pch_udc.c 87 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200
  1. // SPDX-License-Identifier: GPL-2.0
  2. /*
  3. * Copyright (C) 2011 LAPIS Semiconductor Co., Ltd.
  4. */
  5. #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  6. #include <linux/kernel.h>
  7. #include <linux/module.h>
  8. #include <linux/pci.h>
  9. #include <linux/delay.h>
  10. #include <linux/errno.h>
  11. #include <linux/list.h>
  12. #include <linux/interrupt.h>
  13. #include <linux/usb/ch9.h>
  14. #include <linux/usb/gadget.h>
  15. #include <linux/gpio.h>
  16. #include <linux/irq.h>
  17. /* GPIO port for VBUS detecting */
  18. static int vbus_gpio_port = -1; /* GPIO port number (-1:Not used) */
  19. #define PCH_VBUS_PERIOD 3000 /* VBUS polling period (msec) */
  20. #define PCH_VBUS_INTERVAL 10 /* VBUS polling interval (msec) */
  21. /* Address offset of Registers */
  22. #define UDC_EP_REG_SHIFT 0x20 /* Offset to next EP */
  23. #define UDC_EPCTL_ADDR 0x00 /* Endpoint control */
  24. #define UDC_EPSTS_ADDR 0x04 /* Endpoint status */
  25. #define UDC_BUFIN_FRAMENUM_ADDR 0x08 /* buffer size in / frame number out */
  26. #define UDC_BUFOUT_MAXPKT_ADDR 0x0C /* buffer size out / maxpkt in */
  27. #define UDC_SUBPTR_ADDR 0x10 /* setup buffer pointer */
  28. #define UDC_DESPTR_ADDR 0x14 /* Data descriptor pointer */
  29. #define UDC_CONFIRM_ADDR 0x18 /* Write/Read confirmation */
  30. #define UDC_DEVCFG_ADDR 0x400 /* Device configuration */
  31. #define UDC_DEVCTL_ADDR 0x404 /* Device control */
  32. #define UDC_DEVSTS_ADDR 0x408 /* Device status */
  33. #define UDC_DEVIRQSTS_ADDR 0x40C /* Device irq status */
  34. #define UDC_DEVIRQMSK_ADDR 0x410 /* Device irq mask */
  35. #define UDC_EPIRQSTS_ADDR 0x414 /* Endpoint irq status */
  36. #define UDC_EPIRQMSK_ADDR 0x418 /* Endpoint irq mask */
  37. #define UDC_DEVLPM_ADDR 0x41C /* LPM control / status */
  38. #define UDC_CSR_BUSY_ADDR 0x4f0 /* UDC_CSR_BUSY Status register */
  39. #define UDC_SRST_ADDR 0x4fc /* SOFT RESET register */
  40. #define UDC_CSR_ADDR 0x500 /* USB_DEVICE endpoint register */
  41. /* Endpoint control register */
  42. /* Bit position */
  43. #define UDC_EPCTL_MRXFLUSH (1 << 12)
  44. #define UDC_EPCTL_RRDY (1 << 9)
  45. #define UDC_EPCTL_CNAK (1 << 8)
  46. #define UDC_EPCTL_SNAK (1 << 7)
  47. #define UDC_EPCTL_NAK (1 << 6)
  48. #define UDC_EPCTL_P (1 << 3)
  49. #define UDC_EPCTL_F (1 << 1)
  50. #define UDC_EPCTL_S (1 << 0)
  51. #define UDC_EPCTL_ET_SHIFT 4
  52. /* Mask patern */
  53. #define UDC_EPCTL_ET_MASK 0x00000030
  54. /* Value for ET field */
  55. #define UDC_EPCTL_ET_CONTROL 0
  56. #define UDC_EPCTL_ET_ISO 1
  57. #define UDC_EPCTL_ET_BULK 2
  58. #define UDC_EPCTL_ET_INTERRUPT 3
  59. /* Endpoint status register */
  60. /* Bit position */
  61. #define UDC_EPSTS_XFERDONE (1 << 27)
  62. #define UDC_EPSTS_RSS (1 << 26)
  63. #define UDC_EPSTS_RCS (1 << 25)
  64. #define UDC_EPSTS_TXEMPTY (1 << 24)
  65. #define UDC_EPSTS_TDC (1 << 10)
  66. #define UDC_EPSTS_HE (1 << 9)
  67. #define UDC_EPSTS_MRXFIFO_EMP (1 << 8)
  68. #define UDC_EPSTS_BNA (1 << 7)
  69. #define UDC_EPSTS_IN (1 << 6)
  70. #define UDC_EPSTS_OUT_SHIFT 4
  71. /* Mask patern */
  72. #define UDC_EPSTS_OUT_MASK 0x00000030
  73. #define UDC_EPSTS_ALL_CLR_MASK 0x1F0006F0
  74. /* Value for OUT field */
  75. #define UDC_EPSTS_OUT_SETUP 2
  76. #define UDC_EPSTS_OUT_DATA 1
  77. /* Device configuration register */
  78. /* Bit position */
  79. #define UDC_DEVCFG_CSR_PRG (1 << 17)
  80. #define UDC_DEVCFG_SP (1 << 3)
  81. /* SPD Valee */
  82. #define UDC_DEVCFG_SPD_HS 0x0
  83. #define UDC_DEVCFG_SPD_FS 0x1
  84. #define UDC_DEVCFG_SPD_LS 0x2
  85. /* Device control register */
  86. /* Bit position */
  87. #define UDC_DEVCTL_THLEN_SHIFT 24
  88. #define UDC_DEVCTL_BRLEN_SHIFT 16
  89. #define UDC_DEVCTL_CSR_DONE (1 << 13)
  90. #define UDC_DEVCTL_SD (1 << 10)
  91. #define UDC_DEVCTL_MODE (1 << 9)
  92. #define UDC_DEVCTL_BREN (1 << 8)
  93. #define UDC_DEVCTL_THE (1 << 7)
  94. #define UDC_DEVCTL_DU (1 << 4)
  95. #define UDC_DEVCTL_TDE (1 << 3)
  96. #define UDC_DEVCTL_RDE (1 << 2)
  97. #define UDC_DEVCTL_RES (1 << 0)
  98. /* Device status register */
  99. /* Bit position */
  100. #define UDC_DEVSTS_TS_SHIFT 18
  101. #define UDC_DEVSTS_ENUM_SPEED_SHIFT 13
  102. #define UDC_DEVSTS_ALT_SHIFT 8
  103. #define UDC_DEVSTS_INTF_SHIFT 4
  104. #define UDC_DEVSTS_CFG_SHIFT 0
  105. /* Mask patern */
  106. #define UDC_DEVSTS_TS_MASK 0xfffc0000
  107. #define UDC_DEVSTS_ENUM_SPEED_MASK 0x00006000
  108. #define UDC_DEVSTS_ALT_MASK 0x00000f00
  109. #define UDC_DEVSTS_INTF_MASK 0x000000f0
  110. #define UDC_DEVSTS_CFG_MASK 0x0000000f
  111. /* value for maximum speed for SPEED field */
  112. #define UDC_DEVSTS_ENUM_SPEED_FULL 1
  113. #define UDC_DEVSTS_ENUM_SPEED_HIGH 0
  114. #define UDC_DEVSTS_ENUM_SPEED_LOW 2
  115. #define UDC_DEVSTS_ENUM_SPEED_FULLX 3
  116. /* Device irq register */
  117. /* Bit position */
  118. #define UDC_DEVINT_RWKP (1 << 7)
  119. #define UDC_DEVINT_ENUM (1 << 6)
  120. #define UDC_DEVINT_SOF (1 << 5)
  121. #define UDC_DEVINT_US (1 << 4)
  122. #define UDC_DEVINT_UR (1 << 3)
  123. #define UDC_DEVINT_ES (1 << 2)
  124. #define UDC_DEVINT_SI (1 << 1)
  125. #define UDC_DEVINT_SC (1 << 0)
  126. /* Mask patern */
  127. #define UDC_DEVINT_MSK 0x7f
  128. /* Endpoint irq register */
  129. /* Bit position */
  130. #define UDC_EPINT_IN_SHIFT 0
  131. #define UDC_EPINT_OUT_SHIFT 16
  132. #define UDC_EPINT_IN_EP0 (1 << 0)
  133. #define UDC_EPINT_OUT_EP0 (1 << 16)
  134. /* Mask patern */
  135. #define UDC_EPINT_MSK_DISABLE_ALL 0xffffffff
  136. /* UDC_CSR_BUSY Status register */
  137. /* Bit position */
  138. #define UDC_CSR_BUSY (1 << 0)
  139. /* SOFT RESET register */
  140. /* Bit position */
  141. #define UDC_PSRST (1 << 1)
  142. #define UDC_SRST (1 << 0)
  143. /* USB_DEVICE endpoint register */
  144. /* Bit position */
  145. #define UDC_CSR_NE_NUM_SHIFT 0
  146. #define UDC_CSR_NE_DIR_SHIFT 4
  147. #define UDC_CSR_NE_TYPE_SHIFT 5
  148. #define UDC_CSR_NE_CFG_SHIFT 7
  149. #define UDC_CSR_NE_INTF_SHIFT 11
  150. #define UDC_CSR_NE_ALT_SHIFT 15
  151. #define UDC_CSR_NE_MAX_PKT_SHIFT 19
  152. /* Mask patern */
  153. #define UDC_CSR_NE_NUM_MASK 0x0000000f
  154. #define UDC_CSR_NE_DIR_MASK 0x00000010
  155. #define UDC_CSR_NE_TYPE_MASK 0x00000060
  156. #define UDC_CSR_NE_CFG_MASK 0x00000780
  157. #define UDC_CSR_NE_INTF_MASK 0x00007800
  158. #define UDC_CSR_NE_ALT_MASK 0x00078000
  159. #define UDC_CSR_NE_MAX_PKT_MASK 0x3ff80000
  160. #define PCH_UDC_CSR(ep) (UDC_CSR_ADDR + ep*4)
  161. #define PCH_UDC_EPINT(in, num)\
  162. (1 << (num + (in ? UDC_EPINT_IN_SHIFT : UDC_EPINT_OUT_SHIFT)))
  163. /* Index of endpoint */
  164. #define UDC_EP0IN_IDX 0
  165. #define UDC_EP0OUT_IDX 1
  166. #define UDC_EPIN_IDX(ep) (ep * 2)
  167. #define UDC_EPOUT_IDX(ep) (ep * 2 + 1)
  168. #define PCH_UDC_EP0 0
  169. #define PCH_UDC_EP1 1
  170. #define PCH_UDC_EP2 2
  171. #define PCH_UDC_EP3 3
  172. /* Number of endpoint */
  173. #define PCH_UDC_EP_NUM 32 /* Total number of EPs (16 IN,16 OUT) */
  174. #define PCH_UDC_USED_EP_NUM 4 /* EP number of EP's really used */
  175. /* Length Value */
  176. #define PCH_UDC_BRLEN 0x0F /* Burst length */
  177. #define PCH_UDC_THLEN 0x1F /* Threshold length */
  178. /* Value of EP Buffer Size */
  179. #define UDC_EP0IN_BUFF_SIZE 16
  180. #define UDC_EPIN_BUFF_SIZE 256
  181. #define UDC_EP0OUT_BUFF_SIZE 16
  182. #define UDC_EPOUT_BUFF_SIZE 256
  183. /* Value of EP maximum packet size */
  184. #define UDC_EP0IN_MAX_PKT_SIZE 64
  185. #define UDC_EP0OUT_MAX_PKT_SIZE 64
  186. #define UDC_BULK_MAX_PKT_SIZE 512
  187. /* DMA */
  188. #define DMA_DIR_RX 1 /* DMA for data receive */
  189. #define DMA_DIR_TX 2 /* DMA for data transmit */
  190. #define DMA_ADDR_INVALID (~(dma_addr_t)0)
  191. #define UDC_DMA_MAXPACKET 65536 /* maximum packet size for DMA */
  192. /**
  193. * struct pch_udc_data_dma_desc - Structure to hold DMA descriptor information
  194. * for data
  195. * @status: Status quadlet
  196. * @reserved: Reserved
  197. * @dataptr: Buffer descriptor
  198. * @next: Next descriptor
  199. */
  200. struct pch_udc_data_dma_desc {
  201. u32 status;
  202. u32 reserved;
  203. u32 dataptr;
  204. u32 next;
  205. };
  206. /**
  207. * struct pch_udc_stp_dma_desc - Structure to hold DMA descriptor information
  208. * for control data
  209. * @status: Status
  210. * @reserved: Reserved
  211. * @data12: First setup word
  212. * @data34: Second setup word
  213. */
  214. struct pch_udc_stp_dma_desc {
  215. u32 status;
  216. u32 reserved;
  217. struct usb_ctrlrequest request;
  218. } __attribute((packed));
  219. /* DMA status definitions */
  220. /* Buffer status */
  221. #define PCH_UDC_BUFF_STS 0xC0000000
  222. #define PCH_UDC_BS_HST_RDY 0x00000000
  223. #define PCH_UDC_BS_DMA_BSY 0x40000000
  224. #define PCH_UDC_BS_DMA_DONE 0x80000000
  225. #define PCH_UDC_BS_HST_BSY 0xC0000000
  226. /* Rx/Tx Status */
  227. #define PCH_UDC_RXTX_STS 0x30000000
  228. #define PCH_UDC_RTS_SUCC 0x00000000
  229. #define PCH_UDC_RTS_DESERR 0x10000000
  230. #define PCH_UDC_RTS_BUFERR 0x30000000
  231. /* Last Descriptor Indication */
  232. #define PCH_UDC_DMA_LAST 0x08000000
  233. /* Number of Rx/Tx Bytes Mask */
  234. #define PCH_UDC_RXTX_BYTES 0x0000ffff
  235. /**
  236. * struct pch_udc_cfg_data - Structure to hold current configuration
  237. * and interface information
  238. * @cur_cfg: current configuration in use
  239. * @cur_intf: current interface in use
  240. * @cur_alt: current alt interface in use
  241. */
  242. struct pch_udc_cfg_data {
  243. u16 cur_cfg;
  244. u16 cur_intf;
  245. u16 cur_alt;
  246. };
  247. /**
  248. * struct pch_udc_ep - Structure holding a PCH USB device Endpoint information
  249. * @ep: embedded ep request
  250. * @td_stp_phys: for setup request
  251. * @td_data_phys: for data request
  252. * @td_stp: for setup request
  253. * @td_data: for data request
  254. * @dev: reference to device struct
  255. * @offset_addr: offset address of ep register
  256. * @desc: for this ep
  257. * @queue: queue for requests
  258. * @num: endpoint number
  259. * @in: endpoint is IN
  260. * @halted: endpoint halted?
