bpf_jit_comp32.c 59 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324
  1. // SPDX-License-Identifier: GPL-2.0
  2. /*
  3. * Just-In-Time compiler for eBPF filters on IA32 (32bit x86)
  4. *
  5. * Author: Wang YanQing (udknight@gmail.com)
  6. * The code based on code and ideas from:
  7. * Eric Dumazet (eric.dumazet@gmail.com)
  8. * and from:
  9. * Shubham Bansal <illusionist.neo@gmail.com>
  10. */
  11. #include <linux/netdevice.h>
  12. #include <linux/filter.h>
  13. #include <linux/if_vlan.h>
  14. #include <asm/cacheflush.h>
  15. #include <asm/set_memory.h>
  16. #include <asm/nospec-branch.h>
  17. #include <linux/bpf.h>
  18. /*
  19. * eBPF prog stack layout:
  20. *
  21. * high
  22. * original ESP => +-----+
  23. * | | callee saved registers
  24. * +-----+
  25. * | ... | eBPF JIT scratch space
  26. * BPF_FP,IA32_EBP => +-----+
  27. * | ... | eBPF prog stack
  28. * +-----+
  29. * |RSVD | JIT scratchpad
  30. * current ESP => +-----+
  31. * | |
  32. * | ... | Function call stack
  33. * | |
  34. * +-----+
  35. * low
  36. *
  37. * The callee saved registers:
  38. *
  39. * high
  40. * original ESP => +------------------+ \
  41. * | ebp | |
  42. * current EBP => +------------------+ } callee saved registers
  43. * | ebx,esi,edi | |
  44. * +------------------+ /
  45. * low
  46. */
  47. static u8 *emit_code(u8 *ptr, u32 bytes, unsigned int len)
  48. {
  49. if (len == 1)
  50. *ptr = bytes;
  51. else if (len == 2)
  52. *(u16 *)ptr = bytes;
  53. else {
  54. *(u32 *)ptr = bytes;
  55. barrier();
  56. }
  57. return ptr + len;
  58. }
  59. #define EMIT(bytes, len) \
  60. do { prog = emit_code(prog, bytes, len); cnt += len; } while (0)
  61. #define EMIT1(b1) EMIT(b1, 1)
  62. #define EMIT2(b1, b2) EMIT((b1) + ((b2) << 8), 2)
  63. #define EMIT3(b1, b2, b3) EMIT((b1) + ((b2) << 8) + ((b3) << 16), 3)
  64. #define EMIT4(b1, b2, b3, b4) \
  65. EMIT((b1) + ((b2) << 8) + ((b3) << 16) + ((b4) << 24), 4)
  66. #define EMIT1_off32(b1, off) \
  67. do { EMIT1(b1); EMIT(off, 4); } while (0)
  68. #define EMIT2_off32(b1, b2, off) \
  69. do { EMIT2(b1, b2); EMIT(off, 4); } while (0)
  70. #define EMIT3_off32(b1, b2, b3, off) \
  71. do { EMIT3(b1, b2, b3); EMIT(off, 4); } while (0)
  72. #define EMIT4_off32(b1, b2, b3, b4, off) \
  73. do { EMIT4(b1, b2, b3, b4); EMIT(off, 4); } while (0)
  74. #define jmp_label(label, jmp_insn_len) (label - cnt - jmp_insn_len)
  75. static bool is_imm8(int value)
  76. {
  77. return value <= 127 && value >= -128;
  78. }
  79. static bool is_simm32(s64 value)
  80. {
  81. return value == (s64) (s32) value;
  82. }
  83. #define STACK_OFFSET(k) (k)
  84. #define TCALL_CNT (MAX_BPF_JIT_REG + 0) /* Tail Call Count */
  85. #define IA32_EAX (0x0)
  86. #define IA32_EBX (0x3)
  87. #define IA32_ECX (0x1)
  88. #define IA32_EDX (0x2)
  89. #define IA32_ESI (0x6)
  90. #define IA32_EDI (0x7)
  91. #define IA32_EBP (0x5)
  92. #define IA32_ESP (0x4)
  93. /*
  94. * List of x86 cond jumps opcodes (. + s8)
  95. * Add 0x10 (and an extra 0x0f) to generate far jumps (. + s32)
  96. */
  97. #define IA32_JB 0x72
  98. #define IA32_JAE 0x73
  99. #define IA32_JE 0x74
  100. #define IA32_JNE 0x75
  101. #define IA32_JBE 0x76
  102. #define IA32_JA 0x77
  103. #define IA32_JL 0x7C
  104. #define IA32_JGE 0x7D
  105. #define IA32_JLE 0x7E
  106. #define IA32_JG 0x7F
  107. #define COND_JMP_OPCODE_INVALID (0xFF)
  108. /*
  109. * Map eBPF registers to IA32 32bit registers or stack scratch space.
  110. *
  111. * 1. All the registers, R0-R10, are mapped to scratch space on stack.
  112. * 2. We need two 64 bit temp registers to do complex operations on eBPF
  113. * registers.
  114. * 3. For performance reason, the BPF_REG_AX for blinding constant, is
  115. * mapped to real hardware register pair, IA32_ESI and IA32_EDI.
  116. *
  117. * As the eBPF registers are all 64 bit registers and IA32 has only 32 bit
  118. * registers, we have to map each eBPF registers with two IA32 32 bit regs
  119. * or scratch memory space and we have to build eBPF 64 bit register from those.
  120. *
  121. * We use IA32_EAX, IA32_EDX, IA32_ECX, IA32_EBX as temporary registers.
  122. */
  123. static const u8 bpf2ia32[][2] = {
  124. /* Return value from in-kernel function, and exit value from eBPF */
  125. [BPF_REG_0] = {STACK_OFFSET(0), STACK_OFFSET(4)},
  126. /* The arguments from eBPF program to in-kernel function */
  127. /* Stored on stack scratch space */
  128. [BPF_REG_1] = {STACK_OFFSET(8), STACK_OFFSET(12)},
  129. [BPF_REG_2] = {STACK_OFFSET(16), STACK_OFFSET(20)},
  130. [BPF_REG_3] = {STACK_OFFSET(24), STACK_OFFSET(28)},
  131. [BPF_REG_4] = {STACK_OFFSET(32), STACK_OFFSET(36)},
  132. [BPF_REG_5] = {STACK_OFFSET(40), STACK_OFFSET(44)},
  133. /* Callee saved registers that in-kernel function will preserve */
  134. /* Stored on stack scratch space */
  135. [BPF_REG_6] = {STACK_OFFSET(48), STACK_OFFSET(52)},
  136. [BPF_REG_7] = {STACK_OFFSET(56), STACK_OFFSET(60)},
  137. [BPF_REG_8] = {STACK_OFFSET(64), STACK_OFFSET(68)},
  138. [BPF_REG_9] = {STACK_OFFSET(72), STACK_OFFSET(76)},
  139. /* Read only Frame Pointer to access Stack */
  140. [BPF_REG_FP] = {STACK_OFFSET(80), STACK_OFFSET(84)},
  141. /* Temporary register for blinding constants. */
  142. [BPF_REG_AX] = {IA32_ESI, IA32_EDI},
  143. /* Tail call count. Stored on stack scratch space. */
  144. [TCALL_CNT] = {STACK_OFFSET(88), STACK_OFFSET(92)},
  145. };
  146. #define dst_lo dst[0]
  147. #define dst_hi dst[1]
  148. #define src_lo src[0]
  149. #define src_hi src[1]
  150. #define STACK_ALIGNMENT 8
  151. /*
  152. * Stack space for BPF_REG_1, BPF_REG_2, BPF_REG_3, BPF_REG_4,
  153. * BPF_REG_5, BPF_REG_6, BPF_REG_7, BPF_REG_8, BPF_REG_9,
  154. * BPF_REG_FP, BPF_REG_AX and Tail call counts.
  155. */
  156. #define SCRATCH_SIZE 96
  157. /* Total stack size used in JITed code */
  158. #define _STACK_SIZE (stack_depth + SCRATCH_SIZE)
  159. #define STACK_SIZE ALIGN(_STACK_SIZE, STACK_ALIGNMENT)
  160. /* Get the offset of eBPF REGISTERs stored on scratch space. */
  161. #define STACK_VAR(off) (off)
  162. /* Encode 'dst_reg' register into IA32 opcode 'byte' */
  163. static u8 add_1reg(u8 byte, u32 dst_reg)
  164. {
  165. return byte + dst_reg;
  166. }
  167. /* Encode 'dst_reg' and 'src_reg' registers into IA32 opcode 'byte' */
  168. static u8 add_2reg(u8 byte, u32 dst_reg, u32 src_reg)
  169. {
  170. return byte + dst_reg + (src_reg << 3);
  171. }
  172. static void jit_fill_hole(void *area, unsigned int size)
  173. {
  174. /* Fill whole space with int3 instructions */
  175. memset(area, 0xcc, size);
  176. }
  177. static inline void emit_ia32_mov_i(const u8 dst, const u32 val, bool dstk,
  178. u8 **pprog)
  179. {
  180. u8 *prog = *pprog;
  181. int cnt = 0;
  182. if (dstk) {
  183. if (val == 0) {
  184. /* xor eax,eax */
  185. EMIT2(0x33, add_2reg(0xC0, IA32_EAX, IA32_EAX));
  186. /* mov dword ptr [ebp+off],eax */
  187. EMIT3(0x89, add_2reg(0x40, IA32_EBP, IA32_EAX),
  188. STACK_VAR(dst));
  189. } else {
  190. EMIT3_off32(0xC7, add_1reg(0x40, IA32_EBP),
  191. STACK_VAR(dst), val);
  192. }
  193. } else {
  194. if (val == 0)
  195. EMIT2(0x33, add_2reg(0xC0, dst, dst));
  196. else
  197. EMIT2_off32(0xC7, add_1reg(0xC0, dst),
  198. val);
  199. }
  200. *pprog = prog;
  201. }
  202. /* dst = imm (4 bytes)*/
  203. static inline void emit_ia32_mov_r(const u8 dst, const u8 src, bool dstk,
  204. bool sstk, u8 **pprog)
  205. {
  206. u8 *prog = *pprog;
  207. int cnt = 0;
  208. u8 sreg = sstk ? IA32_EAX : src;
  209. if (sstk)
  210. /* mov eax,dword ptr [ebp+off] */
  211. EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_EAX), STACK_VAR(src));
  212. if (dstk)
  213. /* mov dword ptr [ebp+off],eax */
  214. EMIT3(0x89, add_2reg(0x40, IA32_EBP, sreg), STACK_VAR(dst));
  215. else
  216. /* mov dst,sreg */
  217. EMIT2(0x89, add_2reg(0xC0, dst, sreg));
  218. *pprog = prog;
  219. }
  220. /* dst = src */
  221. static inline void emit_ia32_mov_r64(const bool is64, const u8 dst[],
  222. const u8 src[], bool dstk,
  223. bool sstk, u8 **pprog)
  224. {
  225. emit_ia32_mov_r(dst_lo, src_lo, dstk, sstk, pprog);
  226. if (is64)
  227. /* complete 8 byte move */
  228. emit_ia32_mov_r(dst_hi, src_hi, dstk, sstk, pprog);
  229. else
  230. /* zero out high 4 bytes */
  231. emit_ia32_mov_i(dst_hi, 0, dstk, pprog);
  232. }
  233. /* Sign extended move */
  234. static inline void emit_ia32_mov_i64(const bool is64, const u8 dst[],
  235. const u32 val, bool dstk, u8 **pprog)
  236. {
  237. u32 hi = 0;
  238. if (is64 && (val & (1<<31)))
  239. hi = (u32)~0;
  240. emit_ia32_mov_i(dst_lo, val, dstk, pprog);
  241. emit_ia32_mov_i(dst_hi, hi, dstk, pprog);
  242. }
  243. /*
  244. * ALU operation (32 bit)
  245. * dst = dst * src
  246. */
  247. static inline void emit_ia32_mul_r(const u8 dst, const u8 src, bool dstk,
