clock.c 21 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950
  1. // SPDX-License-Identifier: GPL-2.0+
  2. /*
  3. * (C) Copyright 2007
  4. * Sascha Hauer, Pengutronix
  5. *
  6. * (C) Copyright 2009 Freescale Semiconductor, Inc.
  7. */
  8. #include <common.h>
  9. #include <asm/io.h>
  10. #include <linux/errno.h>
  11. #include <asm/arch/imx-regs.h>
  12. #include <asm/arch/crm_regs.h>
  13. #include <asm/arch/clock.h>
  14. #include <div64.h>
  15. #include <asm/arch/sys_proto.h>
  16. enum pll_clocks {
  17. PLL1_CLOCK = 0,
  18. PLL2_CLOCK,
  19. PLL3_CLOCK,
  20. #ifdef CONFIG_MX53
  21. PLL4_CLOCK,
  22. #endif
  23. PLL_CLOCKS,
  24. };
  25. struct mxc_pll_reg *mxc_plls[PLL_CLOCKS] = {
  26. [PLL1_CLOCK] = (struct mxc_pll_reg *)PLL1_BASE_ADDR,
  27. [PLL2_CLOCK] = (struct mxc_pll_reg *)PLL2_BASE_ADDR,
  28. [PLL3_CLOCK] = (struct mxc_pll_reg *)PLL3_BASE_ADDR,
  29. #ifdef CONFIG_MX53
  30. [PLL4_CLOCK] = (struct mxc_pll_reg *)PLL4_BASE_ADDR,
  31. #endif
  32. };
  33. #define AHB_CLK_ROOT 133333333
  34. #define SZ_DEC_1M 1000000
  35. #define PLL_PD_MAX 16 /* Actual pd+1 */
  36. #define PLL_MFI_MAX 15
  37. #define PLL_MFI_MIN 5
  38. #define ARM_DIV_MAX 8
  39. #define IPG_DIV_MAX 4
  40. #define AHB_DIV_MAX 8
  41. #define EMI_DIV_MAX 8
  42. #define NFC_DIV_MAX 8
  43. #define MX5_CBCMR 0x00015154
  44. #define MX5_CBCDR 0x02888945
  45. struct fixed_pll_mfd {
  46. u32 ref_clk_hz;
  47. u32 mfd;
  48. };
  49. const struct fixed_pll_mfd fixed_mfd[] = {
  50. {MXC_HCLK, 24 * 16},
  51. };
  52. struct pll_param {
  53. u32 pd;
  54. u32 mfi;
  55. u32 mfn;
  56. u32 mfd;
  57. };
  58. #define PLL_FREQ_MAX(ref_clk) (4 * (ref_clk) * PLL_MFI_MAX)
  59. #define PLL_FREQ_MIN(ref_clk) \
  60. ((2 * (ref_clk) * (PLL_MFI_MIN - 1)) / PLL_PD_MAX)
  61. #define MAX_DDR_CLK 420000000
  62. #define NFC_CLK_MAX 34000000
  63. struct mxc_ccm_reg *mxc_ccm = (struct mxc_ccm_reg *)MXC_CCM_BASE;
  64. void set_usboh3_clk(void)
  65. {
  66. clrsetbits_le32(&mxc_ccm->cscmr1,
  67. MXC_CCM_CSCMR1_USBOH3_CLK_SEL_MASK,
  68. MXC_CCM_CSCMR1_USBOH3_CLK_SEL(1));
  69. clrsetbits_le32(&mxc_ccm->cscdr1,
  70. MXC_CCM_CSCDR1_USBOH3_CLK_PODF_MASK |
  71. MXC_CCM_CSCDR1_USBOH3_CLK_PRED_MASK,
  72. MXC_CCM_CSCDR1_USBOH3_CLK_PRED(4) |
  73. MXC_CCM_CSCDR1_USBOH3_CLK_PODF(1));
  74. }
  75. void enable_usboh3_clk(bool enable)
  76. {
  77. unsigned int cg = enable ? MXC_CCM_CCGR_CG_ON : MXC_CCM_CCGR_CG_OFF;
  78. clrsetbits_le32(&mxc_ccm->CCGR2,
  79. MXC_CCM_CCGR2_USBOH3_60M(MXC_CCM_CCGR_CG_MASK),
  80. MXC_CCM_CCGR2_USBOH3_60M(cg));
  81. }
  82. #ifdef CONFIG_SYS_I2C_MXC
  83. /* i2c_num can be from 0, to 1 for i.MX51 and 2 for i.MX53 */
  84. int enable_i2c_clk(unsigned char enable, unsigned i2c_num)
  85. {
  86. u32 mask;
  87. #if defined(CONFIG_MX51)
  88. if (i2c_num > 1)
  89. #elif defined(CONFIG_MX53)
  90. if (i2c_num > 2)
  91. #endif
  92. return -EINVAL;
  93. mask = MXC_CCM_CCGR_CG_MASK <<
