crypto.c 16 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522
  1. // SPDX-License-Identifier: GPL-2.0
  2. /*
  3. * Ultra Wide Band
  4. * AES-128 CCM Encryption
  5. *
  6. * Copyright (C) 2007 Intel Corporation
  7. * Inaky Perez-Gonzalez <inaky.perez-gonzalez@intel.com>
  8. *
  9. * We don't do any encryption here; we use the Linux Kernel's AES-128
  10. * crypto modules to construct keys and payload blocks in a way
  11. * defined by WUSB1.0[6]. Check the erratas, as typos are are patched
  12. * there.
  13. *
  14. * Thanks a zillion to John Keys for his help and clarifications over
  15. * the designed-by-a-committee text.
  16. *
  17. * So the idea is that there is this basic Pseudo-Random-Function
  18. * defined in WUSB1.0[6.5] which is the core of everything. It works
  19. * by tweaking some blocks, AES crypting them and then xoring
  20. * something else with them (this seems to be called CBC(AES) -- can
  21. * you tell I know jack about crypto?). So we just funnel it into the
  22. * Linux Crypto API.
  23. *
  24. * We leave a crypto test module so we can verify that vectors match,
  25. * every now and then.
  26. *
  27. * Block size: 16 bytes -- AES seems to do things in 'block sizes'. I
  28. * am learning a lot...
  29. *
  30. * Conveniently, some data structures that need to be
  31. * funneled through AES are...16 bytes in size!
  32. */
  33. #include <crypto/skcipher.h>
  34. #include <linux/crypto.h>
  35. #include <linux/module.h>
  36. #include <linux/err.h>
  37. #include <linux/uwb.h>
  38. #include <linux/slab.h>
  39. #include <linux/usb/wusb.h>
  40. #include <linux/scatterlist.h>
  41. static int debug_crypto_verify;
  42. module_param(debug_crypto_verify, int, 0);
  43. MODULE_PARM_DESC(debug_crypto_verify, "verify the key generation algorithms");
  44. static void wusb_key_dump(const void *buf, size_t len)
  45. {
  46. print_hex_dump(KERN_ERR, " ", DUMP_PREFIX_OFFSET, 16, 1,
  47. buf, len, 0);
  48. }
  49. /*
  50. * Block of data, as understood by AES-CCM
  51. *
  52. * The code assumes this structure is nothing but a 16 byte array
  53. * (packed in a struct to avoid common mess ups that I usually do with
  54. * arrays and enforcing type checking).
  55. */
  56. struct aes_ccm_block {
  57. u8 data[16];
  58. } __attribute__((packed));
  59. /*
  60. * Counter-mode Blocks (WUSB1.0[6.4])
  61. *
  62. * According to CCM (or so it seems), for the purpose of calculating
  63. * the MIC, the message is broken in N counter-mode blocks, B0, B1,
  64. * ... BN.
  65. *
  66. * B0 contains flags, the CCM nonce and l(m).
  67. *
  68. * B1 contains l(a), the MAC header, the encryption offset and padding.
  69. *
  70. * If EO is nonzero, additional blocks are built from payload bytes
  71. * until EO is exhausted (FIXME: padding to 16 bytes, I guess). The
  72. * padding is not xmitted.
  73. */
  74. /* WUSB1.0[T6.4] */
  75. struct aes_ccm_b0 {
  76. u8 flags; /* 0x59, per CCM spec */
  77. struct aes_ccm_nonce ccm_nonce;
  78. __be16 lm;
  79. } __attribute__((packed));
  80. /* WUSB1.0[T6.5] */
  81. struct aes_ccm_b1 {
  82. __be16 la;
  83. u8 mac_header[10];
  84. __le16 eo;
  85. u8 security_reserved; /* This is always zero */
  86. u8 padding; /* 0 */
  87. } __attribute__((packed));
  88. /*
  89. * Encryption Blocks (WUSB1.0[6.4.4])
  90. *
  91. * CCM uses Ax blocks to generate a keystream with which the MIC and
  92. * the message's payload are encoded. A0 always encrypts/decrypts the
  93. * MIC. Ax (x>0) are used for the successive payload blocks.