  248. bool sstk, u8 **pprog)
  249. {
  250. u8 *prog = *pprog;
  251. int cnt = 0;
  252. u8 sreg = sstk ? IA32_ECX : src;
  253. if (sstk)
  254. /* mov ecx,dword ptr [ebp+off] */
  255. EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_ECX), STACK_VAR(src));
  256. if (dstk)
  257. /* mov eax,dword ptr [ebp+off] */
  258. EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_EAX), STACK_VAR(dst));
  259. else
  260. /* mov eax,dst */
  261. EMIT2(0x8B, add_2reg(0xC0, dst, IA32_EAX));
  262. EMIT2(0xF7, add_1reg(0xE0, sreg));
  263. if (dstk)
  264. /* mov dword ptr [ebp+off],eax */
  265. EMIT3(0x89, add_2reg(0x40, IA32_EBP, IA32_EAX),
  266. STACK_VAR(dst));
  267. else
  268. /* mov dst,eax */
  269. EMIT2(0x89, add_2reg(0xC0, dst, IA32_EAX));
  270. *pprog = prog;
  271. }
  272. static inline void emit_ia32_to_le_r64(const u8 dst[], s32 val,
  273. bool dstk, u8 **pprog)
  274. {
  275. u8 *prog = *pprog;
  276. int cnt = 0;
  277. u8 dreg_lo = dstk ? IA32_EAX : dst_lo;
  278. u8 dreg_hi = dstk ? IA32_EDX : dst_hi;
  279. if (dstk && val != 64) {
  280. EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_EAX),
  281. STACK_VAR(dst_lo));
  282. EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_EDX),
  283. STACK_VAR(dst_hi));
  284. }
  285. switch (val) {
  286. case 16:
  287. /*
  288. * Emit 'movzwl eax,ax' to zero extend 16-bit
  289. * into 64 bit
  290. */
  291. EMIT2(0x0F, 0xB7);
  292. EMIT1(add_2reg(0xC0, dreg_lo, dreg_lo));
  293. /* xor dreg_hi,dreg_hi */
  294. EMIT2(0x33, add_2reg(0xC0, dreg_hi, dreg_hi));
  295. break;
  296. case 32:
  297. /* xor dreg_hi,dreg_hi */
  298. EMIT2(0x33, add_2reg(0xC0, dreg_hi, dreg_hi));
  299. break;
  300. case 64:
  301. /* nop */
  302. break;
  303. }
  304. if (dstk && val != 64) {
  305. /* mov dword ptr [ebp+off],dreg_lo */
  306. EMIT3(0x89, add_2reg(0x40, IA32_EBP, dreg_lo),
  307. STACK_VAR(dst_lo));
  308. /* mov dword ptr [ebp+off],dreg_hi */
  309. EMIT3(0x89, add_2reg(0x40, IA32_EBP, dreg_hi),
  310. STACK_VAR(dst_hi));
  311. }
  312. *pprog = prog;
  313. }
  314. static inline void emit_ia32_to_be_r64(const u8 dst[], s32 val,
  315. bool dstk, u8 **pprog)
  316. {
  317. u8 *prog = *pprog;
  318. int cnt = 0;
  319. u8 dreg_lo = dstk ? IA32_EAX : dst_lo;
  320. u8 dreg_hi = dstk ? IA32_EDX : dst_hi;
  321. if (dstk) {
  322. EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_EAX),
  323. STACK_VAR(dst_lo));
  324. EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_EDX),
  325. STACK_VAR(dst_hi));
  326. }
  327. switch (val) {
  328. case 16:
  329. /* Emit 'ror %ax, 8' to swap lower 2 bytes */
  330. EMIT1(0x66);
  331. EMIT3(0xC1, add_1reg(0xC8, dreg_lo), 8);
  332. EMIT2(0x0F, 0xB7);
  333. EMIT1(add_2reg(0xC0, dreg_lo, dreg_lo));
  334. /* xor dreg_hi,dreg_hi */
  335. EMIT2(0x33, add_2reg(0xC0, dreg_hi, dreg_hi));
  336. break;
  337. case 32:
  338. /* Emit 'bswap eax' to swap lower 4 bytes */
  339. EMIT1(0x0F);
  340. EMIT1(add_1reg(0xC8, dreg_lo));
  341. /* xor dreg_hi,dreg_hi */
  342. EMIT2(0x33, add_2reg(0xC0, dreg_hi, dreg_hi));
  343. break;
  344. case 64:
  345. /* Emit 'bswap eax' to swap lower 4 bytes */
  346. EMIT1(0x0F);
  347. EMIT1(add_1reg(0xC8, dreg_lo));
  348. /* Emit 'bswap edx' to swap lower 4 bytes */
  349. EMIT1(0x0F);
  350. EMIT1(add_1reg(0xC8, dreg_hi));
  351. /* mov ecx,dreg_hi */
  352. EMIT2(0x89, add_2reg(0xC0, IA32_ECX, dreg_hi));
  353. /* mov dreg_hi,dreg_lo */
  354. EMIT2(0x89, add_2reg(0xC0, dreg_hi, dreg_lo));
  355. /* mov dreg_lo,ecx */
  356. EMIT2(0x89, add_2reg(0xC0, dreg_lo, IA32_ECX));
  357. break;
  358. }
  359. if (dstk) {
  360. /* mov dword ptr [ebp+off],dreg_lo */
  361. EMIT3(0x89, add_2reg(0x40, IA32_EBP, dreg_lo),
  362. STACK_VAR(dst_lo));
  363. /* mov dword ptr [ebp+off],dreg_hi */
  364. EMIT3(0x89, add_2reg(0x40, IA32_EBP, dreg_hi),
  365. STACK_VAR(dst_hi));
  366. }
  367. *pprog = prog;
  368. }
  369. /*
  370. * ALU operation (32 bit)
  371. * dst = dst (div|mod) src
  372. */
  373. static inline void emit_ia32_div_mod_r(const u8 op, const u8 dst, const u8 src,
  374. bool dstk, bool sstk, u8 **pprog)
  375. {
  376. u8 *prog = *pprog;
  377. int cnt = 0;
  378. if (sstk)
  379. /* mov ecx,dword ptr [ebp+off] */
  380. EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_ECX),
  381. STACK_VAR(src));
  382. else if (src != IA32_ECX)
  383. /* mov ecx,src */
  384. EMIT2(0x8B, add_2reg(0xC0, src, IA32_ECX));
  385. if (dstk)
  386. /* mov eax,dword ptr [ebp+off] */
  387. EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_EAX),
  388. STACK_VAR(dst));
  389. else
  390. /* mov eax,dst */
  391. EMIT2(0x8B, add_2reg(0xC0, dst, IA32_EAX));
  392. /* xor edx,edx */
  393. EMIT2(0x31, add_2reg(0xC0, IA32_EDX, IA32_EDX));
  394. /* div ecx */
  395. EMIT2(0xF7, add_1reg(0xF0, IA32_ECX));
  396. if (op == BPF_MOD) {
  397. if (dstk)
  398. EMIT3(0x89, add_2reg(0x40, IA32_EBP, IA32_EDX),
  399. STACK_VAR(dst));
  400. else
  401. EMIT2(0x89, add_2reg(0xC0, dst, IA32_EDX));
  402. } else {
  403. if (dstk)
  404. EMIT3(0x89, add_2reg(0x40, IA32_EBP, IA32_EAX),
  405. STACK_VAR(dst));
  406. else
  407. EMIT2(0x89, add_2reg(0xC0, dst, IA32_EAX));
  408. }
  409. *pprog = prog;
  410. }
  411. /*
  412. * ALU operation (32 bit)
  413. * dst = dst (shift) src
  414. */
  415. static inline void emit_ia32_shift_r(const u8 op, const u8 dst, const u8 src,
  416. bool dstk, bool sstk, u8 **pprog)
  417. {
  418. u8 *prog = *pprog;
  419. int cnt = 0;
  420. u8 dreg = dstk ? IA32_EAX : dst;
  421. u8 b2;
  422. if (dstk)
  423. /* mov eax,dword ptr [ebp+off] */
  424. EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_EAX), STACK_VAR(dst));
  425. if (sstk)
  426. /* mov ecx,dword ptr [ebp+off] */
  427. EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_ECX), STACK_VAR(src));
  428. else if (src != IA32_ECX)
  429. /* mov ecx,src */
  430. EMIT2(0x8B, add_2reg(0xC0, src, IA32_ECX));
  431. switch (op) {
  432. case BPF_LSH:
  433. b2 = 0xE0; break;
  434. case BPF_RSH:
  435. b2 = 0xE8; break;
  436. case BPF_ARSH:
  437. b2 = 0xF8; break;
  438. default:
  439. return;
  440. }
  441. EMIT2(0xD3, add_1reg(b2, dreg));
  442. if (dstk)
  443. /* mov dword ptr [ebp+off],dreg */
  444. EMIT3(0x89, add_2reg(0x40, IA32_EBP, dreg), STACK_VAR(dst));
  445. *pprog = prog;
  446. }
  447. /*
  448. * ALU operation (32 bit)
  449. * dst = dst (op) src
  450. */
  451. static inline void emit_ia32_alu_r(const bool is64, const bool hi, const u8 op,
  452. const u8 dst, const u8 src, bool dstk,
  453. bool sstk, u8 **pprog)
  454. {
  455. u8 *prog = *pprog;
  456. int cnt = 0;
  457. u8 sreg = sstk ? IA32_EAX : src;
  458. u8 dreg = dstk ? IA32_EDX : dst;
  459. if (sstk)
  460. /* mov eax,dword ptr [ebp+off] */
  461. EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_EAX), STACK_VAR(src));
  462. if (dstk)
  463. /* mov eax,dword ptr [ebp+off] */
  464. EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_EDX), STACK_VAR(dst));
  465. switch (BPF_OP(op)) {
  466. /* dst = dst + src */
  467. case BPF_ADD:
  468. if (hi && is64)
  469. EMIT2(0x11, add_2reg(0xC0, dreg, sreg));
  470. else
  471. EMIT2(0x01, add_2reg(0xC0, dreg, sreg));
  472. break;
  473. /* dst = dst - src */
  474. case BPF_SUB:
  475. if (hi && is64)
  476. EMIT2(0x19, add_2reg(0xC0, dreg, sreg));
  477. else
  478. EMIT2(0x29, add_2reg(0xC0, dreg, sreg));
  479. break;
  480. /* dst = dst | src */
  481. case BPF_OR:
  482. EMIT2(0x09, add_2reg(0xC0, dreg, sreg));
  483. break;
  484. /* dst = dst & src */
  485. case BPF_AND:
  486. EMIT2(0x21, add_2reg(0xC0, dreg, sreg));
  487. break;
  488. /* dst = dst ^ src */
  489. case BPF_XOR:
  490. EMIT2(0x31, add_2reg(0xC0, dreg, sreg));
  491. break;
  492. }
  493. if (dstk)
  494. /* mov dword ptr [ebp+off],dreg */
  495. EMIT3(0x89, add_2reg(0x40, IA32_EBP, dreg),
  496. STACK_VAR(dst));
  497. *pprog = prog;
  498. }
  499. /* ALU operation (64 bit) */
  500. static inline void emit_ia32_alu_r64(const bool is64, const u8 op,
  501. const u8 dst[], const u8 src[],
  502. bool dstk, bool sstk,
  503. u8 **pprog)
  504. {
  505. u8 *prog = *pprog;
  506. emit_ia32_alu_r(is64, false, op, dst_lo, src_lo, dstk, sstk, &prog);
  507. if (is64)
  508. emit_ia32_alu_r(is64, true, op, dst_hi, src_hi, dstk, sstk,
  509. &prog);
  510. else
  511. emit_ia32_mov_i(dst_hi, 0, dstk, &prog);
  512. *pprog = prog;
  513. }
  514. /*
  515. * ALU operation (32 bit)
  516. * dst = dst (op) val
  517. */
  518. static inline void emit_ia32_alu_i(const bool is64, const bool hi, const u8 op,
  519. const u8 dst, const s32 val, bool dstk,
  520. u8 **pprog)
  521. {
  522. u8 *prog = *pprog;
  523. int cnt = 0;
  524. u8 dreg = dstk ? IA32_EAX : dst;
  525. u8 sreg = IA32_EDX;
  526. if (dstk)
  527. /* mov eax,dword ptr [ebp+off] */
  528. EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_EAX), STACK_VAR(dst));