  261. * @epsts: Endpoint status
  262. */
  263. struct pch_udc_ep {
  264. struct usb_ep ep;
  265. dma_addr_t td_stp_phys;
  266. dma_addr_t td_data_phys;
  267. struct pch_udc_stp_dma_desc *td_stp;
  268. struct pch_udc_data_dma_desc *td_data;
  269. struct pch_udc_dev *dev;
  270. unsigned long offset_addr;
  271. struct list_head queue;
  272. unsigned num:5,
  273. in:1,
  274. halted:1;
  275. unsigned long epsts;
  276. };
  277. /**
  278. * struct pch_vbus_gpio_data - Structure holding GPIO informaton
  279. * for detecting VBUS
  280. * @port: gpio port number
  281. * @intr: gpio interrupt number
  282. * @irq_work_fall Structure for WorkQueue
  283. * @irq_work_rise Structure for WorkQueue
  284. */
  285. struct pch_vbus_gpio_data {
  286. int port;
  287. int intr;
  288. struct work_struct irq_work_fall;
  289. struct work_struct irq_work_rise;
  290. };
  291. /**
  292. * struct pch_udc_dev - Structure holding complete information
  293. * of the PCH USB device
  294. * @gadget: gadget driver data
  295. * @driver: reference to gadget driver bound
  296. * @pdev: reference to the PCI device
  297. * @ep: array of endpoints
  298. * @lock: protects all state
  299. * @stall: stall requested
  300. * @prot_stall: protcol stall requested
  301. * @registered: driver registered with system
  302. * @suspended: driver in suspended state
  303. * @connected: gadget driver associated
  304. * @vbus_session: required vbus_session state
  305. * @set_cfg_not_acked: pending acknowledgement 4 setup
  306. * @waiting_zlp_ack: pending acknowledgement 4 ZLP
  307. * @data_requests: DMA pool for data requests
  308. * @stp_requests: DMA pool for setup requests
  309. * @dma_addr: DMA pool for received
  310. * @setup_data: Received setup data
  311. * @base_addr: for mapped device memory
  312. * @cfg_data: current cfg, intf, and alt in use
  313. * @vbus_gpio: GPIO informaton for detecting VBUS
  314. */
  315. struct pch_udc_dev {
  316. struct usb_gadget gadget;
  317. struct usb_gadget_driver *driver;
  318. struct pci_dev *pdev;
  319. struct pch_udc_ep ep[PCH_UDC_EP_NUM];
  320. spinlock_t lock; /* protects all state */
  321. unsigned
  322. stall:1,
  323. prot_stall:1,
  324. suspended:1,
  325. connected:1,
  326. vbus_session:1,
  327. set_cfg_not_acked:1,
  328. waiting_zlp_ack:1;
  329. struct dma_pool *data_requests;
  330. struct dma_pool *stp_requests;
  331. dma_addr_t dma_addr;
  332. struct usb_ctrlrequest setup_data;
  333. void __iomem *base_addr;
  334. struct pch_udc_cfg_data cfg_data;
  335. struct pch_vbus_gpio_data vbus_gpio;
  336. };
  337. #define to_pch_udc(g) (container_of((g), struct pch_udc_dev, gadget))
  338. #define PCH_UDC_PCI_BAR_QUARK_X1000 0
  339. #define PCH_UDC_PCI_BAR 1
  340. #define PCI_DEVICE_ID_INTEL_QUARK_X1000_UDC 0x0939
  341. #define PCI_DEVICE_ID_INTEL_EG20T_UDC 0x8808
  342. #define PCI_DEVICE_ID_ML7213_IOH_UDC 0x801D
  343. #define PCI_DEVICE_ID_ML7831_IOH_UDC 0x8808
  344. static const char ep0_string[] = "ep0in";
  345. static DEFINE_SPINLOCK(udc_stall_spinlock); /* stall spin lock */
  346. static bool speed_fs;
  347. module_param_named(speed_fs, speed_fs, bool, S_IRUGO);
  348. MODULE_PARM_DESC(speed_fs, "true for Full speed operation");
  349. /**
  350. * struct pch_udc_request - Structure holding a PCH USB device request packet
  351. * @req: embedded ep request
  352. * @td_data_phys: phys. address
  353. * @td_data: first dma desc. of chain
  354. * @td_data_last: last dma desc. of chain
  355. * @queue: associated queue
  356. * @dma_going: DMA in progress for request
  357. * @dma_mapped: DMA memory mapped for request
  358. * @dma_done: DMA completed for request
  359. * @chain_len: chain length
  360. * @buf: Buffer memory for align adjustment
  361. * @dma: DMA memory for align adjustment
  362. */
  363. struct pch_udc_request {
  364. struct usb_request req;
  365. dma_addr_t td_data_phys;
  366. struct pch_udc_data_dma_desc *td_data;
  367. struct pch_udc_data_dma_desc *td_data_last;
  368. struct list_head queue;
  369. unsigned dma_going:1,
  370. dma_mapped:1,
  371. dma_done:1;
  372. unsigned chain_len;
  373. void *buf;
  374. dma_addr_t dma;
  375. };
  376. static inline u32 pch_udc_readl(struct pch_udc_dev *dev, unsigned long reg)
  377. {
  378. return ioread32(dev->base_addr + reg);
  379. }
  380. static inline void pch_udc_writel(struct pch_udc_dev *dev,
  381. unsigned long val, unsigned long reg)
  382. {
  383. iowrite32(val, dev->base_addr + reg);
  384. }
  385. static inline void pch_udc_bit_set(struct pch_udc_dev *dev,
  386. unsigned long reg,
  387. unsigned long bitmask)
  388. {
  389. pch_udc_writel(dev, pch_udc_readl(dev, reg) | bitmask, reg);
  390. }
  391. static inline void pch_udc_bit_clr(struct pch_udc_dev *dev,
  392. unsigned long reg,
  393. unsigned long bitmask)
  394. {
  395. pch_udc_writel(dev, pch_udc_readl(dev, reg) & ~(bitmask), reg);
  396. }
  397. static inline u32 pch_udc_ep_readl(struct pch_udc_ep *ep, unsigned long reg)
  398. {
  399. return ioread32(ep->dev->base_addr + ep->offset_addr + reg);
  400. }
  401. static inline void pch_udc_ep_writel(struct pch_udc_ep *ep,
  402. unsigned long val, unsigned long reg)
  403. {
  404. iowrite32(val, ep->dev->base_addr + ep->offset_addr + reg);
  405. }
  406. static inline void pch_udc_ep_bit_set(struct pch_udc_ep *ep,
  407. unsigned long reg,
  408. unsigned long bitmask)
  409. {
  410. pch_udc_ep_writel(ep, pch_udc_ep_readl(ep, reg) | bitmask, reg);
  411. }
  412. static inline void pch_udc_ep_bit_clr(struct pch_udc_ep *ep,
  413. unsigned long reg,
  414. unsigned long bitmask)
  415. {
  416. pch_udc_ep_writel(ep, pch_udc_ep_readl(ep, reg) & ~(bitmask), reg);
  417. }
  418. /**
  419. * pch_udc_csr_busy() - Wait till idle.
  420. * @dev: Reference to pch_udc_dev structure
  421. */
  422. static void pch_udc_csr_busy(struct pch_udc_dev *dev)
  423. {
  424. unsigned int count = 200;
  425. /* Wait till idle */
  426. while ((pch_udc_readl(dev, UDC_CSR_BUSY_ADDR) & UDC_CSR_BUSY)
  427. && --count)
  428. cpu_relax();
  429. if (!count)
  430. dev_err(&dev->pdev->dev, "%s: wait error\n", __func__);
  431. }
  432. /**
  433. * pch_udc_write_csr() - Write the command and status registers.
  434. * @dev: Reference to pch_udc_dev structure
  435. * @val: value to be written to CSR register
  436. * @addr: address of CSR register
  437. */
  438. static void pch_udc_write_csr(struct pch_udc_dev *dev, unsigned long val,
  439. unsigned int ep)
  440. {
  441. unsigned long reg = PCH_UDC_CSR(ep);
  442. pch_udc_csr_busy(dev); /* Wait till idle */
  443. pch_udc_writel(dev, val, reg);
  444. pch_udc_csr_busy(dev); /* Wait till idle */
  445. }
  446. /**
  447. * pch_udc_read_csr() - Read the command and status registers.
  448. * @dev: Reference to pch_udc_dev structure
  449. * @addr: address of CSR register
  450. *
  451. * Return codes: content of CSR register
  452. */
  453. static u32 pch_udc_read_csr(struct pch_udc_dev *dev, unsigned int ep)
  454. {
  455. unsigned long reg = PCH_UDC_CSR(ep);
  456. pch_udc_csr_busy(dev); /* Wait till idle */
  457. pch_udc_readl(dev, reg); /* Dummy read */
  458. pch_udc_csr_busy(dev); /* Wait till idle */
  459. return pch_udc_readl(dev, reg);
  460. }
  461. /**
  462. * pch_udc_rmt_wakeup() - Initiate for remote wakeup
  463. * @dev: Reference to pch_udc_dev structure
  464. */
  465. static inline void pch_udc_rmt_wakeup(struct pch_udc_dev *dev)
  466. {
  467. pch_udc_bit_set(dev, UDC_DEVCTL_ADDR, UDC_DEVCTL_RES);
  468. mdelay(1);
  469. pch_udc_bit_clr(dev, UDC_DEVCTL_ADDR, UDC_DEVCTL_RES);
  470. }
  471. /**
  472. * pch_udc_get_frame() - Get the current frame from device status register
  473. * @dev: Reference to pch_udc_dev structure
  474. * Retern current frame
  475. */
  476. static inline int pch_udc_get_frame(struct pch_udc_dev *dev)
  477. {
  478. u32 frame = pch_udc_readl(dev, UDC_DEVSTS_ADDR);
  479. return (frame & UDC_DEVSTS_TS_MASK) >> UDC_DEVSTS_TS_SHIFT;
  480. }
  481. /**
  482. * pch_udc_clear_selfpowered() - Clear the self power control
  483. * @dev: Reference to pch_udc_regs structure
  484. */
  485. static inline void pch_udc_clear_selfpowered(struct pch_udc_dev *dev)
  486. {
  487. pch_udc_bit_clr(dev, UDC_DEVCFG_ADDR, UDC_DEVCFG_SP);
  488. }
  489. /**
  490. * pch_udc_set_selfpowered() - Set the self power control
  491. * @dev: Reference to pch_udc_regs structure
  492. */
  493. static inline void pch_udc_set_selfpowered(struct pch_udc_dev *dev)
  494. {
  495. pch_udc_bit_set(dev, UDC_DEVCFG_ADDR, UDC_DEVCFG_SP);
  496. }
  497. /**
  498. * pch_udc_set_disconnect() - Set the disconnect status.
  499. * @dev: Reference to pch_udc_regs structure
  500. */
  501. static inline void pch_udc_set_disconnect(struct pch_udc_dev *dev)
  502. {
  503. pch_udc_bit_set(dev, UDC_DEVCTL_ADDR, UDC_DEVCTL_SD);
  504. }
  505. /**
  506. * pch_udc_clear_disconnect() - Clear the disconnect status.
  507. * @dev: Reference to pch_udc_regs structure
  508. */
  509. static void pch_udc_clear_disconnect(struct pch_udc_dev *dev)
  510. {
  511. /* Clear the disconnect */
  512. pch_udc_bit_set(dev, UDC_DEVCTL_ADDR, UDC_DEVCTL_RES);
  513. pch_udc_bit_clr(dev, UDC_DEVCTL_ADDR, UDC_DEVCTL_SD);
  514. mdelay(1);
  515. /* Resume USB signalling */
  516. pch_udc_bit_clr(dev, UDC_DEVCTL_ADDR, UDC_DEVCTL_RES);
  517. }
  518. /**
  519. * pch_udc_reconnect() - This API initializes usb device controller,
  520. * and clear the disconnect status.
  521. * @dev: Reference to pch_udc_regs structure
  522. */
  523. static void pch_udc_init(struct pch_udc_dev *dev);
  524. static void pch_udc_reconnect(struct pch_udc_dev *dev)
  525. {
  526. pch_udc_init(dev);
  527. /* enable device interrupts */
  528. /* pch_udc_enable_interrupts() */
  529. pch_udc_bit_clr(dev, UDC_DEVIRQMSK_ADDR,
  530. UDC_DEVINT_UR | UDC_DEVINT_ENUM);
  531. /* Clear the disconnect */
  532. pch_udc_bit_set(dev, UDC_DEVCTL_ADDR, UDC_DEVCTL_RES);
  533. pch_udc_bit_clr(dev, UDC_DEVCTL_ADDR, UDC_DEVCTL_SD);
  534. mdelay(1);
  535. /* Resume USB signalling */
  536. pch_udc_bit_clr(dev, UDC_DEVCTL_ADDR, UDC_DEVCTL_RES);
  537. }
  538. /**
  539. * pch_udc_vbus_session() - set or clearr the disconnect status.
  540. * @dev: Reference to pch_udc_regs structure
  541. * @is_active: Parameter specifying the action
  542. * 0: indicating VBUS power is ending
  543. * !0: indicating VBUS power is starting
  544. */
  545. static inline void pch_udc_vbus_session(struct pch_udc_dev *dev,
  546. int is_active)
  547. {
  548. unsigned long iflags;
  549. spin_lock_irqsave(&dev->lock, iflags);
  550. if (is_active) {
  551. pch_udc_reconnect(dev);
  552. dev->vbus_session = 1;
  553. } else {
  554. if (dev->driver && dev->driver->disconnect) {
  555. spin_unlock_irqrestore(&dev->lock, iflags);
  556. dev->driver->disconnect(&dev->gadget);
  557. spin_lock_irqsave(&dev->lock, iflags);
  558. }
  559. pch_udc_set_disconnect(dev);
  560. dev->vbus_session = 0;
  561. }
  562. spin_unlock_irqrestore(&dev->lock, iflags);
  563. }
  564. /**
  565. * pch_udc_ep_set_stall() - Set the stall of endpoint
  566. * @ep: Reference to structure of type pch_udc_ep_regs
  567. */
  568. static void pch_udc_ep_set_stall(struct pch_udc_ep *ep)
  569. {
  570. if (ep->in) {
  571. pch_udc_ep_bit_set(ep, UDC_EPCTL_ADDR, UDC_EPCTL_F);
  572. pch_udc_ep_bit_set(ep, UDC_EPCTL_ADDR, UDC_EPCTL_S);
  573. } else {
  574. pch_udc_ep_bit_set(ep, UDC_EPCTL_ADDR, UDC_EPCTL_S);
  575. }
  576. }
  577. /**
  578. * pch_udc_ep_clear_stall() - Clear the stall of endpoint
  579. * @ep: Reference to structure of type pch_udc_ep_regs
  580. */
  581. static inline void pch_udc_ep_clear_stall(struct pch_udc_ep *ep)
  582. {
  583. /* Clear the stall */
  584. pch_udc_ep_bit_clr(ep, UDC_EPCTL_ADDR, UDC_EPCTL_S);
  585. /* Clear NAK by writing CNAK */
  586. pch_udc_ep_bit_set(ep, UDC_EPCTL_ADDR, UDC_EPCTL_CNAK);
  587. }
  588. /**
  589. * pch_udc_ep_set_trfr_type() - Set the transfer type of endpoint
  590. * @ep: Reference to structure of type pch_udc_ep_regs
  591. * @type: Type of endpoint
  592. */
  593. static inline void pch_udc_ep_set_trfr_type(struct pch_udc_ep *ep,
  594. u8 type)
  595. {
  596. pch_udc_ep_writel(ep, ((type << UDC_EPCTL_ET_SHIFT) &
  597. UDC_EPCTL_ET_MASK), UDC_EPCTL_ADDR);
  598. }
  599. /**
  600. * pch_udc_ep_set_bufsz() - Set the maximum packet size for the endpoint
  601. * @ep: Reference to structure of type pch_udc_ep_regs
  602. * @buf_size: The buffer word size
  603. */
  604. static void pch_udc_ep_set_bufsz(struct pch_udc_ep *ep,
  605. u32 buf_size, u32 ep_in)
  606. {
  607. u32 data;
  608. if (ep_in) {
  609. data = pch_udc_ep_readl(ep, UDC_BUFIN_FRAMENUM_ADDR);
  610. data = (data & 0xffff0000) | (buf_size & 0xffff);
  611. pch_udc_ep_writel(ep, data, UDC_BUFIN_FRAMENUM_ADDR);
  612. } else {
  613. data = pch_udc_ep_readl(ep, UDC_BUFOUT_MAXPKT_ADDR);
  614. data = (buf_size << 16) | (data & 0xffff);
  615. pch_udc_ep_writel(ep, data, UDC_BUFOUT_MAXPKT_ADDR);
  616. }
  617. }
  618. /**
  619. * pch_udc_ep_set_maxpkt() - Set the Max packet size for the endpoint
  620. * @ep: Reference to structure of type pch_udc_ep_regs
  621. * @pkt_size: The packet byte size
  622. */
  623. static void pch_udc_ep_set_maxpkt(struct pch_udc_ep *ep, u32 pkt_size)
  624. {
  625. u32 data = pch_udc_ep_readl(ep, UDC_BUFOUT_MAXPKT_ADDR);
  626. data = (data & 0xffff0000) | (pkt_size & 0xffff);
  627. pch_udc_ep_writel(ep, data, UDC_BUFOUT_MAXPKT_ADDR);
  628. }
  629. /**
  630. * pch_udc_ep_set_subptr() - Set the Setup buffer pointer for the endpoint
  631. * @ep: Reference to structure of type pch_udc_ep_regs
  632. * @addr: Address of the register
  633. */
  634. static inline void pch_udc_ep_set_subptr(struct pch_udc_ep *ep, u32 addr)
  635. {
  636. pch_udc_ep_writel(ep, addr, UDC_SUBPTR_ADDR);
  637. }
  638. /**
  639. * pch_udc_ep_set_ddptr() - Set the Data descriptor pointer for the endpoint
  640. * @ep: Reference to structure of type pch_udc_ep_regs
  641. * @addr: Address of the register
  642. */
  643. static inline void pch_udc_ep_set_ddptr(struct pch_udc_ep *ep, u32 addr)
  644. {
  645. pch_udc_ep_writel(ep, addr, UDC_DESPTR_ADDR);
  646. }
  647. /**
  648. * pch_udc_ep_set_pd() - Set the poll demand bit for the endpoint
  649. * @ep: Reference to structure of type pch_udc_ep_regs
  650. */
  651. static inline void pch_udc_ep_set_pd(struct pch_udc_ep *ep)
  652. {
  653. pch_udc_ep_bit_set(ep, UDC_EPCTL_ADDR, UDC_EPCTL_P);
  654. }
  655. /**
  656. * pch_udc_ep_set_rrdy() - Set the receive ready bit for the endpoint
  657. * @ep: Reference to structure of type pch_udc_ep_regs
  658. */
  659. static inline void pch_udc_ep_set_rrdy(struct pch_udc_ep *ep)
  660. {
  661. pch_udc_ep_bit_set(ep, UDC_EPCTL_ADDR, UDC_EPCTL_RRDY);
  662. }
  663. /**
  664. * pch_udc_ep_clear_rrdy() - Clear the receive ready bit for the endpoint
  665. * @ep: Reference to structure of type pch_udc_ep_regs
  666. */
  667. static inline void pch_udc_ep_clear_rrdy(struct pch_udc_ep *ep)
  668. {
  669. pch_udc_ep_bit_clr(ep, UDC_EPCTL_ADDR, UDC_EPCTL_RRDY);
  670. }
  671. /**
  672. * pch_udc_set_dma() - Set the 'TDE' or RDE bit of device control
  673. * register depending on the direction specified
  674. * @dev: Reference to structure of type pch_udc_regs
  675. * @dir: whether Tx or Rx
  676. * DMA_DIR_RX: Receive
  677. * DMA_DIR_TX: Transmit
  678. */
  679. static inline void pch_udc_set_dma(struct pch_udc_dev *dev, int dir)
  680. {
  681. if (dir == DMA_DIR_RX)
  682. pch_udc_bit_set(dev, UDC_DEVCTL_ADDR, UDC_DEVCTL_RDE);
  683. else if (dir == DMA_DIR_TX)
  684. pch_udc_bit_set(dev, UDC_DEVCTL_ADDR, UDC_DEVCTL_TDE);
  685. }
  686. /**
  687. * pch_udc_clear_dma() - Clear the 'TDE' or RDE bit of device control
  688. * register depending on the direction specified
  689. * @dev: Reference to structure of type pch_udc_regs
  690. * @dir: Whether Tx or Rx
  691. * DMA_DIR_RX: Receive
  692. * DMA_DIR_TX: Transmit
  693. */
  694. static inline void pch_udc_clear_dma(struct pch_udc_dev *dev, int dir)
  695. {
  696. if (dir == DMA_DIR_RX)