  94. (MXC_CCM_CCGR1_I2C1_OFFSET + (i2c_num << 1));
  95. if (enable)
  96. setbits_le32(&mxc_ccm->CCGR1, mask);
  97. else
  98. clrbits_le32(&mxc_ccm->CCGR1, mask);
  99. return 0;
  100. }
  101. #endif
  102. void set_usb_phy_clk(void)
  103. {
  104. clrbits_le32(&mxc_ccm->cscmr1, MXC_CCM_CSCMR1_USB_PHY_CLK_SEL);
  105. }
  106. #if defined(CONFIG_MX51)
  107. void enable_usb_phy1_clk(bool enable)
  108. {
  109. unsigned int cg = enable ? MXC_CCM_CCGR_CG_ON : MXC_CCM_CCGR_CG_OFF;
  110. clrsetbits_le32(&mxc_ccm->CCGR2,
  111. MXC_CCM_CCGR2_USB_PHY(MXC_CCM_CCGR_CG_MASK),
  112. MXC_CCM_CCGR2_USB_PHY(cg));
  113. }
  114. void enable_usb_phy2_clk(bool enable)
  115. {
  116. /* i.MX51 has a single USB PHY clock, so do nothing here. */
  117. }
  118. #elif defined(CONFIG_MX53)
  119. void enable_usb_phy1_clk(bool enable)
  120. {
  121. unsigned int cg = enable ? MXC_CCM_CCGR_CG_ON : MXC_CCM_CCGR_CG_OFF;
  122. clrsetbits_le32(&mxc_ccm->CCGR4,
  123. MXC_CCM_CCGR4_USB_PHY1(MXC_CCM_CCGR_CG_MASK),
  124. MXC_CCM_CCGR4_USB_PHY1(cg));
  125. }
  126. void enable_usb_phy2_clk(bool enable)
  127. {
  128. unsigned int cg = enable ? MXC_CCM_CCGR_CG_ON : MXC_CCM_CCGR_CG_OFF;
  129. clrsetbits_le32(&mxc_ccm->CCGR4,
  130. MXC_CCM_CCGR4_USB_PHY2(MXC_CCM_CCGR_CG_MASK),
  131. MXC_CCM_CCGR4_USB_PHY2(cg));
  132. }
  133. #endif
  134. /*
  135. * Calculate the frequency of PLLn.
  136. */
  137. static uint32_t decode_pll(struct mxc_pll_reg *pll, uint32_t infreq)
  138. {
  139. uint32_t ctrl, op, mfd, mfn, mfi, pdf, ret;
  140. uint64_t refclk, temp;
  141. int32_t mfn_abs;
  142. ctrl = readl(&pll->ctrl);
  143. if (ctrl & MXC_DPLLC_CTL_HFSM) {
  144. mfn = readl(&pll->hfs_mfn);
  145. mfd = readl(&pll->hfs_mfd);
  146. op = readl(&pll->hfs_op);
  147. } else {
  148. mfn = readl(&pll->mfn);
  149. mfd = readl(&pll->mfd);
  150. op = readl(&pll->op);
  151. }
  152. mfd &= MXC_DPLLC_MFD_MFD_MASK;
  153. mfn &= MXC_DPLLC_MFN_MFN_MASK;
  154. pdf = op & MXC_DPLLC_OP_PDF_MASK;
  155. mfi = MXC_DPLLC_OP_MFI_RD(op);
  156. /* 21.2.3 */
  157. if (mfi < 5)
  158. mfi = 5;
  159. /* Sign extend */
  160. if (mfn >= 0x04000000) {
  161. mfn |= 0xfc000000;
  162. mfn_abs = -mfn;
  163. } else
  164. mfn_abs = mfn;
  165. refclk = infreq * 2;
  166. if (ctrl & MXC_DPLLC_CTL_DPDCK0_2_EN)
  167. refclk *= 2;
  168. do_div(refclk, pdf + 1);
  169. temp = refclk * mfn_abs;
  170. do_div(temp, mfd + 1);
  171. ret = refclk * mfi;
  172. if ((int)mfn < 0)
  173. ret -= temp;
  174. else
  175. ret += temp;
  176. return ret;
  177. }
  178. #ifdef CONFIG_MX51
  179. /*
  180. * This function returns the Frequency Pre-Multiplier clock.
  181. */
  182. static u32 get_fpm(void)
  183. {
  184. u32 mult;
  185. u32 ccr = readl(&mxc_ccm->ccr);
  186. if (ccr & MXC_CCM_CCR_FPM_MULT)
  187. mult = 1024;
  188. else
  189. mult = 512;
  190. return MXC_CLK32 * mult;
  191. }
  192. #endif
  193. /*
  194. * This function returns the low power audio clock.