  529. if (!is_imm8(val))
  530. /* mov edx,imm32*/
  531. EMIT2_off32(0xC7, add_1reg(0xC0, IA32_EDX), val);
  532. switch (op) {
  533. /* dst = dst + val */
  534. case BPF_ADD:
  535. if (hi && is64) {
  536. if (is_imm8(val))
  537. EMIT3(0x83, add_1reg(0xD0, dreg), val);
  538. else
  539. EMIT2(0x11, add_2reg(0xC0, dreg, sreg));
  540. } else {
  541. if (is_imm8(val))
  542. EMIT3(0x83, add_1reg(0xC0, dreg), val);
  543. else
  544. EMIT2(0x01, add_2reg(0xC0, dreg, sreg));
  545. }
  546. break;
  547. /* dst = dst - val */
  548. case BPF_SUB:
  549. if (hi && is64) {
  550. if (is_imm8(val))
  551. EMIT3(0x83, add_1reg(0xD8, dreg), val);
  552. else
  553. EMIT2(0x19, add_2reg(0xC0, dreg, sreg));
  554. } else {
  555. if (is_imm8(val))
  556. EMIT3(0x83, add_1reg(0xE8, dreg), val);
  557. else
  558. EMIT2(0x29, add_2reg(0xC0, dreg, sreg));
  559. }
  560. break;
  561. /* dst = dst | val */
  562. case BPF_OR:
  563. if (is_imm8(val))
  564. EMIT3(0x83, add_1reg(0xC8, dreg), val);
  565. else
  566. EMIT2(0x09, add_2reg(0xC0, dreg, sreg));
  567. break;
  568. /* dst = dst & val */
  569. case BPF_AND:
  570. if (is_imm8(val))
  571. EMIT3(0x83, add_1reg(0xE0, dreg), val);
  572. else
  573. EMIT2(0x21, add_2reg(0xC0, dreg, sreg));
  574. break;
  575. /* dst = dst ^ val */
  576. case BPF_XOR:
  577. if (is_imm8(val))
  578. EMIT3(0x83, add_1reg(0xF0, dreg), val);
  579. else
  580. EMIT2(0x31, add_2reg(0xC0, dreg, sreg));
  581. break;
  582. case BPF_NEG:
  583. EMIT2(0xF7, add_1reg(0xD8, dreg));
  584. break;
  585. }
  586. if (dstk)
  587. /* mov dword ptr [ebp+off],dreg */
  588. EMIT3(0x89, add_2reg(0x40, IA32_EBP, dreg),
  589. STACK_VAR(dst));
  590. *pprog = prog;
  591. }
  592. /* ALU operation (64 bit) */
  593. static inline void emit_ia32_alu_i64(const bool is64, const u8 op,
  594. const u8 dst[], const u32 val,
  595. bool dstk, u8 **pprog)
  596. {
  597. u8 *prog = *pprog;
  598. u32 hi = 0;
  599. if (is64 && (val & (1<<31)))
  600. hi = (u32)~0;
  601. emit_ia32_alu_i(is64, false, op, dst_lo, val, dstk, &prog);
  602. if (is64)
  603. emit_ia32_alu_i(is64, true, op, dst_hi, hi, dstk, &prog);
  604. else
  605. emit_ia32_mov_i(dst_hi, 0, dstk, &prog);
  606. *pprog = prog;
  607. }
  608. /* dst = ~dst (64 bit) */
  609. static inline void emit_ia32_neg64(const u8 dst[], bool dstk, u8 **pprog)
  610. {
  611. u8 *prog = *pprog;
  612. int cnt = 0;
  613. u8 dreg_lo = dstk ? IA32_EAX : dst_lo;
  614. u8 dreg_hi = dstk ? IA32_EDX : dst_hi;
  615. if (dstk) {
  616. EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_EAX),
  617. STACK_VAR(dst_lo));
  618. EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_EDX),
  619. STACK_VAR(dst_hi));
  620. }
  621. /* neg dreg_lo */
  622. EMIT2(0xF7, add_1reg(0xD8, dreg_lo));
  623. /* adc dreg_hi,0x0 */
  624. EMIT3(0x83, add_1reg(0xD0, dreg_hi), 0x00);
  625. /* neg dreg_hi */
  626. EMIT2(0xF7, add_1reg(0xD8, dreg_hi));
  627. if (dstk) {
  628. /* mov dword ptr [ebp+off],dreg_lo */
  629. EMIT3(0x89, add_2reg(0x40, IA32_EBP, dreg_lo),
  630. STACK_VAR(dst_lo));
  631. /* mov dword ptr [ebp+off],dreg_hi */
  632. EMIT3(0x89, add_2reg(0x40, IA32_EBP, dreg_hi),
  633. STACK_VAR(dst_hi));
  634. }
  635. *pprog = prog;
  636. }
  637. /* dst = dst << src */
  638. static inline void emit_ia32_lsh_r64(const u8 dst[], const u8 src[],
  639. bool dstk, bool sstk, u8 **pprog)
  640. {
  641. u8 *prog = *pprog;
  642. int cnt = 0;
  643. u8 dreg_lo = dstk ? IA32_EAX : dst_lo;
  644. u8 dreg_hi = dstk ? IA32_EDX : dst_hi;
  645. if (dstk) {
  646. EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_EAX),
  647. STACK_VAR(dst_lo));
  648. EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_EDX),
  649. STACK_VAR(dst_hi));
  650. }
  651. if (sstk)
  652. /* mov ecx,dword ptr [ebp+off] */
  653. EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_ECX),
  654. STACK_VAR(src_lo));
  655. else
  656. /* mov ecx,src_lo */
  657. EMIT2(0x8B, add_2reg(0xC0, src_lo, IA32_ECX));
  658. /* shld dreg_hi,dreg_lo,cl */
  659. EMIT3(0x0F, 0xA5, add_2reg(0xC0, dreg_hi, dreg_lo));
  660. /* shl dreg_lo,cl */
  661. EMIT2(0xD3, add_1reg(0xE0, dreg_lo));
  662. /* if ecx >= 32, mov dreg_lo into dreg_hi and clear dreg_lo */
  663. /* cmp ecx,32 */
  664. EMIT3(0x83, add_1reg(0xF8, IA32_ECX), 32);
  665. /* skip the next two instructions (4 bytes) when < 32 */
  666. EMIT2(IA32_JB, 4);
  667. /* mov dreg_hi,dreg_lo */
  668. EMIT2(0x89, add_2reg(0xC0, dreg_hi, dreg_lo));
  669. /* xor dreg_lo,dreg_lo */
  670. EMIT2(0x33, add_2reg(0xC0, dreg_lo, dreg_lo));
  671. if (dstk) {
  672. /* mov dword ptr [ebp+off],dreg_lo */
  673. EMIT3(0x89, add_2reg(0x40, IA32_EBP, dreg_lo),
  674. STACK_VAR(dst_lo));
  675. /* mov dword ptr [ebp+off],dreg_hi */
  676. EMIT3(0x89, add_2reg(0x40, IA32_EBP, dreg_hi),
  677. STACK_VAR(dst_hi));
  678. }
  679. /* out: */
  680. *pprog = prog;
  681. }
  682. /* dst = dst >> src (signed)*/
  683. static inline void emit_ia32_arsh_r64(const u8 dst[], const u8 src[],
  684. bool dstk, bool sstk, u8 **pprog)
  685. {
  686. u8 *prog = *pprog;
  687. int cnt = 0;
  688. u8 dreg_lo = dstk ? IA32_EAX : dst_lo;
  689. u8 dreg_hi = dstk ? IA32_EDX : dst_hi;
  690. if (dstk) {
  691. EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_EAX),
  692. STACK_VAR(dst_lo));
  693. EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_EDX),
  694. STACK_VAR(dst_hi));
  695. }
  696. if (sstk)
  697. /* mov ecx,dword ptr [ebp+off] */
  698. EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_ECX),
  699. STACK_VAR(src_lo));
  700. else
  701. /* mov ecx,src_lo */
  702. EMIT2(0x8B, add_2reg(0xC0, src_lo, IA32_ECX));
  703. /* shrd dreg_lo,dreg_hi,cl */
  704. EMIT3(0x0F, 0xAD, add_2reg(0xC0, dreg_lo, dreg_hi));
  705. /* sar dreg_hi,cl */
  706. EMIT2(0xD3, add_1reg(0xF8, dreg_hi));
  707. /* if ecx >= 32, mov dreg_hi to dreg_lo and set/clear dreg_hi depending on sign */
  708. /* cmp ecx,32 */
  709. EMIT3(0x83, add_1reg(0xF8, IA32_ECX), 32);
  710. /* skip the next two instructions (5 bytes) when < 32 */
  711. EMIT2(IA32_JB, 5);
  712. /* mov dreg_lo,dreg_hi */
  713. EMIT2(0x89, add_2reg(0xC0, dreg_lo, dreg_hi));
  714. /* sar dreg_hi,31 */
  715. EMIT3(0xC1, add_1reg(0xF8, dreg_hi), 31);
  716. if (dstk) {
  717. /* mov dword ptr [ebp+off],dreg_lo */
  718. EMIT3(0x89, add_2reg(0x40, IA32_EBP, dreg_lo),
  719. STACK_VAR(dst_lo));
  720. /* mov dword ptr [ebp+off],dreg_hi */
  721. EMIT3(0x89, add_2reg(0x40, IA32_EBP, dreg_hi),
  722. STACK_VAR(dst_hi));
  723. }
  724. /* out: */
  725. *pprog = prog;
  726. }
  727. /* dst = dst >> src */
  728. static inline void emit_ia32_rsh_r64(const u8 dst[], const u8 src[], bool dstk,
  729. bool sstk, u8 **pprog)
  730. {
  731. u8 *prog = *pprog;
  732. int cnt = 0;
  733. u8 dreg_lo = dstk ? IA32_EAX : dst_lo;
  734. u8 dreg_hi = dstk ? IA32_EDX : dst_hi;
  735. if (dstk) {
  736. EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_EAX),
  737. STACK_VAR(dst_lo));
  738. EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_EDX),
  739. STACK_VAR(dst_hi));
  740. }
  741. if (sstk)
  742. /* mov ecx,dword ptr [ebp+off] */
  743. EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_ECX),
  744. STACK_VAR(src_lo));
  745. else
  746. /* mov ecx,src_lo */
  747. EMIT2(0x8B, add_2reg(0xC0, src_lo, IA32_ECX));
  748. /* shrd dreg_lo,dreg_hi,cl */
  749. EMIT3(0x0F, 0xAD, add_2reg(0xC0, dreg_lo, dreg_hi));
  750. /* shr dreg_hi,cl */
  751. EMIT2(0xD3, add_1reg(0xE8, dreg_hi));
  752. /* if ecx >= 32, mov dreg_hi to dreg_lo and clear dreg_hi */
  753. /* cmp ecx,32 */
  754. EMIT3(0x83, add_1reg(0xF8, IA32_ECX), 32);
  755. /* skip the next two instructions (4 bytes) when < 32 */
  756. EMIT2(IA32_JB, 4);
  757. /* mov dreg_lo,dreg_hi */
  758. EMIT2(0x89, add_2reg(0xC0, dreg_lo, dreg_hi));
  759. /* xor dreg_hi,dreg_hi */
  760. EMIT2(0x33, add_2reg(0xC0, dreg_hi, dreg_hi));
  761. if (dstk) {
  762. /* mov dword ptr [ebp+off],dreg_lo */
  763. EMIT3(0x89, add_2reg(0x40, IA32_EBP, dreg_lo),
  764. STACK_VAR(dst_lo));
  765. /* mov dword ptr [ebp+off],dreg_hi */
  766. EMIT3(0x89, add_2reg(0x40, IA32_EBP, dreg_hi),
  767. STACK_VAR(dst_hi));
  768. }
  769. /* out: */
  770. *pprog = prog;
  771. }
  772. /* dst = dst << val */
  773. static inline void emit_ia32_lsh_i64(const u8 dst[], const u32 val,
  774. bool dstk, u8 **pprog)
  775. {
  776. u8 *prog = *pprog;
  777. int cnt = 0;
  778. u8 dreg_lo = dstk ? IA32_EAX : dst_lo;
  779. u8 dreg_hi = dstk ? IA32_EDX : dst_hi;
  780. if (dstk) {
  781. EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_EAX),
  782. STACK_VAR(dst_lo));
  783. EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_EDX),
  784. STACK_VAR(dst_hi));
  785. }
  786. /* Do LSH operation */
  787. if (val < 32) {
  788. /* shld dreg_hi,dreg_lo,imm8 */
  789. EMIT4(0x0F, 0xA4, add_2reg(0xC0, dreg_hi, dreg_lo), val);