  697. pch_udc_bit_clr(dev, UDC_DEVCTL_ADDR, UDC_DEVCTL_RDE);
  698. else if (dir == DMA_DIR_TX)
  699. pch_udc_bit_clr(dev, UDC_DEVCTL_ADDR, UDC_DEVCTL_TDE);
  700. }
  701. /**
  702. * pch_udc_set_csr_done() - Set the device control register
  703. * CSR done field (bit 13)
  704. * @dev: reference to structure of type pch_udc_regs
  705. */
  706. static inline void pch_udc_set_csr_done(struct pch_udc_dev *dev)
  707. {
  708. pch_udc_bit_set(dev, UDC_DEVCTL_ADDR, UDC_DEVCTL_CSR_DONE);
  709. }
  710. /**
  711. * pch_udc_disable_interrupts() - Disables the specified interrupts
  712. * @dev: Reference to structure of type pch_udc_regs
  713. * @mask: Mask to disable interrupts
  714. */
  715. static inline void pch_udc_disable_interrupts(struct pch_udc_dev *dev,
  716. u32 mask)
  717. {
  718. pch_udc_bit_set(dev, UDC_DEVIRQMSK_ADDR, mask);
  719. }
  720. /**
  721. * pch_udc_enable_interrupts() - Enable the specified interrupts
  722. * @dev: Reference to structure of type pch_udc_regs
  723. * @mask: Mask to enable interrupts
  724. */
  725. static inline void pch_udc_enable_interrupts(struct pch_udc_dev *dev,
  726. u32 mask)
  727. {
  728. pch_udc_bit_clr(dev, UDC_DEVIRQMSK_ADDR, mask);
  729. }
  730. /**
  731. * pch_udc_disable_ep_interrupts() - Disable endpoint interrupts
  732. * @dev: Reference to structure of type pch_udc_regs
  733. * @mask: Mask to disable interrupts
  734. */
  735. static inline void pch_udc_disable_ep_interrupts(struct pch_udc_dev *dev,
  736. u32 mask)
  737. {
  738. pch_udc_bit_set(dev, UDC_EPIRQMSK_ADDR, mask);
  739. }
  740. /**
  741. * pch_udc_enable_ep_interrupts() - Enable endpoint interrupts
  742. * @dev: Reference to structure of type pch_udc_regs
  743. * @mask: Mask to enable interrupts
  744. */
  745. static inline void pch_udc_enable_ep_interrupts(struct pch_udc_dev *dev,
  746. u32 mask)
  747. {
  748. pch_udc_bit_clr(dev, UDC_EPIRQMSK_ADDR, mask);
  749. }
  750. /**
  751. * pch_udc_read_device_interrupts() - Read the device interrupts
  752. * @dev: Reference to structure of type pch_udc_regs
  753. * Retern The device interrupts
  754. */
  755. static inline u32 pch_udc_read_device_interrupts(struct pch_udc_dev *dev)
  756. {
  757. return pch_udc_readl(dev, UDC_DEVIRQSTS_ADDR);
  758. }
  759. /**
  760. * pch_udc_write_device_interrupts() - Write device interrupts
  761. * @dev: Reference to structure of type pch_udc_regs
  762. * @val: The value to be written to interrupt register
  763. */
  764. static inline void pch_udc_write_device_interrupts(struct pch_udc_dev *dev,
  765. u32 val)
  766. {
  767. pch_udc_writel(dev, val, UDC_DEVIRQSTS_ADDR);
  768. }
  769. /**
  770. * pch_udc_read_ep_interrupts() - Read the endpoint interrupts
  771. * @dev: Reference to structure of type pch_udc_regs
  772. * Retern The endpoint interrupt
  773. */
  774. static inline u32 pch_udc_read_ep_interrupts(struct pch_udc_dev *dev)
  775. {
  776. return pch_udc_readl(dev, UDC_EPIRQSTS_ADDR);
  777. }
  778. /**
  779. * pch_udc_write_ep_interrupts() - Clear endpoint interupts
  780. * @dev: Reference to structure of type pch_udc_regs
  781. * @val: The value to be written to interrupt register
  782. */
  783. static inline void pch_udc_write_ep_interrupts(struct pch_udc_dev *dev,
  784. u32 val)
  785. {
  786. pch_udc_writel(dev, val, UDC_EPIRQSTS_ADDR);
  787. }
  788. /**
  789. * pch_udc_read_device_status() - Read the device status
  790. * @dev: Reference to structure of type pch_udc_regs
  791. * Retern The device status
  792. */
  793. static inline u32 pch_udc_read_device_status(struct pch_udc_dev *dev)
  794. {
  795. return pch_udc_readl(dev, UDC_DEVSTS_ADDR);
  796. }
  797. /**
  798. * pch_udc_read_ep_control() - Read the endpoint control
  799. * @ep: Reference to structure of type pch_udc_ep_regs
  800. * Retern The endpoint control register value
  801. */
  802. static inline u32 pch_udc_read_ep_control(struct pch_udc_ep *ep)
  803. {
  804. return pch_udc_ep_readl(ep, UDC_EPCTL_ADDR);
  805. }
  806. /**
  807. * pch_udc_clear_ep_control() - Clear the endpoint control register
  808. * @ep: Reference to structure of type pch_udc_ep_regs
  809. * Retern The endpoint control register value
  810. */
  811. static inline void pch_udc_clear_ep_control(struct pch_udc_ep *ep)
  812. {
  813. return pch_udc_ep_writel(ep, 0, UDC_EPCTL_ADDR);
  814. }
  815. /**
  816. * pch_udc_read_ep_status() - Read the endpoint status
  817. * @ep: Reference to structure of type pch_udc_ep_regs
  818. * Retern The endpoint status
  819. */
  820. static inline u32 pch_udc_read_ep_status(struct pch_udc_ep *ep)
  821. {
  822. return pch_udc_ep_readl(ep, UDC_EPSTS_ADDR);
  823. }
  824. /**
  825. * pch_udc_clear_ep_status() - Clear the endpoint status
  826. * @ep: Reference to structure of type pch_udc_ep_regs
  827. * @stat: Endpoint status
  828. */
  829. static inline void pch_udc_clear_ep_status(struct pch_udc_ep *ep,
  830. u32 stat)
  831. {
  832. return pch_udc_ep_writel(ep, stat, UDC_EPSTS_ADDR);
  833. }
  834. /**
  835. * pch_udc_ep_set_nak() - Set the bit 7 (SNAK field)
  836. * of the endpoint control register
  837. * @ep: Reference to structure of type pch_udc_ep_regs
  838. */
  839. static inline void pch_udc_ep_set_nak(struct pch_udc_ep *ep)
  840. {
  841. pch_udc_ep_bit_set(ep, UDC_EPCTL_ADDR, UDC_EPCTL_SNAK);
  842. }
  843. /**
  844. * pch_udc_ep_clear_nak() - Set the bit 8 (CNAK field)
  845. * of the endpoint control register
  846. * @ep: reference to structure of type pch_udc_ep_regs
  847. */
  848. static void pch_udc_ep_clear_nak(struct pch_udc_ep *ep)
  849. {
  850. unsigned int loopcnt = 0;
  851. struct pch_udc_dev *dev = ep->dev;
  852. if (!(pch_udc_ep_readl(ep, UDC_EPCTL_ADDR) & UDC_EPCTL_NAK))
  853. return;
  854. if (!ep->in) {
  855. loopcnt = 10000;
  856. while (!(pch_udc_read_ep_status(ep) & UDC_EPSTS_MRXFIFO_EMP) &&
  857. --loopcnt)
  858. udelay(5);
  859. if (!loopcnt)
  860. dev_err(&dev->pdev->dev, "%s: RxFIFO not Empty\n",
  861. __func__);
  862. }
  863. loopcnt = 10000;
  864. while ((pch_udc_read_ep_control(ep) & UDC_EPCTL_NAK) && --loopcnt) {
  865. pch_udc_ep_bit_set(ep, UDC_EPCTL_ADDR, UDC_EPCTL_CNAK);
  866. udelay(5);
  867. }
  868. if (!loopcnt)
  869. dev_err(&dev->pdev->dev, "%s: Clear NAK not set for ep%d%s\n",
  870. __func__, ep->num, (ep->in ? "in" : "out"));
  871. }
  872. /**
  873. * pch_udc_ep_fifo_flush() - Flush the endpoint fifo
  874. * @ep: reference to structure of type pch_udc_ep_regs
  875. * @dir: direction of endpoint
  876. * 0: endpoint is OUT
  877. * !0: endpoint is IN
  878. */
  879. static void pch_udc_ep_fifo_flush(struct pch_udc_ep *ep, int dir)
  880. {
  881. if (dir) { /* IN ep */
  882. pch_udc_ep_bit_set(ep, UDC_EPCTL_ADDR, UDC_EPCTL_F);
  883. return;
  884. }
  885. }
  886. /**
  887. * pch_udc_ep_enable() - This api enables endpoint
  888. * @regs: Reference to structure pch_udc_ep_regs
  889. * @desc: endpoint descriptor
  890. */
  891. static void pch_udc_ep_enable(struct pch_udc_ep *ep,
  892. struct pch_udc_cfg_data *cfg,
  893. const struct usb_endpoint_descriptor *desc)
  894. {
  895. u32 val = 0;
  896. u32 buff_size = 0;
  897. pch_udc_ep_set_trfr_type(ep, desc->bmAttributes);
  898. if (ep->in)
  899. buff_size = UDC_EPIN_BUFF_SIZE;
  900. else
  901. buff_size = UDC_EPOUT_BUFF_SIZE;
  902. pch_udc_ep_set_bufsz(ep, buff_size, ep->in);
  903. pch_udc_ep_set_maxpkt(ep, usb_endpoint_maxp(desc));
  904. pch_udc_ep_set_nak(ep);
  905. pch_udc_ep_fifo_flush(ep, ep->in);
  906. /* Configure the endpoint */
  907. val = ep->num << UDC_CSR_NE_NUM_SHIFT | ep->in << UDC_CSR_NE_DIR_SHIFT |
  908. ((desc->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) <<
  909. UDC_CSR_NE_TYPE_SHIFT) |
  910. (cfg->cur_cfg << UDC_CSR_NE_CFG_SHIFT) |
  911. (cfg->cur_intf << UDC_CSR_NE_INTF_SHIFT) |
  912. (cfg->cur_alt << UDC_CSR_NE_ALT_SHIFT) |
  913. usb_endpoint_maxp(desc) << UDC_CSR_NE_MAX_PKT_SHIFT;
  914. if (ep->in)
  915. pch_udc_write_csr(ep->dev, val, UDC_EPIN_IDX(ep->num));
  916. else
  917. pch_udc_write_csr(ep->dev, val, UDC_EPOUT_IDX(ep->num));
  918. }
  919. /**
  920. * pch_udc_ep_disable() - This api disables endpoint
  921. * @regs: Reference to structure pch_udc_ep_regs
  922. */
  923. static void pch_udc_ep_disable(struct pch_udc_ep *ep)
  924. {
  925. if (ep->in) {
  926. /* flush the fifo */
  927. pch_udc_ep_writel(ep, UDC_EPCTL_F, UDC_EPCTL_ADDR);
  928. /* set NAK */
  929. pch_udc_ep_writel(ep, UDC_EPCTL_SNAK, UDC_EPCTL_ADDR);
  930. pch_udc_ep_bit_set(ep, UDC_EPSTS_ADDR, UDC_EPSTS_IN);
  931. } else {
  932. /* set NAK */
  933. pch_udc_ep_writel(ep, UDC_EPCTL_SNAK, UDC_EPCTL_ADDR);
  934. }
  935. /* reset desc pointer */
  936. pch_udc_ep_writel(ep, 0, UDC_DESPTR_ADDR);
  937. }
  938. /**
  939. * pch_udc_wait_ep_stall() - Wait EP stall.
  940. * @dev: Reference to pch_udc_dev structure
  941. */
  942. static void pch_udc_wait_ep_stall(struct pch_udc_ep *ep)
  943. {
  944. unsigned int count = 10000;
  945. /* Wait till idle */
  946. while ((pch_udc_read_ep_control(ep) & UDC_EPCTL_S) && --count)
  947. udelay(5);
  948. if (!count)
  949. dev_err(&ep->dev->pdev->dev, "%s: wait error\n", __func__);
  950. }
  951. /**
  952. * pch_udc_init() - This API initializes usb device controller
  953. * @dev: Rreference to pch_udc_regs structure
  954. */
  955. static void pch_udc_init(struct pch_udc_dev *dev)
  956. {
  957. if (NULL == dev) {
  958. pr_err("%s: Invalid address\n", __func__);
  959. return;
  960. }
  961. /* Soft Reset and Reset PHY */
  962. pch_udc_writel(dev, UDC_SRST, UDC_SRST_ADDR);
  963. pch_udc_writel(dev, UDC_SRST | UDC_PSRST, UDC_SRST_ADDR);
  964. mdelay(1);
  965. pch_udc_writel(dev, UDC_SRST, UDC_SRST_ADDR);
  966. pch_udc_writel(dev, 0x00, UDC_SRST_ADDR);
  967. mdelay(1);
  968. /* mask and clear all device interrupts */
  969. pch_udc_bit_set(dev, UDC_DEVIRQMSK_ADDR, UDC_DEVINT_MSK);
  970. pch_udc_bit_set(dev, UDC_DEVIRQSTS_ADDR, UDC_DEVINT_MSK);
  971. /* mask and clear all ep interrupts */
  972. pch_udc_bit_set(dev, UDC_EPIRQMSK_ADDR, UDC_EPINT_MSK_DISABLE_ALL);
  973. pch_udc_bit_set(dev, UDC_EPIRQSTS_ADDR, UDC_EPINT_MSK_DISABLE_ALL);
  974. /* enable dynamic CSR programmingi, self powered and device speed */
  975. if (speed_fs)
  976. pch_udc_bit_set(dev, UDC_DEVCFG_ADDR, UDC_DEVCFG_CSR_PRG |
  977. UDC_DEVCFG_SP | UDC_DEVCFG_SPD_FS);
  978. else /* defaul high speed */
  979. pch_udc_bit_set(dev, UDC_DEVCFG_ADDR, UDC_DEVCFG_CSR_PRG |
  980. UDC_DEVCFG_SP | UDC_DEVCFG_SPD_HS);
  981. pch_udc_bit_set(dev, UDC_DEVCTL_ADDR,
  982. (PCH_UDC_THLEN << UDC_DEVCTL_THLEN_SHIFT) |
  983. (PCH_UDC_BRLEN << UDC_DEVCTL_BRLEN_SHIFT) |
  984. UDC_DEVCTL_MODE | UDC_DEVCTL_BREN |
  985. UDC_DEVCTL_THE);
  986. }
  987. /**
  988. * pch_udc_exit() - This API exit usb device controller
  989. * @dev: Reference to pch_udc_regs structure
  990. */
  991. static void pch_udc_exit(struct pch_udc_dev *dev)
  992. {
  993. /* mask all device interrupts */
  994. pch_udc_bit_set(dev, UDC_DEVIRQMSK_ADDR, UDC_DEVINT_MSK);
  995. /* mask all ep interrupts */
  996. pch_udc_bit_set(dev, UDC_EPIRQMSK_ADDR, UDC_EPINT_MSK_DISABLE_ALL);
  997. /* put device in disconnected state */
  998. pch_udc_set_disconnect(dev);
  999. }
  1000. /**
  1001. * pch_udc_pcd_get_frame() - This API is invoked to get the current frame number
  1002. * @gadget: Reference to the gadget driver
  1003. *
  1004. * Return codes:
  1005. * 0: Success
  1006. * -EINVAL: If the gadget passed is NULL
  1007. */
  1008. static int pch_udc_pcd_get_frame(struct usb_gadget *gadget)
  1009. {
  1010. struct pch_udc_dev *dev;
  1011. if (!gadget)
  1012. return -EINVAL;
  1013. dev = container_of(gadget, struct pch_udc_dev, gadget);
  1014. return pch_udc_get_frame(dev);
  1015. }
  1016. /**
  1017. * pch_udc_pcd_wakeup() - This API is invoked to initiate a remote wakeup
  1018. * @gadget: Reference to the gadget driver
  1019. *
  1020. * Return codes:
  1021. * 0: Success
  1022. * -EINVAL: If the gadget passed is NULL
  1023. */
  1024. static int pch_udc_pcd_wakeup(struct usb_gadget *gadget)
  1025. {
  1026. struct pch_udc_dev *dev;
  1027. unsigned long flags;
  1028. if (!gadget)
  1029. return -EINVAL;
  1030. dev = container_of(gadget, struct pch_udc_dev, gadget);
  1031. spin_lock_irqsave(&dev->lock, flags);
  1032. pch_udc_rmt_wakeup(dev);
  1033. spin_unlock_irqrestore(&dev->lock, flags);
  1034. return 0;
  1035. }
  1036. /**
  1037. * pch_udc_pcd_selfpowered() - This API is invoked to specify whether the device
  1038. * is self powered or not
  1039. * @gadget: Reference to the gadget driver
  1040. * @value: Specifies self powered or not
  1041. *
  1042. * Return codes:
  1043. * 0: Success
  1044. * -EINVAL: If the gadget passed is NULL
  1045. */
  1046. static int pch_udc_pcd_selfpowered(struct usb_gadget *gadget, int value)
  1047. {
  1048. struct pch_udc_dev *dev;
  1049. if (!gadget)
  1050. return -EINVAL;
  1051. gadget->is_selfpowered = (value != 0);
  1052. dev = container_of(gadget, struct pch_udc_dev, gadget);
  1053. if (value)
  1054. pch_udc_set_selfpowered(dev);
  1055. else
  1056. pch_udc_clear_selfpowered(dev);
  1057. return 0;
  1058. }
  1059. /**
  1060. * pch_udc_pcd_pullup() - This API is invoked to make the device
  1061. * visible/invisible to the host
  1062. * @gadget: Reference to the gadget driver
  1063. * @is_on: Specifies whether the pull up is made active or inactive
  1064. *
  1065. * Return codes:
  1066. * 0: Success
  1067. * -EINVAL: If the gadget passed is NULL
  1068. */
  1069. static int pch_udc_pcd_pullup(struct usb_gadget *gadget, int is_on)
  1070. {
  1071. struct pch_udc_dev *dev;
  1072. unsigned long iflags;
  1073. if (!gadget)
  1074. return -EINVAL;
  1075. dev = container_of(gadget, struct pch_udc_dev, gadget);
  1076. spin_lock_irqsave(&dev->lock, iflags);
  1077. if (is_on) {
  1078. pch_udc_reconnect(dev);
  1079. } else {
  1080. if (dev->driver && dev->driver->disconnect) {
  1081. spin_unlock_irqrestore(&dev->lock, iflags);
  1082. dev->driver->disconnect(&dev->gadget);
  1083. spin_lock_irqsave(&dev->lock, iflags);
  1084. }
  1085. pch_udc_set_disconnect(dev);
  1086. }
  1087. spin_unlock_irqrestore(&dev->lock, iflags);
  1088. return 0;
  1089. }
  1090. /**
  1091. * pch_udc_pcd_vbus_session() - This API is used by a driver for an external
  1092. * transceiver (or GPIO) that
  1093. * detects a VBUS power session starting/ending
  1094. * @gadget: Reference to the gadget driver
  1095. * @is_active: specifies whether the session is starting or ending
  1096. *
  1097. * Return codes:
  1098. * 0: Success
  1099. * -EINVAL: If the gadget passed is NULL
  1100. */
  1101. static int pch_udc_pcd_vbus_session(struct usb_gadget *gadget, int is_active)
  1102. {
  1103. struct pch_udc_dev *dev;
  1104. if (!gadget)
  1105. return -EINVAL;
  1106. dev = container_of(gadget, struct pch_udc_dev, gadget);
  1107. pch_udc_vbus_session(dev, is_active);
  1108. return 0;
  1109. }
  1110. /**
  1111. * pch_udc_pcd_vbus_draw() - This API is used by gadget drivers during
  1112. * SET_CONFIGURATION calls to
  1113. * specify how much power the device can consume
  1114. * @gadget: Reference to the gadget driver
  1115. * @mA: specifies the current limit in 2mA unit
  1116. *
  1117. * Return codes:
  1118. * -EINVAL: If the gadget passed is NULL
  1119. * -EOPNOTSUPP:
  1120. */
  1121. static int pch_udc_pcd_vbus_draw(struct usb_gadget *gadget, unsigned int mA)
  1122. {
  1123. return -EOPNOTSUPP;
  1124. }
  1125. static int pch_udc_start(struct usb_gadget *g,
  1126. struct usb_gadget_driver *driver);
  1127. static int pch_udc_stop(struct usb_gadget *g);
  1128. static const struct usb_gadget_ops pch_udc_ops = {
  1129. .get_frame = pch_udc_pcd_get_frame,
  1130. .wakeup = pch_udc_pcd_wakeup,
  1131. .set_selfpowered = pch_udc_pcd_selfpowered,
  1132. .pullup = pch_udc_pcd_pullup,
  1133. .vbus_session = pch_udc_pcd_vbus_session,
  1134. .vbus_draw = pch_udc_pcd_vbus_draw,
  1135. .udc_start = pch_udc_start,
  1136. .udc_stop = pch_udc_stop,
  1137. };
  1138. /**
  1139. * pch_vbus_gpio_get_value() - This API gets value of GPIO port as VBUS status.