  195. */
  196. static u32 get_lp_apm(void)
  197. {
  198. u32 ret_val = 0;
  199. u32 ccsr = readl(&mxc_ccm->ccsr);
  200. if (ccsr & MXC_CCM_CCSR_LP_APM)
  201. #if defined(CONFIG_MX51)
  202. ret_val = get_fpm();
  203. #elif defined(CONFIG_MX53)
  204. ret_val = decode_pll(mxc_plls[PLL4_CLOCK], MXC_HCLK);
  205. #endif
  206. else
  207. ret_val = MXC_HCLK;
  208. return ret_val;
  209. }
  210. /*
  211. * Get mcu main rate
  212. */
  213. u32 get_mcu_main_clk(void)
  214. {
  215. u32 reg, freq;
  216. reg = MXC_CCM_CACRR_ARM_PODF_RD(readl(&mxc_ccm->cacrr));
  217. freq = decode_pll(mxc_plls[PLL1_CLOCK], MXC_HCLK);
  218. return freq / (reg + 1);
  219. }
  220. /*
  221. * Get the rate of peripheral's root clock.
  222. */
  223. u32 get_periph_clk(void)
  224. {
  225. u32 reg;
  226. reg = readl(&mxc_ccm->cbcdr);
  227. if (!(reg & MXC_CCM_CBCDR_PERIPH_CLK_SEL))
  228. return decode_pll(mxc_plls[PLL2_CLOCK], MXC_HCLK);
  229. reg = readl(&mxc_ccm->cbcmr);
  230. switch (MXC_CCM_CBCMR_PERIPH_CLK_SEL_RD(reg)) {
  231. case 0:
  232. return decode_pll(mxc_plls[PLL1_CLOCK], MXC_HCLK);
  233. case 1:
  234. return decode_pll(mxc_plls[PLL3_CLOCK], MXC_HCLK);
  235. case 2:
  236. return get_lp_apm();
  237. default:
  238. return 0;
  239. }
  240. /* NOTREACHED */
  241. }
  242. /*
  243. * Get the rate of ipg clock.
  244. */
  245. static u32 get_ipg_clk(void)
  246. {
  247. uint32_t freq, reg, div;
  248. freq = get_ahb_clk();
  249. reg = readl(&mxc_ccm->cbcdr);
  250. div = MXC_CCM_CBCDR_IPG_PODF_RD(reg) + 1;
  251. return freq / div;
  252. }
  253. /*
  254. * Get the rate of ipg_per clock.
  255. */
  256. static u32 get_ipg_per_clk(void)
  257. {
  258. u32 freq, pred1, pred2, podf;
  259. if (readl(&mxc_ccm->cbcmr) & MXC_CCM_CBCMR_PERCLK_IPG_CLK_SEL)
  260. return get_ipg_clk();
  261. if (readl(&mxc_ccm->cbcmr) & MXC_CCM_CBCMR_PERCLK_LP_APM_CLK_SEL)
  262. freq = get_lp_apm();
  263. else
  264. freq = get_periph_clk();
  265. podf = readl(&mxc_ccm->cbcdr);
  266. pred1 = MXC_CCM_CBCDR_PERCLK_PRED1_RD(podf);
  267. pred2 = MXC_CCM_CBCDR_PERCLK_PRED2_RD(podf);
  268. podf = MXC_CCM_CBCDR_PERCLK_PODF_RD(podf);
  269. return freq / ((pred1 + 1) * (pred2 + 1) * (podf + 1));
  270. }
  271. /* Get the output clock rate of a standard PLL MUX for peripherals. */
  272. static u32 get_standard_pll_sel_clk(u32 clk_sel)
  273. {
  274. u32 freq = 0;
  275. switch (clk_sel & 0x3) {
  276. case 0:
  277. freq = decode_pll(mxc_plls[PLL1_CLOCK], MXC_HCLK);
  278. break;
  279. case 1:
  280. freq = decode_pll(mxc_plls[PLL2_CLOCK], MXC_HCLK);
  281. break;
  282. case 2:
  283. freq = decode_pll(mxc_plls[PLL3_CLOCK], MXC_HCLK);
  284. break;
  285. case 3:
  286. freq = get_lp_apm();
  287. break;
  288. }
  289. return freq;
  290. }
  291. /*
  292. * Get the rate of uart clk.
  293. */
  294. static u32 get_uart_clk(void)
  295. {
  296. unsigned int clk_sel, freq, reg, pred, podf;
  297. reg = readl(&mxc_ccm->cscmr1);
  298. clk_sel = MXC_CCM_CSCMR1_UART_CLK_SEL_RD(reg);
  299. freq = get_standard_pll_sel_clk(clk_sel);
  300. reg = readl(&mxc_ccm->cscdr1);
  301. pred = MXC_CCM_CSCDR1_UART_CLK_PRED_RD(reg);
  302. podf = MXC_CCM_CSCDR1_UART_CLK_PODF_RD(reg);
  303. freq /= (pred + 1) * (podf + 1);
  304. return freq;
  305. }
  306. /*
  307. * get cspi clock rate.