  790. /* shl dreg_lo,imm8 */
  791. EMIT3(0xC1, add_1reg(0xE0, dreg_lo), val);
  792. } else if (val >= 32 && val < 64) {
  793. u32 value = val - 32;
  794. /* shl dreg_lo,imm8 */
  795. EMIT3(0xC1, add_1reg(0xE0, dreg_lo), value);
  796. /* mov dreg_hi,dreg_lo */
  797. EMIT2(0x89, add_2reg(0xC0, dreg_hi, dreg_lo));
  798. /* xor dreg_lo,dreg_lo */
  799. EMIT2(0x33, add_2reg(0xC0, dreg_lo, dreg_lo));
  800. } else {
  801. /* xor dreg_lo,dreg_lo */
  802. EMIT2(0x33, add_2reg(0xC0, dreg_lo, dreg_lo));
  803. /* xor dreg_hi,dreg_hi */
  804. EMIT2(0x33, add_2reg(0xC0, dreg_hi, dreg_hi));
  805. }
  806. if (dstk) {
  807. /* mov dword ptr [ebp+off],dreg_lo */
  808. EMIT3(0x89, add_2reg(0x40, IA32_EBP, dreg_lo),
  809. STACK_VAR(dst_lo));
  810. /* mov dword ptr [ebp+off],dreg_hi */
  811. EMIT3(0x89, add_2reg(0x40, IA32_EBP, dreg_hi),
  812. STACK_VAR(dst_hi));
  813. }
  814. *pprog = prog;
  815. }
  816. /* dst = dst >> val */
  817. static inline void emit_ia32_rsh_i64(const u8 dst[], const u32 val,
  818. bool dstk, u8 **pprog)
  819. {
  820. u8 *prog = *pprog;
  821. int cnt = 0;
  822. u8 dreg_lo = dstk ? IA32_EAX : dst_lo;
  823. u8 dreg_hi = dstk ? IA32_EDX : dst_hi;
  824. if (dstk) {
  825. EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_EAX),
  826. STACK_VAR(dst_lo));
  827. EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_EDX),
  828. STACK_VAR(dst_hi));
  829. }
  830. /* Do RSH operation */
  831. if (val < 32) {
  832. /* shrd dreg_lo,dreg_hi,imm8 */
  833. EMIT4(0x0F, 0xAC, add_2reg(0xC0, dreg_lo, dreg_hi), val);
  834. /* shr dreg_hi,imm8 */
  835. EMIT3(0xC1, add_1reg(0xE8, dreg_hi), val);
  836. } else if (val >= 32 && val < 64) {
  837. u32 value = val - 32;
  838. /* shr dreg_hi,imm8 */
  839. EMIT3(0xC1, add_1reg(0xE8, dreg_hi), value);
  840. /* mov dreg_lo,dreg_hi */
  841. EMIT2(0x89, add_2reg(0xC0, dreg_lo, dreg_hi));
  842. /* xor dreg_hi,dreg_hi */
  843. EMIT2(0x33, add_2reg(0xC0, dreg_hi, dreg_hi));
  844. } else {
  845. /* xor dreg_lo,dreg_lo */
  846. EMIT2(0x33, add_2reg(0xC0, dreg_lo, dreg_lo));
  847. /* xor dreg_hi,dreg_hi */
  848. EMIT2(0x33, add_2reg(0xC0, dreg_hi, dreg_hi));
  849. }
  850. if (dstk) {
  851. /* mov dword ptr [ebp+off],dreg_lo */
  852. EMIT3(0x89, add_2reg(0x40, IA32_EBP, dreg_lo),
  853. STACK_VAR(dst_lo));
  854. /* mov dword ptr [ebp+off],dreg_hi */
  855. EMIT3(0x89, add_2reg(0x40, IA32_EBP, dreg_hi),
  856. STACK_VAR(dst_hi));
  857. }
  858. *pprog = prog;
  859. }
  860. /* dst = dst >> val (signed) */
  861. static inline void emit_ia32_arsh_i64(const u8 dst[], const u32 val,
  862. bool dstk, u8 **pprog)
  863. {
  864. u8 *prog = *pprog;
  865. int cnt = 0;
  866. u8 dreg_lo = dstk ? IA32_EAX : dst_lo;
  867. u8 dreg_hi = dstk ? IA32_EDX : dst_hi;
  868. if (dstk) {
  869. EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_EAX),
  870. STACK_VAR(dst_lo));
  871. EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_EDX),
  872. STACK_VAR(dst_hi));
  873. }
  874. /* Do RSH operation */
  875. if (val < 32) {
  876. /* shrd dreg_lo,dreg_hi,imm8 */
  877. EMIT4(0x0F, 0xAC, add_2reg(0xC0, dreg_lo, dreg_hi), val);
  878. /* ashr dreg_hi,imm8 */
  879. EMIT3(0xC1, add_1reg(0xF8, dreg_hi), val);
  880. } else if (val >= 32 && val < 64) {
  881. u32 value = val - 32;
  882. /* ashr dreg_hi,imm8 */
  883. EMIT3(0xC1, add_1reg(0xF8, dreg_hi), value);
  884. /* mov dreg_lo,dreg_hi */
  885. EMIT2(0x89, add_2reg(0xC0, dreg_lo, dreg_hi));
  886. /* ashr dreg_hi,imm8 */
  887. EMIT3(0xC1, add_1reg(0xF8, dreg_hi), 31);
  888. } else {
  889. /* ashr dreg_hi,imm8 */
  890. EMIT3(0xC1, add_1reg(0xF8, dreg_hi), 31);
  891. /* mov dreg_lo,dreg_hi */
  892. EMIT2(0x89, add_2reg(0xC0, dreg_lo, dreg_hi));
  893. }
  894. if (dstk) {
  895. /* mov dword ptr [ebp+off],dreg_lo */
  896. EMIT3(0x89, add_2reg(0x40, IA32_EBP, dreg_lo),
  897. STACK_VAR(dst_lo));
  898. /* mov dword ptr [ebp+off],dreg_hi */
  899. EMIT3(0x89, add_2reg(0x40, IA32_EBP, dreg_hi),
  900. STACK_VAR(dst_hi));
  901. }
  902. *pprog = prog;
  903. }
  904. static inline void emit_ia32_mul_r64(const u8 dst[], const u8 src[], bool dstk,
  905. bool sstk, u8 **pprog)
  906. {
  907. u8 *prog = *pprog;
  908. int cnt = 0;
  909. if (dstk)
  910. /* mov eax,dword ptr [ebp+off] */
  911. EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_EAX),
  912. STACK_VAR(dst_hi));
  913. else
  914. /* mov eax,dst_hi */
  915. EMIT2(0x8B, add_2reg(0xC0, dst_hi, IA32_EAX));
  916. if (sstk)
  917. /* mul dword ptr [ebp+off] */
  918. EMIT3(0xF7, add_1reg(0x60, IA32_EBP), STACK_VAR(src_lo));
  919. else
  920. /* mul src_lo */
  921. EMIT2(0xF7, add_1reg(0xE0, src_lo));
  922. /* mov ecx,eax */
  923. EMIT2(0x89, add_2reg(0xC0, IA32_ECX, IA32_EAX));
  924. if (dstk)
  925. /* mov eax,dword ptr [ebp+off] */
  926. EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_EAX),
  927. STACK_VAR(dst_lo));
  928. else
  929. /* mov eax,dst_lo */
  930. EMIT2(0x8B, add_2reg(0xC0, dst_lo, IA32_EAX));
  931. if (sstk)
  932. /* mul dword ptr [ebp+off] */
  933. EMIT3(0xF7, add_1reg(0x60, IA32_EBP), STACK_VAR(src_hi));
  934. else
  935. /* mul src_hi */
  936. EMIT2(0xF7, add_1reg(0xE0, src_hi));
  937. /* add eax,eax */
  938. EMIT2(0x01, add_2reg(0xC0, IA32_ECX, IA32_EAX));
  939. if (dstk)
  940. /* mov eax,dword ptr [ebp+off] */
  941. EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_EAX),
  942. STACK_VAR(dst_lo));
  943. else
  944. /* mov eax,dst_lo */
  945. EMIT2(0x8B, add_2reg(0xC0, dst_lo, IA32_EAX));
  946. if (sstk)
  947. /* mul dword ptr [ebp+off] */
  948. EMIT3(0xF7, add_1reg(0x60, IA32_EBP), STACK_VAR(src_lo));
  949. else
  950. /* mul src_lo */
  951. EMIT2(0xF7, add_1reg(0xE0, src_lo));
  952. /* add ecx,edx */
  953. EMIT2(0x01, add_2reg(0xC0, IA32_ECX, IA32_EDX));
  954. if (dstk) {
  955. /* mov dword ptr [ebp+off],eax */
  956. EMIT3(0x89, add_2reg(0x40, IA32_EBP, IA32_EAX),
  957. STACK_VAR(dst_lo));
  958. /* mov dword ptr [ebp+off],ecx */
  959. EMIT3(0x89, add_2reg(0x40, IA32_EBP, IA32_ECX),
  960. STACK_VAR(dst_hi));
  961. } else {
  962. /* mov dst_lo,eax */
  963. EMIT2(0x89, add_2reg(0xC0, dst_lo, IA32_EAX));
  964. /* mov dst_hi,ecx */
  965. EMIT2(0x89, add_2reg(0xC0, dst_hi, IA32_ECX));
  966. }
  967. *pprog = prog;
  968. }
  969. static inline void emit_ia32_mul_i64(const u8 dst[], const u32 val,
  970. bool dstk, u8 **pprog)
  971. {
  972. u8 *prog = *pprog;
  973. int cnt = 0;
  974. u32 hi;
  975. hi = val & (1<<31) ? (u32)~0 : 0;
  976. /* movl eax,imm32 */
  977. EMIT2_off32(0xC7, add_1reg(0xC0, IA32_EAX), val);
  978. if (dstk)
  979. /* mul dword ptr [ebp+off] */
  980. EMIT3(0xF7, add_1reg(0x60, IA32_EBP), STACK_VAR(dst_hi));
  981. else
  982. /* mul dst_hi */
  983. EMIT2(0xF7, add_1reg(0xE0, dst_hi));
  984. /* mov ecx,eax */
  985. EMIT2(0x89, add_2reg(0xC0, IA32_ECX, IA32_EAX));
  986. /* movl eax,imm32 */
  987. EMIT2_off32(0xC7, add_1reg(0xC0, IA32_EAX), hi);
  988. if (dstk)
  989. /* mul dword ptr [ebp+off] */
  990. EMIT3(0xF7, add_1reg(0x60, IA32_EBP), STACK_VAR(dst_lo));
  991. else
  992. /* mul dst_lo */
  993. EMIT2(0xF7, add_1reg(0xE0, dst_lo));
  994. /* add ecx,eax */
  995. EMIT2(0x01, add_2reg(0xC0, IA32_ECX, IA32_EAX));
  996. /* movl eax,imm32 */
  997. EMIT2_off32(0xC7, add_1reg(0xC0, IA32_EAX), val);
  998. if (dstk)
  999. /* mul dword ptr [ebp+off] */
  1000. EMIT3(0xF7, add_1reg(0x60, IA32_EBP), STACK_VAR(dst_lo));
  1001. else
  1002. /* mul dst_lo */
  1003. EMIT2(0xF7, add_1reg(0xE0, dst_lo));
  1004. /* add ecx,edx */
  1005. EMIT2(0x01, add_2reg(0xC0, IA32_ECX, IA32_EDX));
  1006. if (dstk) {
  1007. /* mov dword ptr [ebp+off],eax */
  1008. EMIT3(0x89, add_2reg(0x40, IA32_EBP, IA32_EAX),
  1009. STACK_VAR(dst_lo));
  1010. /* mov dword ptr [ebp+off],ecx */
  1011. EMIT3(0x89, add_2reg(0x40, IA32_EBP, IA32_ECX),
  1012. STACK_VAR(dst_hi));
  1013. } else {
  1014. /* mov dword ptr [ebp+off],eax */
  1015. EMIT2(0x89, add_2reg(0xC0, dst_lo, IA32_EAX));
  1016. /* mov dword ptr [ebp+off],ecx */
  1017. EMIT2(0x89, add_2reg(0xC0, dst_hi, IA32_ECX));
  1018. }
  1019. *pprog = prog;
  1020. }
  1021. static int bpf_size_to_x86_bytes(int bpf_size)
  1022. {
  1023. if (bpf_size == BPF_W)
  1024. return 4;
  1025. else if (bpf_size == BPF_H)
  1026. return 2;
  1027. else if (bpf_size == BPF_B)
  1028. return 1;
  1029. else if (bpf_size == BPF_DW)
  1030. return 4; /* imm32 */
  1031. else
  1032. return 0;
  1033. }
  1034. struct jit_context {
  1035. int cleanup_addr; /* Epilogue code offset */
  1036. };
  1037. /* Maximum number of bytes emitted while JITing one eBPF insn */
  1038. #define BPF_MAX_INSN_SIZE 128
  1039. #define BPF_INSN_SAFETY 64
  1040. #define PROLOGUE_SIZE 35
  1041. /*
  1042. * Emit prologue code for BPF program and check it's size.
  1043. * bpf_tail_call helper will skip it while jumping into another program.
