we could get an allocation for a	 * different hardware context.  No need to complicate the low level	 * allocator for this for the rare use case of a command tied to	 * a specific queue.	 */	if (WARN_ON_ONCE(!(flags & BLK_MQ_REQ_NOWAIT)))		return ERR_PTR(-EINVAL);	if (hctx_idx >= q->nr_hw_queues)		return ERR_PTR(-EIO);	ret = blk_queue_enter(q, flags);	if (ret)		return ERR_PTR(ret);	/*	 * Check if the hardware context is actually mapped to anything.	 * If not tell the caller that it should skip this queue.	 */	alloc_data.hctx = q->queue_hw_ctx[hctx_idx];	if (!blk_mq_hw_queue_mapped(alloc_data.hctx)) {		blk_queue_exit(q);		return ERR_PTR(-EXDEV);	}	cpu = cpumask_first_and(alloc_data.hctx->cpumask, cpu_online_mask);	alloc_data.ctx = __blk_mq_get_ctx(q, cpu);	rq = blk_mq_get_request(q, NULL, op, &alloc_data);	blk_queue_exit(q);	if (!rq)		return ERR_PTR(-EWOULDBLOCK);	return rq;}EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);static void __blk_mq_free_request(struct request *rq){	struct request_queue *q = rq->q;	struct blk_mq_ctx *ctx = rq->mq_ctx;	struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, ctx->cpu);	const int sched_tag = rq->internal_tag;	if (rq->tag != -1)		blk_mq_put_tag(hctx, hctx->tags, ctx, rq->tag);	if (sched_tag != -1)		blk_mq_put_tag(hctx, hctx->sched_tags, ctx, sched_tag);	blk_mq_sched_restart(hctx);	blk_queue_exit(q);}void blk_mq_free_request(struct request *rq){	struct request_queue *q = rq->q;	struct elevator_queue *e = q->elevator;	struct blk_mq_ctx *ctx = rq->mq_ctx;	struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, ctx->cpu);	if (rq->rq_flags & RQF_ELVPRIV) {		if (e && e->type->ops.mq.finish_request)			e->type->ops.mq.finish_request(rq);		if (rq->elv.icq) {			put_io_context(rq->elv.icq->ioc);			rq->elv.icq = NULL;		}	}	ctx->rq_completed[rq_is_sync(rq)]++;	if (rq->rq_flags & RQF_MQ_INFLIGHT)		atomic_dec(&hctx->nr_active);	if (unlikely(laptop_mode && !blk_rq_is_passthrough(rq)))		laptop_io_completion(q->backing_dev_info);	rq_qos_done(q, rq);	if (blk_rq_rl(rq))		blk_put_rl(blk_rq_rl(rq));	WRITE_ONCE(rq->state, MQ_RQ_IDLE);	if (refcount_dec_and_test(&rq->ref))		__blk_mq_free_request(rq);}EXPORT_SYMBOL_GPL(blk_mq_free_request);inline void __blk_mq_end_request(struct request *rq, blk_status_t error){	u64 now = ktime_get_ns();	if (rq->rq_flags & RQF_STATS) {		blk_mq_poll_stats_start(rq->q);		blk_stat_add(rq, now);	}	blk_account_io_done(rq, now);	if (rq->end_io) {		rq_qos_done(rq->q, rq);		rq->end_io(rq, error);	} else {		if (unlikely(blk_bidi_rq(rq)))			blk_mq_free_request(rq->next_rq);		blk_mq_free_request(rq);	}}EXPORT_SYMBOL(__blk_mq_end_request);void blk_mq_end_request(struct request *rq, blk_status_t error){	if (blk_update_request(rq, error, blk_rq_bytes(rq)))		BUG();	__blk_mq_end_request(rq, error);}EXPORT_SYMBOL(blk_mq_end_request);static void __blk_mq_complete_request_remote(void *data){	struct request *rq = data;	rq->q->softirq_done_fn(rq);}static void __blk_mq_complete_request(struct request *rq){	struct blk_mq_ctx *ctx = rq->mq_ctx;	bool shared = false;	int cpu;	if (!blk_mq_mark_complete(rq))		return;	if (rq->internal_tag != -1)		blk_mq_sched_completed_request(rq);	if (!test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags)) {		rq->q->softirq_done_fn(rq);		return;	}	cpu = get_cpu();	if (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags))		shared = cpus_share_cache(cpu, ctx->cpu);	if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) {		rq->csd.func = __blk_mq_complete_request_remote;		rq->csd.info = rq;		rq->csd.flags = 0;		smp_call_function_single_async(ctx->cpu, &rq->csd);	} else {		rq->q->softirq_done_fn(rq);	}	put_cpu();}static void hctx_unlock(struct blk_mq_hw_ctx *hctx, int srcu_idx)	__releases(hctx->srcu){	if (!(hctx->flags & BLK_MQ_F_BLOCKING))		rcu_read_unlock();	else		srcu_read_unlock(hctx->srcu, srcu_idx);}static void hctx_lock(struct blk_mq_hw_ctx *hctx, int *srcu_idx)	__acquires(hctx->srcu){	if (!(hctx->flags & BLK_MQ_F_BLOCKING)) {		/* shut up gcc false positive */		*srcu_idx = 0;		rcu_read_lock();	} else		*srcu_idx = srcu_read_lock(hctx->srcu);}/** * blk_mq_complete_request - end I/O on a request * @rq:		the request being processed * * Description: *	Ends all I/O on a request. It does not handle partial completions. *	The actual completion happens out-of-order, through a IPI handler. **/void blk_mq_complete_request(struct request *rq){	if (unlikely(blk_should_fake_timeout(rq->q)))		return;	__blk_mq_complete_request(rq);}EXPORT_SYMBOL(blk_mq_complete_request);int blk_mq_request_started(struct request *rq){	return blk_mq_rq_state(rq) != MQ_RQ_IDLE;}EXPORT_SYMBOL_GPL(blk_mq_request_started);void blk_mq_start_request(struct request *rq){	struct request_queue *q = rq->q;	blk_mq_sched_started_request(rq);	trace_block_rq_issue(q, rq);	if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) {		rq->io_start_time_ns = ktime_get_ns();#ifdef CONFIG_BLK_DEV_THROTTLING_LOW		rq->throtl_size = blk_rq_sectors(rq);#endif		rq->rq_flags |= RQF_STATS;		rq_qos_issue(q, rq);	}	WARN_ON_ONCE(blk_mq_rq_state(rq) != MQ_RQ_IDLE);	blk_add_timer(rq);	WRITE_ONCE(rq->state, MQ_RQ_IN_FLIGHT);	if (q->dma_drain_size && blk_rq_bytes(rq)) {		/*		 * Make sure space for the drain appears.  We know we can do		 * this because max_hw_segments has been adjusted to be one		 * fewer than the device can handle.		 */		rq->nr_phys_segments++;	}}EXPORT_SYMBOL(blk_mq_start_request);static void __blk_mq_requeue_request(struct request *rq){	struct request_queue *q = rq->q;	blk_mq_put_driver_tag(rq);	trace_block_rq_requeue(q, rq);	rq_qos_requeue(q, rq);	if (blk_mq_request_started(rq)) {		WRITE_ONCE(rq->state, MQ_RQ_IDLE);		rq->rq_flags &= ~RQF_TIMED_OUT;		if (q->dma_drain_size && blk_rq_bytes(rq))			rq->nr_phys_segments--;	}}void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list){	__blk_mq_requeue_request(rq);	/* this request will be re-inserted to io scheduler queue */	blk_mq_sched_requeue_request(rq);	BUG_ON(blk_queued_rq(rq));	blk_mq_add_to_requeue_list(rq, true, kick_requeue_list);}EXPORT_SYMBOL(blk_mq_requeue_request);static void blk_mq_requeue_work(struct work_struct *work){	struct request_queue *q =		container_of(work, struct request_queue, requeue_work.work);	LIST_HEAD(rq_list);	struct request *rq, *next;	spin_lock_irq(&q->requeue_lock);	list_splice_init(&q->requeue_list, &rq_list);	spin_unlock_irq(&q->requeue_lock);	list_for_each_entry_safe(rq, next, &rq_list, queuelist) {		if (!(rq->rq_flags & (RQF_SOFTBARRIER | RQF_DONTPREP)))			continue;		rq->rq_flags &= ~RQF_SOFTBARRIER;		list_del_init(&rq->queuelist);		/*		 * If RQF_DONTPREP, rq has contained some driver specific		 * data, so insert it to hctx dispatch list to avoid any		 * merge.		 */		if (rq->rq_flags & RQF_DONTPREP)			blk_mq_request_bypass_insert(rq, false);		else			blk_mq_sched_insert_request(rq, true, false, false);	}	while (!list_empty(&rq_list)) {		rq = list_entry(rq_list.next, struct request, queuelist);		list_del_init(&rq->queuelist);		blk_mq_sched_insert_request(rq, false, false, false);	}	blk_mq_run_hw_queues(q, false);}void blk_mq_add_to_requeue_list(struct request *rq, bool at_head,				bool kick_requeue_list){	struct request_queue *q = rq->q;	unsigned long flags;	/*	 * We abuse this flag that is otherwise used by the I/O scheduler to	 * request head insertion from the workqueue.	 */	BUG_ON(rq->rq_flags & RQF_SOFTBARRIER);	spin_lock_irqsave(&q->requeue_lock, flags);	if (at_head) {		rq->rq_flags |= RQF_SOFTBARRIER;		list_add(&rq->queuelist, &q->requeue_list);	} else {		list_add_tail(&rq->queuelist, &q->requeue_list);	}	spin_unlock_irqrestore(&q->requeue_lock, flags);	if (kick_requeue_list)		blk_mq_kick_requeue_list(q);}EXPORT_SYMBOL(blk_mq_add_to_requeue_list);void blk_mq_kick_requeue_list(struct request_queue *q){	kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work, 0);}EXPORT_SYMBOL(blk_mq_kick_requeue_list);void blk_mq_delay_kick_requeue_list(struct request_queue *q,				    unsigned long msecs){	kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work,				    msecs_to_jiffies(msecs));}EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag){	if (tag < tags->nr_tags) {		prefetch(tags->rqs[tag]);		return tags->rqs[tag];	}	return NULL;}EXPORT_SYMBOL(blk_mq_tag_to_rq);static void blk_mq_rq_timed_out(struct request *req, bool reserved){	req->rq_flags |= RQF_TIMED_OUT;	if (req->q->mq_ops->timeout) {		enum blk_eh_timer_return ret;		ret = req->q->mq_ops->timeout(req, reserved);		if (ret == BLK_EH_DONE)			return;		WARN_ON_ONCE(ret != BLK_EH_RESET_TIMER);	}	blk_add_timer(req);}static bool blk_mq_req_expired(struct request *rq, unsigned long *next){	unsigned long deadline;	if (blk_mq_rq_state(rq) != MQ_RQ_IN_FLIGHT)		return false;	if (rq->rq_flags & RQF_TIMED_OUT)		return false;	deadline = blk_rq_deadline(rq);	if (time_after_eq(jiffies, deadline))		return true;	if (*next == 0)		*next = deadline;	else if (time_after(*next, deadline))		*next = deadline;	return false;}static void blk_mq_check_expired(struct blk_mq_hw_ctx *hctx,		struct request *rq, void *priv, bool reserved){	unsigned long *next = priv;	/*	 * Just do a quick check if it is expired before locking the request in	 * so we're not unnecessarilly synchronizing across CPUs.	 */	if (!blk_mq_req_expired(rq, next))		return;	/*	 * We have reason to believe the request may be expired. Take a	 * reference on the request to lock this request lifetime into its	 * currently allocated context to prevent it from being reallocated in	 * the event the completion by-passes this timeout handler.	 *	 * If the reference was already released, then the driver beat the	 * timeout handler to posting a natural completion.	 */	if (!refcount_inc_not_zero(&rq->ref))		return;	/*	 * The request is now locked and cannot be reallocated underneath the	 * timeout handler's processing. Re-verify this exact request is truly	 * expired; if it is not expired, then the request was completed and	 * reallocated as a new request.	 */	if (blk_mq_req_expired(rq, next))		blk_mq_rq_timed_out(rq, reserved);	if (is_flush_rq(rq, hctx))		rq->end_io(rq, 0);	else if (refcount_dec_and_test(&rq->ref))		__blk_mq_free_request(rq);}static void blk_mq_timeout_work(struct work_struct *work){	struct request_queue *q =		container_of(work, struct request_queue, timeout_work);	unsigned long next = 0;	struct blk_mq_hw_ctx *hctx;	int i;	/* A deadlock might occur if a request is stuck requiring a	 * timeout at the same time a queue freeze is waiting	 * completion, since the timeout code would not be able to	 * acquire the queue reference here.	 *	 * That's why we don't use blk_queue_enter here; instead, we use	 * percpu_ref_tryget directly, because we need to be able to	 * obtain a reference even in the short window between the queue	 * starting to freeze, by dropping the first reference in	 * blk_freeze_queue_start, and the moment the last request is	 * consumed, marked by the instant q_usage_counter reaches	 * zero.	 */	if (!percpu_ref_tryget(&q->q_usage_counter))		return;	blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &next);	if (next != 0) {		mod_timer(&q->timeout, next);	} else {		/*		 * Request timeouts are handled as a forward rolling timer. If		 * we end up here it means that no requests are pending and		 * also that no request has been pending for a while. Mark		 * each hctx as idle.		 */		queue_for_each_hw_ctx(q, hctx, i) {			/* the hctx may be unmapped, so check it here */			if (blk_mq_hw_queue_mapped(hctx))				blk_mq_tag_idle(hctx);		}	}	blk_queue_exit(q);}struct flush_busy_ctx_data {	struct blk_mq_hw_ctx *hctx;	struct list_head *list;};static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data){	struct flush_busy_ctx_data *flush_data = data;	struct blk_mq_hw_ctx *hctx = flush_data->hctx;	struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];	spin_lock(&ctx->lock);	list_splice_tail_init(&ctx->rq_list, flush_data->list);	sbitmap_clear_bit(sb, bitnr);	spin_unlock(&ctx->lock);	return true;}/* * Process software queues that have been marked busy, splicing them * to the for-dispatch */void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list){	struct flush_busy_ctx_data data = {		.hctx = hctx,		.list = list,	};	sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);}EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs);struct dispatch_rq_data {	struct blk_mq_hw_ctx *hctx;	struct request *rq;};static bool dispatch_rq_from_ctx(struct sbitmap *sb, unsigned int bitnr,		void *data){	struct dispatch_rq_data *dispatch_data = data;	struct blk_mq_hw_ctx *hctx = dispatch_data->hctx;	struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];	spin_lock(&ctx->lock);	if (!list_empty(&ctx->rq_list)) {		dispatch_data->rq = list_entry_rq(ctx->rq_list.next);		list_del_init(&dispatch_data->rq->queuelist);		if (list_empty(&ctx->rq_list))			sbitmap_clear_bit(sb, bitnr);	}	spin_unlock(&ctx->lock);	return !dispatch_data->rq;}struct request *blk_mq_dequeue_from_ctx(struct blk_mq_hw_ctx *hctx,					struct blk_mq_ctx *start){	unsigned off = start ? start->index_hw : 0;	struct dispatch_rq_data data = {		.hctx = hctx,		.rq   = NULL,	};	__sbitmap_for_each_set(&hctx->ctx_map, off,			       dispatch_rq_from_ctx, &data);	return data.rq;}static inline unsigned int queued_to_index(unsigned int queued){	if (!queued)		return 0;	return min(BLK_MQ_MAX_DISPATCH_ORDER - 1, ilog2(queued) + 1);}bool blk_mq_get_driver_tag(struct request *rq){	struct blk_mq_alloc_data data = {		.q = rq->q,		.hctx = blk_mq_map_queue(rq->q, rq->mq_ctx->cpu),		.flags = BLK_MQ_REQ_NOWAIT,	};	bool shared;	if (rq->tag != -1)		goto done;	if (blk_mq_tag_is_reserved(data.hctx->sched_tags, rq->internal_tag))		data.flags |= BLK_MQ_REQ_RESERVED;	shared = blk_mq_tag_busy(data.hctx);	rq->tag = blk_mq_get_tag(&data);	if (rq->tag >= 0) {		if (shared) {			rq->rq_flags |= RQF_MQ_INFLIGHT;			atomic_inc(&data.hctx->nr_active);		}		data.hctx->tags->rqs[rq->tag] = rq;	}done:	return rq->tag != -1;}static int blk_mq_dispatch_wake(wait_queue_entry_t *wait, unsigned mode,				int flags, void *key){	struct blk_mq_hw_ctx *hctx;	hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait);	spin_lock(&hctx->dispatch_wait_lock);	list_del_init(&wait->entry);	spin_unlock(&hctx->dispatch_wait_lock);	blk_mq_run_hw_queue(hctx, true);	return 1;}/* * Mark us waiting for a tag. For shared tags, this involves hooking us into * the tag wakeups. For non-shared tags, we can simply mark us needing a * restart. For both cases, take care to check the condition again after * marking us as waiting. */static bool blk_mq_mark_tag_wait(struct blk_mq_hw_ctx *hctx,				 struct request *rq){	struct wait_queue_head *wq;	wait_queue_entry_t *wait;	bool ret;	if (!(hctx->flags & BLK_MQ_F_TAG_SHARED)) {		if (!test_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state))			set_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state);		/*		 * It's possible that a tag was freed in the window between the		 * allocation failure and adding the hardware queue to the wait		 * queue.		 *		 * Don't clear RESTART here, someone else could have set it.		 * At most this will cost an extra queue run.		 */		return blk_mq_get_driver_tag(rq);	}	wait = &hctx->dispatch_wait;	if (!list_empty_careful(&wait->entry))		return false;	wq = &bt_wait_ptr(&hctx->tags->bitmap_tags, hctx)->wait;	spin_lock_irq(&wq->lock);	spin_lock(&hctx->dispatch_wait_lock);	if (!list_empty(&wait->entry)) {		spin_unlock(&hctx->dispatch_wait_lock);		spin_unlock_irq(&wq->lock);		return false;	}	wait->flags &= ~WQ_FLAG_EXCLUSIVE;	__add_wait_queue(wq, wait);	/*	 * It's possible that a tag was freed in the window between the	 * allocation failure and adding the hardware queue to the wait	 * queue.	 */	ret = blk_mq_get_driver_tag(rq);	if (!ret) {		spin_unlock(&hctx->dispatch_wait_lock);		spin_unlock_irq(&wq->lock);		return false;	}	/*	 * We got a tag, remove ourselves from the wait queue to ensure	 * someone else gets the wakeup.	 */	list_del_init(&wait->entry);	spin_unlock(&hctx->dispatch_wait_lock);	spin_unlock_irq(&wq->lock);	return true;}#define BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT  8#define BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR  4/* * Update dispatch busy with the Exponential Weighted Moving Average(EWMA): * - EWMA is one simple way to compute running average value * - weight(7/8 and 1/8) is applied so that it can decrease exponentially * - take 4 as factor for avoiding to get too small(0) result, and this *   factor doesn't matter because EWMA decreases exponentially */static void blk_mq_update_dispatch_busy(struct blk_mq_hw_ctx *hctx, bool busy){	unsigned int ewma;	if (hctx->queue->elevator)		return;	ewma = hctx->dispatch_busy;	if (!ewma && !busy)		return;	ewma *= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT - 1;	if (busy)		ewma += 1 << BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR;	ewma /= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT;	hctx->dispatch_busy = ewma;}#define BLK_MQ_RESOURCE_DELAY	3		/* ms units */static void blk_mq_handle_dev_resource(struct request *rq,				       struct list_head *list){	struct request *next =		list_first_entry_or_null(list, struct request, queuelist);	/*	 * If an I/O scheduler has been configured and we got a driver tag for	 * the next request already, free it.	 */	if (next)		blk_mq_put_driver_tag(next);	list_add(&rq->queuelist, list);	__blk_mq_requeue_request(rq);}/* * Returns true if we did some work AND can potentially do more. */bool blk_mq_dispatch_rq_list(struct request_queue *q, struct list_head *list,			     bool got_budget){	struct blk_mq_hw_ctx *hctx;	struct request *rq, *nxt;	bool no_tag = false;	int errors, queued;	blk_status_t ret = BLK_STS_OK;	if (list_empty(list))		return false;	WARN_ON(!list_is_singular(list) && got_budget);	/*	 * Now process all the entries, sending them to the driver.	 */	errors = queued = 0;	do {		struct blk_mq_queue_data bd;		rq = list_first_entry(list, struct request, queuelist);		hctx = blk_mq_map_queue(rq->q, rq->mq_ctx->cpu);		if (!got_budget && !blk_mq_get_dispatch_budget(hctx))			break;		if (!blk_mq_get_driver_tag(rq)) {			/*			 * The initial allocation attempt failed, so we need to			 * rerun the hardware queue when a tag is freed. The			 * waitqueue takes care of that. If the queue is run			 * before we add this entry back on the dispatch list,			 * we'll re-run it below.			 */			if (!blk_mq_mark_tag_wait(hctx, rq)) {				blk_mq_put_dispatch_budget(hctx);				/*				 * For non-shared tags, the RESTART check				 * will suffice.				 */				if (hctx->flags & BLK_MQ_F_TAG_SHARED)					no_tag = true;				break;			}		}		list_del_init(&rq->queuelist);		bd.rq = rq;		/*		 * Flag last if we have no more requests, or if we have more		 * but can't assign a driver tag to it.		 */		if (list_empty(list))			bd.last = true;		else {			nxt = list_first_entry(list, struct request, queuelist);			bd.last = !blk_mq_get_driver_tag(nxt);		}		ret = q->mq_ops->queue_rq(hctx, &bd);		if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE) {			blk_mq_handle_dev_resource(rq, list);			break;		}		if (unlikely(ret != BLK_STS_OK)) {			errors++;			blk_mq_end_request(rq, BLK_STS_IOERR);			continue;		}		queued++;	} while (!list_empty(list));	hctx->dispatched[queued_to_index(queued)]++;	/*	 * Any items that need requeuing? Stuff them into hctx->dispatch,	 * that is where we will continue on next queue run.	 */	if (!list_empty(list)) {		bool needs_restart;		spin_lock(&hctx->lock);		list_splice_init(list, &hctx->dispatch);		spin_unlock(&hctx->lock);		/*		 * Order adding requests to hctx->dispatch and checking		 * SCHED_RESTART flag. The pair of this smp_mb() is the one		 * in blk_mq_sched_restart(). Avoid restart code path to		 * miss the new added requests to hctx->dispatch, meantime		 * SCHED_RESTART is observed here.		 */		smp_mb();		/*		 * If SCHED_RESTART was set by the caller of this function and		 * it is no longer set that means that it was cleared by another		 * thread and hence that a queue rerun is needed.		 *		 * If 'no_tag' is set, that means that we failed getting		 * a driver tag with an I/O scheduler attached. If our dispatch		 * waitqueue is no longer active, ensure that we run the queue		 * AFTER adding our entries back to the list.		 *		 * If no I/O scheduler has been configured it is possible that		 * the hardware queue got stopped and restarted before requests		 * were pushed back onto the dispatch list. Rerun the queue to		 * avoid starvation. Notes:		 * - blk_mq_run_hw_queue() checks whether or not a queue has		 *   been stopped before rerunning a queue.		 * - Some but not all block drivers stop a queue before		 *   returning BLK_STS_RESOURCE. Two exceptions are scsi-mq		 *   and dm-rq.		 *		 * If driver returns BLK_STS_RESOURCE and SCHED_RESTART		 * bit is set, run queue after a delay to avoid IO stalls		 * that could otherwise occur if the queue is idle.		 */		needs_restart = blk_mq_sched_needs_restart(hctx);		if (!needs_restart ||		    (no_tag && list_empty_careful(&hctx->dispatch_wait.entry)))			blk_mq_run_hw_queue(hctx, true);		else if (needs_restart && (ret == BLK_STS_RESOURCE))			blk_mq_delay_run_hw_queue(hctx, BLK_MQ_RESOURCE_DELAY);		blk_mq_update_dispatch_busy(hctx, true);		return false;	} else		blk_mq_update_dispatch_busy(hctx, false);	/*	 * If the host/device is unable to accept more work, inform the	 * caller of that.	 */	if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE)		return false;	return (queued + errors) != 0;}static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx){	int srcu_idx;	/*	 * We should be running this queue from one of the CPUs that	 * are mapped to it.	 *	 * There are at least two related races now between setting	 * hctx->next_cpu from blk_mq_hctx_next_cpu() and running	 * __blk_mq_run_hw_queue():	 *	 * - hctx->next_cpu is found offline in blk_mq_hctx_next_cpu(),	 *   but later it becomes online, then this warning is harmless	 *   at all	 *	 * - hctx->next_cpu is found online in blk_mq_hctx_next_cpu(),	 *   but later it becomes offline, then the warning can't be	 *   triggered, and we depend on blk-mq timeout handler to	 *   handle dispatched requests to this hctx	 */	if (!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask) &&		cpu_online(hctx->next_cpu)) {		printk(KERN_WARNING "run queue from wrong CPU %d, hctx %s\n",			raw_smp_processor_id(),			cpumask_empty(hctx->cpumask) ? "inactive": "active");		dump_stack();	}	/*	 * We can't run the queue inline with ints disabled. Ensure that	 * we catch bad users of this early.	 */	WARN_ON_ONCE(in_interrupt());	might_sleep_if(hctx->flags & BLK_MQ_F_BLOCKING);	hctx_lock(hctx, &srcu_idx);	blk_mq_sched_dispatch_requests(hctx);	hctx_unlock(hctx, srcu_idx);}static inline int blk_mq_first_mapped_cpu(struct blk_mq_hw_ctx *hctx){	int cpu = cpumask_first_and(hctx->cpumask, cpu_online_mask);	if (cpu >= nr_cpu_ids)		cpu = cpumask_first(hctx->cpumask);	return cpu;}/* * It'd be great if the workqueue API had a way to pass * in a mask and had some smarts for more clever placement. * For now we just round-robin here, switching for every * BLK_MQ_CPU_WORK_BATCH queued items. */static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx){	bool tried = false;	int next_cpu = hctx->next_cpu;	if (hctx->queue->nr_hw_queues == 1)		return WORK_CPU_UNBOUND;	if (--hctx->next_cpu_batch <= 0) {select_cpu:		next_cpu = cpumask_next_and(next_cpu, hctx->cpumask,				cpu_online_mask);		if (next_cpu >= nr_cpu_ids)			next_cpu = blk_mq_first_mapped_cpu(hctx);		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;	}	/*	 * Do unbound schedule if we can't find a online CPU for this hctx,	 * and it should only happen in the path of handling CPU DEAD.	 */	if (!cpu_online(next_cpu)) {		if (!tried) {			tried = true;			goto select_cpu;		}		/*		 * Make sure to re-select CPU next time once after CPUs		 * in hctx->cpumask become online again.		 */		hctx->next_cpu = next_cpu;		hctx->next_cpu_batch = 1;		return WORK_CPU_UNBOUND;	}	hctx->next_cpu = next_cpu;	return next_cpu;}static void __blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async,					unsigned long msecs){	if (unlikely(blk_mq_hctx_stopped(hctx)))		return;	if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) {		int cpu = get_cpu();		if (cpumask_test_cpu(cpu, hctx->cpumask)) {			__blk_mq_run_hw_queue(hctx);			put_cpu();			return;		}		put_cpu();	}	kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx), &hctx->run_work,				    msecs_to_jiffies(msecs));}void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs){	__blk_mq_delay_run_hw_queue(hctx, true, msecs);}EXPORT_SYMBOL(blk_mq_delay_run_hw_queue);bool blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async){	int srcu_idx;	bool need_run;	/*	 * When queue is quiesced, we may be switching io scheduler, or	 * updating nr_hw_queues, or other things, and we can't run queue	 * any more, even __blk_mq_hctx_has_pending() can't be called safely.	 *	 * And queue will be rerun in blk_mq_unquiesce_queue() if it is	 * quiesced.	 */	hctx_lock(hctx, &srcu_idx);	need_run = !blk_queue_quiesced(hctx->queue) &&		blk_mq_hctx_has_pending(hctx);	hctx_unlock(hctx, srcu_idx);	if (need_run) {		__blk_mq_delay_run_hw_queue(hctx, async, 0);		return true;	}	return false;}EXPORT_SYMBOL(blk_mq_run_hw_queue);void blk_mq_run_hw_queues(struct request_queue *q, bool async){	struct blk_mq_hw_ctx *hctx;	int i;	queue_for_each_hw_ctx(q, hctx, i) {		if (blk_mq_hctx_stopped(hctx))			continue;		blk_mq_run_hw_queue(hctx, async);	}}EXPORT_SYMBOL(blk_mq_run_hw_queues);/** * blk_mq_queue_stopped() - check whether one or more hctxs have been stopped * @q: request queue. * * The caller is responsible for serializing this function against * blk_mq_{start,stop}_hw_queue(). */bool blk_mq_queue_stopped(struct request_queue *q){	struct blk_mq_hw_ctx *hctx;	int i;	queue_for_each_hw_ctx(q, hctx, i)		if (blk_mq_hctx_stopped(hctx))			return true;	return false;}EXPORT_SYMBOL(blk_mq_queue_stopped);/* * This function is often used for pausing .queue_rq() by driver when * there isn't enough resource or some conditions aren't satisfied, and * BLK_STS_RESOURCE is usually returned. * * We do not guarantee that dispatch can be drained or blocked * after blk_mq_stop_hw_queue() returns. Please use * blk_mq_quiesce_queue() for that requirement. */void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx){	cancel_delayed_work(&hctx->run_work);	set_bit(BLK_MQ_S_STOPPED, &hctx->state);}EXPORT_SYMBOL(blk_mq_stop_hw_queue);/* * This function is often used for pausing .queue_rq() by driver when * there isn't enough resource or some conditions aren't satisfied, and * BLK_STS_RESOURCE is usually returned. * * We do not guarantee that dispatch can be drained or blocked * after blk_mq_stop_hw_queues() returns. Please use * blk_mq_quiesce_queue() for that requirement. */void blk_mq_stop_hw_queues(struct request_queue *q){	struct blk_mq_hw_ctx *hctx;	int i;	queue_for_each_hw_ctx(q, hctx, i)		blk_mq_stop_hw_queue(hctx);}EXPORT_SYMBOL(blk_mq_stop_hw_queues);void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx){	clear_bit(BLK_MQ_S_STOPPED, &hctx->state);	blk_mq_run_hw_queue(hctx, false);}EXPORT_SYMBOL(blk_mq_start_hw_queue);void blk_mq_start_hw_queues(struct request_queue *q){	struct blk_mq_hw_ctx *hctx;	int i;	queue_for_each_hw_ctx(q, hctx, i)		blk_mq_start_hw_queue(hctx);}EXPORT_SYMBOL(blk_mq_start_hw_queues);void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async){	if (!blk_mq_hctx_stopped(hctx))		return;	clear_bit(BLK_MQ_S_STOPPED, &hctx->state);	blk_mq_run_hw_queue(hctx, async);}EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue);void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async){	struct blk_mq_hw_ctx *hctx;	int i;	queue_for_each_hw_ctx(q, hctx, i)		blk_mq_start_stopped_hw_queue(hctx, async);}EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);static void blk_mq_run_work_fn(struct work_struct *work){	struct blk_mq_hw_ctx *hctx;	hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work);	/*	 * If we are stopped, don't run the queue.	 */	if (test_bit(BLK_MQ_S_STOPPED, &hctx->state))		return;	__blk_mq_run_hw_queue(hctx);}static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx,					    struct request *rq,					    bool at_head){	struct blk_mq_ctx *ctx = rq->mq_ctx;	lockdep_assert_held(&ctx->lock);	trace_block_rq_insert(hctx->queue, rq);	if (at_head)		list_add(&rq->queuelist, &ctx->rq_list);	else		list_add_tail(&rq->queuelist, &ctx->rq_list);}void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq,			     bool at_head){	struct blk_mq_ctx *ctx = rq->mq_ctx;	lockdep_assert_held(&ctx->lock);	__blk_mq_insert_req_list(hctx, rq, at_head);	blk_mq_hctx_mark_pending(hctx, ctx);}/* * Should only be used carefully, when the caller knows we want to * bypass a potential IO scheduler on the target device. */void blk_mq_request_bypass_insert(struct request *rq, bool run_queue){	struct blk_mq_ctx *ctx = rq->mq_ctx;	struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(rq->q, ctx->cpu);	spin_lock(&hctx->lock);	list_add_tail(&rq->queuelist, &hctx->dispatch);	spin_unlock(&hctx->lock);	if (run_queue)		blk_mq_run_hw_queue(hctx, false);}void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,			    struct list_head *list){	struct request *rq;	/*	 * preemption doesn't flush plug list, so it's possible ctx->cpu is	 * offline now	 */	list_for_each_entry(rq, list, queuelist) {		BUG_ON(rq->mq_ctx != ctx);		trace_block_rq_insert(hctx->queue, rq);	}	spin_lock(&ctx->lock);	list_splice_tail_init(list, &ctx->rq_list);	blk_mq_hctx_mark_pending(hctx, ctx);	spin_unlock(&ctx->lock);}static int plug_ctx_cmp(void *priv, struct list_head *a, struct list_head *b){	struct request *rqa = container_of(a, struct request, queuelist);	struct request *rqb = container_of(b, struct request, queuelist);	return !(rqa->mq_ctx < rqb->mq_ctx ||		 (rqa->mq_ctx == rqb->mq_ctx &&		  blk_rq_pos(rqa) < blk_rq_pos(rqb)));}void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule){	struct blk_mq_ctx *this_ctx;	struct request_queue *this_q;	struct request *rq;	LIST_HEAD(list);	LIST_HEAD(ctx_list);	unsigned int depth;	list_splice_init(&plug->mq_list, &list);	list_sort(NULL, &list, plug_ctx_cmp);	this_q = NULL;	this_ctx = NULL;	depth = 0;	while (!list_empty(&list)) {		rq = list_entry_rq(list.next);		list_del_init(&rq->queuelist);		BUG_ON(!rq->q);		if (rq->mq_ctx != this_ctx) {			if (this_ctx) {				trace_block_unplug(this_q, depth, !from_schedule);				blk_mq_sched_insert_requests(this_q, this_ctx,								&ctx_list,								from_schedule);			}			this_ctx = rq->mq_ctx;			this_q = rq->q;			depth = 0;		}		depth++;		list_add_tail(&rq->queuelist, &ctx_list);	}	/*	 * If 'this_ctx' is set, we know we have entries to complete	 * on 'ctx_list'. Do those.	 */	if (this_ctx) {		trace_block_unplug(this_q, depth, !from_schedule);		blk_mq_sched_insert_requests(this_q, this_ctx, &ctx_list,						from_schedule);	}}static void blk_mq_bio_to_request(struct request *rq, struct bio *bio){	blk_init_request_from_bio(rq, bio);	blk_rq_set_rl(rq, blk_get_rl(rq->q, bio));	blk_account_io_start(rq, true);}static blk_qc_t request_to_qc_t(struct blk_mq_hw_ctx *hctx, struct request *rq){	if (rq->tag != -1)		return blk_tag_to_qc_t(rq->tag, hctx->queue_num, false);	return blk_tag_to_qc_t(rq->internal_tag, hctx->queue_num, true);}static blk_status_t __blk_mq_issue_directly(struct blk_mq_hw_ctx *hctx,					    struct request *rq,					    blk_qc_t *cookie){	struct request_queue *q = rq->q;	struct blk_mq_queue_data bd = {		.rq = rq,		.last = true,	};	blk_qc_t new_cookie;	blk_status_t ret;	new_cookie = request_to_qc_t(hctx, rq);	/*	 * For OK queue, we are done. For error, caller may kill it.	 * Any other error (busy), just add it to our list as we	 * previously would have done.	 */	ret = q->mq_ops->queue_rq(hctx, &bd);	switch (ret) {	case BLK_STS_OK:		blk_mq_update_dispatch_busy(hctx, false);		*cookie = new_cookie;		break;	case BLK_STS_RESOURCE:	case BLK_STS_DEV_RESOURCE:		blk_mq_update_dispatch_busy(hctx, true);		__blk_mq_requeue_request(rq);		break;	default:		blk_mq_update_dispatch_busy(hctx, false);		*cookie = BLK_QC_T_NONE;		break;	}	return ret;}static blk_status_t __blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,						struct request *rq,						blk_qc_t *cookie,						bool bypass_insert){	struct request_queue *q = rq->q;	bool run_queue = true;	/*	 * RCU or SRCU read lock is needed before checking quiesced flag.	 *	 * When queue is stopped or quiesced, ignore 'bypass_insert' from	 * blk_mq_request_issue_directly(), and return BLK_STS_OK to caller,	 * and avoid driver to try to dispatch again.	 */	if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(q)) {		run_queue = false;		bypass_insert = false;		goto insert;	}	if (q->elevator && !bypass_insert)		goto insert;	if (!blk_mq_get_dispatch_budget(hctx))		goto insert;	if (!blk_mq_get_driver_tag(rq)) {		blk_mq_put_dispatch_budget(hctx);		goto insert;	}	return __blk_mq_issue_directly(hctx, rq, cookie);insert:	if (bypass_insert)		return BLK_STS_RESOURCE;	blk_mq_request_bypass_insert(rq, run_queue);	return BLK_STS_OK;}static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,		struct request *rq, blk_qc_t *cookie){	blk_status_t ret;	int srcu_idx;	might_sleep_if(hctx->flags & BLK_MQ_F_BLOCKING);	hctx_lock(hctx, &srcu_idx);	ret = __blk_mq_try_issue_directly(hctx, rq, cookie, false);	if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE)		blk_mq_request_bypass_insert(rq, true);	else if (ret != BLK_STS_OK)		blk_mq_end_request(rq, ret);	hctx_unlock(hctx, srcu_idx);}blk_status_t blk_mq_request_issue_directly(struct request *rq){	blk_status_t ret;	int srcu_idx;	blk_qc_t unused_cookie;	struct blk_mq_ctx *ctx = rq->mq_ctx;	struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(rq->q, ctx->cpu);	hctx_lock(hctx, &srcu_idx);	ret = __blk_mq_try_issue_directly(hctx, rq, &unused_cookie, true);	hctx_unlock(hctx, srcu_idx);	return ret;}void blk_mq_try_issue_list_directly(struct blk_mq_hw_ctx *hctx,		struct list_head *list){	while (!list_empty(list)) {		blk_status_t ret;		struct request *rq = list_first_entry(list, struct request,				queuelist);		list_del_init(&rq->queuelist);		ret = blk_mq_request_issue_directly(rq);		if (ret != BLK_STS_OK) {			if (ret == BLK_STS_RESOURCE ||					ret == BLK_STS_DEV_RESOURCE) {				blk_mq_request_bypass_insert(rq,							list_empty(list));				break;			}			blk_mq_end_request(rq, ret);		}	}}static blk_qc_t blk_mq_make_request(struct request_queue *q, struct bio *bio){	const int is_sync = op_is_sync(bio->bi_opf);	const int is_flush_fua = op_is_flush(bio->bi_opf);	struct blk_mq_alloc_data data = { .flags = 0 };	struct request *rq;	unsigned int request_count = 0;	struct blk_plug *plug;	struct request *same_queue_rq = NULL;	blk_qc_t cookie;	blk_queue_bounce(q, &bio);	blk_queue_split(q, &bio);	if (!bio_integrity_prep(bio))		return BLK_QC_T_NONE;	if (!is_flush_fua && !blk_queue_nomerges(q) &&	    blk_attempt_plug_merge(q, bio, &request_count, &same_queue_rq))		return BLK_QC_T_NONE;	if (blk_mq_sched_bio_merge(q, bio))		return BLK_QC_T_NONE;	rq_qos_throttle(q, bio, NULL);	trace_block_getrq(q, bio, bio->bi_opf);	rq = blk_mq_get_request(q, bio, bio->bi_opf, &data);	if (unlikely(!rq)) {		rq_qos_cleanup(q, bio);		if (bio->bi_opf & REQ_NOWAIT)			bio_wouldblock_error(bio);		return BLK_QC_T_NONE;	}	rq_qos_track(q, rq, bio);	cookie = request_to_qc_t(data.hctx, rq);	plug = current->plug;	if (unlikely(is_flush_fua)) {		blk_mq_put_ctx(data.ctx);		blk_mq_bio_to_request(rq, bio);		/* bypass scheduler for flush rq */		blk_insert_flush(rq);		blk_mq_run_hw_queue(data.hctx, true);	} else if (plug && q->nr_hw_queues == 1) {		struct request *last = NULL;		blk_mq_put_ctx(data.ctx);		blk_mq_bio_to_request(rq, bio);		/*		 * @request_count may become stale because of schedule		 * out, so check the list again.		 */		if (list_empty(&plug->mq_list))			request_count = 0;		else if (blk_queue_nomerges(q))			request_count = blk_plug_queued_count(q);		if (!request_count)			trace_block_plug(q);		else			last = list_entry_rq(plug->mq_list.prev);		if (request_count >= BLK_MAX_REQUEST_COUNT || (last &&		    blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) {			blk_flush_plug_list(plug, false);			trace_block_plug(q);		}		list_add_tail(&rq->queuelist, &plug->mq_list);	} else if (plug && !blk_queue_nomerges(q)) {		blk_mq_bio_to_request(rq, bio);		/*		 * We do limited plugging. If the bio can be merged, do that.		 * Otherwise the existing request in the plug list will be		 * issued. So the plug list will have one request at most		 * The plug list might get flushed before this. If that happens,		 * the plug list is empty, and same_queue_rq is invalid.		 */		if (list_empty(&plug->mq_list))			same_queue_rq = NULL;		if (same_queue_rq)			list_del_init(&same_queue_rq->queuelist);		list_add_tail(&rq->queuelist, &plug->mq_list);		blk_mq_put_ctx(data.ctx);		if (same_queue_rq) {			data.hctx = blk_mq_map_queue(q,					same_queue_rq->mq_ctx->cpu);			blk_mq_try_issue_directly(data.hctx, same_queue_rq,					&cookie);		}	} else if ((q->nr_hw_queues > 1 && is_sync) || (!q->elevator &&			!data.hctx->dispatch_busy)) {		blk_mq_put_ctx(data.ctx);		blk_mq_bio_to_request(rq, bio);		blk_mq_try_issue_directly(data.hctx, rq, &cookie);	} else {		blk_mq_put_ctx(data.ctx);		blk_mq_bio_to_request(rq, bio);		blk_mq_sched_insert_request(rq, false, true, true);	}	return cookie;}void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,		     unsigned int hctx_idx){	struct page *page;	if (tags->rqs && set->ops->exit_request) {		int i;		for (i = 0; i < tags->nr_tags; i++) {			struct request *rq = tags->static_rqs[i];			if (!rq)				continue;			set->ops->exit_request(set, rq, hctx_idx);			tags->static_rqs[i] = NULL;		}	}	while (!list_empty(&tags->page_list)) {		page = list_first_entry(&tags->page_list, struct page, lru);		list_del_init(&page->lru);		/*		 * Remove kmemleak object previously allocated in		 * blk_mq_init_rq_map().		 */		kmemleak_free(page_address(page));		__free_pages(page, page->private);	}}void blk_mq_free_rq_map(struct blk_mq_tags *tags){	kfree(tags->rqs);	tags->rqs = NULL;	kfree(tags->static_rqs);	tags->static_rqs = NULL;	blk_mq_free_tags(tags);}struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set,					unsigned int hctx_idx,					unsigned int nr_tags,					unsigned int reserved_tags){	struct blk_mq_tags *tags;	int node;	node = blk_mq_hw_queue_to_node(set->mq_map, hctx_idx);	if (node == NUMA_NO_NODE)		node = set->numa_node;	tags = blk_mq_init_tags(nr_tags, reserved_tags, node,				BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));	if (!tags)		return NULL;	tags->rqs = kcalloc_node(nr_tags, sizeof(struct request *),				 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,				 node);	if (!tags->rqs) {		blk_mq_free_tags(tags);		return NULL;	}	tags->static_rqs = kcalloc_node(nr_tags, sizeof(struct request *),					GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,					node);	if (!tags->static_rqs) {		kfree(tags->rqs);		blk_mq_free_tags(tags);		return NULL;	}	return tags;}static size_t order_to_size(unsigned int order){	return (size_t)PAGE_SIZE << order;}static int blk_mq_init_request(struct blk_mq_tag_set *set, struct request *rq,			       unsigned int hctx_idx, int node){	int ret;	if (set->ops->init_request) {		ret = set->ops->init_request(set, rq, hctx_idx, node);		if (ret)			return ret;	}	WRITE_ONCE(rq->state, MQ_RQ_IDLE);	return 0;}int blk_mq_alloc_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,		     unsigned int hctx_idx, unsigned int depth){	unsigned int i, j, entries_per_page, max_order = 4;	size_t rq_size, left;	int node;	node = blk_mq_hw_queue_to_node(set->mq_map, hctx_idx);	if (node == NUMA_NO_NODE)		node = set->numa_node;	INIT_LIST_HEAD(&tags->page_list);	/*	 * rq_size is the size of the request plus driver payload, rounded	 * to the cacheline size	 */	rq_size = round_up(sizeof(struct request) + set->cmd_size,				cache_line_size());	left = rq_size * depth;	for (i = 0; i < depth; ) {		int this_order = max_order;		struct page *page;		int to_do;		void *p;		while (this_order && left < order_to_size(this_order - 1))			this_order--;		do {			page = alloc_pages_node(node,				GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,				this_order);			if (page)				break;			if (!this_order--)				break;			if (order_to_size(this_order) < rq_size)				break;		} while (1);		if (!page)			goto fail;		page->private = this_order;		list_add_tail(&page->lru, &tags->page_list);		p = page_address(page);		/*		 * Allow kmemleak to scan these pages as they contain pointers		 * to additional allocations like via ops->init_request().		 */		kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO);		entries_per_page = order_to_size(this_order) / rq_size;		to_do = min(entries_per_page, depth - i);		left -= to_do * rq_size;		for (j = 0; j < to_do; j++) {			struct request *rq = p;			tags->static_rqs[i] = rq;			if (blk_mq_init_request(set, rq, hctx_idx, node)) {				tags->static_rqs[i] = NULL;				goto fail;			}			p += rq_size;			i++;		}	}	return 0;fail:	blk_mq_free_rqs(set, tags, hctx_idx);	return -ENOMEM;}/* * 'cpu' is going away. splice any existing rq_list entries from this * software queue to the hw queue dispatch list, and ensure that it * gets run. */static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node){	struct blk_mq_hw_ctx *hctx;	struct blk_mq_ctx *ctx;	LIST_HEAD(tmp);	hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);	ctx = __blk_mq_get_ctx(hctx->queue, cpu);	spin_lock(&ctx->lock);	if (!list_empty(&ctx->rq_list)) {		list_splice_init(&ctx->rq_list, &tmp);		blk_mq_hctx_clear_pending(hctx, ctx);	}	spin_unlock(&ctx->lock);	if (list_empty(&tmp))		return 0;	spin_lock(&hctx->lock);	list_splice_tail_init(&tmp, &hctx->dispatch);	spin_unlock(&hctx->lock);	blk_mq_run_hw_queue(hctx, true);	return 0;}static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx){	cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,					    &hctx->cpuhp_dead);}/* hctx->ctxs will be freed in queue's release handler */static void blk_mq_exit_hctx(struct request_queue *q,		struct blk_mq_tag_set *set,		struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx){	blk_mq_debugfs_unregister_hctx(hctx);	if (blk_mq_hw_queue_mapped(hctx))		blk_mq_tag_idle(hctx);	if (set->ops->exit_request)		set->ops->exit_request(set, hctx->fq->flush_rq, hctx_idx);	if (set->ops->exit_hctx)		set->ops->exit_hctx(hctx, hctx_idx);	blk_mq_remove_cpuhp(hctx);}static void blk_mq_exit_hw_queues(struct request_queue *q,		struct blk_mq_tag_set *set, int nr_queue){	struct blk_mq_hw_ctx *hctx;	unsigned int i;	queue_for_each_hw_ctx(q, hctx, i) {		if (i == nr_queue)			break;		blk_mq_exit_hctx(q, set, hctx, i);	}}static int blk_mq_init_hctx(struct request_queue *q,		struct blk_mq_tag_set *set,		struct blk_mq_hw_ctx *hctx, unsigned hctx_idx){	int node;	node = hctx->numa_node;	if (node == NUMA_NO_NODE)		node = hctx->numa_node = set->numa_node;	INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);	spin_lock_init(&hctx->lock);	INIT_LIST_HEAD(&hctx->dispatch);	hctx->queue = q;	hctx->flags = set->flags & ~BLK_MQ_F_TAG_SHARED;	cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead);	hctx->tags = set->tags[hctx_idx];	/*	 * Allocate space for all possible cpus to avoid allocation at	 * runtime	 */	hctx->ctxs = kmalloc_array_node(nr_cpu_ids, sizeof(void *),			GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY, node);	if (!hctx->ctxs)		goto unregister_cpu_notifier;	if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8),				GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY, node))		goto free_ctxs;	hctx->nr_ctx = 0;	spin_lock_init(&hctx->dispatch_wait_lock);	init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake);	INIT_LIST_HEAD(&hctx->dispatch_wait.entry);	if (set->ops->init_hctx &&	    set->ops->init_hctx(hctx, set->driver_data, hctx_idx))		goto free_bitmap;	hctx->fq = blk_alloc_flush_queue(q, hctx->numa_node, set->cmd_size,			GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY);	if (!hctx->fq)		goto exit_hctx;	if (blk_mq_init_request(set, hctx->fq->flush_rq, hctx_idx, node))		goto free_fq;	if (hctx->flags & BLK_MQ_F_BLOCKING)		init_srcu_struct(hctx->srcu);	blk_mq_debugfs_register_hctx(q, hctx);	return 0; free_fq:	blk_free_flush_queue(hctx->fq); exit_hctx:	if (set->ops->exit_hctx)		set->ops->exit_hctx(hctx, hctx_idx); free_bitmap:	sbitmap_free(&hctx->ctx_map); free_ctxs:	kfree(hctx->ctxs); unregister_cpu_notifier:	blk_mq_remove_cpuhp(hctx);	return -1;}static void blk_mq_init_cpu_queues(struct request_queue *q,				   unsigned int nr_hw_queues){	unsigned int i;	for_each_possible_cpu(i) {		struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);		struct blk_mq_hw_ctx *hctx;		__ctx->cpu = i;		spin_lock_init(&__ctx->lock);		INIT_LIST_HEAD(&__ctx->rq_list);		__ctx->queue = q;		/*		 * Set local node, IFF we have more than one hw queue. If		 * not, we remain on the home node of the device		 */		hctx = blk_mq_map_queue(q, i);		if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)			hctx->numa_node = local_memory_node(cpu_to_node(i));	}}static bool __blk_mq_alloc_rq_map(struct blk_mq_tag_set *set, int hctx_idx){	int ret = 0;	set->tags[hctx_idx] = blk_mq_alloc_rq_map(set, hctx_idx,					set->queue_depth, set->reserved_tags);	if (!set->tags[hctx_idx])		return false;	ret = blk_mq_alloc_rqs(set, set->tags[hctx_idx], hctx_idx,				set->queue_depth);	if (!ret)		return true;	blk_mq_free_rq_map(set->tags[hctx_idx]);	set->tags[hctx_idx] = NULL;	return false;}static void blk_mq_free_map_and_requests(struct blk_mq_tag_set *set,					 unsigned int hctx_idx){	if (set->tags[hctx_idx]) {		blk_mq_free_rqs(set, set->tags[hctx_idx], hctx_idx);		blk_mq_free_rq_map(set->tags[hctx_idx]);		set->tags[hctx_idx] = NULL;	}}static void blk_mq_map_swqueue(struct request_queue *q){	unsigned int i, hctx_idx;	struct blk_mq_hw_ctx *hctx;	struct blk_mq_ctx *ctx;	struct blk_mq_tag_set *set = q->tag_set;	queue_for_each_hw_ctx(q, hctx, i) {		cpumask_clear(hctx->cpumask);		hctx->nr_ctx = 0;		hctx->dispatch_from = NULL;	}	/*	 * Map software to hardware queues.	 *	 * If the cpu isn't present, the cpu is mapped to first hctx.	 */	for_each_possible_cpu(i) {		hctx_idx = q->mq_map[i];		/* unmapped hw queue can be remapped after CPU topo changed */		if (!set->tags[hctx_idx] &&		    !__blk_mq_alloc_rq_map(set, hctx_idx)) {			/*			 * If tags initialization fail for some hctx,			 * that hctx won't be brought online.  In this			 * case, remap the current ctx to hctx[0] which			 * is guaranteed to always have tags allocated			 */			q->mq_map[i] = 0;		}		ctx = per_cpu_ptr(q->queue_ctx, i);		hctx = blk_mq_map_queue(q, i);		cpumask_set_cpu(i, hctx->cpumask);		ctx->index_hw = hctx->nr_ctx;		hctx->ctxs[hctx->nr_ctx++] = ctx;	}	queue_for_each_hw_ctx(q, hctx, i) {		/*		 * If no software queues are mapped to this hardware queue,		 * disable it and free the request entries.		 */		if (!hctx->nr_ctx) {			/* Never unmap queue 0.  We need it as a			 * fallback in case of a new remap fails			 * allocation			 */			if (i && set->tags[i])				blk_mq_free_map_and_requests(set, i);			hctx->tags = NULL;			continue;		}		hctx->tags = set->tags[i];		WARN_ON(!hctx->tags);		/*		 * Set the map size to the number of mapped software queues.		 * This is more accurate and more efficient than looping		 * over all possibly mapped software queues.		 */		sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);		/*		 * Initialize batch roundrobin counts		 */		hctx->next_cpu = blk_mq_first_mapped_cpu(hctx);		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;	}}/* * Caller needs to ensure that we're either frozen/quiesced, or that * the queue isn't live yet. */static void queue_set_hctx_shared(struct request_queue *q, bool shared){	struct blk_mq_hw_ctx *hctx;	int i;	queue_for_each_hw_ctx(q, hctx, i) {		if (shared)			hctx->flags |= BLK_MQ_F_TAG_SHARED;		else			hctx->flags &= ~BLK_MQ_F_TAG_SHARED;	}}static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set,					bool shared){	struct request_queue *q;	lockdep_assert_held(&set->tag_list_lock);	list_for_each_entry(q, &set->tag_list, tag_set_list) {		blk_mq_freeze_queue(q);		queue_set_hctx_shared(q, shared);		blk_mq_unfreeze_queue(q);	}}static void blk_mq_del_queue_tag_set(struct request_queue *q){	struct blk_mq_tag_set *set = q->tag_set;	mutex_lock(&set->tag_list_lock);	list_del_rcu(&q->tag_set_list);	if (list_is_singular(&set->tag_list)) {		/* just transitioned to unshared */		set->flags &= ~BLK_MQ_F_TAG_SHARED;		/* update existing queue */		blk_mq_update_tag_set_depth(set, false);	}	mutex_unlock(&set->tag_list_lock);	INIT_LIST_HEAD(&q->tag_set_list);}static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,				     struct request_queue *q){	q->tag_set = set;	mutex_lock(&set->tag_list_lock);	/*	 * Check to see if we're transitioning to shared (from 1 to 2 queues).	 */	if (!list_empty(&set->tag_list) &&	    !(set->flags & BLK_MQ_F_TAG_SHARED)) {		set->flags |= BLK_MQ_F_TAG_SHARED;		/* update existing queue */		blk_mq_update_tag_set_depth(set, true);	}	if (set->flags & BLK_MQ_F_TAG_SHARED)		queue_set_hctx_shared(q, true);	list_add_tail_rcu(&q->tag_set_list, &set->tag_list);	mutex_unlock(&set->tag_list_lock);}/* * It is the actual release handler for mq, but we do it from * request queue's release handler for avoiding use-after-free * and headache because q->mq_kobj shouldn't have been introduced, * but we can't group ctx/kctx kobj without it. */void blk_mq_release(struct request_queue *q){	struct blk_mq_hw_ctx *hctx;	unsigned int i;	/* hctx kobj stays in hctx */	queue_for_each_hw_ctx(q, hctx, i) {		if (!hctx)			continue;		kobject_put(&hctx->kobj);	}	q->mq_map = NULL;	kfree(q->queue_hw_ctx);	/*	 * release .mq_kobj and sw queue's kobject now because	 * both share lifetime with request queue.	 */	blk_mq_sysfs_deinit(q);	free_percpu(q->queue_ctx);}struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set){	struct request_queue *uninit_q, *q;	uninit_q = blk_alloc_queue_node(GFP_KERNEL, set->numa_node, NULL);	if (!uninit_q)		return ERR_PTR(-ENOMEM);	q = blk_mq_init_allocated_queue(set, uninit_q);	if (IS_ERR(q))		blk_cleanup_queue(uninit_q);	return q;}EXPORT_SYMBOL(blk_mq_init_queue);static int blk_mq_hw_ctx_size(struct blk_mq_tag_set *tag_set){	int hw_ctx_size = sizeof(struct blk_mq_hw_ctx);	BUILD_BUG_ON(ALIGN(offsetof(struct blk_mq_hw_ctx, srcu),			   __alignof__(struct blk_mq_hw_ctx)) !=		     sizeof(struct blk_mq_hw_ctx));	if (tag_set->flags & BLK_MQ_F_BLOCKING)		hw_ctx_size += sizeof(struct srcu_struct);	return hw_ctx_size;}static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,						struct request_queue *q){	int i, j;	struct blk_mq_hw_ctx **hctxs = q->queue_hw_ctx;	blk_mq_sysfs_unregister(q);	/* protect against switching io scheduler  */	mutex_lock(&q->sysfs_lock);	for (i = 0; i < set->nr_hw_queues; i++) {		int node;		if (hctxs[i])			continue;		node = blk_mq_hw_queue_to_node(q->mq_map, i);		hctxs[i] = kzalloc_node(blk_mq_hw_ctx_size(set),				GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,				node);		if (!hctxs[i])			break;		if (!zalloc_cpumask_var_node(&hctxs[i]->cpumask,					GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,					node)) {			kfree(hctxs[i]);			hctxs[i] = NULL;			break;		}		atomic_set(&hctxs[i]->nr_active, 0);		hctxs[i]->numa_node = node;		hctxs[i]->queue_num = i;		if (blk_mq_init_hctx(q, set, hctxs[i], i)) {			free_cpumask_var(hctxs[i]->cpumask);			kfree(hctxs[i]);			hctxs[i] = NULL;			break;		}		blk_mq_hctx_kobj_init(hctxs[i]);	}	for (j = i; j < q->nr_hw_queues; j++) {		struct blk_mq_hw_ctx *hctx = hctxs[j];		if (hctx) {			if (hctx->tags)				blk_mq_free_map_and_requests(set, j);			blk_mq_exit_hctx(q, set, hctx, j);			kobject_put(&hctx->kobj);			hctxs[j] = NULL;		}	}	q->nr_hw_queues = i;	mutex_unlock(&q->sysfs_lock);	blk_mq_sysfs_register(q);}struct request_queue *blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,						  struct request_queue *q){	/* mark the queue as mq asap */	q->mq_ops = set->ops;	q->poll_cb = blk_stat_alloc_callback(blk_mq_poll_stats_fn,					     blk_mq_poll_stats_bkt,					     BLK_MQ_POLL_STATS_BKTS, q);	if (!q->poll_cb)		goto err_exit;	q->queue_ctx = alloc_percpu(struct blk_mq_ctx);	if (!q->queue_ctx)		goto err_exit;	/* init q->mq_kobj and sw queues' kobjects */	blk_mq_sysfs_init(q);	q->queue_hw_ctx = kcalloc_node(nr_cpu_ids, sizeof(*(q->queue_hw_ctx)),						GFP_KERNEL, set->numa_node);	if (!q->queue_hw_ctx)		goto err_percpu;	q->mq_map = set->mq_map;	blk_mq_realloc_hw_ctxs(set, q);	if (!q->nr_hw_queues)		goto err_hctxs;	INIT_WORK(&q->timeout_work, blk_mq_timeout_work);	blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);	q->nr_queues = nr_cpu_ids;	q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;	if (!(set->flags & BLK_MQ_F_SG_MERGE))		queue_flag_set_unlocked(QUEUE_FLAG_NO_SG_MERGE, q);	q->sg_reserved_size = INT_MAX;	INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);	INIT_LIST_HEAD(&q->requeue_list);	spin_lock_init(&q->requeue_lock);	blk_queue_make_request(q, blk_mq_make_request);	if (q->mq_ops->poll)		q->poll_fn = blk_mq_poll;	/*	 * Do this after blk_queue_make_request() overrides it...	 */	q->nr_requests = set->queue_depth;	/*	 * Default to classic polling	 */	q->poll_nsec = -1;	if (set->ops->complete)		blk_queue_softirq_done(q, set->ops->complete);	blk_mq_init_cpu_queues(q, set->nr_hw_queues);	blk_mq_add_queue_tag_set(set, q);	blk_mq_map_swqueue(q);	if (!(set->flags & BLK_MQ_F_NO_SCHED)) {		int ret;		ret = elevator_init_mq(q);		if (ret)			return ERR_PTR(ret);	}	return q;err_hctxs:	kfree(q->queue_hw_ctx);err_percpu:	free_percpu(q->queue_ctx);err_exit:	q->mq_ops = NULL;	return ERR_PTR(-ENOMEM);}EXPORT_SYMBOL(blk_mq_init_allocated_queue);/* tags can _not_ be used after returning from blk_mq_exit_queue */void blk_mq_exit_queue(struct request_queue *q){	struct blk_mq_tag_set *set = q->tag_set;	/* Checks hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED. */	blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);	/* May clear BLK_MQ_F_TAG_QUEUE_SHARED in hctx->flags. */	blk_mq_del_queue_tag_set(q);}/* Basically redo blk_mq_init_queue with queue frozen */static void blk_mq_queue_reinit(struct request_queue *q){	WARN_ON_ONCE(!atomic_read(&q->mq_freeze_depth));	blk_mq_debugfs_unregister_hctxs(q);	blk_mq_sysfs_unregister(q);	/*	 * redo blk_mq_init_cpu_queues and blk_mq_init_hw_queues. FIXME: maybe	 * we should change hctx numa_node according to the new topology (this	 * involves freeing and re-allocating memory, worth doing?)	 */	blk_mq_map_swqueue(q);	blk_mq_sysfs_register(q);	blk_mq_debugfs_register_hctxs(q);}static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set){	int i;	for (i = 0; i < set->nr_hw_queues; i++)		if (!__blk_mq_alloc_rq_map(set, i))			goto out_unwind;	return 0;out_unwind:	while (--i >= 0)		blk_mq_free_rq_map(set->tags[i]);	return -ENOMEM;}/* * Allocate the request maps associated with this tag_set. Note that this * may reduce the depth asked for, if memory is tight. set->queue_depth * will be updated to reflect the allocated depth. */static int blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set){	unsigned int depth;	int err;	depth = set->queue_depth;	do {		err = __blk_mq_alloc_rq_maps(set);		if (!err)			break;		set->queue_depth >>= 1;		if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {			err = -ENOMEM;			break;		}	} while (set->queue_depth);	if (!set->queue_depth || err) {		pr_err("blk-mq: failed to allocate request map\n");		return -ENOMEM;	}	if (depth != set->queue_depth)		pr_info("blk-mq: reduced tag depth (%u -> %u)\n",						depth, set->queue_depth);	return 0;}static int blk_mq_update_queue_map(struct blk_mq_tag_set *set){	if (set->ops->map_queues) {		/*		 * transport .map_queues is usually done in the following		 * way:		 *		 * for (queue = 0; queue < set->nr_hw_queues; queue++) {		 * 	mask = get_cpu_mask(queue)		 * 	for_each_cpu(cpu, mask)		 * 		set->mq_map[cpu] = queue;		 * }		 *		 * When we need to remap, the table has to be cleared for		 * killing stale mapping since one CPU may not be mapped		 * to any hw queue.		 */		blk_mq_clear_mq_map(set);		return set->ops->map_queues(set);	} else		return blk_mq_map_queues(set);}/* * Alloc a tag set to be associated with one or more request queues. * May fail with EINVAL for various error conditions. May adjust the * requested depth down, if it's too large. In that case, the set * value will be stored in set->queue_depth. */int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set){	int ret;	BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);	if (!set->nr_hw_queues)		return -EINVAL;	if (!set->queue_depth)		return -EINVAL;	if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)		return -EINVAL;	if (!set->ops->queue_rq)		return -EINVAL;	if (!set->ops->get_budget ^ !set->ops->put_budget)		return -EINVAL;	if (set->queue_depth > BLK_MQ_MAX_DEPTH) {		pr_info("blk-mq: reduced tag depth to %u\n",			BLK_MQ_MAX_DEPTH);		set->queue_depth = BLK_MQ_MAX_DEPTH;	}	/*	 * If a crashdump is active, then we are potentially in a very	 * memory constrained environment. Limit us to 1 queue and	 * 64 tags to prevent using too much memory.	 */	if (is_kdump_kernel()) {		set->nr_hw_queues = 1;		set->queue_depth = min(64U, set->queue_depth);	}	/*	 * There is no use for more h/w queues than cpus.	 */	if (set->nr_hw_queues > nr_cpu_ids)		set->nr_hw_queues = nr_cpu_ids;	set->tags = kcalloc_node(nr_cpu_ids, sizeof(struct blk_mq_tags *),				 GFP_KERNEL, set->numa_node);	if (!set->tags)		return -ENOMEM;	ret = -ENOMEM;	set->mq_map = kcalloc_node(nr_cpu_ids, sizeof(*set->mq_map),				   GFP_KERNEL, set->numa_node);	if (!set->mq_map)		goto out_free_tags;	ret = blk_mq_update_queue_map(set);	if (ret)		goto out_free_mq_map;	ret = blk_mq_alloc_rq_maps(set);	if (ret)		goto out_free_mq_map;	mutex_init(&set->tag_list_lock);	INIT_LIST_HEAD(&set->tag_list);	return 0;out_free_mq_map:	kfree(set->mq_map);	set->mq_map = NULL;out_free_tags:	kfree(set->tags);	set->tags = NULL;	return ret;}EXPORT_SYMBOL(blk_mq_alloc_tag_set);void blk_mq_free_tag_set(struct blk_mq_tag_set *set){	int i;	for (i = 0; i < nr_cpu_ids; i++)		blk_mq_free_map_and_requests(set, i);	kfree(set->mq_map);	set->mq_map = NULL;	kfree(set->tags);	set->tags = NULL;}EXPORT_SYMBOL(blk_mq_free_tag_set);int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr){	struct blk_mq_tag_set *set = q->tag_set;	struct blk_mq_hw_ctx *hctx;	int i, ret;	if (!set)		return -EINVAL;	blk_mq_freeze_queue(q);	blk_mq_quiesce_queue(q);	ret = 0;	queue_for_each_hw_ctx(q, hctx, i) {		if (!hctx->tags)			continue;		/*		 * If we're using an MQ scheduler, just update the scheduler		 * queue depth. This is similar to what the old code would do.		 */		if (!hctx->sched_tags) {			ret = blk_mq_tag_update_depth(hctx, &hctx->tags, nr,							false);		} else {			ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags,							nr, true);		}		if (ret)			break;		if (q->elevator && q->elevator->type->ops.mq.depth_updated)			q->elevator->type->ops.mq.depth_updated(hctx);	}	if (!ret)		q->nr_requests = nr;	blk_mq_unquiesce_queue(q);	blk_mq_unfreeze_queue(q);	return ret;}/* * request_queue and elevator_type pair. * It is just used by __blk_mq_update_nr_hw_queues to cache * the elevator_type associated with a request_queue. */struct blk_mq_qe_pair {	struct list_head node;	struct request_queue *q;	struct elevator_type *type;};/* * Cache the elevator_type in qe pair list and switch the * io scheduler to 'none' */static bool blk_mq_elv_switch_none(struct list_head *head,		struct request_queue *q){	struct blk_mq_qe_pair *qe;	if (!q->elevator)		return true;	qe = kmalloc(sizeof(*qe), GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY);	if (!qe)		return false;	INIT_LIST_HEAD(&qe->node);	qe->q = q;	qe->type = q->elevator->type;	list_add(&qe->node, head);	mutex_lock(&q->sysfs_lock);	/*	 * After elevator_switch_mq, the previous elevator_queue will be	 * released by elevator_release. The reference of the io scheduler	 * module get by elevator_get will also be put. So we need to get	 * a reference of the io scheduler module here to prevent it to be	 * removed.	 */	__module_get(qe->type->elevator_owner);	elevator_switch_mq(q, NULL);	mutex_unlock(&q->sysfs_lock);	return true;}static void blk_mq_elv_switch_back(struct list_head *head,		struct request_queue *q){	struct blk_mq_qe_pair *qe;	struct elevator_type *t = NULL;	list_for_each_entry(qe, head, node)		if (qe->q == q) {			t = qe->type;			break;		}	if (!t)		return;	list_del(&qe->node);	kfree(qe);	mutex_lock(&q->sysfs_lock);	elevator_switch_mq(q, t);	mutex_unlock(&q->sysfs_lock);}static void __blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set,							int nr_hw_queues){	struct request_queue *q;	LIST_HEAD(head);	lockdep_assert_held(&set->tag_list_lock);	if (nr_hw_queues > nr_cpu_ids)		nr_hw_queues = nr_cpu_ids;	if (nr_hw_queues < 1 || nr_hw_queues == set->nr_hw_queues)		return;	list_for_each_entry(q, &set->tag_list, tag_set_list)		blk_mq_freeze_queue(q);	/*	 * Sync with blk_mq_queue_tag_busy_iter.	 */	synchronize_rcu();	/*	 * Switch IO scheduler to 'none', cleaning up the data associated	 * with the previous scheduler. We will switch back once we are done	 * updating the new sw to hw queue mappings.	 */	list_for_each_entry(q, &set->tag_list, tag_set_list)		if (!blk_mq_elv_switch_none(&head, q))			goto switch_back;	set->nr_hw_queues = nr_hw_queues;	blk_mq_update_queue_map(set);	list_for_each_entry(q, &set->tag_list, tag_set_list) {		blk_mq_realloc_hw_ctxs(set, q);		blk_mq_queue_reinit(q);	}switch_back:	list_for_each_entry(q, &set->tag_list, tag_set_list)		blk_mq_elv_switch_back(&head, q);	list_for_each_entry(q, &set->tag_list, tag_set_list)		blk_mq_unfreeze_queue(q);}void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues){	mutex_lock(&set->tag_list_lock);	__blk_mq_update_nr_hw_queues(set, nr_hw_queues);	mutex_unlock(&set->tag_list_lock);}EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);/* Enable polling stats and return whether they were already enabled. */static bool blk_poll_stats_enable(struct request_queue *q){	if (test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||	    blk_queue_flag_test_and_set(QUEUE_FLAG_POLL_STATS, q))		return true;	blk_stat_add_callback(q, q->poll_cb);	return false;}static void blk_mq_poll_stats_start(struct request_queue *q){	/*	 * We don't arm the callback if polling stats are not enabled or the	 * callback is already active.	 */	if (!test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||	    blk_stat_is_active(q->poll_cb))		return;	blk_stat_activate_msecs(q->poll_cb, 100);}static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb){	struct request_queue *q = cb->data;	int bucket;	for (bucket = 0; bucket < BLK_MQ_POLL_STATS_BKTS; bucket++) {		if (cb->stat[bucket].nr_samples)			q->poll_stat[bucket] = cb->stat[bucket];	}}static unsigned long blk_mq_poll_nsecs(struct request_queue *q,				       struct blk_mq_hw_ctx *hctx,				       struct request *rq){	unsigned long ret = 0;	int bucket;	/*	 * If stats collection isn't on, don't sleep but turn it on for	 * future users	 */	if (!blk_poll_stats_enable(q))		return 0;	/*	 * As an optimistic guess, use half of the mean service time	 * for this type of request. We can (and should) make this smarter.	 * For instance, if the completion latencies are tight, we can	 * get closer than just half the mean. This is especially	 * important on devices where the completion latencies are longer	 * than ~10 usec. We do use the stats for the relevant IO size	 * if available which does lead to better estimates.	 */	bucket = blk_mq_poll_stats_bkt(rq);	if (bucket < 0)		return ret;	if (q->poll_stat[bucket].nr_samples)		ret = (q->poll_stat[bucket].mean + 1) / 2;	return ret;}static bool blk_mq_poll_hybrid_sleep(struct request_queue *q,				     struct blk_mq_hw_ctx *hctx,				     struct request *rq){	struct hrtimer_sleeper hs;	enum hrtimer_mode mode;	unsigned int nsecs;	ktime_t kt;	if (rq->rq_flags & RQF_MQ_POLL_SLEPT)		return false;	/*	 * poll_nsec can be:	 *	 * -1:	don't ever hybrid sleep	 *  0:	use half of prev avg	 * >0:	use this specific value	 */	if (q->poll_nsec == -1)		return false;	else if (q->poll_nsec > 0)		nsecs = q->poll_nsec;	else		nsecs = blk_mq_poll_nsecs(q, hctx, rq);	if (!nsecs)		return false;	rq->rq_flags |= RQF_MQ_POLL_SLEPT;	/*	 * This will be replaced with the stats tracking code, using	 * 'avg_completion_time / 2' as the pre-sleep target.	 */	kt = nsecs;	mode = HRTIMER_MODE_REL;	hrtimer_init_on_stack(&hs.timer, CLOCK_MONOTONIC, mode);	hrtimer_set_expires(&hs.timer, kt);	hrtimer_init_sleeper(&hs, current);	do {		if (blk_mq_rq_state(rq) == MQ_RQ_COMPLETE)			break;		set_current_state(TASK_UNINTERRUPTIBLE);		hrtimer_start_expires(&hs.timer, mode);		if (hs.task)			io_schedule();		hrtimer_cancel(&hs.timer);		mode = HRTIMER_MODE_ABS;	} while (hs.task && !signal_pending(current));	__set_current_state(TASK_RUNNING);	destroy_hrtimer_on_stack(&hs.timer);	return true;}static bool __blk_mq_poll(struct blk_mq_hw_ctx *hctx, struct request *rq){	struct request_queue *q = hctx->queue;	long state;	/*	 * If we sleep, have the caller restart the poll loop to reset	 * the state. Like for the other success return cases, the	 * caller is responsible for checking if the IO completed. If	 * the IO isn't complete, we'll get called again and will go	 * straight to the busy poll loop.	 */	if (blk_mq_poll_hybrid_sleep(q, hctx, rq))		return true;	hctx->poll_considered++;	state = current->state;	while (!need_resched()) {		int ret;		hctx->poll_invoked++;		ret = q->mq_ops->poll(hctx, rq->tag);		if (ret > 0) {			hctx->poll_success++;			set_current_state(TASK_RUNNING);			return true;		}		if (signal_pending_state(state, current))			set_current_state(TASK_RUNNING);		if (current->state == TASK_RUNNING)			return true;		if (ret < 0)			break;		cpu_relax();	}	__set_current_state(TASK_RUNNING);	return false;}static bool blk_mq_poll(struct request_queue *q, blk_qc_t cookie){	struct blk_mq_hw_ctx *hctx;	struct request *rq;	if (!test_bit(QUEUE_FLAG_POLL, &q->queue_flags))		return false;	hctx = q->queue_hw_ctx[blk_qc_t_to_queue_num(cookie)];	if (!blk_qc_t_is_internal(cookie))		rq = blk_mq_tag_to_rq(hctx->tags, blk_qc_t_to_tag(cookie));	else {		rq = blk_mq_tag_to_rq(hctx->sched_tags, blk_qc_t_to_tag(cookie));		/*		 * With scheduling, if the request has completed, we'll		 * get a NULL return here, as we clear the sched tag when		 * that happens. The request still remains valid, like always,		 * so we should be safe with just the NULL check.		 */		if (!rq)			return false;	}	return __blk_mq_poll(hctx, rq);}static int __init blk_mq_init(void){	cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,				blk_mq_hctx_notify_dead);	return 0;}subsys_initcall(blk_mq_init);
 |