  308. */
  309. static u32 imx_get_cspiclk(void)
  310. {
  311. u32 ret_val = 0, pdf, pre_pdf, clk_sel, freq;
  312. u32 cscmr1 = readl(&mxc_ccm->cscmr1);
  313. u32 cscdr2 = readl(&mxc_ccm->cscdr2);
  314. pre_pdf = MXC_CCM_CSCDR2_CSPI_CLK_PRED_RD(cscdr2);
  315. pdf = MXC_CCM_CSCDR2_CSPI_CLK_PODF_RD(cscdr2);
  316. clk_sel = MXC_CCM_CSCMR1_CSPI_CLK_SEL_RD(cscmr1);
  317. freq = get_standard_pll_sel_clk(clk_sel);
  318. ret_val = freq / ((pre_pdf + 1) * (pdf + 1));
  319. return ret_val;
  320. }
  321. /*
  322. * get esdhc clock rate.
  323. */
  324. static u32 get_esdhc_clk(u32 port)
  325. {
  326. u32 clk_sel = 0, pred = 0, podf = 0, freq = 0;
  327. u32 cscmr1 = readl(&mxc_ccm->cscmr1);
  328. u32 cscdr1 = readl(&mxc_ccm->cscdr1);
  329. switch (port) {
  330. case 0:
  331. clk_sel = MXC_CCM_CSCMR1_ESDHC1_MSHC1_CLK_SEL_RD(cscmr1);
  332. pred = MXC_CCM_CSCDR1_ESDHC1_MSHC1_CLK_PRED_RD(cscdr1);
  333. podf = MXC_CCM_CSCDR1_ESDHC1_MSHC1_CLK_PODF_RD(cscdr1);
  334. break;
  335. case 1:
  336. clk_sel = MXC_CCM_CSCMR1_ESDHC2_MSHC2_CLK_SEL_RD(cscmr1);
  337. pred = MXC_CCM_CSCDR1_ESDHC2_MSHC2_CLK_PRED_RD(cscdr1);
  338. podf = MXC_CCM_CSCDR1_ESDHC2_MSHC2_CLK_PODF_RD(cscdr1);
  339. break;
  340. case 2:
  341. if (cscmr1 & MXC_CCM_CSCMR1_ESDHC3_CLK_SEL)
  342. return get_esdhc_clk(1);
  343. else
  344. return get_esdhc_clk(0);
  345. case 3:
  346. if (cscmr1 & MXC_CCM_CSCMR1_ESDHC4_CLK_SEL)
  347. return get_esdhc_clk(1);
  348. else
  349. return get_esdhc_clk(0);
  350. default:
  351. break;
  352. }
  353. freq = get_standard_pll_sel_clk(clk_sel) / ((pred + 1) * (podf + 1));
  354. return freq;
  355. }
  356. static u32 get_axi_a_clk(void)
  357. {
  358. u32 cbcdr = readl(&mxc_ccm->cbcdr);
  359. u32 pdf = MXC_CCM_CBCDR_AXI_A_PODF_RD(cbcdr);
  360. return get_periph_clk() / (pdf + 1);
  361. }
  362. static u32 get_axi_b_clk(void)
  363. {
  364. u32 cbcdr = readl(&mxc_ccm->cbcdr);
  365. u32 pdf = MXC_CCM_CBCDR_AXI_B_PODF_RD(cbcdr);
  366. return get_periph_clk() / (pdf + 1);
  367. }
  368. static u32 get_emi_slow_clk(void)
  369. {
  370. u32 cbcdr = readl(&mxc_ccm->cbcdr);
  371. u32 emi_clk_sel = cbcdr & MXC_CCM_CBCDR_EMI_CLK_SEL;
  372. u32 pdf = MXC_CCM_CBCDR_EMI_PODF_RD(cbcdr);
  373. if (emi_clk_sel)
  374. return get_ahb_clk() / (pdf + 1);
  375. return get_periph_clk() / (pdf + 1);
  376. }
  377. static u32 get_ddr_clk(void)
  378. {
  379. u32 ret_val = 0;
  380. u32 cbcmr = readl(&mxc_ccm->cbcmr);
  381. u32 ddr_clk_sel = MXC_CCM_CBCMR_DDR_CLK_SEL_RD(cbcmr);
  382. #ifdef CONFIG_MX51
  383. u32 cbcdr = readl(&mxc_ccm->cbcdr);
  384. if (cbcdr & MXC_CCM_CBCDR_DDR_HIFREQ_SEL) {
  385. u32 ddr_clk_podf = MXC_CCM_CBCDR_DDR_PODF_RD(cbcdr);
  386. ret_val = decode_pll(mxc_plls[PLL1_CLOCK], MXC_HCLK);
  387. ret_val /= ddr_clk_podf + 1;
  388. return ret_val;
  389. }
  390. #endif
  391. switch (ddr_clk_sel) {
  392. case 0:
  393. ret_val = get_axi_a_clk();
  394. break;
  395. case 1:
  396. ret_val = get_axi_b_clk();
  397. break;
  398. case 2:
  399. ret_val = get_emi_slow_clk();
  400. break;
  401. case 3:
  402. ret_val = get_ahb_clk();
  403. break;
  404. default:
  405. break;
  406. }
  407. return ret_val;
  408. }
  409. /*
  410. * The API of get mxc clocks.