  1140. * @dev: Reference to the driver structure
  1141. *
  1142. * Return value:
  1143. * 1: VBUS is high
  1144. * 0: VBUS is low
  1145. * -1: It is not enable to detect VBUS using GPIO
  1146. */
  1147. static int pch_vbus_gpio_get_value(struct pch_udc_dev *dev)
  1148. {
  1149. int vbus = 0;
  1150. if (dev->vbus_gpio.port)
  1151. vbus = gpio_get_value(dev->vbus_gpio.port) ? 1 : 0;
  1152. else
  1153. vbus = -1;
  1154. return vbus;
  1155. }
  1156. /**
  1157. * pch_vbus_gpio_work_fall() - This API keeps watch on VBUS becoming Low.
  1158. * If VBUS is Low, disconnect is processed
  1159. * @irq_work: Structure for WorkQueue
  1160. *
  1161. */
  1162. static void pch_vbus_gpio_work_fall(struct work_struct *irq_work)
  1163. {
  1164. struct pch_vbus_gpio_data *vbus_gpio = container_of(irq_work,
  1165. struct pch_vbus_gpio_data, irq_work_fall);
  1166. struct pch_udc_dev *dev =
  1167. container_of(vbus_gpio, struct pch_udc_dev, vbus_gpio);
  1168. int vbus_saved = -1;
  1169. int vbus;
  1170. int count;
  1171. if (!dev->vbus_gpio.port)
  1172. return;
  1173. for (count = 0; count < (PCH_VBUS_PERIOD / PCH_VBUS_INTERVAL);
  1174. count++) {
  1175. vbus = pch_vbus_gpio_get_value(dev);
  1176. if ((vbus_saved == vbus) && (vbus == 0)) {
  1177. dev_dbg(&dev->pdev->dev, "VBUS fell");
  1178. if (dev->driver
  1179. && dev->driver->disconnect) {
  1180. dev->driver->disconnect(
  1181. &dev->gadget);
  1182. }
  1183. if (dev->vbus_gpio.intr)
  1184. pch_udc_init(dev);
  1185. else
  1186. pch_udc_reconnect(dev);
  1187. return;
  1188. }
  1189. vbus_saved = vbus;
  1190. mdelay(PCH_VBUS_INTERVAL);
  1191. }
  1192. }
  1193. /**
  1194. * pch_vbus_gpio_work_rise() - This API checks VBUS is High.
  1195. * If VBUS is High, connect is processed
  1196. * @irq_work: Structure for WorkQueue
  1197. *
  1198. */
  1199. static void pch_vbus_gpio_work_rise(struct work_struct *irq_work)
  1200. {
  1201. struct pch_vbus_gpio_data *vbus_gpio = container_of(irq_work,
  1202. struct pch_vbus_gpio_data, irq_work_rise);
  1203. struct pch_udc_dev *dev =
  1204. container_of(vbus_gpio, struct pch_udc_dev, vbus_gpio);
  1205. int vbus;
  1206. if (!dev->vbus_gpio.port)
  1207. return;
  1208. mdelay(PCH_VBUS_INTERVAL);
  1209. vbus = pch_vbus_gpio_get_value(dev);
  1210. if (vbus == 1) {
  1211. dev_dbg(&dev->pdev->dev, "VBUS rose");
  1212. pch_udc_reconnect(dev);
  1213. return;
  1214. }
  1215. }
  1216. /**
  1217. * pch_vbus_gpio_irq() - IRQ handler for GPIO intrerrupt for changing VBUS
  1218. * @irq: Interrupt request number
  1219. * @dev: Reference to the device structure
  1220. *
  1221. * Return codes:
  1222. * 0: Success
  1223. * -EINVAL: GPIO port is invalid or can't be initialized.
  1224. */
  1225. static irqreturn_t pch_vbus_gpio_irq(int irq, void *data)
  1226. {
  1227. struct pch_udc_dev *dev = (struct pch_udc_dev *)data;
  1228. if (!dev->vbus_gpio.port || !dev->vbus_gpio.intr)
  1229. return IRQ_NONE;
  1230. if (pch_vbus_gpio_get_value(dev))
  1231. schedule_work(&dev->vbus_gpio.irq_work_rise);
  1232. else
  1233. schedule_work(&dev->vbus_gpio.irq_work_fall);
  1234. return IRQ_HANDLED;
  1235. }
  1236. /**
  1237. * pch_vbus_gpio_init() - This API initializes GPIO port detecting VBUS.
  1238. * @dev: Reference to the driver structure
  1239. * @vbus_gpio Number of GPIO port to detect gpio
  1240. *
  1241. * Return codes:
  1242. * 0: Success
  1243. * -EINVAL: GPIO port is invalid or can't be initialized.
  1244. */
  1245. static int pch_vbus_gpio_init(struct pch_udc_dev *dev, int vbus_gpio_port)
  1246. {
  1247. int err;
  1248. int irq_num = 0;
  1249. dev->vbus_gpio.port = 0;
  1250. dev->vbus_gpio.intr = 0;
  1251. if (vbus_gpio_port <= -1)
  1252. return -EINVAL;
  1253. err = gpio_is_valid(vbus_gpio_port);
  1254. if (!err) {
  1255. pr_err("%s: gpio port %d is invalid\n",
  1256. __func__, vbus_gpio_port);
  1257. return -EINVAL;
  1258. }
  1259. err = gpio_request(vbus_gpio_port, "pch_vbus");
  1260. if (err) {
  1261. pr_err("%s: can't request gpio port %d, err: %d\n",
  1262. __func__, vbus_gpio_port, err);
  1263. return -EINVAL;
  1264. }
  1265. dev->vbus_gpio.port = vbus_gpio_port;
  1266. gpio_direction_input(vbus_gpio_port);
  1267. INIT_WORK(&dev->vbus_gpio.irq_work_fall, pch_vbus_gpio_work_fall);
  1268. irq_num = gpio_to_irq(vbus_gpio_port);
  1269. if (irq_num > 0) {
  1270. irq_set_irq_type(irq_num, IRQ_TYPE_EDGE_BOTH);
  1271. err = request_irq(irq_num, pch_vbus_gpio_irq, 0,
  1272. "vbus_detect", dev);
  1273. if (!err) {
  1274. dev->vbus_gpio.intr = irq_num;
  1275. INIT_WORK(&dev->vbus_gpio.irq_work_rise,
  1276. pch_vbus_gpio_work_rise);
  1277. } else {
  1278. pr_err("%s: can't request irq %d, err: %d\n",
  1279. __func__, irq_num, err);
  1280. }
  1281. }
  1282. return 0;
  1283. }
  1284. /**
  1285. * pch_vbus_gpio_free() - This API frees resources of GPIO port
  1286. * @dev: Reference to the driver structure
  1287. */
  1288. static void pch_vbus_gpio_free(struct pch_udc_dev *dev)
  1289. {
  1290. if (dev->vbus_gpio.intr)
  1291. free_irq(dev->vbus_gpio.intr, dev);
  1292. if (dev->vbus_gpio.port)
  1293. gpio_free(dev->vbus_gpio.port);
  1294. }
  1295. /**
  1296. * complete_req() - This API is invoked from the driver when processing
  1297. * of a request is complete
  1298. * @ep: Reference to the endpoint structure
  1299. * @req: Reference to the request structure
  1300. * @status: Indicates the success/failure of completion
  1301. */
  1302. static void complete_req(struct pch_udc_ep *ep, struct pch_udc_request *req,
  1303. int status)
  1304. __releases(&dev->lock)
  1305. __acquires(&dev->lock)
  1306. {
  1307. struct pch_udc_dev *dev;
  1308. unsigned halted = ep->halted;
  1309. list_del_init(&req->queue);
  1310. /* set new status if pending */
  1311. if (req->req.status == -EINPROGRESS)
  1312. req->req.status = status;
  1313. else
  1314. status = req->req.status;
  1315. dev = ep->dev;
  1316. if (req->dma_mapped) {
  1317. if (req->dma == DMA_ADDR_INVALID) {
  1318. if (ep->in)
  1319. dma_unmap_single(&dev->pdev->dev, req->req.dma,
  1320. req->req.length,
  1321. DMA_TO_DEVICE);
  1322. else
  1323. dma_unmap_single(&dev->pdev->dev, req->req.dma,
  1324. req->req.length,
  1325. DMA_FROM_DEVICE);
  1326. req->req.dma = DMA_ADDR_INVALID;
  1327. } else {
  1328. if (ep->in)
  1329. dma_unmap_single(&dev->pdev->dev, req->dma,
  1330. req->req.length,
  1331. DMA_TO_DEVICE);
  1332. else {
  1333. dma_unmap_single(&dev->pdev->dev, req->dma,
  1334. req->req.length,
  1335. DMA_FROM_DEVICE);
  1336. memcpy(req->req.buf, req->buf, req->req.length);
  1337. }
  1338. kfree(req->buf);
  1339. req->dma = DMA_ADDR_INVALID;
  1340. }
  1341. req->dma_mapped = 0;
  1342. }
  1343. ep->halted = 1;
  1344. spin_unlock(&dev->lock);
  1345. if (!ep->in)
  1346. pch_udc_ep_clear_rrdy(ep);
  1347. usb_gadget_giveback_request(&ep->ep, &req->req);
  1348. spin_lock(&dev->lock);
  1349. ep->halted = halted;
  1350. }
  1351. /**
  1352. * empty_req_queue() - This API empties the request queue of an endpoint
  1353. * @ep: Reference to the endpoint structure
  1354. */
  1355. static void empty_req_queue(struct pch_udc_ep *ep)
  1356. {
  1357. struct pch_udc_request *req;
  1358. ep->halted = 1;
  1359. while (!list_empty(&ep->queue)) {
  1360. req = list_entry(ep->queue.next, struct pch_udc_request, queue);
  1361. complete_req(ep, req, -ESHUTDOWN); /* Remove from list */
  1362. }
  1363. }
  1364. /**
  1365. * pch_udc_free_dma_chain() - This function frees the DMA chain created
  1366. * for the request
  1367. * @dev Reference to the driver structure
  1368. * @req Reference to the request to be freed
  1369. *
  1370. * Return codes:
  1371. * 0: Success
  1372. */
  1373. static void pch_udc_free_dma_chain(struct pch_udc_dev *dev,
  1374. struct pch_udc_request *req)
  1375. {
  1376. struct pch_udc_data_dma_desc *td = req->td_data;
  1377. unsigned i = req->chain_len;
  1378. dma_addr_t addr2;
  1379. dma_addr_t addr = (dma_addr_t)td->next;
  1380. td->next = 0x00;
  1381. for (; i > 1; --i) {
  1382. /* do not free first desc., will be done by free for request */
  1383. td = phys_to_virt(addr);
  1384. addr2 = (dma_addr_t)td->next;
  1385. dma_pool_free(dev->data_requests, td, addr);
  1386. addr = addr2;
  1387. }
  1388. req->chain_len = 1;
  1389. }
  1390. /**
  1391. * pch_udc_create_dma_chain() - This function creates or reinitializes
  1392. * a DMA chain
  1393. * @ep: Reference to the endpoint structure
  1394. * @req: Reference to the request
  1395. * @buf_len: The buffer length
  1396. * @gfp_flags: Flags to be used while mapping the data buffer
  1397. *
  1398. * Return codes:
  1399. * 0: success,
  1400. * -ENOMEM: dma_pool_alloc invocation fails
  1401. */
  1402. static int pch_udc_create_dma_chain(struct pch_udc_ep *ep,
  1403. struct pch_udc_request *req,
  1404. unsigned long buf_len,
  1405. gfp_t gfp_flags)
  1406. {
  1407. struct pch_udc_data_dma_desc *td = req->td_data, *last;
  1408. unsigned long bytes = req->req.length, i = 0;
  1409. dma_addr_t dma_addr;
  1410. unsigned len = 1;
  1411. if (req->chain_len > 1)
  1412. pch_udc_free_dma_chain(ep->dev, req);
  1413. if (req->dma == DMA_ADDR_INVALID)
  1414. td->dataptr = req->req.dma;
  1415. else
  1416. td->dataptr = req->dma;
  1417. td->status = PCH_UDC_BS_HST_BSY;
  1418. for (; ; bytes -= buf_len, ++len) {
  1419. td->status = PCH_UDC_BS_HST_BSY | min(buf_len, bytes);
  1420. if (bytes <= buf_len)
  1421. break;
  1422. last = td;
  1423. td = dma_pool_alloc(ep->dev->data_requests, gfp_flags,
  1424. &dma_addr);
  1425. if (!td)
  1426. goto nomem;
  1427. i += buf_len;
  1428. td->dataptr = req->td_data->dataptr + i;
  1429. last->next = dma_addr;
  1430. }
  1431. req->td_data_last = td;
  1432. td->status |= PCH_UDC_DMA_LAST;
  1433. td->next = req->td_data_phys;
  1434. req->chain_len = len;
  1435. return 0;
  1436. nomem:
  1437. if (len > 1) {
  1438. req->chain_len = len;
  1439. pch_udc_free_dma_chain(ep->dev, req);
  1440. }
  1441. req->chain_len = 1;
  1442. return -ENOMEM;
  1443. }
  1444. /**
  1445. * prepare_dma() - This function creates and initializes the DMA chain
  1446. * for the request
  1447. * @ep: Reference to the endpoint structure
  1448. * @req: Reference to the request
  1449. * @gfp: Flag to be used while mapping the data buffer
  1450. *
  1451. * Return codes:
  1452. * 0: Success
  1453. * Other 0: linux error number on failure
  1454. */
  1455. static int prepare_dma(struct pch_udc_ep *ep, struct pch_udc_request *req,
  1456. gfp_t gfp)
  1457. {
  1458. int retval;
  1459. /* Allocate and create a DMA chain */
  1460. retval = pch_udc_create_dma_chain(ep, req, ep->ep.maxpacket, gfp);
  1461. if (retval) {
  1462. pr_err("%s: could not create DMA chain:%d\n", __func__, retval);
  1463. return retval;
  1464. }
  1465. if (ep->in)
  1466. req->td_data->status = (req->td_data->status &
  1467. ~PCH_UDC_BUFF_STS) | PCH_UDC_BS_HST_RDY;
  1468. return 0;
  1469. }
  1470. /**
  1471. * process_zlp() - This function process zero length packets
  1472. * from the gadget driver
  1473. * @ep: Reference to the endpoint structure
  1474. * @req: Reference to the request
  1475. */
  1476. static void process_zlp(struct pch_udc_ep *ep, struct pch_udc_request *req)
  1477. {
  1478. struct pch_udc_dev *dev = ep->dev;
  1479. /* IN zlp's are handled by hardware */
  1480. complete_req(ep, req, 0);
  1481. /* if set_config or set_intf is waiting for ack by zlp
  1482. * then set CSR_DONE
  1483. */
  1484. if (dev->set_cfg_not_acked) {
  1485. pch_udc_set_csr_done(dev);
  1486. dev->set_cfg_not_acked = 0;
  1487. }
  1488. /* setup command is ACK'ed now by zlp */
  1489. if (!dev->stall && dev->waiting_zlp_ack) {
  1490. pch_udc_ep_clear_nak(&(dev->ep[UDC_EP0IN_IDX]));
  1491. dev->waiting_zlp_ack = 0;
  1492. }
  1493. }
  1494. /**
  1495. * pch_udc_start_rxrequest() - This function starts the receive requirement.
