smp.c 9.5 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336
  1. /*
  2. * Intel SMP support routines.
  3. *
  4. * (c) 1995 Alan Cox, Building #3 <alan@lxorguk.ukuu.org.uk>
  5. * (c) 1998-99, 2000, 2009 Ingo Molnar <mingo@redhat.com>
  6. * (c) 2002,2003 Andi Kleen, SuSE Labs.
  7. *
  8. * i386 and x86_64 integration by Glauber Costa <gcosta@redhat.com>
  9. *
  10. * This code is released under the GNU General Public License version 2 or
  11. * later.
  12. */
  13. #include <linux/init.h>
  14. #include <linux/mm.h>
  15. #include <linux/delay.h>
  16. #include <linux/spinlock.h>
  17. #include <linux/export.h>
  18. #include <linux/kernel_stat.h>
  19. #include <linux/mc146818rtc.h>
  20. #include <linux/cache.h>
  21. #include <linux/interrupt.h>
  22. #include <linux/cpu.h>
  23. #include <linux/gfp.h>
  24. #include <asm/mtrr.h>
  25. #include <asm/tlbflush.h>
  26. #include <asm/mmu_context.h>
  27. #include <asm/proto.h>
  28. #include <asm/apic.h>
  29. #include <asm/nmi.h>
  30. #include <asm/mce.h>
  31. #include <asm/trace/irq_vectors.h>
  32. #include <asm/kexec.h>
  33. #include <asm/virtext.h>
  34. /*
  35. * Some notes on x86 processor bugs affecting SMP operation:
  36. *
  37. * Pentium, Pentium Pro, II, III (and all CPUs) have bugs.
  38. * The Linux implications for SMP are handled as follows:
  39. *
  40. * Pentium III / [Xeon]
  41. * None of the E1AP-E3AP errata are visible to the user.
  42. *
  43. * E1AP. see PII A1AP
  44. * E2AP. see PII A2AP
  45. * E3AP. see PII A3AP
  46. *
  47. * Pentium II / [Xeon]
  48. * None of the A1AP-A3AP errata are visible to the user.
  49. *
  50. * A1AP. see PPro 1AP
  51. * A2AP. see PPro 2AP
  52. * A3AP. see PPro 7AP
  53. *
  54. * Pentium Pro
  55. * None of 1AP-9AP errata are visible to the normal user,
  56. * except occasional delivery of 'spurious interrupt' as trap #15.
  57. * This is very rare and a non-problem.
  58. *
  59. * 1AP. Linux maps APIC as non-cacheable
  60. * 2AP. worked around in hardware
  61. * 3AP. fixed in C0 and above steppings microcode update.
  62. * Linux does not use excessive STARTUP_IPIs.
  63. * 4AP. worked around in hardware
  64. * 5AP. symmetric IO mode (normal Linux operation) not affected.
  65. * 'noapic' mode has vector 0xf filled out properly.
  66. * 6AP. 'noapic' mode might be affected - fixed in later steppings
  67. * 7AP. We do not assume writes to the LVT deassering IRQs
  68. * 8AP. We do not enable low power mode (deep sleep) during MP bootup
  69. * 9AP. We do not use mixed mode
  70. *
  71. * Pentium
  72. * There is a marginal case where REP MOVS on 100MHz SMP
  73. * machines with B stepping processors can fail. XXX should provide
  74. * an L1cache=Writethrough or L1cache=off option.
  75. *
  76. * B stepping CPUs may hang. There are hardware work arounds
  77. * for this. We warn about it in case your board doesn't have the work
  78. * arounds. Basically that's so I can tell anyone with a B stepping
  79. * CPU and SMP problems "tough".
  80. *
  81. * Specific items [From Pentium Processor Specification Update]
  82. *
  83. * 1AP. Linux doesn't use remote read
  84. * 2AP. Linux doesn't trust APIC errors
  85. * 3AP. We work around this
  86. * 4AP. Linux never generated 3 interrupts of the same priority
  87. * to cause a lost local interrupt.
  88. * 5AP. Remote read is never used
  89. * 6AP. not affected - worked around in hardware
  90. * 7AP. not affected - worked around in hardware
  91. * 8AP. worked around in hardware - we get explicit CS errors if not
  92. * 9AP. only 'noapic' mode affected. Might generate spurious
  93. * interrupts, we log only the first one and count the
  94. * rest silently.
  95. * 10AP. not affected - worked around in hardware
  96. * 11AP. Linux reads the APIC between writes to avoid this, as per
  97. * the documentation. Make sure you preserve this as it affects
  98. * the C stepping chips too.