  411. */
  412. unsigned int mxc_get_clock(enum mxc_clock clk)
  413. {
  414. switch (clk) {
  415. case MXC_ARM_CLK:
  416. return get_mcu_main_clk();
  417. case MXC_AHB_CLK:
  418. return get_ahb_clk();
  419. case MXC_IPG_CLK:
  420. return get_ipg_clk();
  421. case MXC_IPG_PERCLK:
  422. case MXC_I2C_CLK:
  423. return get_ipg_per_clk();
  424. case MXC_UART_CLK:
  425. return get_uart_clk();
  426. case MXC_CSPI_CLK:
  427. return imx_get_cspiclk();
  428. case MXC_ESDHC_CLK:
  429. return get_esdhc_clk(0);
  430. case MXC_ESDHC2_CLK:
  431. return get_esdhc_clk(1);
  432. case MXC_ESDHC3_CLK:
  433. return get_esdhc_clk(2);
  434. case MXC_ESDHC4_CLK:
  435. return get_esdhc_clk(3);
  436. case MXC_FEC_CLK:
  437. return get_ipg_clk();
  438. case MXC_SATA_CLK:
  439. return get_ahb_clk();
  440. case MXC_DDR_CLK:
  441. return get_ddr_clk();
  442. default:
  443. break;
  444. }
  445. return -EINVAL;
  446. }
  447. u32 imx_get_uartclk(void)
  448. {
  449. return get_uart_clk();
  450. }
  451. u32 imx_get_fecclk(void)
  452. {
  453. return get_ipg_clk();
  454. }
  455. static int gcd(int m, int n)
  456. {
  457. int t;
  458. while (m > 0) {
  459. if (n > m) {
  460. t = m;
  461. m = n;
  462. n = t;
  463. } /* swap */
  464. m -= n;
  465. }
  466. return n;
  467. }
  468. /*
  469. * This is to calculate various parameters based on reference clock and
  470. * targeted clock based on the equation:
  471. * t_clk = 2*ref_freq*(mfi + mfn/(mfd+1))/(pd+1)
  472. * This calculation is based on a fixed MFD value for simplicity.
  473. */
  474. static int calc_pll_params(u32 ref, u32 target, struct pll_param *pll)
  475. {
  476. u64 pd, mfi = 1, mfn, mfd, t1;
  477. u32 n_target = target;
  478. u32 n_ref = ref, i;
  479. /*
  480. * Make sure targeted freq is in the valid range.
  481. * Otherwise the following calculation might be wrong!!!
  482. */
  483. if (n_target < PLL_FREQ_MIN(ref) ||
  484. n_target > PLL_FREQ_MAX(ref)) {
  485. printf("Targeted peripheral clock should be"
  486. "within [%d - %d]\n",
  487. PLL_FREQ_MIN(ref) / SZ_DEC_1M,
  488. PLL_FREQ_MAX(ref) / SZ_DEC_1M);
  489. return -EINVAL;
  490. }
  491. for (i = 0; i < ARRAY_SIZE(fixed_mfd); i++) {
  492. if (fixed_mfd[i].ref_clk_hz == ref) {
  493. mfd = fixed_mfd[i].mfd;
  494. break;
  495. }
  496. }
  497. if (i == ARRAY_SIZE(fixed_mfd))
  498. return -EINVAL;
  499. /* Use n_target and n_ref to avoid overflow */
  500. for (pd = 1; pd <= PLL_PD_MAX; pd++) {
  501. t1 = n_target * pd;
  502. do_div(t1, (4 * n_ref));
  503. mfi = t1;
  504. if (mfi > PLL_MFI_MAX)
  505. return -EINVAL;
  506. else if (mfi < 5)
  507. continue;
  508. break;
  509. }
  510. /*
  511. * Now got pd and mfi already
  512. *
  513. * mfn = (((n_target * pd) / 4 - n_ref * mfi) * mfd) / n_ref;
  514. */
  515. t1 = n_target * pd;
  516. do_div(t1, 4);
  517. t1 -= n_ref * mfi;
  518. t1 *= mfd;
  519. do_div(t1, n_ref);
  520. mfn = t1;
  521. debug("ref=%d, target=%d, pd=%d," "mfi=%d,mfn=%d, mfd=%d\n",
  522. ref, n_target, (u32)pd, (u32)mfi, (u32)mfn, (u32)mfd);
  523. i = 1;
  524. if (mfn != 0)
  525. i = gcd(mfd, mfn);
  526. pll->pd = (u32)pd;
  527. pll->mfi = (u32)mfi;
  528. do_div(mfn, i);