  1496. * @ep: Reference to the endpoint structure
  1497. * @req: Reference to the request structure
  1498. */
  1499. static void pch_udc_start_rxrequest(struct pch_udc_ep *ep,
  1500. struct pch_udc_request *req)
  1501. {
  1502. struct pch_udc_data_dma_desc *td_data;
  1503. pch_udc_clear_dma(ep->dev, DMA_DIR_RX);
  1504. td_data = req->td_data;
  1505. /* Set the status bits for all descriptors */
  1506. while (1) {
  1507. td_data->status = (td_data->status & ~PCH_UDC_BUFF_STS) |
  1508. PCH_UDC_BS_HST_RDY;
  1509. if ((td_data->status & PCH_UDC_DMA_LAST) == PCH_UDC_DMA_LAST)
  1510. break;
  1511. td_data = phys_to_virt(td_data->next);
  1512. }
  1513. /* Write the descriptor pointer */
  1514. pch_udc_ep_set_ddptr(ep, req->td_data_phys);
  1515. req->dma_going = 1;
  1516. pch_udc_enable_ep_interrupts(ep->dev, UDC_EPINT_OUT_EP0 << ep->num);
  1517. pch_udc_set_dma(ep->dev, DMA_DIR_RX);
  1518. pch_udc_ep_clear_nak(ep);
  1519. pch_udc_ep_set_rrdy(ep);
  1520. }
  1521. /**
  1522. * pch_udc_pcd_ep_enable() - This API enables the endpoint. It is called
  1523. * from gadget driver
  1524. * @usbep: Reference to the USB endpoint structure
  1525. * @desc: Reference to the USB endpoint descriptor structure
  1526. *
  1527. * Return codes:
  1528. * 0: Success
  1529. * -EINVAL:
  1530. * -ESHUTDOWN:
  1531. */
  1532. static int pch_udc_pcd_ep_enable(struct usb_ep *usbep,
  1533. const struct usb_endpoint_descriptor *desc)
  1534. {
  1535. struct pch_udc_ep *ep;
  1536. struct pch_udc_dev *dev;
  1537. unsigned long iflags;
  1538. if (!usbep || (usbep->name == ep0_string) || !desc ||
  1539. (desc->bDescriptorType != USB_DT_ENDPOINT) || !desc->wMaxPacketSize)
  1540. return -EINVAL;
  1541. ep = container_of(usbep, struct pch_udc_ep, ep);
  1542. dev = ep->dev;
  1543. if (!dev->driver || (dev->gadget.speed == USB_SPEED_UNKNOWN))
  1544. return -ESHUTDOWN;
  1545. spin_lock_irqsave(&dev->lock, iflags);
  1546. ep->ep.desc = desc;
  1547. ep->halted = 0;
  1548. pch_udc_ep_enable(ep, &ep->dev->cfg_data, desc);
  1549. ep->ep.maxpacket = usb_endpoint_maxp(desc);
  1550. pch_udc_enable_ep_interrupts(ep->dev, PCH_UDC_EPINT(ep->in, ep->num));
  1551. spin_unlock_irqrestore(&dev->lock, iflags);
  1552. return 0;
  1553. }
  1554. /**
  1555. * pch_udc_pcd_ep_disable() - This API disables endpoint and is called
  1556. * from gadget driver
  1557. * @usbep Reference to the USB endpoint structure
  1558. *
  1559. * Return codes:
  1560. * 0: Success
  1561. * -EINVAL:
  1562. */
  1563. static int pch_udc_pcd_ep_disable(struct usb_ep *usbep)
  1564. {
  1565. struct pch_udc_ep *ep;
  1566. unsigned long iflags;
  1567. if (!usbep)
  1568. return -EINVAL;
  1569. ep = container_of(usbep, struct pch_udc_ep, ep);
  1570. if ((usbep->name == ep0_string) || !ep->ep.desc)
  1571. return -EINVAL;
  1572. spin_lock_irqsave(&ep->dev->lock, iflags);
  1573. empty_req_queue(ep);
  1574. ep->halted = 1;
  1575. pch_udc_ep_disable(ep);
  1576. pch_udc_disable_ep_interrupts(ep->dev, PCH_UDC_EPINT(ep->in, ep->num));
  1577. ep->ep.desc = NULL;
  1578. INIT_LIST_HEAD(&ep->queue);
  1579. spin_unlock_irqrestore(&ep->dev->lock, iflags);
  1580. return 0;
  1581. }
  1582. /**
  1583. * pch_udc_alloc_request() - This function allocates request structure.
  1584. * It is called by gadget driver
  1585. * @usbep: Reference to the USB endpoint structure
  1586. * @gfp: Flag to be used while allocating memory
  1587. *
  1588. * Return codes:
  1589. * NULL: Failure
  1590. * Allocated address: Success
  1591. */
  1592. static struct usb_request *pch_udc_alloc_request(struct usb_ep *usbep,
  1593. gfp_t gfp)
  1594. {
  1595. struct pch_udc_request *req;
  1596. struct pch_udc_ep *ep;
  1597. struct pch_udc_data_dma_desc *dma_desc;
  1598. if (!usbep)
  1599. return NULL;
  1600. ep = container_of(usbep, struct pch_udc_ep, ep);
  1601. req = kzalloc(sizeof *req, gfp);
  1602. if (!req)
  1603. return NULL;
  1604. req->req.dma = DMA_ADDR_INVALID;
  1605. req->dma = DMA_ADDR_INVALID;
  1606. INIT_LIST_HEAD(&req->queue);
  1607. if (!ep->dev->dma_addr)
  1608. return &req->req;
  1609. /* ep0 in requests are allocated from data pool here */
  1610. dma_desc = dma_pool_alloc(ep->dev->data_requests, gfp,
  1611. &req->td_data_phys);
  1612. if (NULL == dma_desc) {
  1613. kfree(req);
  1614. return NULL;
  1615. }
  1616. /* prevent from using desc. - set HOST BUSY */
  1617. dma_desc->status |= PCH_UDC_BS_HST_BSY;
  1618. dma_desc->dataptr = lower_32_bits(DMA_ADDR_INVALID);
  1619. req->td_data = dma_desc;
  1620. req->td_data_last = dma_desc;
  1621. req->chain_len = 1;
  1622. return &req->req;
  1623. }
  1624. /**
  1625. * pch_udc_free_request() - This function frees request structure.
  1626. * It is called by gadget driver
  1627. * @usbep: Reference to the USB endpoint structure
  1628. * @usbreq: Reference to the USB request
  1629. */
  1630. static void pch_udc_free_request(struct usb_ep *usbep,
  1631. struct usb_request *usbreq)
  1632. {
  1633. struct pch_udc_ep *ep;
  1634. struct pch_udc_request *req;
  1635. struct pch_udc_dev *dev;
  1636. if (!usbep || !usbreq)
  1637. return;
  1638. ep = container_of(usbep, struct pch_udc_ep, ep);
  1639. req = container_of(usbreq, struct pch_udc_request, req);
  1640. dev = ep->dev;
  1641. if (!list_empty(&req->queue))
  1642. dev_err(&dev->pdev->dev, "%s: %s req=0x%p queue not empty\n",
  1643. __func__, usbep->name, req);
  1644. if (req->td_data != NULL) {
  1645. if (req->chain_len > 1)
  1646. pch_udc_free_dma_chain(ep->dev, req);
  1647. dma_pool_free(ep->dev->data_requests, req->td_data,
  1648. req->td_data_phys);
  1649. }
  1650. kfree(req);
  1651. }
  1652. /**
  1653. * pch_udc_pcd_queue() - This function queues a request packet. It is called
  1654. * by gadget driver
  1655. * @usbep: Reference to the USB endpoint structure
  1656. * @usbreq: Reference to the USB request
  1657. * @gfp: Flag to be used while mapping the data buffer
  1658. *
  1659. * Return codes:
  1660. * 0: Success
  1661. * linux error number: Failure
  1662. */
  1663. static int pch_udc_pcd_queue(struct usb_ep *usbep, struct usb_request *usbreq,
  1664. gfp_t gfp)
  1665. {
  1666. int retval = 0;
  1667. struct pch_udc_ep *ep;
  1668. struct pch_udc_dev *dev;
  1669. struct pch_udc_request *req;
  1670. unsigned long iflags;
  1671. if (!usbep || !usbreq || !usbreq->complete || !usbreq->buf)
  1672. return -EINVAL;
  1673. ep = container_of(usbep, struct pch_udc_ep, ep);
  1674. dev = ep->dev;
  1675. if (!ep->ep.desc && ep->num)
  1676. return -EINVAL;
  1677. req = container_of(usbreq, struct pch_udc_request, req);
  1678. if (!list_empty(&req->queue))
  1679. return -EINVAL;
  1680. if (!dev->driver || (dev->gadget.speed == USB_SPEED_UNKNOWN))
  1681. return -ESHUTDOWN;
  1682. spin_lock_irqsave(&dev->lock, iflags);
  1683. /* map the buffer for dma */
  1684. if (usbreq->length &&
  1685. ((usbreq->dma == DMA_ADDR_INVALID) || !usbreq->dma)) {
  1686. if (!((unsigned long)(usbreq->buf) & 0x03)) {
  1687. if (ep->in)
  1688. usbreq->dma = dma_map_single(&dev->pdev->dev,
  1689. usbreq->buf,
  1690. usbreq->length,
  1691. DMA_TO_DEVICE);
  1692. else
  1693. usbreq->dma = dma_map_single(&dev->pdev->dev,
  1694. usbreq->buf,
  1695. usbreq->length,
  1696. DMA_FROM_DEVICE);
  1697. } else {
  1698. req->buf = kzalloc(usbreq->length, GFP_ATOMIC);
  1699. if (!req->buf) {
  1700. retval = -ENOMEM;
  1701. goto probe_end;
  1702. }
  1703. if (ep->in) {
  1704. memcpy(req->buf, usbreq->buf, usbreq->length);
  1705. req->dma = dma_map_single(&dev->pdev->dev,
  1706. req->buf,
  1707. usbreq->length,
  1708. DMA_TO_DEVICE);
  1709. } else
  1710. req->dma = dma_map_single(&dev->pdev->dev,
  1711. req->buf,
  1712. usbreq->length,
  1713. DMA_FROM_DEVICE);
  1714. }
  1715. req->dma_mapped = 1;
  1716. }
  1717. if (usbreq->length > 0) {
  1718. retval = prepare_dma(ep, req, GFP_ATOMIC);
  1719. if (retval)
  1720. goto probe_end;
  1721. }
  1722. usbreq->actual = 0;
  1723. usbreq->status = -EINPROGRESS;
  1724. req->dma_done = 0;
  1725. if (list_empty(&ep->queue) && !ep->halted) {
  1726. /* no pending transfer, so start this req */
  1727. if (!usbreq->length) {
  1728. process_zlp(ep, req);
  1729. retval = 0;
  1730. goto probe_end;
  1731. }
  1732. if (!ep->in) {
  1733. pch_udc_start_rxrequest(ep, req);
  1734. } else {
  1735. /*
  1736. * For IN trfr the descriptors will be programmed and
  1737. * P bit will be set when
  1738. * we get an IN token
  1739. */
  1740. pch_udc_wait_ep_stall(ep);
  1741. pch_udc_ep_clear_nak(ep);
  1742. pch_udc_enable_ep_interrupts(ep->dev, (1 << ep->num));
  1743. }
  1744. }
  1745. /* Now add this request to the ep's pending requests */
  1746. if (req != NULL)
  1747. list_add_tail(&req->queue, &ep->queue);
  1748. probe_end:
  1749. spin_unlock_irqrestore(&dev->lock, iflags);
  1750. return retval;
  1751. }
  1752. /**
  1753. * pch_udc_pcd_dequeue() - This function de-queues a request packet.
  1754. * It is called by gadget driver
  1755. * @usbep: Reference to the USB endpoint structure
  1756. * @usbreq: Reference to the USB request
  1757. *
  1758. * Return codes:
  1759. * 0: Success
  1760. * linux error number: Failure
  1761. */
  1762. static int pch_udc_pcd_dequeue(struct usb_ep *usbep,
  1763. struct usb_request *usbreq)
  1764. {
  1765. struct pch_udc_ep *ep;
  1766. struct pch_udc_request *req;
  1767. unsigned long flags;
  1768. int ret = -EINVAL;
  1769. ep = container_of(usbep, struct pch_udc_ep, ep);
  1770. if (!usbep || !usbreq || (!ep->ep.desc && ep->num))
  1771. return ret;
  1772. req = container_of(usbreq, struct pch_udc_request, req);
  1773. spin_lock_irqsave(&ep->dev->lock, flags);
  1774. /* make sure it's still queued on this endpoint */
  1775. list_for_each_entry(req, &ep->queue, queue) {
  1776. if (&req->req == usbreq) {
  1777. pch_udc_ep_set_nak(ep);
  1778. if (!list_empty(&req->queue))
  1779. complete_req(ep, req, -ECONNRESET);
  1780. ret = 0;
  1781. break;
  1782. }
  1783. }
  1784. spin_unlock_irqrestore(&ep->dev->lock, flags);
  1785. return ret;
  1786. }
  1787. /**
  1788. * pch_udc_pcd_set_halt() - This function Sets or clear the endpoint halt
  1789. * feature
  1790. * @usbep: Reference to the USB endpoint structure
  1791. * @halt: Specifies whether to set or clear the feature
  1792. *
  1793. * Return codes:
  1794. * 0: Success
  1795. * linux error number: Failure
  1796. */
  1797. static int pch_udc_pcd_set_halt(struct usb_ep *usbep, int halt)
  1798. {
  1799. struct pch_udc_ep *ep;
  1800. unsigned long iflags;
  1801. int ret;
  1802. if (!usbep)
  1803. return -EINVAL;
  1804. ep = container_of(usbep, struct pch_udc_ep, ep);
  1805. if (!ep->ep.desc && !ep->num)
  1806. return -EINVAL;
  1807. if (!ep->dev->driver || (ep->dev->gadget.speed == USB_SPEED_UNKNOWN))
  1808. return -ESHUTDOWN;
  1809. spin_lock_irqsave(&udc_stall_spinlock, iflags);
  1810. if (list_empty(&ep->queue)) {
  1811. if (halt) {
  1812. if (ep->num == PCH_UDC_EP0)
  1813. ep->dev->stall = 1;
  1814. pch_udc_ep_set_stall(ep);
  1815. pch_udc_enable_ep_interrupts(
  1816. ep->dev, PCH_UDC_EPINT(ep->in, ep->num));
  1817. } else {
  1818. pch_udc_ep_clear_stall(ep);
  1819. }
  1820. ret = 0;
  1821. } else {
  1822. ret = -EAGAIN;
  1823. }
  1824. spin_unlock_irqrestore(&udc_stall_spinlock, iflags);
  1825. return ret;
  1826. }
  1827. /**
  1828. * pch_udc_pcd_set_wedge() - This function Sets or clear the endpoint
  1829. * halt feature
  1830. * @usbep: Reference to the USB endpoint structure
  1831. * @halt: Specifies whether to set or clear the feature
  1832. *
  1833. * Return codes:
  1834. * 0: Success
  1835. * linux error number: Failure
  1836. */
  1837. static int pch_udc_pcd_set_wedge(struct usb_ep *usbep)
  1838. {
  1839. struct pch_udc_ep *ep;