  1044. */
  1045. static void emit_prologue(u8 **pprog, u32 stack_depth)
  1046. {
  1047. u8 *prog = *pprog;
  1048. int cnt = 0;
  1049. const u8 *r1 = bpf2ia32[BPF_REG_1];
  1050. const u8 fplo = bpf2ia32[BPF_REG_FP][0];
  1051. const u8 fphi = bpf2ia32[BPF_REG_FP][1];
  1052. const u8 *tcc = bpf2ia32[TCALL_CNT];
  1053. /* push ebp */
  1054. EMIT1(0x55);
  1055. /* mov ebp,esp */
  1056. EMIT2(0x89, 0xE5);
  1057. /* push edi */
  1058. EMIT1(0x57);
  1059. /* push esi */
  1060. EMIT1(0x56);
  1061. /* push ebx */
  1062. EMIT1(0x53);
  1063. /* sub esp,STACK_SIZE */
  1064. EMIT2_off32(0x81, 0xEC, STACK_SIZE);
  1065. /* sub ebp,SCRATCH_SIZE+12*/
  1066. EMIT3(0x83, add_1reg(0xE8, IA32_EBP), SCRATCH_SIZE + 12);
  1067. /* xor ebx,ebx */
  1068. EMIT2(0x31, add_2reg(0xC0, IA32_EBX, IA32_EBX));
  1069. /* Set up BPF prog stack base register */
  1070. EMIT3(0x89, add_2reg(0x40, IA32_EBP, IA32_EBP), STACK_VAR(fplo));
  1071. EMIT3(0x89, add_2reg(0x40, IA32_EBP, IA32_EBX), STACK_VAR(fphi));
  1072. /* Move BPF_CTX (EAX) to BPF_REG_R1 */
  1073. /* mov dword ptr [ebp+off],eax */
  1074. EMIT3(0x89, add_2reg(0x40, IA32_EBP, IA32_EAX), STACK_VAR(r1[0]));
  1075. EMIT3(0x89, add_2reg(0x40, IA32_EBP, IA32_EBX), STACK_VAR(r1[1]));
  1076. /* Initialize Tail Count */
  1077. EMIT3(0x89, add_2reg(0x40, IA32_EBP, IA32_EBX), STACK_VAR(tcc[0]));
  1078. EMIT3(0x89, add_2reg(0x40, IA32_EBP, IA32_EBX), STACK_VAR(tcc[1]));
  1079. BUILD_BUG_ON(cnt != PROLOGUE_SIZE);
  1080. *pprog = prog;
  1081. }
  1082. /* Emit epilogue code for BPF program */
  1083. static void emit_epilogue(u8 **pprog, u32 stack_depth)
  1084. {
  1085. u8 *prog = *pprog;
  1086. const u8 *r0 = bpf2ia32[BPF_REG_0];
  1087. int cnt = 0;
  1088. /* mov eax,dword ptr [ebp+off]*/
  1089. EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_EAX), STACK_VAR(r0[0]));
  1090. /* mov edx,dword ptr [ebp+off]*/
  1091. EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_EDX), STACK_VAR(r0[1]));
  1092. /* add ebp,SCRATCH_SIZE+12*/
  1093. EMIT3(0x83, add_1reg(0xC0, IA32_EBP), SCRATCH_SIZE + 12);
  1094. /* mov ebx,dword ptr [ebp-12]*/
  1095. EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_EBX), -12);
  1096. /* mov esi,dword ptr [ebp-8]*/
  1097. EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_ESI), -8);
  1098. /* mov edi,dword ptr [ebp-4]*/
  1099. EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_EDI), -4);
  1100. EMIT1(0xC9); /* leave */
  1101. EMIT1(0xC3); /* ret */
  1102. *pprog = prog;
  1103. }
  1104. /*
  1105. * Generate the following code:
  1106. * ... bpf_tail_call(void *ctx, struct bpf_array *array, u64 index) ...
  1107. * if (index >= array->map.max_entries)
  1108. * goto out;
  1109. * if (++tail_call_cnt > MAX_TAIL_CALL_CNT)
  1110. * goto out;
  1111. * prog = array->ptrs[index];
  1112. * if (prog == NULL)
  1113. * goto out;
  1114. * goto *(prog->bpf_func + prologue_size);
  1115. * out:
  1116. */
  1117. static void emit_bpf_tail_call(u8 **pprog)
  1118. {
  1119. u8 *prog = *pprog;
  1120. int cnt = 0;
  1121. const u8 *r1 = bpf2ia32[BPF_REG_1];
  1122. const u8 *r2 = bpf2ia32[BPF_REG_2];
  1123. const u8 *r3 = bpf2ia32[BPF_REG_3];
  1124. const u8 *tcc = bpf2ia32[TCALL_CNT];
  1125. u32 lo, hi;
  1126. static int jmp_label1 = -1;
  1127. /*
  1128. * if (index >= array->map.max_entries)
  1129. * goto out;
  1130. */
  1131. /* mov eax,dword ptr [ebp+off] */
  1132. EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_EAX), STACK_VAR(r2[0]));
  1133. /* mov edx,dword ptr [ebp+off] */
  1134. EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_EDX), STACK_VAR(r3[0]));
  1135. /* cmp dword ptr [eax+off],edx */
  1136. EMIT3(0x39, add_2reg(0x40, IA32_EAX, IA32_EDX),
  1137. offsetof(struct bpf_array, map.max_entries));
  1138. /* jbe out */
  1139. EMIT2(IA32_JBE, jmp_label(jmp_label1, 2));
  1140. /*
  1141. * if (tail_call_cnt > MAX_TAIL_CALL_CNT)
  1142. * goto out;
  1143. */
  1144. lo = (u32)MAX_TAIL_CALL_CNT;
  1145. hi = (u32)((u64)MAX_TAIL_CALL_CNT >> 32);
  1146. EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_ECX), STACK_VAR(tcc[0]));
  1147. EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_EBX), STACK_VAR(tcc[1]));
  1148. /* cmp edx,hi */
  1149. EMIT3(0x83, add_1reg(0xF8, IA32_EBX), hi);
  1150. EMIT2(IA32_JNE, 3);
  1151. /* cmp ecx,lo */
  1152. EMIT3(0x83, add_1reg(0xF8, IA32_ECX), lo);
  1153. /* ja out */
  1154. EMIT2(IA32_JAE, jmp_label(jmp_label1, 2));
  1155. /* add eax,0x1 */
  1156. EMIT3(0x83, add_1reg(0xC0, IA32_ECX), 0x01);
  1157. /* adc ebx,0x0 */
  1158. EMIT3(0x83, add_1reg(0xD0, IA32_EBX), 0x00);
  1159. /* mov dword ptr [ebp+off],eax */
  1160. EMIT3(0x89, add_2reg(0x40, IA32_EBP, IA32_ECX), STACK_VAR(tcc[0]));
  1161. /* mov dword ptr [ebp+off],edx */
  1162. EMIT3(0x89, add_2reg(0x40, IA32_EBP, IA32_EBX), STACK_VAR(tcc[1]));
  1163. /* prog = array->ptrs[index]; */
  1164. /* mov edx, [eax + edx * 4 + offsetof(...)] */
  1165. EMIT3_off32(0x8B, 0x94, 0x90, offsetof(struct bpf_array, ptrs));
  1166. /*
  1167. * if (prog == NULL)
  1168. * goto out;
  1169. */
  1170. /* test edx,edx */
  1171. EMIT2(0x85, add_2reg(0xC0, IA32_EDX, IA32_EDX));
  1172. /* je out */
  1173. EMIT2(IA32_JE, jmp_label(jmp_label1, 2));
  1174. /* goto *(prog->bpf_func + prologue_size); */
  1175. /* mov edx, dword ptr [edx + 32] */
  1176. EMIT3(0x8B, add_2reg(0x40, IA32_EDX, IA32_EDX),
  1177. offsetof(struct bpf_prog, bpf_func));
  1178. /* add edx,prologue_size */
  1179. EMIT3(0x83, add_1reg(0xC0, IA32_EDX), PROLOGUE_SIZE);
  1180. /* mov eax,dword ptr [ebp+off] */
  1181. EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_EAX), STACK_VAR(r1[0]));
  1182. /*
  1183. * Now we're ready to jump into next BPF program:
  1184. * eax == ctx (1st arg)
  1185. * edx == prog->bpf_func + prologue_size
  1186. */
  1187. RETPOLINE_EDX_BPF_JIT();
  1188. if (jmp_label1 == -1)
  1189. jmp_label1 = cnt;
  1190. /* out: */
  1191. *pprog = prog;
  1192. }
  1193. /* Push the scratch stack register on top of the stack. */
  1194. static inline void emit_push_r64(const u8 src[], u8 **pprog)
  1195. {
  1196. u8 *prog = *pprog;
  1197. int cnt = 0;
  1198. /* mov ecx,dword ptr [ebp+off] */
  1199. EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_ECX), STACK_VAR(src_hi));
  1200. /* push ecx */
  1201. EMIT1(0x51);
  1202. /* mov ecx,dword ptr [ebp+off] */
  1203. EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_ECX), STACK_VAR(src_lo));
  1204. /* push ecx */
  1205. EMIT1(0x51);
  1206. *pprog = prog;
  1207. }
  1208. static u8 get_cond_jmp_opcode(const u8 op, bool is_cmp_lo)
  1209. {
  1210. u8 jmp_cond;
  1211. /* Convert BPF opcode to x86 */
  1212. switch (op) {
  1213. case BPF_JEQ:
  1214. jmp_cond = IA32_JE;
  1215. break;
  1216. case BPF_JSET:
  1217. case BPF_JNE:
  1218. jmp_cond = IA32_JNE;
  1219. break;
  1220. case BPF_JGT:
  1221. /* GT is unsigned '>', JA in x86 */
  1222. jmp_cond = IA32_JA;
  1223. break;
  1224. case BPF_JLT:
  1225. /* LT is unsigned '<', JB in x86 */
  1226. jmp_cond = IA32_JB;
  1227. break;
  1228. case BPF_JGE:
  1229. /* GE is unsigned '>=', JAE in x86 */
  1230. jmp_cond = IA32_JAE;
  1231. break;
  1232. case BPF_JLE:
  1233. /* LE is unsigned '<=', JBE in x86 */
  1234. jmp_cond = IA32_JBE;
  1235. break;
  1236. case BPF_JSGT:
  1237. if (!is_cmp_lo)
  1238. /* Signed '>', GT in x86 */
  1239. jmp_cond = IA32_JG;
  1240. else
  1241. /* GT is unsigned '>', JA in x86 */
  1242. jmp_cond = IA32_JA;
  1243. break;
  1244. case BPF_JSLT:
  1245. if (!is_cmp_lo)
  1246. /* Signed '<', LT in x86 */
  1247. jmp_cond = IA32_JL;
  1248. else
  1249. /* LT is unsigned '<', JB in x86 */
  1250. jmp_cond = IA32_JB;
  1251. break;
  1252. case BPF_JSGE:
  1253. if (!is_cmp_lo)
  1254. /* Signed '>=', GE in x86 */
  1255. jmp_cond = IA32_JGE;
  1256. else
  1257. /* GE is unsigned '>=', JAE in x86 */
  1258. jmp_cond = IA32_JAE;
  1259. break;
  1260. case BPF_JSLE:
  1261. if (!is_cmp_lo)
  1262. /* Signed '<=', LE in x86 */
  1263. jmp_cond = IA32_JLE;
  1264. else
  1265. /* LE is unsigned '<=', JBE in x86 */
  1266. jmp_cond = IA32_JBE;
  1267. break;
  1268. default: /* to silence GCC warning */
  1269. jmp_cond = COND_JMP_OPCODE_INVALID;
  1270. break;
  1271. }
  1272. return jmp_cond;
  1273. }
  1274. static int do_jit(struct bpf_prog *bpf_prog, int *addrs, u8 *image,
  1275. int oldproglen, struct jit_context *ctx)
  1276. {
  1277. struct bpf_insn *insn = bpf_prog->insnsi;
  1278. int insn_cnt = bpf_prog->len;
  1279. bool seen_exit = false;
  1280. u8 temp[BPF_MAX_INSN_SIZE + BPF_INSN_SAFETY];
  1281. int i, cnt = 0;
  1282. int proglen = 0;
  1283. u8 *prog = temp;
  1284. emit_prologue(&prog, bpf_prog->aux->stack_depth);
  1285. for (i = 0; i < insn_cnt; i++, insn++) {
  1286. const s32 imm32 = insn->imm;