  529. pll->mfn = (u32)mfn;
  530. do_div(mfd, i);
  531. pll->mfd = (u32)mfd;
  532. return 0;
  533. }
  534. #define calc_div(tgt_clk, src_clk, limit) ({ \
  535. u32 v = 0; \
  536. if (((src_clk) % (tgt_clk)) <= 100) \
  537. v = (src_clk) / (tgt_clk); \
  538. else \
  539. v = ((src_clk) / (tgt_clk)) + 1;\
  540. if (v > limit) \
  541. v = limit; \
  542. (v - 1); \
  543. })
  544. #define CHANGE_PLL_SETTINGS(pll, pd, fi, fn, fd) \
  545. { \
  546. writel(0x1232, &pll->ctrl); \
  547. writel(0x2, &pll->config); \
  548. writel((((pd) - 1) << 0) | ((fi) << 4), \
  549. &pll->op); \
  550. writel(fn, &(pll->mfn)); \
  551. writel((fd) - 1, &pll->mfd); \
  552. writel((((pd) - 1) << 0) | ((fi) << 4), \
  553. &pll->hfs_op); \
  554. writel(fn, &pll->hfs_mfn); \
  555. writel((fd) - 1, &pll->hfs_mfd); \
  556. writel(0x1232, &pll->ctrl); \
  557. while (!readl(&pll->ctrl) & 0x1) \
  558. ;\
  559. }
  560. static int config_pll_clk(enum pll_clocks index, struct pll_param *pll_param)
  561. {
  562. u32 ccsr = readl(&mxc_ccm->ccsr);
  563. struct mxc_pll_reg *pll = mxc_plls[index];
  564. switch (index) {
  565. case PLL1_CLOCK:
  566. /* Switch ARM to PLL2 clock */
  567. writel(ccsr | MXC_CCM_CCSR_PLL1_SW_CLK_SEL,
  568. &mxc_ccm->ccsr);
  569. CHANGE_PLL_SETTINGS(pll, pll_param->pd,
  570. pll_param->mfi, pll_param->mfn,
  571. pll_param->mfd);
  572. /* Switch back */
  573. writel(ccsr & ~MXC_CCM_CCSR_PLL1_SW_CLK_SEL,
  574. &mxc_ccm->ccsr);
  575. break;
  576. case PLL2_CLOCK:
  577. /* Switch to pll2 bypass clock */
  578. writel(ccsr | MXC_CCM_CCSR_PLL2_SW_CLK_SEL,
  579. &mxc_ccm->ccsr);
  580. CHANGE_PLL_SETTINGS(pll, pll_param->pd,
  581. pll_param->mfi, pll_param->mfn,
  582. pll_param->mfd);
  583. /* Switch back */
  584. writel(ccsr & ~MXC_CCM_CCSR_PLL2_SW_CLK_SEL,
  585. &mxc_ccm->ccsr);
  586. break;
  587. case PLL3_CLOCK:
  588. /* Switch to pll3 bypass clock */
  589. writel(ccsr | MXC_CCM_CCSR_PLL3_SW_CLK_SEL,
  590. &mxc_ccm->ccsr);
  591. CHANGE_PLL_SETTINGS(pll, pll_param->pd,
  592. pll_param->mfi, pll_param->mfn,
  593. pll_param->mfd);
  594. /* Switch back */
  595. writel(ccsr & ~MXC_CCM_CCSR_PLL3_SW_CLK_SEL,
  596. &mxc_ccm->ccsr);
  597. break;
  598. #ifdef CONFIG_MX53
  599. case PLL4_CLOCK:
  600. /* Switch to pll4 bypass clock */
  601. writel(ccsr | MXC_CCM_CCSR_PLL4_SW_CLK_SEL,
  602. &mxc_ccm->ccsr);
  603. CHANGE_PLL_SETTINGS(pll, pll_param->pd,
  604. pll_param->mfi, pll_param->mfn,
  605. pll_param->mfd);
  606. /* Switch back */
  607. writel(ccsr & ~MXC_CCM_CCSR_PLL4_SW_CLK_SEL,
  608. &mxc_ccm->ccsr);
  609. break;
  610. #endif
  611. default:
  612. return -EINVAL;
  613. }
  614. return 0;
  615. }
  616. /* Config CPU clock */
  617. static int config_core_clk(u32 ref, u32 freq)
  618. {
  619. int ret = 0;
  620. struct pll_param pll_param;
  621. memset(&pll_param, 0, sizeof(struct pll_param));
  622. /* The case that periph uses PLL1 is not considered here */
  623. ret = calc_pll_params(ref, freq, &pll_param);
  624. if (ret != 0) {
  625. printf("Error:Can't find pll parameters: %d\n", ret);
  626. return ret;
  627. }
  628. return config_pll_clk(PLL1_CLOCK, &pll_param);
  629. }
  630. static int config_nfc_clk(u32 nfc_clk)