  1840. unsigned long iflags;
  1841. int ret;
  1842. if (!usbep)
  1843. return -EINVAL;
  1844. ep = container_of(usbep, struct pch_udc_ep, ep);
  1845. if (!ep->ep.desc && !ep->num)
  1846. return -EINVAL;
  1847. if (!ep->dev->driver || (ep->dev->gadget.speed == USB_SPEED_UNKNOWN))
  1848. return -ESHUTDOWN;
  1849. spin_lock_irqsave(&udc_stall_spinlock, iflags);
  1850. if (!list_empty(&ep->queue)) {
  1851. ret = -EAGAIN;
  1852. } else {
  1853. if (ep->num == PCH_UDC_EP0)
  1854. ep->dev->stall = 1;
  1855. pch_udc_ep_set_stall(ep);
  1856. pch_udc_enable_ep_interrupts(ep->dev,
  1857. PCH_UDC_EPINT(ep->in, ep->num));
  1858. ep->dev->prot_stall = 1;
  1859. ret = 0;
  1860. }
  1861. spin_unlock_irqrestore(&udc_stall_spinlock, iflags);
  1862. return ret;
  1863. }
  1864. /**
  1865. * pch_udc_pcd_fifo_flush() - This function Flush the FIFO of specified endpoint
  1866. * @usbep: Reference to the USB endpoint structure
  1867. */
  1868. static void pch_udc_pcd_fifo_flush(struct usb_ep *usbep)
  1869. {
  1870. struct pch_udc_ep *ep;
  1871. if (!usbep)
  1872. return;
  1873. ep = container_of(usbep, struct pch_udc_ep, ep);
  1874. if (ep->ep.desc || !ep->num)
  1875. pch_udc_ep_fifo_flush(ep, ep->in);
  1876. }
  1877. static const struct usb_ep_ops pch_udc_ep_ops = {
  1878. .enable = pch_udc_pcd_ep_enable,
  1879. .disable = pch_udc_pcd_ep_disable,
  1880. .alloc_request = pch_udc_alloc_request,
  1881. .free_request = pch_udc_free_request,
  1882. .queue = pch_udc_pcd_queue,
  1883. .dequeue = pch_udc_pcd_dequeue,
  1884. .set_halt = pch_udc_pcd_set_halt,
  1885. .set_wedge = pch_udc_pcd_set_wedge,
  1886. .fifo_status = NULL,
  1887. .fifo_flush = pch_udc_pcd_fifo_flush,
  1888. };
  1889. /**
  1890. * pch_udc_init_setup_buff() - This function initializes the SETUP buffer
  1891. * @td_stp: Reference to the SETP buffer structure
  1892. */
  1893. static void pch_udc_init_setup_buff(struct pch_udc_stp_dma_desc *td_stp)
  1894. {
  1895. static u32 pky_marker;
  1896. if (!td_stp)
  1897. return;
  1898. td_stp->reserved = ++pky_marker;
  1899. memset(&td_stp->request, 0xFF, sizeof td_stp->request);
  1900. td_stp->status = PCH_UDC_BS_HST_RDY;
  1901. }
  1902. /**
  1903. * pch_udc_start_next_txrequest() - This function starts
  1904. * the next transmission requirement
  1905. * @ep: Reference to the endpoint structure
  1906. */
  1907. static void pch_udc_start_next_txrequest(struct pch_udc_ep *ep)
  1908. {
  1909. struct pch_udc_request *req;
  1910. struct pch_udc_data_dma_desc *td_data;
  1911. if (pch_udc_read_ep_control(ep) & UDC_EPCTL_P)
  1912. return;
  1913. if (list_empty(&ep->queue))
  1914. return;
  1915. /* next request */
  1916. req = list_entry(ep->queue.next, struct pch_udc_request, queue);
  1917. if (req->dma_going)
  1918. return;
  1919. if (!req->td_data)
  1920. return;
  1921. pch_udc_wait_ep_stall(ep);
  1922. req->dma_going = 1;
  1923. pch_udc_ep_set_ddptr(ep, 0);
  1924. td_data = req->td_data;
  1925. while (1) {
  1926. td_data->status = (td_data->status & ~PCH_UDC_BUFF_STS) |
  1927. PCH_UDC_BS_HST_RDY;
  1928. if ((td_data->status & PCH_UDC_DMA_LAST) == PCH_UDC_DMA_LAST)
  1929. break;
  1930. td_data = phys_to_virt(td_data->next);
  1931. }
  1932. pch_udc_ep_set_ddptr(ep, req->td_data_phys);
  1933. pch_udc_set_dma(ep->dev, DMA_DIR_TX);
  1934. pch_udc_ep_set_pd(ep);
  1935. pch_udc_enable_ep_interrupts(ep->dev, PCH_UDC_EPINT(ep->in, ep->num));
  1936. pch_udc_ep_clear_nak(ep);
  1937. }
  1938. /**
  1939. * pch_udc_complete_transfer() - This function completes a transfer
  1940. * @ep: Reference to the endpoint structure
  1941. */
  1942. static void pch_udc_complete_transfer(struct pch_udc_ep *ep)
  1943. {
  1944. struct pch_udc_request *req;
  1945. struct pch_udc_dev *dev = ep->dev;
  1946. if (list_empty(&ep->queue))
  1947. return;
  1948. req = list_entry(ep->queue.next, struct pch_udc_request, queue);
  1949. if ((req->td_data_last->status & PCH_UDC_BUFF_STS) !=
  1950. PCH_UDC_BS_DMA_DONE)
  1951. return;
  1952. if ((req->td_data_last->status & PCH_UDC_RXTX_STS) !=
  1953. PCH_UDC_RTS_SUCC) {
  1954. dev_err(&dev->pdev->dev, "Invalid RXTX status (0x%08x) "
  1955. "epstatus=0x%08x\n",
  1956. (req->td_data_last->status & PCH_UDC_RXTX_STS),
  1957. (int)(ep->epsts));
  1958. return;
  1959. }
  1960. req->req.actual = req->req.length;
  1961. req->td_data_last->status = PCH_UDC_BS_HST_BSY | PCH_UDC_DMA_LAST;
  1962. req->td_data->status = PCH_UDC_BS_HST_BSY | PCH_UDC_DMA_LAST;
  1963. complete_req(ep, req, 0);
  1964. req->dma_going = 0;
  1965. if (!list_empty(&ep->queue)) {
  1966. pch_udc_wait_ep_stall(ep);
  1967. pch_udc_ep_clear_nak(ep);
  1968. pch_udc_enable_ep_interrupts(ep->dev,
  1969. PCH_UDC_EPINT(ep->in, ep->num));
  1970. } else {
  1971. pch_udc_disable_ep_interrupts(ep->dev,
  1972. PCH_UDC_EPINT(ep->in, ep->num));
  1973. }
  1974. }
  1975. /**
  1976. * pch_udc_complete_receiver() - This function completes a receiver
  1977. * @ep: Reference to the endpoint structure
  1978. */
  1979. static void pch_udc_complete_receiver(struct pch_udc_ep *ep)
  1980. {
  1981. struct pch_udc_request *req;
  1982. struct pch_udc_dev *dev = ep->dev;
  1983. unsigned int count;
  1984. struct pch_udc_data_dma_desc *td;
  1985. dma_addr_t addr;
  1986. if (list_empty(&ep->queue))
  1987. return;
  1988. /* next request */
  1989. req = list_entry(ep->queue.next, struct pch_udc_request, queue);
  1990. pch_udc_clear_dma(ep->dev, DMA_DIR_RX);
  1991. pch_udc_ep_set_ddptr(ep, 0);
  1992. if ((req->td_data_last->status & PCH_UDC_BUFF_STS) ==
  1993. PCH_UDC_BS_DMA_DONE)
  1994. td = req->td_data_last;
  1995. else
  1996. td = req->td_data;
  1997. while (1) {
  1998. if ((td->status & PCH_UDC_RXTX_STS) != PCH_UDC_RTS_SUCC) {
  1999. dev_err(&dev->pdev->dev, "Invalid RXTX status=0x%08x "
  2000. "epstatus=0x%08x\n",
  2001. (req->td_data->status & PCH_UDC_RXTX_STS),
  2002. (int)(ep->epsts));
  2003. return;
  2004. }
  2005. if ((td->status & PCH_UDC_BUFF_STS) == PCH_UDC_BS_DMA_DONE)
  2006. if (td->status & PCH_UDC_DMA_LAST) {
  2007. count = td->status & PCH_UDC_RXTX_BYTES;
  2008. break;
  2009. }
  2010. if (td == req->td_data_last) {
  2011. dev_err(&dev->pdev->dev, "Not complete RX descriptor");
  2012. return;
  2013. }
  2014. addr = (dma_addr_t)td->next;
  2015. td = phys_to_virt(addr);
  2016. }
  2017. /* on 64k packets the RXBYTES field is zero */
  2018. if (!count && (req->req.length == UDC_DMA_MAXPACKET))
  2019. count = UDC_DMA_MAXPACKET;
  2020. req->td_data->status |= PCH_UDC_DMA_LAST;
  2021. td->status |= PCH_UDC_BS_HST_BSY;
  2022. req->dma_going = 0;
  2023. req->req.actual = count;
  2024. complete_req(ep, req, 0);
  2025. /* If there is a new/failed requests try that now */
  2026. if (!list_empty(&ep->queue)) {
  2027. req = list_entry(ep->queue.next, struct pch_udc_request, queue);
  2028. pch_udc_start_rxrequest(ep, req);
  2029. }
  2030. }
  2031. /**
  2032. * pch_udc_svc_data_in() - This function process endpoint interrupts
  2033. * for IN endpoints
  2034. * @dev: Reference to the device structure
  2035. * @ep_num: Endpoint that generated the interrupt
  2036. */
  2037. static void pch_udc_svc_data_in(struct pch_udc_dev *dev, int ep_num)
  2038. {
  2039. u32 epsts;
  2040. struct pch_udc_ep *ep;
  2041. ep = &dev->ep[UDC_EPIN_IDX(ep_num)];
  2042. epsts = ep->epsts;
  2043. ep->epsts = 0;
  2044. if (!(epsts & (UDC_EPSTS_IN | UDC_EPSTS_BNA | UDC_EPSTS_HE |
  2045. UDC_EPSTS_TDC | UDC_EPSTS_RCS | UDC_EPSTS_TXEMPTY |
  2046. UDC_EPSTS_RSS | UDC_EPSTS_XFERDONE)))
  2047. return;
  2048. if ((epsts & UDC_EPSTS_BNA))
  2049. return;
  2050. if (epsts & UDC_EPSTS_HE)
  2051. return;
  2052. if (epsts & UDC_EPSTS_RSS) {
  2053. pch_udc_ep_set_stall(ep);
  2054. pch_udc_enable_ep_interrupts(ep->dev,
  2055. PCH_UDC_EPINT(ep->in, ep->num));
  2056. }
  2057. if (epsts & UDC_EPSTS_RCS) {
  2058. if (!dev->prot_stall) {
  2059. pch_udc_ep_clear_stall(ep);
  2060. } else {
  2061. pch_udc_ep_set_stall(ep);
  2062. pch_udc_enable_ep_interrupts(ep->dev,
  2063. PCH_UDC_EPINT(ep->in, ep->num));
  2064. }
  2065. }
  2066. if (epsts & UDC_EPSTS_TDC)
  2067. pch_udc_complete_transfer(ep);
  2068. /* On IN interrupt, provide data if we have any */
  2069. if ((epsts & UDC_EPSTS_IN) && !(epsts & UDC_EPSTS_RSS) &&
  2070. !(epsts & UDC_EPSTS_TDC) && !(epsts & UDC_EPSTS_TXEMPTY))
  2071. pch_udc_start_next_txrequest(ep);
  2072. }
  2073. /**
  2074. * pch_udc_svc_data_out() - Handles interrupts from OUT endpoint
  2075. * @dev: Reference to the device structure
  2076. * @ep_num: Endpoint that generated the interrupt
  2077. */
  2078. static void pch_udc_svc_data_out(struct pch_udc_dev *dev, int ep_num)
  2079. {
  2080. u32 epsts;
  2081. struct pch_udc_ep *ep;
  2082. struct pch_udc_request *req = NULL;
  2083. ep = &dev->ep[UDC_EPOUT_IDX(ep_num)];
  2084. epsts = ep->epsts;
  2085. ep->epsts = 0;
  2086. if ((epsts & UDC_EPSTS_BNA) && (!list_empty(&ep->queue))) {
  2087. /* next request */
  2088. req = list_entry(ep->queue.next, struct pch_udc_request,
  2089. queue);
  2090. if ((req->td_data_last->status & PCH_UDC_BUFF_STS) !=
  2091. PCH_UDC_BS_DMA_DONE) {
  2092. if (!req->dma_going)
  2093. pch_udc_start_rxrequest(ep, req);
  2094. return;
  2095. }
  2096. }
  2097. if (epsts & UDC_EPSTS_HE)
  2098. return;
  2099. if (epsts & UDC_EPSTS_RSS) {
  2100. pch_udc_ep_set_stall(ep);
  2101. pch_udc_enable_ep_interrupts(ep->dev,
  2102. PCH_UDC_EPINT(ep->in, ep->num));
  2103. }
  2104. if (epsts & UDC_EPSTS_RCS) {
  2105. if (!dev->prot_stall) {
  2106. pch_udc_ep_clear_stall(ep);
  2107. } else {
  2108. pch_udc_ep_set_stall(ep);
  2109. pch_udc_enable_ep_interrupts(ep->dev,
  2110. PCH_UDC_EPINT(ep->in, ep->num));
  2111. }
  2112. }
  2113. if (((epsts & UDC_EPSTS_OUT_MASK) >> UDC_EPSTS_OUT_SHIFT) ==
  2114. UDC_EPSTS_OUT_DATA) {
  2115. if (ep->dev->prot_stall == 1) {
  2116. pch_udc_ep_set_stall(ep);
  2117. pch_udc_enable_ep_interrupts(ep->dev,
  2118. PCH_UDC_EPINT(ep->in, ep->num));
  2119. } else {
  2120. pch_udc_complete_receiver(ep);
  2121. }
  2122. }
  2123. if (list_empty(&ep->queue))
  2124. pch_udc_set_dma(dev, DMA_DIR_RX);
  2125. }
  2126. static int pch_udc_gadget_setup(struct pch_udc_dev *dev)
  2127. __must_hold(&dev->lock)
  2128. {
  2129. int rc;
  2130. /* In some cases we can get an interrupt before driver gets setup */
  2131. if (!dev->driver)
  2132. return -ESHUTDOWN;
  2133. spin_unlock(&dev->lock);
  2134. rc = dev->driver->setup(&dev->gadget, &dev->setup_data);
  2135. spin_lock(&dev->lock);
  2136. return rc;
  2137. }
  2138. /**
  2139. * pch_udc_svc_control_in() - Handle Control IN endpoint interrupts
  2140. * @dev: Reference to the device structure
  2141. */
  2142. static void pch_udc_svc_control_in(struct pch_udc_dev *dev)
  2143. {
  2144. u32 epsts;
  2145. struct pch_udc_ep *ep;
  2146. struct pch_udc_ep *ep_out;
  2147. ep = &dev->ep[UDC_EP0IN_IDX];
  2148. ep_out = &dev->ep[UDC_EP0OUT_IDX];
  2149. epsts = ep->epsts;
  2150. ep->epsts = 0;
  2151. if (!(epsts & (UDC_EPSTS_IN | UDC_EPSTS_BNA | UDC_EPSTS_HE |
  2152. UDC_EPSTS_TDC | UDC_EPSTS_RCS | UDC_EPSTS_TXEMPTY |
  2153. UDC_EPSTS_XFERDONE)))
  2154. return;
  2155. if ((epsts & UDC_EPSTS_BNA))
  2156. return;
  2157. if (epsts & UDC_EPSTS_HE)
  2158. return;
  2159. if ((epsts & UDC_EPSTS_TDC) && (!dev->stall)) {
  2160. pch_udc_complete_transfer(ep);
  2161. pch_udc_clear_dma(dev, DMA_DIR_RX);
  2162. ep_out->td_data->status = (ep_out->td_data->status &
  2163. ~PCH_UDC_BUFF_STS) |
  2164. PCH_UDC_BS_HST_RDY;
  2165. pch_udc_ep_clear_nak(ep_out);
  2166. pch_udc_set_dma(dev, DMA_DIR_RX);
  2167. pch_udc_ep_set_rrdy(ep_out);
  2168. }
  2169. /* On IN interrupt, provide data if we have any */
  2170. if ((epsts & UDC_EPSTS_IN) && !(epsts & UDC_EPSTS_TDC) &&
  2171. !(epsts & UDC_EPSTS_TXEMPTY))