  94. *
  95. * The x is the counter, and is increased for each block.
  96. */
  97. struct aes_ccm_a {
  98. u8 flags; /* 0x01, per CCM spec */
  99. struct aes_ccm_nonce ccm_nonce;
  100. __be16 counter; /* Value of x */
  101. } __attribute__((packed));
  102. static void bytewise_xor(void *_bo, const void *_bi1, const void *_bi2,
  103. size_t size)
  104. {
  105. u8 *bo = _bo;
  106. const u8 *bi1 = _bi1, *bi2 = _bi2;
  107. size_t itr;
  108. for (itr = 0; itr < size; itr++)
  109. bo[itr] = bi1[itr] ^ bi2[itr];
  110. }
  111. /* Scratch space for MAC calculations. */
  112. struct wusb_mac_scratch {
  113. struct aes_ccm_b0 b0;
  114. struct aes_ccm_b1 b1;
  115. struct aes_ccm_a ax;
  116. };
  117. /*
  118. * CC-MAC function WUSB1.0[6.5]
  119. *
  120. * Take a data string and produce the encrypted CBC Counter-mode MIC
  121. *
  122. * Note the names for most function arguments are made to (more or
  123. * less) match those used in the pseudo-function definition given in
  124. * WUSB1.0[6.5].
  125. *
  126. * @tfm_cbc: CBC(AES) blkcipher handle (initialized)
  127. *
  128. * @tfm_aes: AES cipher handle (initialized)
  129. *
  130. * @mic: buffer for placing the computed MIC (Message Integrity
  131. * Code). This is exactly 8 bytes, and we expect the buffer to
  132. * be at least eight bytes in length.
  133. *
  134. * @key: 128 bit symmetric key
  135. *
  136. * @n: CCM nonce
  137. *
  138. * @a: ASCII string, 14 bytes long (I guess zero padded if needed;
  139. * we use exactly 14 bytes).
  140. *
  141. * @b: data stream to be processed; cannot be a global or const local
  142. * (will confuse the scatterlists)
  143. *
  144. * @blen: size of b...
  145. *
  146. * Still not very clear how this is done, but looks like this: we
  147. * create block B0 (as WUSB1.0[6.5] says), then we AES-crypt it with
  148. * @key. We bytewise xor B0 with B1 (1) and AES-crypt that. Then we
  149. * take the payload and divide it in blocks (16 bytes), xor them with
  150. * the previous crypto result (16 bytes) and crypt it, repeat the next
  151. * block with the output of the previous one, rinse wash (I guess this
  152. * is what AES CBC mode means...but I truly have no idea). So we use
  153. * the CBC(AES) blkcipher, that does precisely that. The IV (Initial
  154. * Vector) is 16 bytes and is set to zero, so
  155. *
  156. * See rfc3610. Linux crypto has a CBC implementation, but the
  157. * documentation is scarce, to say the least, and the example code is
  158. * so intricated that is difficult to understand how things work. Most
  159. * of this is guess work -- bite me.
  160. *
  161. * (1) Created as 6.5 says, again, using as l(a) 'Blen + 14', and
  162. * using the 14 bytes of @a to fill up
  163. * b1.{mac_header,e0,security_reserved,padding}.
  164. *
  165. * NOTE: The definition of l(a) in WUSB1.0[6.5] vs the definition of
  166. * l(m) is orthogonal, they bear no relationship, so it is not
  167. * in conflict with the parameter's relation that
  168. * WUSB1.0[6.4.2]) defines.
  169. *
  170. * NOTE: WUSB1.0[A.1]: Host Nonce is missing a nibble? (1e); fixed in
  171. * first errata released on 2005/07.
  172. *
  173. * NOTE: we need to clean IV to zero at each invocation to make sure
  174. * we start with a fresh empty Initial Vector, so that the CBC
  175. * works ok.
  176. *
  177. * NOTE: blen is not aligned to a block size, we'll pad zeros, that's
  178. * what sg[4] is for. Maybe there is a smarter way to do this.