  631. {
  632. u32 parent_rate = get_emi_slow_clk();
  633. u32 div;
  634. if (nfc_clk == 0)
  635. return -EINVAL;
  636. div = parent_rate / nfc_clk;
  637. if (div == 0)
  638. div++;
  639. if (parent_rate / div > NFC_CLK_MAX)
  640. div++;
  641. clrsetbits_le32(&mxc_ccm->cbcdr,
  642. MXC_CCM_CBCDR_NFC_PODF_MASK,
  643. MXC_CCM_CBCDR_NFC_PODF(div - 1));
  644. while (readl(&mxc_ccm->cdhipr) != 0)
  645. ;
  646. return 0;
  647. }
  648. void enable_nfc_clk(unsigned char enable)
  649. {
  650. unsigned int cg = enable ? MXC_CCM_CCGR_CG_ON : MXC_CCM_CCGR_CG_OFF;
  651. clrsetbits_le32(&mxc_ccm->CCGR5,
  652. MXC_CCM_CCGR5_EMI_ENFC(MXC_CCM_CCGR_CG_MASK),
  653. MXC_CCM_CCGR5_EMI_ENFC(cg));
  654. }
  655. #ifdef CONFIG_FSL_IIM
  656. void enable_efuse_prog_supply(bool enable)
  657. {
  658. if (enable)
  659. setbits_le32(&mxc_ccm->cgpr,
  660. MXC_CCM_CGPR_EFUSE_PROG_SUPPLY_GATE);
  661. else
  662. clrbits_le32(&mxc_ccm->cgpr,
  663. MXC_CCM_CGPR_EFUSE_PROG_SUPPLY_GATE);
  664. }
  665. #endif
  666. /* Config main_bus_clock for periphs */
  667. static int config_periph_clk(u32 ref, u32 freq)
  668. {
  669. int ret = 0;
  670. struct pll_param pll_param;
  671. memset(&pll_param, 0, sizeof(struct pll_param));
  672. if (readl(&mxc_ccm->cbcdr) & MXC_CCM_CBCDR_PERIPH_CLK_SEL) {
  673. ret = calc_pll_params(ref, freq, &pll_param);
  674. if (ret != 0) {
  675. printf("Error:Can't find pll parameters: %d\n",
  676. ret);
  677. return ret;
  678. }
  679. switch (MXC_CCM_CBCMR_PERIPH_CLK_SEL_RD(
  680. readl(&mxc_ccm->cbcmr))) {
  681. case 0:
  682. return config_pll_clk(PLL1_CLOCK, &pll_param);
  683. break;
  684. case 1:
  685. return config_pll_clk(PLL3_CLOCK, &pll_param);
  686. break;
  687. default:
  688. return -EINVAL;
  689. }
  690. }
  691. return 0;
  692. }
  693. static int config_ddr_clk(u32 emi_clk)
  694. {
  695. u32 clk_src;
  696. s32 shift = 0, clk_sel, div = 1;
  697. u32 cbcmr = readl(&mxc_ccm->cbcmr);
  698. if (emi_clk > MAX_DDR_CLK) {
  699. printf("Warning:DDR clock should not exceed %d MHz\n",
  700. MAX_DDR_CLK / SZ_DEC_1M);
  701. emi_clk = MAX_DDR_CLK;
  702. }
  703. clk_src = get_periph_clk();
  704. /* Find DDR clock input */
  705. clk_sel = MXC_CCM_CBCMR_DDR_CLK_SEL_RD(cbcmr);
  706. switch (clk_sel) {
  707. case 0:
  708. shift = 16;
  709. break;
  710. case 1:
  711. shift = 19;
  712. break;
  713. case 2:
  714. shift = 22;
  715. break;
  716. case 3:
  717. shift = 10;
  718. break;
  719. default:
  720. return -EINVAL;
  721. }
  722. if ((clk_src % emi_clk) < 10000000)
  723. div = clk_src / emi_clk;
  724. else
  725. div = (clk_src / emi_clk) + 1;
  726. if (div > 8)
  727. div = 8;
  728. clrsetbits_le32(&mxc_ccm->cbcdr, 0x7 << shift, (div - 1) << shift);
  729. while (readl(&mxc_ccm->cdhipr) != 0)
  730. ;
  731. writel(0x0, &mxc_ccm->ccdr);
  732. return 0;
  733. }
  734. /*
  735. * This function assumes the expected core clock has to be changed by
  736. * modifying the PLL. This is NOT true always but for most of the times,
  737. * it is. So it assumes the PLL output freq is the same as the expected
  738. * core clock (presc=1) unless the core clock is less than PLL_FREQ_MIN.