  1287. const bool is64 = BPF_CLASS(insn->code) == BPF_ALU64;
  1288. const bool dstk = insn->dst_reg == BPF_REG_AX ? false : true;
  1289. const bool sstk = insn->src_reg == BPF_REG_AX ? false : true;
  1290. const u8 code = insn->code;
  1291. const u8 *dst = bpf2ia32[insn->dst_reg];
  1292. const u8 *src = bpf2ia32[insn->src_reg];
  1293. const u8 *r0 = bpf2ia32[BPF_REG_0];
  1294. s64 jmp_offset;
  1295. u8 jmp_cond;
  1296. int ilen;
  1297. u8 *func;
  1298. switch (code) {
  1299. /* ALU operations */
  1300. /* dst = src */
  1301. case BPF_ALU | BPF_MOV | BPF_K:
  1302. case BPF_ALU | BPF_MOV | BPF_X:
  1303. case BPF_ALU64 | BPF_MOV | BPF_K:
  1304. case BPF_ALU64 | BPF_MOV | BPF_X:
  1305. switch (BPF_SRC(code)) {
  1306. case BPF_X:
  1307. emit_ia32_mov_r64(is64, dst, src, dstk,
  1308. sstk, &prog);
  1309. break;
  1310. case BPF_K:
  1311. /* Sign-extend immediate value to dst reg */
  1312. emit_ia32_mov_i64(is64, dst, imm32,
  1313. dstk, &prog);
  1314. break;
  1315. }
  1316. break;
  1317. /* dst = dst + src/imm */
  1318. /* dst = dst - src/imm */
  1319. /* dst = dst | src/imm */
  1320. /* dst = dst & src/imm */
  1321. /* dst = dst ^ src/imm */
  1322. /* dst = dst * src/imm */
  1323. /* dst = dst << src */
  1324. /* dst = dst >> src */
  1325. case BPF_ALU | BPF_ADD | BPF_K:
  1326. case BPF_ALU | BPF_ADD | BPF_X:
  1327. case BPF_ALU | BPF_SUB | BPF_K:
  1328. case BPF_ALU | BPF_SUB | BPF_X:
  1329. case BPF_ALU | BPF_OR | BPF_K:
  1330. case BPF_ALU | BPF_OR | BPF_X:
  1331. case BPF_ALU | BPF_AND | BPF_K:
  1332. case BPF_ALU | BPF_AND | BPF_X:
  1333. case BPF_ALU | BPF_XOR | BPF_K:
  1334. case BPF_ALU | BPF_XOR | BPF_X:
  1335. case BPF_ALU64 | BPF_ADD | BPF_K:
  1336. case BPF_ALU64 | BPF_ADD | BPF_X:
  1337. case BPF_ALU64 | BPF_SUB | BPF_K:
  1338. case BPF_ALU64 | BPF_SUB | BPF_X:
  1339. case BPF_ALU64 | BPF_OR | BPF_K:
  1340. case BPF_ALU64 | BPF_OR | BPF_X:
  1341. case BPF_ALU64 | BPF_AND | BPF_K:
  1342. case BPF_ALU64 | BPF_AND | BPF_X:
  1343. case BPF_ALU64 | BPF_XOR | BPF_K:
  1344. case BPF_ALU64 | BPF_XOR | BPF_X:
  1345. switch (BPF_SRC(code)) {
  1346. case BPF_X:
  1347. emit_ia32_alu_r64(is64, BPF_OP(code), dst,
  1348. src, dstk, sstk, &prog);
  1349. break;
  1350. case BPF_K:
  1351. emit_ia32_alu_i64(is64, BPF_OP(code), dst,
  1352. imm32, dstk, &prog);
  1353. break;
  1354. }
  1355. break;
  1356. case BPF_ALU | BPF_MUL | BPF_K:
  1357. case BPF_ALU | BPF_MUL | BPF_X:
  1358. switch (BPF_SRC(code)) {
  1359. case BPF_X:
  1360. emit_ia32_mul_r(dst_lo, src_lo, dstk,
  1361. sstk, &prog);
  1362. break;
  1363. case BPF_K:
  1364. /* mov ecx,imm32*/
  1365. EMIT2_off32(0xC7, add_1reg(0xC0, IA32_ECX),
  1366. imm32);
  1367. emit_ia32_mul_r(dst_lo, IA32_ECX, dstk,
  1368. false, &prog);
  1369. break;
  1370. }
  1371. emit_ia32_mov_i(dst_hi, 0, dstk, &prog);
  1372. break;
  1373. case BPF_ALU | BPF_LSH | BPF_X:
  1374. case BPF_ALU | BPF_RSH | BPF_X:
  1375. case BPF_ALU | BPF_ARSH | BPF_K:
  1376. case BPF_ALU | BPF_ARSH | BPF_X:
  1377. switch (BPF_SRC(code)) {
  1378. case BPF_X:
  1379. emit_ia32_shift_r(BPF_OP(code), dst_lo, src_lo,
  1380. dstk, sstk, &prog);
  1381. break;
  1382. case BPF_K:
  1383. /* mov ecx,imm32*/
  1384. EMIT2_off32(0xC7, add_1reg(0xC0, IA32_ECX),
  1385. imm32);
  1386. emit_ia32_shift_r(BPF_OP(code), dst_lo,
  1387. IA32_ECX, dstk, false,
  1388. &prog);
  1389. break;
  1390. }
  1391. emit_ia32_mov_i(dst_hi, 0, dstk, &prog);
  1392. break;
  1393. /* dst = dst / src(imm) */
  1394. /* dst = dst % src(imm) */
  1395. case BPF_ALU | BPF_DIV | BPF_K:
  1396. case BPF_ALU | BPF_DIV | BPF_X:
  1397. case BPF_ALU | BPF_MOD | BPF_K:
  1398. case BPF_ALU | BPF_MOD | BPF_X:
  1399. switch (BPF_SRC(code)) {
  1400. case BPF_X:
  1401. emit_ia32_div_mod_r(BPF_OP(code), dst_lo,
  1402. src_lo, dstk, sstk, &prog);
  1403. break;
  1404. case BPF_K:
  1405. /* mov ecx,imm32*/
  1406. EMIT2_off32(0xC7, add_1reg(0xC0, IA32_ECX),
  1407. imm32);
  1408. emit_ia32_div_mod_r(BPF_OP(code), dst_lo,
  1409. IA32_ECX, dstk, false,
  1410. &prog);
  1411. break;
  1412. }
  1413. emit_ia32_mov_i(dst_hi, 0, dstk, &prog);
  1414. break;
  1415. case BPF_ALU64 | BPF_DIV | BPF_K:
  1416. case BPF_ALU64 | BPF_DIV | BPF_X:
  1417. case BPF_ALU64 | BPF_MOD | BPF_K:
  1418. case BPF_ALU64 | BPF_MOD | BPF_X:
  1419. goto notyet;
  1420. /* dst = dst >> imm */
  1421. /* dst = dst << imm */
  1422. case BPF_ALU | BPF_RSH | BPF_K:
  1423. case BPF_ALU | BPF_LSH | BPF_K:
  1424. if (unlikely(imm32 > 31))
  1425. return -EINVAL;
  1426. /* mov ecx,imm32*/
  1427. EMIT2_off32(0xC7, add_1reg(0xC0, IA32_ECX), imm32);
  1428. emit_ia32_shift_r(BPF_OP(code), dst_lo, IA32_ECX, dstk,
  1429. false, &prog);
  1430. emit_ia32_mov_i(dst_hi, 0, dstk, &prog);
  1431. break;
  1432. /* dst = dst << imm */
  1433. case BPF_ALU64 | BPF_LSH | BPF_K:
  1434. if (unlikely(imm32 > 63))
  1435. return -EINVAL;
  1436. emit_ia32_lsh_i64(dst, imm32, dstk, &prog);
  1437. break;
  1438. /* dst = dst >> imm */
  1439. case BPF_ALU64 | BPF_RSH | BPF_K:
  1440. if (unlikely(imm32 > 63))
  1441. return -EINVAL;
  1442. emit_ia32_rsh_i64(dst, imm32, dstk, &prog);
  1443. break;
  1444. /* dst = dst << src */
  1445. case BPF_ALU64 | BPF_LSH | BPF_X:
  1446. emit_ia32_lsh_r64(dst, src, dstk, sstk, &prog);
  1447. break;
  1448. /* dst = dst >> src */
  1449. case BPF_ALU64 | BPF_RSH | BPF_X:
  1450. emit_ia32_rsh_r64(dst, src, dstk, sstk, &prog);
  1451. break;
  1452. /* dst = dst >> src (signed) */
  1453. case BPF_ALU64 | BPF_ARSH | BPF_X:
  1454. emit_ia32_arsh_r64(dst, src, dstk, sstk, &prog);
  1455. break;
  1456. /* dst = dst >> imm (signed) */
  1457. case BPF_ALU64 | BPF_ARSH | BPF_K:
  1458. if (unlikely(imm32 > 63))
  1459. return -EINVAL;
  1460. emit_ia32_arsh_i64(dst, imm32, dstk, &prog);
  1461. break;
  1462. /* dst = ~dst */
  1463. case BPF_ALU | BPF_NEG:
  1464. emit_ia32_alu_i(is64, false, BPF_OP(code),
  1465. dst_lo, 0, dstk, &prog);
  1466. emit_ia32_mov_i(dst_hi, 0, dstk, &prog);
  1467. break;
  1468. /* dst = ~dst (64 bit) */
  1469. case BPF_ALU64 | BPF_NEG:
  1470. emit_ia32_neg64(dst, dstk, &prog);
  1471. break;
  1472. /* dst = dst * src/imm */
  1473. case BPF_ALU64 | BPF_MUL | BPF_X:
  1474. case BPF_ALU64 | BPF_MUL | BPF_K:
  1475. switch (BPF_SRC(code)) {
  1476. case BPF_X:
  1477. emit_ia32_mul_r64(dst, src, dstk, sstk, &prog);
  1478. break;
  1479. case BPF_K:
  1480. emit_ia32_mul_i64(dst, imm32, dstk, &prog);
  1481. break;
  1482. }
  1483. break;
  1484. /* dst = htole(dst) */
  1485. case BPF_ALU | BPF_END | BPF_FROM_LE:
  1486. emit_ia32_to_le_r64(dst, imm32, dstk, &prog);
  1487. break;
  1488. /* dst = htobe(dst) */
  1489. case BPF_ALU | BPF_END | BPF_FROM_BE:
  1490. emit_ia32_to_be_r64(dst, imm32, dstk, &prog);
  1491. break;
  1492. /* dst = imm64 */
  1493. case BPF_LD | BPF_IMM | BPF_DW: {
  1494. s32 hi, lo = imm32;
  1495. hi = insn[1].imm;
  1496. emit_ia32_mov_i(dst_lo, lo, dstk, &prog);
  1497. emit_ia32_mov_i(dst_hi, hi, dstk, &prog);
  1498. insn++;
  1499. i++;
  1500. break;
  1501. }
  1502. /* ST: *(u8*)(dst_reg + off) = imm */
  1503. case BPF_ST | BPF_MEM | BPF_H:
  1504. case BPF_ST | BPF_MEM | BPF_B:
  1505. case BPF_ST | BPF_MEM | BPF_W:
  1506. case BPF_ST | BPF_MEM | BPF_DW:
  1507. if (dstk)
  1508. /* mov eax,dword ptr [ebp+off] */
  1509. EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_EAX),
  1510. STACK_VAR(dst_lo));
  1511. else
  1512. /* mov eax,dst_lo */
  1513. EMIT2(0x8B, add_2reg(0xC0, dst_lo, IA32_EAX));
  1514. switch (BPF_SIZE(code)) {
  1515. case BPF_B:
  1516. EMIT(0xC6, 1); break;
  1517. case BPF_H:
  1518. EMIT2(0x66, 0xC7); break;
  1519. case BPF_W:
  1520. case BPF_DW:
  1521. EMIT(0xC7, 1); break;
  1522. }
  1523. if (is_imm8(insn->off))
  1524. EMIT2(add_1reg(0x40, IA32_EAX), insn->off);
  1525. else
  1526. EMIT1_off32(add_1reg(0x80, IA32_EAX),
  1527. insn->off);
  1528. EMIT(imm32, bpf_size_to_x86_bytes(BPF_SIZE(code)));
  1529. if (BPF_SIZE(code) == BPF_DW) {
  1530. u32 hi;
  1531. hi = imm32 & (1<<31) ? (u32)~0 : 0;
  1532. EMIT2_off32(0xC7, add_1reg(0x80, IA32_EAX),
  1533. insn->off + 4);
  1534. EMIT(hi, 4);
  1535. }
  1536. break;
  1537. /* STX: *(u8*)(dst_reg + off) = src_reg */
  1538. case BPF_STX | BPF_MEM | BPF_B:
  1539. case BPF_STX | BPF_MEM | BPF_H:
  1540. case BPF_STX | BPF_MEM | BPF_W:
  1541. case BPF_STX | BPF_MEM | BPF_DW:
  1542. if (dstk)
  1543. /* mov eax,dword ptr [ebp+off] */
  1544. EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_EAX),
  1545. STACK_VAR(dst_lo));
  1546. else
  1547. /* mov eax,dst_lo */
  1548. EMIT2(0x8B, add_2reg(0xC0, dst_lo, IA32_EAX));
  1549. if (sstk)
  1550. /* mov edx,dword ptr [ebp+off] */
  1551. EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_EDX),
  1552. STACK_VAR(src_lo));
  1553. else
  1554. /* mov edx,src_lo */