  179. */
  180. static int wusb_ccm_mac(struct crypto_skcipher *tfm_cbc,
  181. struct crypto_cipher *tfm_aes,
  182. struct wusb_mac_scratch *scratch,
  183. void *mic,
  184. const struct aes_ccm_nonce *n,
  185. const struct aes_ccm_label *a, const void *b,
  186. size_t blen)
  187. {
  188. int result = 0;
  189. SKCIPHER_REQUEST_ON_STACK(req, tfm_cbc);
  190. struct scatterlist sg[4], sg_dst;
  191. void *dst_buf;
  192. size_t dst_size;
  193. u8 *iv;
  194. size_t zero_padding;
  195. /*
  196. * These checks should be compile time optimized out
  197. * ensure @a fills b1's mac_header and following fields
  198. */
  199. WARN_ON(sizeof(*a) != sizeof(scratch->b1) - sizeof(scratch->b1.la));
  200. WARN_ON(sizeof(scratch->b0) != sizeof(struct aes_ccm_block));
  201. WARN_ON(sizeof(scratch->b1) != sizeof(struct aes_ccm_block));
  202. WARN_ON(sizeof(scratch->ax) != sizeof(struct aes_ccm_block));
  203. result = -ENOMEM;
  204. zero_padding = blen % sizeof(struct aes_ccm_block);
  205. if (zero_padding)
  206. zero_padding = sizeof(struct aes_ccm_block) - zero_padding;
  207. dst_size = blen + sizeof(scratch->b0) + sizeof(scratch->b1) +
  208. zero_padding;
  209. dst_buf = kzalloc(dst_size, GFP_KERNEL);
  210. if (!dst_buf)
  211. goto error_dst_buf;
  212. iv = kzalloc(crypto_skcipher_ivsize(tfm_cbc), GFP_KERNEL);
  213. if (!iv)
  214. goto error_iv;
  215. /* Setup B0 */
  216. scratch->b0.flags = 0x59; /* Format B0 */
  217. scratch->b0.ccm_nonce = *n;
  218. scratch->b0.lm = cpu_to_be16(0); /* WUSB1.0[6.5] sez l(m) is 0 */
  219. /* Setup B1
  220. *
  221. * The WUSB spec is anything but clear! WUSB1.0[6.5]
  222. * says that to initialize B1 from A with 'l(a) = blen +
  223. * 14'--after clarification, it means to use A's contents
  224. * for MAC Header, EO, sec reserved and padding.
  225. */
  226. scratch->b1.la = cpu_to_be16(blen + 14);
  227. memcpy(&scratch->b1.mac_header, a, sizeof(*a));
  228. sg_init_table(sg, ARRAY_SIZE(sg));
  229. sg_set_buf(&sg[0], &scratch->b0, sizeof(scratch->b0));
  230. sg_set_buf(&sg[1], &scratch->b1, sizeof(scratch->b1));
  231. sg_set_buf(&sg[2], b, blen);
  232. /* 0 if well behaved :) */
  233. sg_set_page(&sg[3], ZERO_PAGE(0), zero_padding, 0);
  234. sg_init_one(&sg_dst, dst_buf, dst_size);
  235. skcipher_request_set_tfm(req, tfm_cbc);
  236. skcipher_request_set_callback(req, 0, NULL, NULL);
  237. skcipher_request_set_crypt(req, sg, &sg_dst, dst_size, iv);
  238. result = crypto_skcipher_encrypt(req);
  239. skcipher_request_zero(req);
  240. if (result < 0) {
  241. printk(KERN_ERR "E: can't compute CBC-MAC tag (MIC): %d\n",
  242. result);
  243. goto error_cbc_crypt;
  244. }
  245. /* Now we crypt the MIC Tag (*iv) with Ax -- values per WUSB1.0[6.5]
  246. * The procedure is to AES crypt the A0 block and XOR the MIC
  247. * Tag against it; we only do the first 8 bytes and place it
  248. * directly in the destination buffer.
  249. *
  250. * POS Crypto API: size is assumed to be AES's block size.