  739. * In the latter case, it will try to increase the presc value until
  740. * (presc*core_clk) is greater than PLL_FREQ_MIN. It then makes call to
  741. * calc_pll_params() and obtains the values of PD, MFI,MFN, MFD based
  742. * on the targeted PLL and reference input clock to the PLL. Lastly,
  743. * it sets the register based on these values along with the dividers.
  744. * Note 1) There is no value checking for the passed-in divider values
  745. * so the caller has to make sure those values are sensible.
  746. * 2) Also adjust the NFC divider such that the NFC clock doesn't
  747. * exceed NFC_CLK_MAX.
  748. * 3) IPU HSP clock is independent of AHB clock. Even it can go up to
  749. * 177MHz for higher voltage, this function fixes the max to 133MHz.
  750. * 4) This function should not have allowed diag_printf() calls since
  751. * the serial driver has been stoped. But leave then here to allow
  752. * easy debugging by NOT calling the cyg_hal_plf_serial_stop().
  753. */
  754. int mxc_set_clock(u32 ref, u32 freq, enum mxc_clock clk)
  755. {
  756. freq *= SZ_DEC_1M;
  757. switch (clk) {
  758. case MXC_ARM_CLK:
  759. if (config_core_clk(ref, freq))
  760. return -EINVAL;
  761. break;
  762. case MXC_PERIPH_CLK:
  763. if (config_periph_clk(ref, freq))
  764. return -EINVAL;
  765. break;
  766. case MXC_DDR_CLK:
  767. if (config_ddr_clk(freq))
  768. return -EINVAL;
  769. break;
  770. case MXC_NFC_CLK:
  771. if (config_nfc_clk(freq))
  772. return -EINVAL;
  773. break;
  774. default:
  775. printf("Warning:Unsupported or invalid clock type\n");
  776. }
  777. return 0;
  778. }
  779. #ifdef CONFIG_MX53
  780. /*
  781. * The clock for the external interface can be set to use internal clock
  782. * if fuse bank 4, row 3, bit 2 is set.
  783. * This is an undocumented feature and it was confirmed by Freescale's support:
  784. * Fuses (but not pins) may be used to configure SATA clocks.
  785. * Particularly the i.MX53 Fuse_Map contains the next information
  786. * about configuring SATA clocks : SATA_ALT_REF_CLK[1:0] (offset 0x180C)
  787. * '00' - 100MHz (External)
  788. * '01' - 50MHz (External)
  789. * '10' - 120MHz, internal (USB PHY)
  790. * '11' - Reserved
  791. */
  792. void mxc_set_sata_internal_clock(void)
  793. {
  794. u32 *tmp_base =
  795. (u32 *)(IIM_BASE_ADDR + 0x180c);
  796. set_usb_phy_clk();
  797. clrsetbits_le32(tmp_base, 0x6, 0x4);
  798. }
  799. #endif
  800. #ifndef CONFIG_SPL_BUILD
  801. /*
  802. * Dump some core clockes.
  803. */
  804. static int do_mx5_showclocks(cmd_tbl_t *cmdtp, int flag, int argc, char * const argv[])
  805. {
  806. u32 freq;
  807. freq = decode_pll(mxc_plls[PLL1_CLOCK], MXC_HCLK);
  808. printf("PLL1 %8d MHz\n", freq / 1000000);
  809. freq = decode_pll(mxc_plls[PLL2_CLOCK], MXC_HCLK);
  810. printf("PLL2 %8d MHz\n", freq / 1000000);
  811. freq = decode_pll(mxc_plls[PLL3_CLOCK], MXC_HCLK);
  812. printf("PLL3 %8d MHz\n", freq / 1000000);
  813. #ifdef CONFIG_MX53
  814. freq = decode_pll(mxc_plls[PLL4_CLOCK], MXC_HCLK);
  815. printf("PLL4 %8d MHz\n", freq / 1000000);
  816. #endif
  817. printf("\n");
  818. printf("AHB %8d kHz\n", mxc_get_clock(MXC_AHB_CLK) / 1000);
  819. printf("IPG %8d kHz\n", mxc_get_clock(MXC_IPG_CLK) / 1000);
  820. printf("IPG PERCLK %8d kHz\n", mxc_get_clock(MXC_IPG_PERCLK) / 1000);
  821. printf("DDR %8d kHz\n", mxc_get_clock(MXC_DDR_CLK) / 1000);
  822. #ifdef CONFIG_MXC_SPI
  823. printf("CSPI %8d kHz\n", mxc_get_clock(MXC_CSPI_CLK) / 1000);
  824. #endif
  825. return 0;
  826. }
  827. /***************************************************/
  828. U_BOOT_CMD(
  829. clocks, CONFIG_SYS_MAXARGS, 1, do_mx5_showclocks,
  830. "display clocks",
  831. ""
  832. );
  833. #endif