  99. * 12AP. not affected - worked around in hardware
  100. * 13AP. not affected - worked around in hardware
  101. * 14AP. we always deassert INIT during bootup
  102. * 15AP. not affected - worked around in hardware
  103. * 16AP. not affected - worked around in hardware
  104. * 17AP. not affected - worked around in hardware
  105. * 18AP. not affected - worked around in hardware
  106. * 19AP. not affected - worked around in BIOS
  107. *
  108. * If this sounds worrying believe me these bugs are either ___RARE___,
  109. * or are signal timing bugs worked around in hardware and there's
  110. * about nothing of note with C stepping upwards.
  111. */
  112. static atomic_t stopping_cpu = ATOMIC_INIT(-1);
  113. static bool smp_no_nmi_ipi = false;
  114. /*
  115. * this function sends a 'reschedule' IPI to another CPU.
  116. * it goes straight through and wastes no time serializing
  117. * anything. Worst case is that we lose a reschedule ...
  118. */
  119. static void native_smp_send_reschedule(int cpu)
  120. {
  121. if (unlikely(cpu_is_offline(cpu))) {
  122. WARN(1, "sched: Unexpected reschedule of offline CPU#%d!\n", cpu);
  123. return;
  124. }
  125. apic->send_IPI(cpu, RESCHEDULE_VECTOR);
  126. }
  127. void native_send_call_func_single_ipi(int cpu)
  128. {
  129. apic->send_IPI(cpu, CALL_FUNCTION_SINGLE_VECTOR);
  130. }
  131. void native_send_call_func_ipi(const struct cpumask *mask)
  132. {
  133. cpumask_var_t allbutself;
  134. if (!alloc_cpumask_var(&allbutself, GFP_ATOMIC)) {
  135. apic->send_IPI_mask(mask, CALL_FUNCTION_VECTOR);
  136. return;
  137. }
  138. cpumask_copy(allbutself, cpu_online_mask);
  139. cpumask_clear_cpu(smp_processor_id(), allbutself);
  140. if (cpumask_equal(mask, allbutself) &&
  141. cpumask_equal(cpu_online_mask, cpu_callout_mask))
  142. apic->send_IPI_allbutself(CALL_FUNCTION_VECTOR);
  143. else
  144. apic->send_IPI_mask(mask, CALL_FUNCTION_VECTOR);
  145. free_cpumask_var(allbutself);
  146. }
  147. static int smp_stop_nmi_callback(unsigned int val, struct pt_regs *regs)
  148. {
  149. /* We are registered on stopping cpu too, avoid spurious NMI */
  150. if (raw_smp_processor_id() == atomic_read(&stopping_cpu))
  151. return NMI_HANDLED;
  152. cpu_emergency_vmxoff();
  153. stop_this_cpu(NULL);
  154. return NMI_HANDLED;
  155. }
  156. /*
  157. * this function calls the 'stop' function on all other CPUs in the system.
  158. */
  159. asmlinkage __visible void smp_reboot_interrupt(void)
  160. {
  161. ipi_entering_ack_irq();
  162. cpu_emergency_vmxoff();
  163. stop_this_cpu(NULL);
  164. irq_exit();
  165. }
  166. static int register_stop_handler(void)
  167. {
  168. return register_nmi_handler(NMI_LOCAL, smp_stop_nmi_callback,
  169. NMI_FLAG_FIRST, "smp_stop");
  170. }
  171. static void native_stop_other_cpus(int wait)
  172. {
  173. unsigned long flags;
  174. unsigned long timeout;
  175. if (reboot_force)
  176. return;
  177. /*
  178. * Use an own vector here because smp_call_function
  179. * does lots of things not suitable in a panic situation.
  180. */
  181. /*
  182. * We start by using the REBOOT_VECTOR irq.
  183. * The irq is treated as a sync point to allow critical
  184. * regions of code on other cpus to release their spin locks
  185. * and re-enable irqs. Jumping straight to an NMI might
  186. * accidentally cause deadlocks with further shutdown/panic
  187. * code. By syncing, we give the cpus up to one second to
  188. * finish their work before we force them off with the NMI.
  189. */
  190. if (num_online_cpus() > 1) {
  191. /* did someone beat us here? */
  192. if (atomic_cmpxchg(&stopping_cpu, -1, safe_smp_processor_id()) != -1)
  193. return;
  194. /* sync above data before sending IRQ */
  195. wmb();
  196. apic->send_IPI_allbutself(REBOOT_VECTOR);
  197. /*
  198. * Don't wait longer than a second for IPI completion. The
  199. * wait request is not checked here because that would
  200. * prevent an NMI shutdown attempt in case that not all
  201. * CPUs reach shutdown state.