  251. * Thanks for documenting it -- tip taken from airo.c
  252. */
  253. scratch->ax.flags = 0x01; /* as per WUSB 1.0 spec */
  254. scratch->ax.ccm_nonce = *n;
  255. scratch->ax.counter = 0;
  256. crypto_cipher_encrypt_one(tfm_aes, (void *)&scratch->ax,
  257. (void *)&scratch->ax);
  258. bytewise_xor(mic, &scratch->ax, iv, 8);
  259. result = 8;
  260. error_cbc_crypt:
  261. kfree(iv);
  262. error_iv:
  263. kfree(dst_buf);
  264. error_dst_buf:
  265. return result;
  266. }
  267. /*
  268. * WUSB Pseudo Random Function (WUSB1.0[6.5])
  269. *
  270. * @b: buffer to the source data; cannot be a global or const local
  271. * (will confuse the scatterlists)
  272. */
  273. ssize_t wusb_prf(void *out, size_t out_size,
  274. const u8 key[16], const struct aes_ccm_nonce *_n,
  275. const struct aes_ccm_label *a,
  276. const void *b, size_t blen, size_t len)
  277. {
  278. ssize_t result, bytes = 0, bitr;
  279. struct aes_ccm_nonce n = *_n;
  280. struct crypto_skcipher *tfm_cbc;
  281. struct crypto_cipher *tfm_aes;
  282. struct wusb_mac_scratch *scratch;
  283. u64 sfn = 0;
  284. __le64 sfn_le;
  285. tfm_cbc = crypto_alloc_skcipher("cbc(aes)", 0, CRYPTO_ALG_ASYNC);
  286. if (IS_ERR(tfm_cbc)) {
  287. result = PTR_ERR(tfm_cbc);
  288. printk(KERN_ERR "E: can't load CBC(AES): %d\n", (int)result);
  289. goto error_alloc_cbc;
  290. }
  291. result = crypto_skcipher_setkey(tfm_cbc, key, 16);
  292. if (result < 0) {
  293. printk(KERN_ERR "E: can't set CBC key: %d\n", (int)result);
  294. goto error_setkey_cbc;
  295. }
  296. tfm_aes = crypto_alloc_cipher("aes", 0, CRYPTO_ALG_ASYNC);
  297. if (IS_ERR(tfm_aes)) {
  298. result = PTR_ERR(tfm_aes);
  299. printk(KERN_ERR "E: can't load AES: %d\n", (int)result);
  300. goto error_alloc_aes;
  301. }
  302. result = crypto_cipher_setkey(tfm_aes, key, 16);
  303. if (result < 0) {
  304. printk(KERN_ERR "E: can't set AES key: %d\n", (int)result);
  305. goto error_setkey_aes;
  306. }
  307. scratch = kmalloc(sizeof(*scratch), GFP_KERNEL);
  308. if (!scratch) {
  309. result = -ENOMEM;
  310. goto error_alloc_scratch;
  311. }
  312. for (bitr = 0; bitr < (len + 63) / 64; bitr++) {
  313. sfn_le = cpu_to_le64(sfn++);
  314. memcpy(&n.sfn, &sfn_le, sizeof(n.sfn)); /* n.sfn++... */
  315. result = wusb_ccm_mac(tfm_cbc, tfm_aes, scratch, out + bytes,
  316. &n, a, b, blen);
  317. if (result < 0)
  318. goto error_ccm_mac;
  319. bytes += result;
  320. }
  321. result = bytes;
  322. kfree(scratch);
  323. error_alloc_scratch:
  324. error_ccm_mac:
  325. error_setkey_aes:
  326. crypto_free_cipher(tfm_aes);
  327. error_alloc_aes:
  328. error_setkey_cbc:
  329. crypto_free_skcipher(tfm_cbc);
  330. error_alloc_cbc:
  331. return result;
  332. }
  333. /* WUSB1.0[A.2] test vectors */
  334. static const u8 stv_hsmic_key[16] = {
  335. 0x4b, 0x79, 0xa3, 0xcf, 0xe5, 0x53, 0x23, 0x9d,
  336. 0xd7, 0xc1, 0x6d, 0x1c, 0x2d, 0xab, 0x6d, 0x3f
  337. };
  338. static const struct aes_ccm_nonce stv_hsmic_n = {
  339. .sfn = { 0 },
  340. .tkid = { 0x76, 0x98, 0x01, },
  341. .dest_addr = { .data = { 0xbe, 0x00 } },
  342. .src_addr = { .data = { 0x76, 0x98 } },
  343. };
  344. /*
  345. * Out-of-band MIC Generation verification code
  346. *
  347. */
  348. static int wusb_oob_mic_verify(void)
  349. {
  350. int result;
  351. u8 mic[8];
  352. /* WUSB1.0[A.2] test vectors
  353. *
  354. * Need to keep it in the local stack as GCC 4.1.3something
  355. * messes up and generates noise.