  2172. pch_udc_start_next_txrequest(ep);
  2173. }
  2174. /**
  2175. * pch_udc_svc_control_out() - Routine that handle Control
  2176. * OUT endpoint interrupts
  2177. * @dev: Reference to the device structure
  2178. */
  2179. static void pch_udc_svc_control_out(struct pch_udc_dev *dev)
  2180. __releases(&dev->lock)
  2181. __acquires(&dev->lock)
  2182. {
  2183. u32 stat;
  2184. int setup_supported;
  2185. struct pch_udc_ep *ep;
  2186. ep = &dev->ep[UDC_EP0OUT_IDX];
  2187. stat = ep->epsts;
  2188. ep->epsts = 0;
  2189. /* If setup data */
  2190. if (((stat & UDC_EPSTS_OUT_MASK) >> UDC_EPSTS_OUT_SHIFT) ==
  2191. UDC_EPSTS_OUT_SETUP) {
  2192. dev->stall = 0;
  2193. dev->ep[UDC_EP0IN_IDX].halted = 0;
  2194. dev->ep[UDC_EP0OUT_IDX].halted = 0;
  2195. dev->setup_data = ep->td_stp->request;
  2196. pch_udc_init_setup_buff(ep->td_stp);
  2197. pch_udc_clear_dma(dev, DMA_DIR_RX);
  2198. pch_udc_ep_fifo_flush(&(dev->ep[UDC_EP0IN_IDX]),
  2199. dev->ep[UDC_EP0IN_IDX].in);
  2200. if ((dev->setup_data.bRequestType & USB_DIR_IN))
  2201. dev->gadget.ep0 = &dev->ep[UDC_EP0IN_IDX].ep;
  2202. else /* OUT */
  2203. dev->gadget.ep0 = &ep->ep;
  2204. /* If Mass storage Reset */
  2205. if ((dev->setup_data.bRequestType == 0x21) &&
  2206. (dev->setup_data.bRequest == 0xFF))
  2207. dev->prot_stall = 0;
  2208. /* call gadget with setup data received */
  2209. setup_supported = pch_udc_gadget_setup(dev);
  2210. if (dev->setup_data.bRequestType & USB_DIR_IN) {
  2211. ep->td_data->status = (ep->td_data->status &
  2212. ~PCH_UDC_BUFF_STS) |
  2213. PCH_UDC_BS_HST_RDY;
  2214. pch_udc_ep_set_ddptr(ep, ep->td_data_phys);
  2215. }
  2216. /* ep0 in returns data on IN phase */
  2217. if (setup_supported >= 0 && setup_supported <
  2218. UDC_EP0IN_MAX_PKT_SIZE) {
  2219. pch_udc_ep_clear_nak(&(dev->ep[UDC_EP0IN_IDX]));
  2220. /* Gadget would have queued a request when
  2221. * we called the setup */
  2222. if (!(dev->setup_data.bRequestType & USB_DIR_IN)) {
  2223. pch_udc_set_dma(dev, DMA_DIR_RX);
  2224. pch_udc_ep_clear_nak(ep);
  2225. }
  2226. } else if (setup_supported < 0) {
  2227. /* if unsupported request, then stall */
  2228. pch_udc_ep_set_stall(&(dev->ep[UDC_EP0IN_IDX]));
  2229. pch_udc_enable_ep_interrupts(ep->dev,
  2230. PCH_UDC_EPINT(ep->in, ep->num));
  2231. dev->stall = 0;
  2232. pch_udc_set_dma(dev, DMA_DIR_RX);
  2233. } else {
  2234. dev->waiting_zlp_ack = 1;
  2235. }
  2236. } else if ((((stat & UDC_EPSTS_OUT_MASK) >> UDC_EPSTS_OUT_SHIFT) ==
  2237. UDC_EPSTS_OUT_DATA) && !dev->stall) {
  2238. pch_udc_clear_dma(dev, DMA_DIR_RX);
  2239. pch_udc_ep_set_ddptr(ep, 0);
  2240. if (!list_empty(&ep->queue)) {
  2241. ep->epsts = stat;
  2242. pch_udc_svc_data_out(dev, PCH_UDC_EP0);
  2243. }
  2244. pch_udc_set_dma(dev, DMA_DIR_RX);
  2245. }
  2246. pch_udc_ep_set_rrdy(ep);
  2247. }
  2248. /**
  2249. * pch_udc_postsvc_epinters() - This function enables end point interrupts
  2250. * and clears NAK status
  2251. * @dev: Reference to the device structure
  2252. * @ep_num: End point number
  2253. */
  2254. static void pch_udc_postsvc_epinters(struct pch_udc_dev *dev, int ep_num)
  2255. {
  2256. struct pch_udc_ep *ep = &dev->ep[UDC_EPIN_IDX(ep_num)];
  2257. if (list_empty(&ep->queue))
  2258. return;
  2259. pch_udc_enable_ep_interrupts(ep->dev, PCH_UDC_EPINT(ep->in, ep->num));
  2260. pch_udc_ep_clear_nak(ep);
  2261. }
  2262. /**
  2263. * pch_udc_read_all_epstatus() - This function read all endpoint status
  2264. * @dev: Reference to the device structure
  2265. * @ep_intr: Status of endpoint interrupt
  2266. */
  2267. static void pch_udc_read_all_epstatus(struct pch_udc_dev *dev, u32 ep_intr)
  2268. {
  2269. int i;
  2270. struct pch_udc_ep *ep;
  2271. for (i = 0; i < PCH_UDC_USED_EP_NUM; i++) {
  2272. /* IN */
  2273. if (ep_intr & (0x1 << i)) {
  2274. ep = &dev->ep[UDC_EPIN_IDX(i)];
  2275. ep->epsts = pch_udc_read_ep_status(ep);
  2276. pch_udc_clear_ep_status(ep, ep->epsts);
  2277. }
  2278. /* OUT */
  2279. if (ep_intr & (0x10000 << i)) {
  2280. ep = &dev->ep[UDC_EPOUT_IDX(i)];
  2281. ep->epsts = pch_udc_read_ep_status(ep);
  2282. pch_udc_clear_ep_status(ep, ep->epsts);
  2283. }
  2284. }
  2285. }
  2286. /**
  2287. * pch_udc_activate_control_ep() - This function enables the control endpoints
  2288. * for traffic after a reset
  2289. * @dev: Reference to the device structure
  2290. */
  2291. static void pch_udc_activate_control_ep(struct pch_udc_dev *dev)
  2292. {
  2293. struct pch_udc_ep *ep;
  2294. u32 val;
  2295. /* Setup the IN endpoint */
  2296. ep = &dev->ep[UDC_EP0IN_IDX];
  2297. pch_udc_clear_ep_control(ep);
  2298. pch_udc_ep_fifo_flush(ep, ep->in);
  2299. pch_udc_ep_set_bufsz(ep, UDC_EP0IN_BUFF_SIZE, ep->in);
  2300. pch_udc_ep_set_maxpkt(ep, UDC_EP0IN_MAX_PKT_SIZE);
  2301. /* Initialize the IN EP Descriptor */
  2302. ep->td_data = NULL;
  2303. ep->td_stp = NULL;
  2304. ep->td_data_phys = 0;
  2305. ep->td_stp_phys = 0;
  2306. /* Setup the OUT endpoint */
  2307. ep = &dev->ep[UDC_EP0OUT_IDX];
  2308. pch_udc_clear_ep_control(ep);
  2309. pch_udc_ep_fifo_flush(ep, ep->in);
  2310. pch_udc_ep_set_bufsz(ep, UDC_EP0OUT_BUFF_SIZE, ep->in);
  2311. pch_udc_ep_set_maxpkt(ep, UDC_EP0OUT_MAX_PKT_SIZE);
  2312. val = UDC_EP0OUT_MAX_PKT_SIZE << UDC_CSR_NE_MAX_PKT_SHIFT;
  2313. pch_udc_write_csr(ep->dev, val, UDC_EP0OUT_IDX);
  2314. /* Initialize the SETUP buffer */
  2315. pch_udc_init_setup_buff(ep->td_stp);
  2316. /* Write the pointer address of dma descriptor */
  2317. pch_udc_ep_set_subptr(ep, ep->td_stp_phys);
  2318. /* Write the pointer address of Setup descriptor */
  2319. pch_udc_ep_set_ddptr(ep, ep->td_data_phys);
  2320. /* Initialize the dma descriptor */
  2321. ep->td_data->status = PCH_UDC_DMA_LAST;
  2322. ep->td_data->dataptr = dev->dma_addr;
  2323. ep->td_data->next = ep->td_data_phys;
  2324. pch_udc_ep_clear_nak(ep);
  2325. }
  2326. /**
  2327. * pch_udc_svc_ur_interrupt() - This function handles a USB reset interrupt
  2328. * @dev: Reference to driver structure
  2329. */
  2330. static void pch_udc_svc_ur_interrupt(struct pch_udc_dev *dev)
  2331. {
  2332. struct pch_udc_ep *ep;
  2333. int i;
  2334. pch_udc_clear_dma(dev, DMA_DIR_TX);
  2335. pch_udc_clear_dma(dev, DMA_DIR_RX);
  2336. /* Mask all endpoint interrupts */
  2337. pch_udc_disable_ep_interrupts(dev, UDC_EPINT_MSK_DISABLE_ALL);
  2338. /* clear all endpoint interrupts */
  2339. pch_udc_write_ep_interrupts(dev, UDC_EPINT_MSK_DISABLE_ALL);
  2340. for (i = 0; i < PCH_UDC_EP_NUM; i++) {
  2341. ep = &dev->ep[i];
  2342. pch_udc_clear_ep_status(ep, UDC_EPSTS_ALL_CLR_MASK);
  2343. pch_udc_clear_ep_control(ep);
  2344. pch_udc_ep_set_ddptr(ep, 0);
  2345. pch_udc_write_csr(ep->dev, 0x00, i);
  2346. }
  2347. dev->stall = 0;
  2348. dev->prot_stall = 0;
  2349. dev->waiting_zlp_ack = 0;
  2350. dev->set_cfg_not_acked = 0;
  2351. /* disable ep to empty req queue. Skip the control EP's */
  2352. for (i = 0; i < (PCH_UDC_USED_EP_NUM*2); i++) {
  2353. ep = &dev->ep[i];
  2354. pch_udc_ep_set_nak(ep);
  2355. pch_udc_ep_fifo_flush(ep, ep->in);
  2356. /* Complete request queue */
  2357. empty_req_queue(ep);
  2358. }
  2359. if (dev->driver) {
  2360. spin_unlock(&dev->lock);
  2361. usb_gadget_udc_reset(&dev->gadget, dev->driver);
  2362. spin_lock(&dev->lock);
  2363. }
  2364. }
  2365. /**
  2366. * pch_udc_svc_enum_interrupt() - This function handles a USB speed enumeration
  2367. * done interrupt
  2368. * @dev: Reference to driver structure
  2369. */
  2370. static void pch_udc_svc_enum_interrupt(struct pch_udc_dev *dev)
  2371. {
  2372. u32 dev_stat, dev_speed;
  2373. u32 speed = USB_SPEED_FULL;
  2374. dev_stat = pch_udc_read_device_status(dev);
  2375. dev_speed = (dev_stat & UDC_DEVSTS_ENUM_SPEED_MASK) >>
  2376. UDC_DEVSTS_ENUM_SPEED_SHIFT;
  2377. switch (dev_speed) {
  2378. case UDC_DEVSTS_ENUM_SPEED_HIGH:
  2379. speed = USB_SPEED_HIGH;
  2380. break;
  2381. case UDC_DEVSTS_ENUM_SPEED_FULL:
  2382. speed = USB_SPEED_FULL;
  2383. break;
  2384. case UDC_DEVSTS_ENUM_SPEED_LOW:
  2385. speed = USB_SPEED_LOW;
  2386. break;
  2387. default:
  2388. BUG();
  2389. }
  2390. dev->gadget.speed = speed;
  2391. pch_udc_activate_control_ep(dev);
  2392. pch_udc_enable_ep_interrupts(dev, UDC_EPINT_IN_EP0 | UDC_EPINT_OUT_EP0);
  2393. pch_udc_set_dma(dev, DMA_DIR_TX);
  2394. pch_udc_set_dma(dev, DMA_DIR_RX);
  2395. pch_udc_ep_set_rrdy(&(dev->ep[UDC_EP0OUT_IDX]));
  2396. /* enable device interrupts */
  2397. pch_udc_enable_interrupts(dev, UDC_DEVINT_UR | UDC_DEVINT_US |
  2398. UDC_DEVINT_ES | UDC_DEVINT_ENUM |
  2399. UDC_DEVINT_SI | UDC_DEVINT_SC);
  2400. }
  2401. /**
  2402. * pch_udc_svc_intf_interrupt() - This function handles a set interface
  2403. * interrupt
  2404. * @dev: Reference to driver structure
  2405. */
  2406. static void pch_udc_svc_intf_interrupt(struct pch_udc_dev *dev)
  2407. {
  2408. u32 reg, dev_stat = 0;
  2409. int i;
  2410. dev_stat = pch_udc_read_device_status(dev);
  2411. dev->cfg_data.cur_intf = (dev_stat & UDC_DEVSTS_INTF_MASK) >>
  2412. UDC_DEVSTS_INTF_SHIFT;
  2413. dev->cfg_data.cur_alt = (dev_stat & UDC_DEVSTS_ALT_MASK) >>
  2414. UDC_DEVSTS_ALT_SHIFT;
  2415. dev->set_cfg_not_acked = 1;
  2416. /* Construct the usb request for gadget driver and inform it */
  2417. memset(&dev->setup_data, 0 , sizeof dev->setup_data);
  2418. dev->setup_data.bRequest = USB_REQ_SET_INTERFACE;
  2419. dev->setup_data.bRequestType = USB_RECIP_INTERFACE;
  2420. dev->setup_data.wValue = cpu_to_le16(dev->cfg_data.cur_alt);
  2421. dev->setup_data.wIndex = cpu_to_le16(dev->cfg_data.cur_intf);
  2422. /* programm the Endpoint Cfg registers */
  2423. /* Only one end point cfg register */
  2424. reg = pch_udc_read_csr(dev, UDC_EP0OUT_IDX);
  2425. reg = (reg & ~UDC_CSR_NE_INTF_MASK) |
  2426. (dev->cfg_data.cur_intf << UDC_CSR_NE_INTF_SHIFT);
  2427. reg = (reg & ~UDC_CSR_NE_ALT_MASK) |
  2428. (dev->cfg_data.cur_alt << UDC_CSR_NE_ALT_SHIFT);
  2429. pch_udc_write_csr(dev, reg, UDC_EP0OUT_IDX);
  2430. for (i = 0; i < PCH_UDC_USED_EP_NUM * 2; i++) {
  2431. /* clear stall bits */
  2432. pch_udc_ep_clear_stall(&(dev->ep[i]));
  2433. dev->ep[i].halted = 0;
  2434. }
  2435. dev->stall = 0;
  2436. pch_udc_gadget_setup(dev);
  2437. }
  2438. /**
  2439. * pch_udc_svc_cfg_interrupt() - This function handles a set configuration
  2440. * interrupt
  2441. * @dev: Reference to driver structure
  2442. */
  2443. static void pch_udc_svc_cfg_interrupt(struct pch_udc_dev *dev)
  2444. {
  2445. int i;
  2446. u32 reg, dev_stat = 0;
  2447. dev_stat = pch_udc_read_device_status(dev);
  2448. dev->set_cfg_not_acked = 1;
  2449. dev->cfg_data.cur_cfg = (dev_stat & UDC_DEVSTS_CFG_MASK) >>
  2450. UDC_DEVSTS_CFG_SHIFT;
  2451. /* make usb request for gadget driver */
  2452. memset(&dev->setup_data, 0 , sizeof dev->setup_data);
  2453. dev->setup_data.bRequest = USB_REQ_SET_CONFIGURATION;
  2454. dev->setup_data.wValue = cpu_to_le16(dev->cfg_data.cur_cfg);
  2455. /* program the NE registers */
  2456. /* Only one end point cfg register */
  2457. reg = pch_udc_read_csr(dev, UDC_EP0OUT_IDX);
  2458. reg = (reg & ~UDC_CSR_NE_CFG_MASK) |
  2459. (dev->cfg_data.cur_cfg << UDC_CSR_NE_CFG_SHIFT);
  2460. pch_udc_write_csr(dev, reg, UDC_EP0OUT_IDX);
  2461. for (i = 0; i < PCH_UDC_USED_EP_NUM * 2; i++) {
  2462. /* clear stall bits */
  2463. pch_udc_ep_clear_stall(&(dev->ep[i]));
  2464. dev->ep[i].halted = 0;
  2465. }
  2466. dev->stall = 0;
  2467. /* call gadget zero with setup data received */
  2468. pch_udc_gadget_setup(dev);
  2469. }
  2470. /**
  2471. * pch_udc_dev_isr() - This function services device interrupts
  2472. * by invoking appropriate routines.
  2473. * @dev: Reference to the device structure
  2474. * @dev_intr: The Device interrupt status.