  1555. EMIT2(0x8B, add_2reg(0xC0, src_lo, IA32_EDX));
  1556. switch (BPF_SIZE(code)) {
  1557. case BPF_B:
  1558. EMIT(0x88, 1); break;
  1559. case BPF_H:
  1560. EMIT2(0x66, 0x89); break;
  1561. case BPF_W:
  1562. case BPF_DW:
  1563. EMIT(0x89, 1); break;
  1564. }
  1565. if (is_imm8(insn->off))
  1566. EMIT2(add_2reg(0x40, IA32_EAX, IA32_EDX),
  1567. insn->off);
  1568. else
  1569. EMIT1_off32(add_2reg(0x80, IA32_EAX, IA32_EDX),
  1570. insn->off);
  1571. if (BPF_SIZE(code) == BPF_DW) {
  1572. if (sstk)
  1573. /* mov edi,dword ptr [ebp+off] */
  1574. EMIT3(0x8B, add_2reg(0x40, IA32_EBP,
  1575. IA32_EDX),
  1576. STACK_VAR(src_hi));
  1577. else
  1578. /* mov edi,src_hi */
  1579. EMIT2(0x8B, add_2reg(0xC0, src_hi,
  1580. IA32_EDX));
  1581. EMIT1(0x89);
  1582. if (is_imm8(insn->off + 4)) {
  1583. EMIT2(add_2reg(0x40, IA32_EAX,
  1584. IA32_EDX),
  1585. insn->off + 4);
  1586. } else {
  1587. EMIT1(add_2reg(0x80, IA32_EAX,
  1588. IA32_EDX));
  1589. EMIT(insn->off + 4, 4);
  1590. }
  1591. }
  1592. break;
  1593. /* LDX: dst_reg = *(u8*)(src_reg + off) */
  1594. case BPF_LDX | BPF_MEM | BPF_B:
  1595. case BPF_LDX | BPF_MEM | BPF_H:
  1596. case BPF_LDX | BPF_MEM | BPF_W:
  1597. case BPF_LDX | BPF_MEM | BPF_DW:
  1598. if (sstk)
  1599. /* mov eax,dword ptr [ebp+off] */
  1600. EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_EAX),
  1601. STACK_VAR(src_lo));
  1602. else
  1603. /* mov eax,dword ptr [ebp+off] */
  1604. EMIT2(0x8B, add_2reg(0xC0, src_lo, IA32_EAX));
  1605. switch (BPF_SIZE(code)) {
  1606. case BPF_B:
  1607. EMIT2(0x0F, 0xB6); break;
  1608. case BPF_H:
  1609. EMIT2(0x0F, 0xB7); break;
  1610. case BPF_W:
  1611. case BPF_DW:
  1612. EMIT(0x8B, 1); break;
  1613. }
  1614. if (is_imm8(insn->off))
  1615. EMIT2(add_2reg(0x40, IA32_EAX, IA32_EDX),
  1616. insn->off);
  1617. else
  1618. EMIT1_off32(add_2reg(0x80, IA32_EAX, IA32_EDX),
  1619. insn->off);
  1620. if (dstk)
  1621. /* mov dword ptr [ebp+off],edx */
  1622. EMIT3(0x89, add_2reg(0x40, IA32_EBP, IA32_EDX),
  1623. STACK_VAR(dst_lo));
  1624. else
  1625. /* mov dst_lo,edx */
  1626. EMIT2(0x89, add_2reg(0xC0, dst_lo, IA32_EDX));
  1627. switch (BPF_SIZE(code)) {
  1628. case BPF_B:
  1629. case BPF_H:
  1630. case BPF_W:
  1631. if (dstk) {
  1632. EMIT3(0xC7, add_1reg(0x40, IA32_EBP),
  1633. STACK_VAR(dst_hi));
  1634. EMIT(0x0, 4);
  1635. } else {
  1636. /* xor dst_hi,dst_hi */
  1637. EMIT2(0x33,
  1638. add_2reg(0xC0, dst_hi, dst_hi));
  1639. }
  1640. break;
  1641. case BPF_DW:
  1642. EMIT2_off32(0x8B,
  1643. add_2reg(0x80, IA32_EAX, IA32_EDX),
  1644. insn->off + 4);
  1645. if (dstk)
  1646. EMIT3(0x89,
  1647. add_2reg(0x40, IA32_EBP,
  1648. IA32_EDX),
  1649. STACK_VAR(dst_hi));
  1650. else
  1651. EMIT2(0x89,
  1652. add_2reg(0xC0, dst_hi, IA32_EDX));
  1653. break;
  1654. default:
  1655. break;
  1656. }
  1657. break;
  1658. /* call */
  1659. case BPF_JMP | BPF_CALL:
  1660. {
  1661. const u8 *r1 = bpf2ia32[BPF_REG_1];
  1662. const u8 *r2 = bpf2ia32[BPF_REG_2];
  1663. const u8 *r3 = bpf2ia32[BPF_REG_3];
  1664. const u8 *r4 = bpf2ia32[BPF_REG_4];
  1665. const u8 *r5 = bpf2ia32[BPF_REG_5];
  1666. if (insn->src_reg == BPF_PSEUDO_CALL)
  1667. goto notyet;
  1668. func = (u8 *) __bpf_call_base + imm32;
  1669. jmp_offset = func - (image + addrs[i]);
  1670. if (!imm32 || !is_simm32(jmp_offset)) {
  1671. pr_err("unsupported BPF func %d addr %p image %p\n",
  1672. imm32, func, image);
  1673. return -EINVAL;
  1674. }
  1675. /* mov eax,dword ptr [ebp+off] */
  1676. EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_EAX),
  1677. STACK_VAR(r1[0]));
  1678. /* mov edx,dword ptr [ebp+off] */
  1679. EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_EDX),
  1680. STACK_VAR(r1[1]));
  1681. emit_push_r64(r5, &prog);
  1682. emit_push_r64(r4, &prog);
  1683. emit_push_r64(r3, &prog);
  1684. emit_push_r64(r2, &prog);
  1685. EMIT1_off32(0xE8, jmp_offset + 9);
  1686. /* mov dword ptr [ebp+off],eax */
  1687. EMIT3(0x89, add_2reg(0x40, IA32_EBP, IA32_EAX),
  1688. STACK_VAR(r0[0]));
  1689. /* mov dword ptr [ebp+off],edx */
  1690. EMIT3(0x89, add_2reg(0x40, IA32_EBP, IA32_EDX),
  1691. STACK_VAR(r0[1]));
  1692. /* add esp,32 */
  1693. EMIT3(0x83, add_1reg(0xC0, IA32_ESP), 32);
  1694. break;
  1695. }
  1696. case BPF_JMP | BPF_TAIL_CALL:
  1697. emit_bpf_tail_call(&prog);
  1698. break;
  1699. /* cond jump */
  1700. case BPF_JMP | BPF_JEQ | BPF_X:
  1701. case BPF_JMP | BPF_JNE | BPF_X:
  1702. case BPF_JMP | BPF_JGT | BPF_X:
  1703. case BPF_JMP | BPF_JLT | BPF_X:
  1704. case BPF_JMP | BPF_JGE | BPF_X:
  1705. case BPF_JMP | BPF_JLE | BPF_X: {
  1706. u8 dreg_lo = dstk ? IA32_EAX : dst_lo;
  1707. u8 dreg_hi = dstk ? IA32_EDX : dst_hi;
  1708. u8 sreg_lo = sstk ? IA32_ECX : src_lo;
  1709. u8 sreg_hi = sstk ? IA32_EBX : src_hi;
  1710. if (dstk) {
  1711. EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_EAX),
  1712. STACK_VAR(dst_lo));
  1713. EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_EDX),
  1714. STACK_VAR(dst_hi));
  1715. }
  1716. if (sstk) {
  1717. EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_ECX),
  1718. STACK_VAR(src_lo));
  1719. EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_EBX),
  1720. STACK_VAR(src_hi));
  1721. }
  1722. /* cmp dreg_hi,sreg_hi */
  1723. EMIT2(0x39, add_2reg(0xC0, dreg_hi, sreg_hi));
  1724. EMIT2(IA32_JNE, 2);
  1725. /* cmp dreg_lo,sreg_lo */
  1726. EMIT2(0x39, add_2reg(0xC0, dreg_lo, sreg_lo));
  1727. goto emit_cond_jmp;
  1728. }
  1729. case BPF_JMP | BPF_JSGT | BPF_X:
  1730. case BPF_JMP | BPF_JSLE | BPF_X:
  1731. case BPF_JMP | BPF_JSLT | BPF_X:
  1732. case BPF_JMP | BPF_JSGE | BPF_X: {
  1733. u8 dreg_lo = dstk ? IA32_EAX : dst_lo;
  1734. u8 dreg_hi = dstk ? IA32_EDX : dst_hi;
  1735. u8 sreg_lo = sstk ? IA32_ECX : src_lo;
  1736. u8 sreg_hi = sstk ? IA32_EBX : src_hi;
  1737. if (dstk) {
  1738. EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_EAX),
  1739. STACK_VAR(dst_lo));
  1740. EMIT3(0x8B,
  1741. add_2reg(0x40, IA32_EBP,
  1742. IA32_EDX),
  1743. STACK_VAR(dst_hi));
  1744. }
  1745. if (sstk) {
  1746. EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_ECX),
  1747. STACK_VAR(src_lo));
  1748. EMIT3(0x8B,
  1749. add_2reg(0x40, IA32_EBP,
  1750. IA32_EBX),
  1751. STACK_VAR(src_hi));
  1752. }
  1753. /* cmp dreg_hi,sreg_hi */
  1754. EMIT2(0x39, add_2reg(0xC0, dreg_hi, sreg_hi));
  1755. EMIT2(IA32_JNE, 10);
  1756. /* cmp dreg_lo,sreg_lo */
  1757. EMIT2(0x39, add_2reg(0xC0, dreg_lo, sreg_lo));
  1758. goto emit_cond_jmp_signed;
  1759. }
  1760. case BPF_JMP | BPF_JSET | BPF_X: {
  1761. u8 dreg_lo = IA32_EAX;
  1762. u8 dreg_hi = IA32_EDX;
  1763. u8 sreg_lo = sstk ? IA32_ECX : src_lo;
  1764. u8 sreg_hi = sstk ? IA32_EBX : src_hi;
  1765. if (dstk) {
  1766. EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_EAX),
  1767. STACK_VAR(dst_lo));
  1768. EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_EDX),
  1769. STACK_VAR(dst_hi));
  1770. } else {
  1771. /* mov dreg_lo,dst_lo */
  1772. EMIT2(0x89, add_2reg(0xC0, dreg_lo, dst_lo));
  1773. /* mov dreg_hi,dst_hi */
  1774. EMIT2(0x89,
  1775. add_2reg(0xC0, dreg_hi, dst_hi));
  1776. }
  1777. if (sstk) {
  1778. EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_ECX),
  1779. STACK_VAR(src_lo));
  1780. EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_EBX),
  1781. STACK_VAR(src_hi));
  1782. }
  1783. /* and dreg_lo,sreg_lo */
  1784. EMIT2(0x23, add_2reg(0xC0, sreg_lo, dreg_lo));
  1785. /* and dreg_hi,sreg_hi */
  1786. EMIT2(0x23, add_2reg(0xC0, sreg_hi, dreg_hi));
  1787. /* or dreg_lo,dreg_hi */
  1788. EMIT2(0x09, add_2reg(0xC0, dreg_lo, dreg_hi));
  1789. goto emit_cond_jmp;
  1790. }
  1791. case BPF_JMP | BPF_JSET | BPF_K: {
  1792. u32 hi;
  1793. u8 dreg_lo = IA32_EAX;
  1794. u8 dreg_hi = IA32_EDX;
  1795. u8 sreg_lo = IA32_ECX;
  1796. u8 sreg_hi = IA32_EBX;
  1797. if (dstk) {
  1798. EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_EAX),
  1799. STACK_VAR(dst_lo));
  1800. EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_EDX),
  1801. STACK_VAR(dst_hi));
  1802. } else {
  1803. /* mov dreg_lo,dst_lo */
  1804. EMIT2(0x89, add_2reg(0xC0, dreg_lo, dst_lo));
  1805. /* mov dreg_hi,dst_hi */
  1806. EMIT2(0x89,
  1807. add_2reg(0xC0, dreg_hi, dst_hi));
  1808. }
  1809. hi = imm32 & (1<<31) ? (u32)~0 : 0;
  1810. /* mov ecx,imm32 */
  1811. EMIT2_off32(0xC7, add_1reg(0xC0, IA32_ECX), imm32);
  1812. /* mov ebx,imm32 */
  1813. EMIT2_off32(0xC7, add_1reg(0xC0, IA32_EBX), hi);
  1814. /* and dreg_lo,sreg_lo */
  1815. EMIT2(0x23, add_2reg(0xC0, sreg_lo, dreg_lo));
  1816. /* and dreg_hi,sreg_hi */
  1817. EMIT2(0x23, add_2reg(0xC0, sreg_hi, dreg_hi));
  1818. /* or dreg_lo,dreg_hi */
  1819. EMIT2(0x09, add_2reg(0xC0, dreg_lo, dreg_hi));