  356. */
  357. struct usb_handshake stv_hsmic_hs = {
  358. .bMessageNumber = 2,
  359. .bStatus = 00,
  360. .tTKID = { 0x76, 0x98, 0x01 },
  361. .bReserved = 00,
  362. .CDID = { 0x30, 0x31, 0x32, 0x33, 0x34, 0x35,
  363. 0x36, 0x37, 0x38, 0x39, 0x3a, 0x3b,
  364. 0x3c, 0x3d, 0x3e, 0x3f },
  365. .nonce = { 0x20, 0x21, 0x22, 0x23, 0x24, 0x25,
  366. 0x26, 0x27, 0x28, 0x29, 0x2a, 0x2b,
  367. 0x2c, 0x2d, 0x2e, 0x2f },
  368. .MIC = { 0x75, 0x6a, 0x97, 0x51, 0x0c, 0x8c,
  369. 0x14, 0x7b },
  370. };
  371. size_t hs_size;
  372. result = wusb_oob_mic(mic, stv_hsmic_key, &stv_hsmic_n, &stv_hsmic_hs);
  373. if (result < 0)
  374. printk(KERN_ERR "E: WUSB OOB MIC test: failed: %d\n", result);
  375. else if (memcmp(stv_hsmic_hs.MIC, mic, sizeof(mic))) {
  376. printk(KERN_ERR "E: OOB MIC test: "
  377. "mismatch between MIC result and WUSB1.0[A2]\n");
  378. hs_size = sizeof(stv_hsmic_hs) - sizeof(stv_hsmic_hs.MIC);
  379. printk(KERN_ERR "E: Handshake2 in: (%zu bytes)\n", hs_size);
  380. wusb_key_dump(&stv_hsmic_hs, hs_size);
  381. printk(KERN_ERR "E: CCM Nonce in: (%zu bytes)\n",
  382. sizeof(stv_hsmic_n));
  383. wusb_key_dump(&stv_hsmic_n, sizeof(stv_hsmic_n));
  384. printk(KERN_ERR "E: MIC out:\n");
  385. wusb_key_dump(mic, sizeof(mic));
  386. printk(KERN_ERR "E: MIC out (from WUSB1.0[A.2]):\n");
  387. wusb_key_dump(stv_hsmic_hs.MIC, sizeof(stv_hsmic_hs.MIC));
  388. result = -EINVAL;
  389. } else
  390. result = 0;
  391. return result;
  392. }
  393. /*
  394. * Test vectors for Key derivation
  395. *
  396. * These come from WUSB1.0[6.5.1], the vectors in WUSB1.0[A.1]
  397. * (errata corrected in 2005/07).