  202. */
  203. timeout = USEC_PER_SEC;
  204. while (num_online_cpus() > 1 && timeout--)
  205. udelay(1);
  206. }
  207. /* if the REBOOT_VECTOR didn't work, try with the NMI */
  208. if (num_online_cpus() > 1) {
  209. /*
  210. * If NMI IPI is enabled, try to register the stop handler
  211. * and send the IPI. In any case try to wait for the other
  212. * CPUs to stop.
  213. */
  214. if (!smp_no_nmi_ipi && !register_stop_handler()) {
  215. /* Sync above data before sending IRQ */
  216. wmb();
  217. pr_emerg("Shutting down cpus with NMI\n");
  218. apic->send_IPI_allbutself(NMI_VECTOR);
  219. }
  220. /*
  221. * Don't wait longer than 10 ms if the caller didn't
  222. * reqeust it. If wait is true, the machine hangs here if
  223. * one or more CPUs do not reach shutdown state.
  224. */
  225. timeout = USEC_PER_MSEC * 10;
  226. while (num_online_cpus() > 1 && (wait || timeout--))
  227. udelay(1);
  228. }
  229. local_irq_save(flags);
  230. disable_local_APIC();
  231. mcheck_cpu_clear(this_cpu_ptr(&cpu_info));
  232. local_irq_restore(flags);
  233. }
  234. /*
  235. * Reschedule call back. KVM uses this interrupt to force a cpu out of
  236. * guest mode
  237. */
  238. __visible void __irq_entry smp_reschedule_interrupt(struct pt_regs *regs)
  239. {
  240. ack_APIC_irq();
  241. inc_irq_stat(irq_resched_count);
  242. kvm_set_cpu_l1tf_flush_l1d();
  243. if (trace_resched_ipi_enabled()) {
  244. /*
  245. * scheduler_ipi() might call irq_enter() as well, but
  246. * nested calls are fine.
  247. */
  248. irq_enter();
  249. trace_reschedule_entry(RESCHEDULE_VECTOR);
  250. scheduler_ipi();
  251. trace_reschedule_exit(RESCHEDULE_VECTOR);
  252. irq_exit();
  253. return;
  254. }
  255. scheduler_ipi();
  256. }
  257. __visible void __irq_entry smp_call_function_interrupt(struct pt_regs *regs)
  258. {
  259. ipi_entering_ack_irq();
  260. trace_call_function_entry(CALL_FUNCTION_VECTOR);
  261. inc_irq_stat(irq_call_count);
  262. generic_smp_call_function_interrupt();
  263. trace_call_function_exit(CALL_FUNCTION_VECTOR);
  264. exiting_irq();
  265. }
  266. __visible void __irq_entry smp_call_function_single_interrupt(struct pt_regs *r)
  267. {
  268. ipi_entering_ack_irq();
  269. trace_call_function_single_entry(CALL_FUNCTION_SINGLE_VECTOR);
  270. inc_irq_stat(irq_call_count);
  271. generic_smp_call_function_single_interrupt();
  272. trace_call_function_single_exit(CALL_FUNCTION_SINGLE_VECTOR);
  273. exiting_irq();
  274. }
  275. static int __init nonmi_ipi_setup(char *str)
  276. {
  277. smp_no_nmi_ipi = true;
  278. return 1;
  279. }
  280. __setup("nonmi_ipi", nonmi_ipi_setup);
  281. struct smp_ops smp_ops = {
  282. .smp_prepare_boot_cpu = native_smp_prepare_boot_cpu,
  283. .smp_prepare_cpus = native_smp_prepare_cpus,
  284. .smp_cpus_done = native_smp_cpus_done,
  285. .stop_other_cpus = native_stop_other_cpus,
  286. #if defined(CONFIG_KEXEC_CORE)
  287. .crash_stop_other_cpus = kdump_nmi_shootdown_cpus,
  288. #endif
  289. .smp_send_reschedule = native_smp_send_reschedule,
  290. .cpu_up = native_cpu_up,
  291. .cpu_die = native_cpu_die,
  292. .cpu_disable = native_cpu_disable,
  293. .play_dead = native_play_dead,
  294. .send_call_func_ipi = native_send_call_func_ipi,
  295. .send_call_func_single_ipi = native_send_call_func_single_ipi,
  296. };
  297. EXPORT_SYMBOL_GPL(smp_ops);