  1820. goto emit_cond_jmp;
  1821. }
  1822. case BPF_JMP | BPF_JEQ | BPF_K:
  1823. case BPF_JMP | BPF_JNE | BPF_K:
  1824. case BPF_JMP | BPF_JGT | BPF_K:
  1825. case BPF_JMP | BPF_JLT | BPF_K:
  1826. case BPF_JMP | BPF_JGE | BPF_K:
  1827. case BPF_JMP | BPF_JLE | BPF_K: {
  1828. u32 hi;
  1829. u8 dreg_lo = dstk ? IA32_EAX : dst_lo;
  1830. u8 dreg_hi = dstk ? IA32_EDX : dst_hi;
  1831. u8 sreg_lo = IA32_ECX;
  1832. u8 sreg_hi = IA32_EBX;
  1833. if (dstk) {
  1834. EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_EAX),
  1835. STACK_VAR(dst_lo));
  1836. EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_EDX),
  1837. STACK_VAR(dst_hi));
  1838. }
  1839. hi = imm32 & (1<<31) ? (u32)~0 : 0;
  1840. /* mov ecx,imm32 */
  1841. EMIT2_off32(0xC7, add_1reg(0xC0, IA32_ECX), imm32);
  1842. /* mov ebx,imm32 */
  1843. EMIT2_off32(0xC7, add_1reg(0xC0, IA32_EBX), hi);
  1844. /* cmp dreg_hi,sreg_hi */
  1845. EMIT2(0x39, add_2reg(0xC0, dreg_hi, sreg_hi));
  1846. EMIT2(IA32_JNE, 2);
  1847. /* cmp dreg_lo,sreg_lo */
  1848. EMIT2(0x39, add_2reg(0xC0, dreg_lo, sreg_lo));
  1849. emit_cond_jmp: jmp_cond = get_cond_jmp_opcode(BPF_OP(code), false);
  1850. if (jmp_cond == COND_JMP_OPCODE_INVALID)
  1851. return -EFAULT;
  1852. jmp_offset = addrs[i + insn->off] - addrs[i];
  1853. if (is_imm8(jmp_offset)) {
  1854. EMIT2(jmp_cond, jmp_offset);
  1855. } else if (is_simm32(jmp_offset)) {
  1856. EMIT2_off32(0x0F, jmp_cond + 0x10, jmp_offset);
  1857. } else {
  1858. pr_err("cond_jmp gen bug %llx\n", jmp_offset);
  1859. return -EFAULT;
  1860. }
  1861. break;
  1862. }
  1863. case BPF_JMP | BPF_JSGT | BPF_K:
  1864. case BPF_JMP | BPF_JSLE | BPF_K:
  1865. case BPF_JMP | BPF_JSLT | BPF_K:
  1866. case BPF_JMP | BPF_JSGE | BPF_K: {
  1867. u8 dreg_lo = dstk ? IA32_EAX : dst_lo;
  1868. u8 dreg_hi = dstk ? IA32_EDX : dst_hi;
  1869. u8 sreg_lo = IA32_ECX;
  1870. u8 sreg_hi = IA32_EBX;
  1871. u32 hi;
  1872. if (dstk) {
  1873. EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_EAX),
  1874. STACK_VAR(dst_lo));
  1875. EMIT3(0x8B,
  1876. add_2reg(0x40, IA32_EBP,
  1877. IA32_EDX),
  1878. STACK_VAR(dst_hi));
  1879. }
  1880. /* mov ecx,imm32 */
  1881. EMIT2_off32(0xC7, add_1reg(0xC0, IA32_ECX), imm32);
  1882. hi = imm32 & (1 << 31) ? (u32)~0 : 0;
  1883. /* mov ebx,imm32 */
  1884. EMIT2_off32(0xC7, add_1reg(0xC0, IA32_EBX), hi);
  1885. /* cmp dreg_hi,sreg_hi */
  1886. EMIT2(0x39, add_2reg(0xC0, dreg_hi, sreg_hi));
  1887. EMIT2(IA32_JNE, 10);
  1888. /* cmp dreg_lo,sreg_lo */
  1889. EMIT2(0x39, add_2reg(0xC0, dreg_lo, sreg_lo));
  1890. /*
  1891. * For simplicity of branch offset computation,
  1892. * let's use fixed jump coding here.
  1893. */
  1894. emit_cond_jmp_signed: /* Check the condition for low 32-bit comparison */
  1895. jmp_cond = get_cond_jmp_opcode(BPF_OP(code), true);
  1896. if (jmp_cond == COND_JMP_OPCODE_INVALID)
  1897. return -EFAULT;
  1898. jmp_offset = addrs[i + insn->off] - addrs[i] + 8;
  1899. if (is_simm32(jmp_offset)) {
  1900. EMIT2_off32(0x0F, jmp_cond + 0x10, jmp_offset);
  1901. } else {
  1902. pr_err("cond_jmp gen bug %llx\n", jmp_offset);
  1903. return -EFAULT;
  1904. }
  1905. EMIT2(0xEB, 6);
  1906. /* Check the condition for high 32-bit comparison */
  1907. jmp_cond = get_cond_jmp_opcode(BPF_OP(code), false);
  1908. if (jmp_cond == COND_JMP_OPCODE_INVALID)
  1909. return -EFAULT;
  1910. jmp_offset = addrs[i + insn->off] - addrs[i];
  1911. if (is_simm32(jmp_offset)) {
  1912. EMIT2_off32(0x0F, jmp_cond + 0x10, jmp_offset);
  1913. } else {
  1914. pr_err("cond_jmp gen bug %llx\n", jmp_offset);
  1915. return -EFAULT;
  1916. }
  1917. break;
  1918. }
  1919. case BPF_JMP | BPF_JA:
  1920. if (insn->off == -1)
  1921. /* -1 jmp instructions will always jump
  1922. * backwards two bytes. Explicitly handling
  1923. * this case avoids wasting too many passes
  1924. * when there are long sequences of replaced
  1925. * dead code.
  1926. */
  1927. jmp_offset = -2;
  1928. else
  1929. jmp_offset = addrs[i + insn->off] - addrs[i];
  1930. if (!jmp_offset)
  1931. /* Optimize out nop jumps */
  1932. break;
  1933. emit_jmp:
  1934. if (is_imm8(jmp_offset)) {
  1935. EMIT2(0xEB, jmp_offset);
  1936. } else if (is_simm32(jmp_offset)) {
  1937. EMIT1_off32(0xE9, jmp_offset);
  1938. } else {
  1939. pr_err("jmp gen bug %llx\n", jmp_offset);
  1940. return -EFAULT;
  1941. }
  1942. break;
  1943. /* STX XADD: lock *(u32 *)(dst + off) += src */
  1944. case BPF_STX | BPF_XADD | BPF_W:
  1945. /* STX XADD: lock *(u64 *)(dst + off) += src */
  1946. case BPF_STX | BPF_XADD | BPF_DW:
  1947. goto notyet;
  1948. case BPF_JMP | BPF_EXIT:
  1949. if (seen_exit) {
  1950. jmp_offset = ctx->cleanup_addr - addrs[i];
  1951. goto emit_jmp;
  1952. }
  1953. seen_exit = true;
  1954. /* Update cleanup_addr */
  1955. ctx->cleanup_addr = proglen;
  1956. emit_epilogue(&prog, bpf_prog->aux->stack_depth);
  1957. break;
  1958. notyet:
  1959. pr_info_once("*** NOT YET: opcode %02x ***\n", code);
  1960. return -EFAULT;
  1961. default:
  1962. /*
  1963. * This error will be seen if new instruction was added
  1964. * to interpreter, but not to JIT or if there is junk in
  1965. * bpf_prog
  1966. */
  1967. pr_err("bpf_jit: unknown opcode %02x\n", code);
  1968. return -EINVAL;
  1969. }
  1970. ilen = prog - temp;
  1971. if (ilen > BPF_MAX_INSN_SIZE) {
  1972. pr_err("bpf_jit: fatal insn size error\n");
  1973. return -EFAULT;
  1974. }
  1975. if (image) {
  1976. /*
  1977. * When populating the image, assert that:
  1978. *
  1979. * i) We do not write beyond the allocated space, and
  1980. * ii) addrs[i] did not change from the prior run, in order
  1981. * to validate assumptions made for computing branch
  1982. * displacements.
  1983. */
  1984. if (unlikely(proglen + ilen > oldproglen ||
  1985. proglen + ilen != addrs[i])) {
  1986. pr_err("bpf_jit: fatal error\n");
  1987. return -EFAULT;
  1988. }
  1989. memcpy(image + proglen, temp, ilen);
  1990. }
  1991. proglen += ilen;
  1992. addrs[i] = proglen;
  1993. prog = temp;
  1994. }
  1995. return proglen;
  1996. }
  1997. struct bpf_prog *bpf_int_jit_compile(struct bpf_prog *prog)
  1998. {
  1999. struct bpf_binary_header *header = NULL;
  2000. struct bpf_prog *tmp, *orig_prog = prog;
  2001. int proglen, oldproglen = 0;
  2002. struct jit_context ctx = {};
  2003. bool tmp_blinded = false;
  2004. u8 *image = NULL;
  2005. int *addrs;
  2006. int pass;
  2007. int i;
  2008. if (!prog->jit_requested)
  2009. return orig_prog;
  2010. tmp = bpf_jit_blind_constants(prog);
  2011. /*
  2012. * If blinding was requested and we failed during blinding,
  2013. * we must fall back to the interpreter.
  2014. */
  2015. if (IS_ERR(tmp))
  2016. return orig_prog;
  2017. if (tmp != prog) {
  2018. tmp_blinded = true;
  2019. prog = tmp;
  2020. }
  2021. addrs = kmalloc_array(prog->len, sizeof(*addrs), GFP_KERNEL);
  2022. if (!addrs) {
  2023. prog = orig_prog;
  2024. goto out;
  2025. }
  2026. /*
  2027. * Before first pass, make a rough estimation of addrs[]
  2028. * each BPF instruction is translated to less than 64 bytes
  2029. */
  2030. for (proglen = 0, i = 0; i < prog->len; i++) {
  2031. proglen += 64;
  2032. addrs[i] = proglen;
  2033. }
  2034. ctx.cleanup_addr = proglen;
  2035. /*
  2036. * JITed image shrinks with every pass and the loop iterates
  2037. * until the image stops shrinking. Very large BPF programs
  2038. * may converge on the last pass. In such case do one more
  2039. * pass to emit the final image.
  2040. */
  2041. for (pass = 0; pass < 20 || image; pass++) {
  2042. proglen = do_jit(prog, addrs, image, oldproglen, &ctx);
  2043. if (proglen <= 0) {
  2044. out_image:
  2045. image = NULL;
  2046. if (header)
  2047. bpf_jit_binary_free(header);
  2048. prog = orig_prog;
  2049. goto out_addrs;
  2050. }
  2051. if (image) {
  2052. if (proglen != oldproglen) {
  2053. pr_err("bpf_jit: proglen=%d != oldproglen=%d\n",
  2054. proglen, oldproglen);
  2055. goto out_image;
  2056. }
  2057. break;
  2058. }
  2059. if (proglen == oldproglen) {
  2060. header = bpf_jit_binary_alloc(proglen, &image,
  2061. 1, jit_fill_hole);
  2062. if (!header) {
  2063. prog = orig_prog;
  2064. goto out_addrs;
  2065. }
  2066. }
  2067. oldproglen = proglen;
  2068. cond_resched();
  2069. }
  2070. if (bpf_jit_enable > 1)
  2071. bpf_jit_dump(prog->len, proglen, pass + 1, image);
  2072. if (image) {
  2073. bpf_jit_binary_lock_ro(header);
  2074. prog->bpf_func = (void *)image;
  2075. prog->jited = 1;
  2076. prog->jited_len = proglen;
  2077. } else {
  2078. prog = orig_prog;
  2079. }
  2080. out_addrs:
  2081. kfree(addrs);
  2082. out:
  2083. if (tmp_blinded)
  2084. bpf_jit_prog_release_other(prog, prog == orig_prog ?
  2085. tmp : orig_prog);
  2086. return prog;
  2087. }