  398. */
  399. static const u8 stv_key_a1[16] __attribute__ ((__aligned__(4))) = {
  400. 0xf0, 0xe1, 0xd2, 0xc3, 0xb4, 0xa5, 0x96, 0x87,
  401. 0x78, 0x69, 0x5a, 0x4b, 0x3c, 0x2d, 0x1e, 0x0f
  402. };
  403. static const struct aes_ccm_nonce stv_keydvt_n_a1 = {
  404. .sfn = { 0 },
  405. .tkid = { 0x76, 0x98, 0x01, },
  406. .dest_addr = { .data = { 0xbe, 0x00 } },
  407. .src_addr = { .data = { 0x76, 0x98 } },
  408. };
  409. static const struct wusb_keydvt_out stv_keydvt_out_a1 = {
  410. .kck = {
  411. 0x4b, 0x79, 0xa3, 0xcf, 0xe5, 0x53, 0x23, 0x9d,
  412. 0xd7, 0xc1, 0x6d, 0x1c, 0x2d, 0xab, 0x6d, 0x3f
  413. },
  414. .ptk = {
  415. 0xc8, 0x70, 0x62, 0x82, 0xb6, 0x7c, 0xe9, 0x06,
  416. 0x7b, 0xc5, 0x25, 0x69, 0xf2, 0x36, 0x61, 0x2d
  417. }
  418. };
  419. /*
  420. * Performa a test to make sure we match the vectors defined in
  421. * WUSB1.0[A.1](Errata2006/12)
  422. */
  423. static int wusb_key_derive_verify(void)
  424. {
  425. int result = 0;
  426. struct wusb_keydvt_out keydvt_out;
  427. /* These come from WUSB1.0[A.1] + 2006/12 errata
  428. * NOTE: can't make this const or global -- somehow it seems
  429. * the scatterlists for crypto get confused and we get
  430. * bad data. There is no doc on this... */
  431. struct wusb_keydvt_in stv_keydvt_in_a1 = {
  432. .hnonce = {
  433. 0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17,
  434. 0x18, 0x19, 0x1a, 0x1b, 0x1c, 0x1d, 0x1e, 0x1f
  435. },
  436. .dnonce = {
  437. 0x20, 0x21, 0x22, 0x23, 0x24, 0x25, 0x26, 0x27,
  438. 0x28, 0x29, 0x2a, 0x2b, 0x2c, 0x2d, 0x2e, 0x2f
  439. }
  440. };
  441. result = wusb_key_derive(&keydvt_out, stv_key_a1, &stv_keydvt_n_a1,
  442. &stv_keydvt_in_a1);
  443. if (result < 0)
  444. printk(KERN_ERR "E: WUSB key derivation test: "
  445. "derivation failed: %d\n", result);
  446. if (memcmp(&stv_keydvt_out_a1, &keydvt_out, sizeof(keydvt_out))) {
  447. printk(KERN_ERR "E: WUSB key derivation test: "
  448. "mismatch between key derivation result "
  449. "and WUSB1.0[A1] Errata 2006/12\n");
  450. printk(KERN_ERR "E: keydvt in: key\n");
  451. wusb_key_dump(stv_key_a1, sizeof(stv_key_a1));
  452. printk(KERN_ERR "E: keydvt in: nonce\n");
  453. wusb_key_dump(&stv_keydvt_n_a1, sizeof(stv_keydvt_n_a1));
  454. printk(KERN_ERR "E: keydvt in: hnonce & dnonce\n");
  455. wusb_key_dump(&stv_keydvt_in_a1, sizeof(stv_keydvt_in_a1));
  456. printk(KERN_ERR "E: keydvt out: KCK\n");
  457. wusb_key_dump(&keydvt_out.kck, sizeof(keydvt_out.kck));
  458. printk(KERN_ERR "E: keydvt out: PTK\n");
  459. wusb_key_dump(&keydvt_out.ptk, sizeof(keydvt_out.ptk));
  460. result = -EINVAL;
  461. } else
  462. result = 0;
  463. return result;
  464. }
  465. /*
  466. * Initialize crypto system
  467. *
  468. * FIXME: we do nothing now, other than verifying. Later on we'll
  469. * cache the encryption stuff, so that's why we have a separate init.
  470. */
  471. int wusb_crypto_init(void)
  472. {
  473. int result;
  474. if (debug_crypto_verify) {
  475. result = wusb_key_derive_verify();
  476. if (result < 0)
  477. return result;
  478. return wusb_oob_mic_verify();
  479. }
  480. return 0;
  481. }
  482. void wusb_crypto_exit(void)
  483. {
  484. /* FIXME: free cached crypto transforms */
  485. }