  2475. */
  2476. static void pch_udc_dev_isr(struct pch_udc_dev *dev, u32 dev_intr)
  2477. {
  2478. int vbus;
  2479. /* USB Reset Interrupt */
  2480. if (dev_intr & UDC_DEVINT_UR) {
  2481. pch_udc_svc_ur_interrupt(dev);
  2482. dev_dbg(&dev->pdev->dev, "USB_RESET\n");
  2483. }
  2484. /* Enumeration Done Interrupt */
  2485. if (dev_intr & UDC_DEVINT_ENUM) {
  2486. pch_udc_svc_enum_interrupt(dev);
  2487. dev_dbg(&dev->pdev->dev, "USB_ENUM\n");
  2488. }
  2489. /* Set Interface Interrupt */
  2490. if (dev_intr & UDC_DEVINT_SI)
  2491. pch_udc_svc_intf_interrupt(dev);
  2492. /* Set Config Interrupt */
  2493. if (dev_intr & UDC_DEVINT_SC)
  2494. pch_udc_svc_cfg_interrupt(dev);
  2495. /* USB Suspend interrupt */
  2496. if (dev_intr & UDC_DEVINT_US) {
  2497. if (dev->driver
  2498. && dev->driver->suspend) {
  2499. spin_unlock(&dev->lock);
  2500. dev->driver->suspend(&dev->gadget);
  2501. spin_lock(&dev->lock);
  2502. }
  2503. vbus = pch_vbus_gpio_get_value(dev);
  2504. if ((dev->vbus_session == 0)
  2505. && (vbus != 1)) {
  2506. if (dev->driver && dev->driver->disconnect) {
  2507. spin_unlock(&dev->lock);
  2508. dev->driver->disconnect(&dev->gadget);
  2509. spin_lock(&dev->lock);
  2510. }
  2511. pch_udc_reconnect(dev);
  2512. } else if ((dev->vbus_session == 0)
  2513. && (vbus == 1)
  2514. && !dev->vbus_gpio.intr)
  2515. schedule_work(&dev->vbus_gpio.irq_work_fall);
  2516. dev_dbg(&dev->pdev->dev, "USB_SUSPEND\n");
  2517. }
  2518. /* Clear the SOF interrupt, if enabled */
  2519. if (dev_intr & UDC_DEVINT_SOF)
  2520. dev_dbg(&dev->pdev->dev, "SOF\n");
  2521. /* ES interrupt, IDLE > 3ms on the USB */
  2522. if (dev_intr & UDC_DEVINT_ES)
  2523. dev_dbg(&dev->pdev->dev, "ES\n");
  2524. /* RWKP interrupt */
  2525. if (dev_intr & UDC_DEVINT_RWKP)
  2526. dev_dbg(&dev->pdev->dev, "RWKP\n");
  2527. }
  2528. /**
  2529. * pch_udc_isr() - This function handles interrupts from the PCH USB Device
  2530. * @irq: Interrupt request number
  2531. * @dev: Reference to the device structure
  2532. */
  2533. static irqreturn_t pch_udc_isr(int irq, void *pdev)
  2534. {
  2535. struct pch_udc_dev *dev = (struct pch_udc_dev *) pdev;
  2536. u32 dev_intr, ep_intr;
  2537. int i;
  2538. dev_intr = pch_udc_read_device_interrupts(dev);
  2539. ep_intr = pch_udc_read_ep_interrupts(dev);
  2540. /* For a hot plug, this find that the controller is hung up. */
  2541. if (dev_intr == ep_intr)
  2542. if (dev_intr == pch_udc_readl(dev, UDC_DEVCFG_ADDR)) {
  2543. dev_dbg(&dev->pdev->dev, "UDC: Hung up\n");
  2544. /* The controller is reset */
  2545. pch_udc_writel(dev, UDC_SRST, UDC_SRST_ADDR);
  2546. return IRQ_HANDLED;
  2547. }
  2548. if (dev_intr)
  2549. /* Clear device interrupts */
  2550. pch_udc_write_device_interrupts(dev, dev_intr);
  2551. if (ep_intr)
  2552. /* Clear ep interrupts */
  2553. pch_udc_write_ep_interrupts(dev, ep_intr);
  2554. if (!dev_intr && !ep_intr)
  2555. return IRQ_NONE;
  2556. spin_lock(&dev->lock);
  2557. if (dev_intr)
  2558. pch_udc_dev_isr(dev, dev_intr);
  2559. if (ep_intr) {
  2560. pch_udc_read_all_epstatus(dev, ep_intr);
  2561. /* Process Control In interrupts, if present */
  2562. if (ep_intr & UDC_EPINT_IN_EP0) {
  2563. pch_udc_svc_control_in(dev);
  2564. pch_udc_postsvc_epinters(dev, 0);
  2565. }
  2566. /* Process Control Out interrupts, if present */
  2567. if (ep_intr & UDC_EPINT_OUT_EP0)
  2568. pch_udc_svc_control_out(dev);
  2569. /* Process data in end point interrupts */
  2570. for (i = 1; i < PCH_UDC_USED_EP_NUM; i++) {
  2571. if (ep_intr & (1 << i)) {
  2572. pch_udc_svc_data_in(dev, i);
  2573. pch_udc_postsvc_epinters(dev, i);
  2574. }
  2575. }
  2576. /* Process data out end point interrupts */
  2577. for (i = UDC_EPINT_OUT_SHIFT + 1; i < (UDC_EPINT_OUT_SHIFT +
  2578. PCH_UDC_USED_EP_NUM); i++)
  2579. if (ep_intr & (1 << i))
  2580. pch_udc_svc_data_out(dev, i -
  2581. UDC_EPINT_OUT_SHIFT);
  2582. }
  2583. spin_unlock(&dev->lock);
  2584. return IRQ_HANDLED;
  2585. }
  2586. /**
  2587. * pch_udc_setup_ep0() - This function enables control endpoint for traffic
  2588. * @dev: Reference to the device structure
  2589. */
  2590. static void pch_udc_setup_ep0(struct pch_udc_dev *dev)
  2591. {
  2592. /* enable ep0 interrupts */
  2593. pch_udc_enable_ep_interrupts(dev, UDC_EPINT_IN_EP0 |
  2594. UDC_EPINT_OUT_EP0);
  2595. /* enable device interrupts */
  2596. pch_udc_enable_interrupts(dev, UDC_DEVINT_UR | UDC_DEVINT_US |
  2597. UDC_DEVINT_ES | UDC_DEVINT_ENUM |
  2598. UDC_DEVINT_SI | UDC_DEVINT_SC);
  2599. }
  2600. /**
  2601. * pch_udc_pcd_reinit() - This API initializes the endpoint structures
  2602. * @dev: Reference to the driver structure
  2603. */
  2604. static void pch_udc_pcd_reinit(struct pch_udc_dev *dev)
  2605. {
  2606. const char *const ep_string[] = {
  2607. ep0_string, "ep0out", "ep1in", "ep1out", "ep2in", "ep2out",
  2608. "ep3in", "ep3out", "ep4in", "ep4out", "ep5in", "ep5out",
  2609. "ep6in", "ep6out", "ep7in", "ep7out", "ep8in", "ep8out",
  2610. "ep9in", "ep9out", "ep10in", "ep10out", "ep11in", "ep11out",
  2611. "ep12in", "ep12out", "ep13in", "ep13out", "ep14in", "ep14out",
  2612. "ep15in", "ep15out",
  2613. };
  2614. int i;
  2615. dev->gadget.speed = USB_SPEED_UNKNOWN;
  2616. INIT_LIST_HEAD(&dev->gadget.ep_list);
  2617. /* Initialize the endpoints structures */
  2618. memset(dev->ep, 0, sizeof dev->ep);
  2619. for (i = 0; i < PCH_UDC_EP_NUM; i++) {
  2620. struct pch_udc_ep *ep = &dev->ep[i];
  2621. ep->dev = dev;
  2622. ep->halted = 1;
  2623. ep->num = i / 2;
  2624. ep->in = ~i & 1;
  2625. ep->ep.name = ep_string[i];
  2626. ep->ep.ops = &pch_udc_ep_ops;
  2627. if (ep->in) {
  2628. ep->offset_addr = ep->num * UDC_EP_REG_SHIFT;
  2629. ep->ep.caps.dir_in = true;
  2630. } else {
  2631. ep->offset_addr = (UDC_EPINT_OUT_SHIFT + ep->num) *
  2632. UDC_EP_REG_SHIFT;
  2633. ep->ep.caps.dir_out = true;
  2634. }
  2635. if (i == UDC_EP0IN_IDX || i == UDC_EP0OUT_IDX) {
  2636. ep->ep.caps.type_control = true;
  2637. } else {
  2638. ep->ep.caps.type_iso = true;
  2639. ep->ep.caps.type_bulk = true;
  2640. ep->ep.caps.type_int = true;
  2641. }
  2642. /* need to set ep->ep.maxpacket and set Default Configuration?*/
  2643. usb_ep_set_maxpacket_limit(&ep->ep, UDC_BULK_MAX_PKT_SIZE);
  2644. list_add_tail(&ep->ep.ep_list, &dev->gadget.ep_list);
  2645. INIT_LIST_HEAD(&ep->queue);
  2646. }
  2647. usb_ep_set_maxpacket_limit(&dev->ep[UDC_EP0IN_IDX].ep, UDC_EP0IN_MAX_PKT_SIZE);
  2648. usb_ep_set_maxpacket_limit(&dev->ep[UDC_EP0OUT_IDX].ep, UDC_EP0OUT_MAX_PKT_SIZE);
  2649. /* remove ep0 in and out from the list. They have own pointer */
  2650. list_del_init(&dev->ep[UDC_EP0IN_IDX].ep.ep_list);
  2651. list_del_init(&dev->ep[UDC_EP0OUT_IDX].ep.ep_list);
  2652. dev->gadget.ep0 = &dev->ep[UDC_EP0IN_IDX].ep;
  2653. INIT_LIST_HEAD(&dev->gadget.ep0->ep_list);
  2654. }
  2655. /**
  2656. * pch_udc_pcd_init() - This API initializes the driver structure
  2657. * @dev: Reference to the driver structure
  2658. *
  2659. * Return codes:
  2660. * 0: Success
  2661. */
  2662. static int pch_udc_pcd_init(struct pch_udc_dev *dev)
  2663. {
  2664. pch_udc_init(dev);
  2665. pch_udc_pcd_reinit(dev);
  2666. pch_vbus_gpio_init(dev, vbus_gpio_port);
  2667. return 0;
  2668. }
  2669. /**
  2670. * init_dma_pools() - create dma pools during initialization
  2671. * @pdev: reference to struct pci_dev
  2672. */
  2673. static int init_dma_pools(struct pch_udc_dev *dev)
  2674. {
  2675. struct pch_udc_stp_dma_desc *td_stp;
  2676. struct pch_udc_data_dma_desc *td_data;
  2677. void *ep0out_buf;
  2678. /* DMA setup */
  2679. dev->data_requests = dma_pool_create("data_requests", &dev->pdev->dev,
  2680. sizeof(struct pch_udc_data_dma_desc), 0, 0);
  2681. if (!dev->data_requests) {
  2682. dev_err(&dev->pdev->dev, "%s: can't get request data pool\n",
  2683. __func__);
  2684. return -ENOMEM;
  2685. }
  2686. /* dma desc for setup data */
  2687. dev->stp_requests = dma_pool_create("setup requests", &dev->pdev->dev,
  2688. sizeof(struct pch_udc_stp_dma_desc), 0, 0);
  2689. if (!dev->stp_requests) {
  2690. dev_err(&dev->pdev->dev, "%s: can't get setup request pool\n",
  2691. __func__);
  2692. return -ENOMEM;
  2693. }
  2694. /* setup */
  2695. td_stp = dma_pool_alloc(dev->stp_requests, GFP_KERNEL,
  2696. &dev->ep[UDC_EP0OUT_IDX].td_stp_phys);
  2697. if (!td_stp) {
  2698. dev_err(&dev->pdev->dev,
  2699. "%s: can't allocate setup dma descriptor\n", __func__);
  2700. return -ENOMEM;
  2701. }
  2702. dev->ep[UDC_EP0OUT_IDX].td_stp = td_stp;
  2703. /* data: 0 packets !? */
  2704. td_data = dma_pool_alloc(dev->data_requests, GFP_KERNEL,
  2705. &dev->ep[UDC_EP0OUT_IDX].td_data_phys);
  2706. if (!td_data) {
  2707. dev_err(&dev->pdev->dev,
  2708. "%s: can't allocate data dma descriptor\n", __func__);
  2709. return -ENOMEM;
  2710. }
  2711. dev->ep[UDC_EP0OUT_IDX].td_data = td_data;
  2712. dev->ep[UDC_EP0IN_IDX].td_stp = NULL;
  2713. dev->ep[UDC_EP0IN_IDX].td_stp_phys = 0;
  2714. dev->ep[UDC_EP0IN_IDX].td_data = NULL;
  2715. dev->ep[UDC_EP0IN_IDX].td_data_phys = 0;
  2716. ep0out_buf = devm_kzalloc(&dev->pdev->dev, UDC_EP0OUT_BUFF_SIZE * 4,
  2717. GFP_KERNEL);
  2718. if (!ep0out_buf)
  2719. return -ENOMEM;
  2720. dev->dma_addr = dma_map_single(&dev->pdev->dev, ep0out_buf,
  2721. UDC_EP0OUT_BUFF_SIZE * 4,
  2722. DMA_FROM_DEVICE);
  2723. return dma_mapping_error(&dev->pdev->dev, dev->dma_addr);
  2724. }
  2725. static int pch_udc_start(struct usb_gadget *g,
  2726. struct usb_gadget_driver *driver)
  2727. {
  2728. struct pch_udc_dev *dev = to_pch_udc(g);
  2729. driver->driver.bus = NULL;
  2730. dev->driver = driver;
  2731. /* get ready for ep0 traffic */
  2732. pch_udc_setup_ep0(dev);
  2733. /* clear SD */
  2734. if ((pch_vbus_gpio_get_value(dev) != 0) || !dev->vbus_gpio.intr)
  2735. pch_udc_clear_disconnect(dev);
  2736. dev->connected = 1;
  2737. return 0;
  2738. }
  2739. static int pch_udc_stop(struct usb_gadget *g)
  2740. {
  2741. struct pch_udc_dev *dev = to_pch_udc(g);
  2742. pch_udc_disable_interrupts(dev, UDC_DEVINT_MSK);
  2743. /* Assures that there are no pending requests with this driver */
  2744. dev->driver = NULL;
  2745. dev->connected = 0;
  2746. /* set SD */
  2747. pch_udc_set_disconnect(dev);
  2748. return 0;
  2749. }
  2750. static void pch_udc_shutdown(struct pci_dev *pdev)
  2751. {
  2752. struct pch_udc_dev *dev = pci_get_drvdata(pdev);
  2753. pch_udc_disable_interrupts(dev, UDC_DEVINT_MSK);
  2754. pch_udc_disable_ep_interrupts(dev, UDC_EPINT_MSK_DISABLE_ALL);
  2755. /* disable the pullup so the host will think we're gone */
  2756. pch_udc_set_disconnect(dev);
  2757. }
  2758. static void pch_udc_remove(struct pci_dev *pdev)
  2759. {
  2760. struct pch_udc_dev *dev = pci_get_drvdata(pdev);
  2761. usb_del_gadget_udc(&dev->gadget);
  2762. /* gadget driver must not be registered */
  2763. if (dev->driver)
  2764. dev_err(&pdev->dev,
  2765. "%s: gadget driver still bound!!!\n", __func__);
  2766. /* dma pool cleanup */
  2767. dma_pool_destroy(dev->data_requests);
  2768. if (dev->stp_requests) {
  2769. /* cleanup DMA desc's for ep0in */
  2770. if (dev->ep[UDC_EP0OUT_IDX].td_stp) {
  2771. dma_pool_free(dev->stp_requests,
  2772. dev->ep[UDC_EP0OUT_IDX].td_stp,
  2773. dev->ep[UDC_EP0OUT_IDX].td_stp_phys);
  2774. }
  2775. if (dev->ep[UDC_EP0OUT_IDX].td_data) {
  2776. dma_pool_free(dev->stp_requests,
  2777. dev->ep[UDC_EP0OUT_IDX].td_data,
  2778. dev->ep[UDC_EP0OUT_IDX].td_data_phys);
  2779. }
  2780. dma_pool_destroy(dev->stp_requests);
  2781. }
  2782. if (dev->dma_addr)
  2783. dma_unmap_single(&dev->pdev->dev, dev->dma_addr,
  2784. UDC_EP0OUT_BUFF_SIZE * 4, DMA_FROM_DEVICE);
  2785. pch_vbus_gpio_free(dev);
  2786. pch_udc_exit(dev);
  2787. }
  2788. #ifdef CONFIG_PM_SLEEP
  2789. static int pch_udc_suspend(struct device *d)
  2790. {
  2791. struct pci_dev *pdev = to_pci_dev(d);
  2792. struct pch_udc_dev *dev = pci_get_drvdata(pdev);
  2793. pch_udc_disable_interrupts(dev, UDC_DEVINT_MSK);
  2794. pch_udc_disable_ep_interrupts(dev, UDC_EPINT_MSK_DISABLE_ALL);
  2795. return 0;
  2796. }
  2797. static int pch_udc_resume(struct device *d)
  2798. {
  2799. return 0;
  2800. }
  2801. static SIMPLE_DEV_PM_OPS(pch_udc_pm, pch_udc_suspend, pch_udc_resume);
  2802. #define PCH_UDC_PM_OPS (&pch_udc_pm)
  2803. #else
  2804. #define PCH_UDC_PM_OPS NULL
  2805. #endif /* CONFIG_PM_SLEEP */
  2806. static int pch_udc_probe(struct pci_dev *pdev,
  2807. const struct pci_device_id *id)
  2808. {
  2809. int bar;
  2810. int retval;
  2811. struct pch_udc_dev *dev;
  2812. /* init */
  2813. dev = devm_kzalloc(&pdev->dev, sizeof(*dev), GFP_KERNEL);
  2814. if (!dev)
  2815. return -ENOMEM;
  2816. /* pci setup */
  2817. retval = pcim_enable_device(pdev);
  2818. if (retval)
  2819. return retval;
  2820. pci_set_drvdata(pdev, dev);
  2821. /* Determine BAR based on PCI ID */
  2822. if (id->device == PCI_DEVICE_ID_INTEL_QUARK_X1000_UDC)
  2823. bar = PCH_UDC_PCI_BAR_QUARK_X1000;
  2824. else
  2825. bar = PCH_UDC_PCI_BAR;
  2826. /* PCI resource allocation */
  2827. retval = pcim_iomap_regions(pdev, 1 << bar, pci_name(pdev));
  2828. if (retval)
  2829. return retval;
  2830. dev->base_addr = pcim_iomap_table(pdev)[bar];
  2831. /* initialize the hardware */
  2832. if (pch_udc_pcd_init(dev))
  2833. return -ENODEV;
  2834. pci_enable_msi(pdev);
  2835. retval = devm_request_irq(&pdev->dev, pdev->irq, pch_udc_isr,
  2836. IRQF_SHARED, KBUILD_MODNAME, dev);
  2837. if (retval) {
  2838. dev_err(&pdev->dev, "%s: request_irq(%d) fail\n", __func__,
  2839. pdev->irq);
  2840. goto finished;
  2841. }
  2842. pci_set_master(pdev);
  2843. pci_try_set_mwi(pdev);
  2844. /* device struct setup */
  2845. spin_lock_init(&dev->lock);
  2846. dev->pdev = pdev;
  2847. dev->gadget.ops = &pch_udc_ops;
  2848. retval = init_dma_pools(dev);
  2849. if (retval)
  2850. goto finished;
  2851. dev->gadget.name = KBUILD_MODNAME;
  2852. dev->gadget.max_speed = USB_SPEED_HIGH;
  2853. /* Put the device in disconnected state till a driver is bound */
  2854. pch_udc_set_disconnect(dev);
  2855. retval = usb_add_gadget_udc(&pdev->dev, &dev->gadget);
  2856. if (retval)
  2857. goto finished;
  2858. return 0;
  2859. finished:
  2860. pch_udc_remove(pdev);
  2861. return retval;
  2862. }
  2863. static const struct pci_device_id pch_udc_pcidev_id[] = {
  2864. {
  2865. PCI_DEVICE(PCI_VENDOR_ID_INTEL,
  2866. PCI_DEVICE_ID_INTEL_QUARK_X1000_UDC),
  2867. .class = PCI_CLASS_SERIAL_USB_DEVICE,
  2868. .class_mask = 0xffffffff,
  2869. },
  2870. {
  2871. PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_EG20T_UDC),
  2872. .class = PCI_CLASS_SERIAL_USB_DEVICE,
  2873. .class_mask = 0xffffffff,
  2874. },
  2875. {
  2876. PCI_DEVICE(PCI_VENDOR_ID_ROHM, PCI_DEVICE_ID_ML7213_IOH_UDC),
  2877. .class = PCI_CLASS_SERIAL_USB_DEVICE,
  2878. .class_mask = 0xffffffff,
  2879. },
  2880. {
  2881. PCI_DEVICE(PCI_VENDOR_ID_ROHM, PCI_DEVICE_ID_ML7831_IOH_UDC),
  2882. .class = PCI_CLASS_SERIAL_USB_DEVICE,
  2883. .class_mask = 0xffffffff,
  2884. },
  2885. { 0 },
  2886. };
  2887. MODULE_DEVICE_TABLE(pci, pch_udc_pcidev_id);
  2888. static struct pci_driver pch_udc_driver = {
  2889. .name = KBUILD_MODNAME,
  2890. .id_table = pch_udc_pcidev_id,
  2891. .probe = pch_udc_probe,
  2892. .remove = pch_udc_remove,
  2893. .shutdown = pch_udc_shutdown,
  2894. .driver = {
  2895. .pm = PCH_UDC_PM_OPS,
  2896. },
  2897. };
  2898. module_pci_driver(pch_udc_driver);
  2899. MODULE_DESCRIPTION("Intel EG20T USB Device Controller");
  2900. MODULE_AUTHOR("LAPIS Semiconductor, <tomoya-linux@dsn.lapis-semi.com>");
  2901. MODULE_LICENSE("GPL");