checkpoint.c 38 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576
  1. /*
  2. * fs/f2fs/checkpoint.c
  3. *
  4. * Copyright (c) 2012 Samsung Electronics Co., Ltd.
  5. * http://www.samsung.com/
  6. *
  7. * This program is free software; you can redistribute it and/or modify
  8. * it under the terms of the GNU General Public License version 2 as
  9. * published by the Free Software Foundation.
  10. */
  11. #include <linux/fs.h>
  12. #include <linux/bio.h>
  13. #include <linux/mpage.h>
  14. #include <linux/writeback.h>
  15. #include <linux/blkdev.h>
  16. #include <linux/f2fs_fs.h>
  17. #include <linux/pagevec.h>
  18. #include <linux/swap.h>
  19. #include "f2fs.h"
  20. #include "node.h"
  21. #include "segment.h"
  22. #include "trace.h"
  23. #include <trace/events/f2fs.h>
  24. static struct kmem_cache *ino_entry_slab;
  25. struct kmem_cache *f2fs_inode_entry_slab;
  26. void f2fs_stop_checkpoint(struct f2fs_sb_info *sbi, bool end_io)
  27. {
  28. f2fs_build_fault_attr(sbi, 0, 0);
  29. set_ckpt_flags(sbi, CP_ERROR_FLAG);
  30. if (!end_io)
  31. f2fs_flush_merged_writes(sbi);
  32. }
  33. /*
  34. * We guarantee no failure on the returned page.
  35. */
  36. struct page *f2fs_grab_meta_page(struct f2fs_sb_info *sbi, pgoff_t index)
  37. {
  38. struct address_space *mapping = META_MAPPING(sbi);
  39. struct page *page = NULL;
  40. repeat:
  41. page = f2fs_grab_cache_page(mapping, index, false);
  42. if (!page) {
  43. cond_resched();
  44. goto repeat;
  45. }
  46. f2fs_wait_on_page_writeback(page, META, true);
  47. if (!PageUptodate(page))
  48. SetPageUptodate(page);
  49. return page;
  50. }
  51. /*
  52. * We guarantee no failure on the returned page.
  53. */
  54. static struct page *__get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index,
  55. bool is_meta)
  56. {
  57. struct address_space *mapping = META_MAPPING(sbi);
  58. struct page *page;
  59. struct f2fs_io_info fio = {
  60. .sbi = sbi,
  61. .type = META,
  62. .op = REQ_OP_READ,
  63. .op_flags = REQ_META | REQ_PRIO,
  64. .old_blkaddr = index,
  65. .new_blkaddr = index,
  66. .encrypted_page = NULL,
  67. .is_meta = is_meta,
  68. };
  69. int err;
  70. if (unlikely(!is_meta))
  71. fio.op_flags &= ~REQ_META;
  72. repeat:
  73. page = f2fs_grab_cache_page(mapping, index, false);
  74. if (!page) {
  75. cond_resched();
  76. goto repeat;
  77. }
  78. if (PageUptodate(page))
  79. goto out;
  80. fio.page = page;
  81. err = f2fs_submit_page_bio(&fio);
  82. if (err) {
  83. f2fs_put_page(page, 1);
  84. return ERR_PTR(err);
  85. }
  86. lock_page(page);
  87. if (unlikely(page->mapping != mapping)) {
  88. f2fs_put_page(page, 1);
  89. goto repeat;
  90. }
  91. if (unlikely(!PageUptodate(page))) {
  92. f2fs_put_page(page, 1);
  93. return ERR_PTR(-EIO);
  94. }
  95. out:
  96. return page;
  97. }
  98. struct page *f2fs_get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index)
  99. {
  100. return __get_meta_page(sbi, index, true);
  101. }
  102. struct page *f2fs_get_meta_page_nofail(struct f2fs_sb_info *sbi, pgoff_t index)
  103. {
  104. struct page *page;
  105. int count = 0;
  106. retry:
  107. page = __get_meta_page(sbi, index, true);
  108. if (IS_ERR(page)) {
  109. if (PTR_ERR(page) == -EIO &&
  110. ++count <= DEFAULT_RETRY_IO_COUNT)
  111. goto retry;
  112. f2fs_stop_checkpoint(sbi, false);
  113. f2fs_bug_on(sbi, 1);
  114. }
  115. return page;
  116. }
  117. /* for POR only */
  118. struct page *f2fs_get_tmp_page(struct f2fs_sb_info *sbi, pgoff_t index)
  119. {
  120. return __get_meta_page(sbi, index, false);
  121. }
  122. bool f2fs_is_valid_blkaddr(struct f2fs_sb_info *sbi,
  123. block_t blkaddr, int type)
  124. {
  125. switch (type) {
  126. case META_NAT:
  127. break;
  128. case META_SIT:
  129. if (unlikely(blkaddr >= SIT_BLK_CNT(sbi)))
  130. return false;
  131. break;
  132. case META_SSA:
  133. if (unlikely(blkaddr >= MAIN_BLKADDR(sbi) ||
  134. blkaddr < SM_I(sbi)->ssa_blkaddr))
  135. return false;
  136. break;
  137. case META_CP:
  138. if (unlikely(blkaddr >= SIT_I(sbi)->sit_base_addr ||
  139. blkaddr < __start_cp_addr(sbi)))
  140. return false;
  141. break;
  142. case META_POR:
  143. case DATA_GENERIC:
  144. if (unlikely(blkaddr >= MAX_BLKADDR(sbi) ||
  145. blkaddr < MAIN_BLKADDR(sbi))) {
  146. if (type == DATA_GENERIC) {
  147. f2fs_msg(sbi->sb, KERN_WARNING,
  148. "access invalid blkaddr:%u", blkaddr);
  149. WARN_ON(1);
  150. }
  151. return false;
  152. }
  153. break;
  154. case META_GENERIC:
  155. if (unlikely(blkaddr < SEG0_BLKADDR(sbi) ||
  156. blkaddr >= MAIN_BLKADDR(sbi)))
  157. return false;
  158. break;
  159. default:
  160. BUG();
  161. }
  162. return true;
  163. }
  164. /*
  165. * Readahead CP/NAT/SIT/SSA pages
  166. */
  167. int f2fs_ra_meta_pages(struct f2fs_sb_info *sbi, block_t start, int nrpages,
  168. int type, bool sync)
  169. {
  170. struct page *page;
  171. block_t blkno = start;
  172. struct f2fs_io_info fio = {
  173. .sbi = sbi,
  174. .type = META,
  175. .op = REQ_OP_READ,
  176. .op_flags = sync ? (REQ_META | REQ_PRIO) : REQ_RAHEAD,
  177. .encrypted_page = NULL,
  178. .in_list = false,
  179. .is_meta = (type != META_POR),
  180. };
  181. struct blk_plug plug;
  182. if (unlikely(type == META_POR))
  183. fio.op_flags &= ~REQ_META;
  184. blk_start_plug(&plug);
  185. for (; nrpages-- > 0; blkno++) {
  186. if (!f2fs_is_valid_blkaddr(sbi, blkno, type))
  187. goto out;
  188. switch (type) {
  189. case META_NAT:
  190. if (unlikely(blkno >=
  191. NAT_BLOCK_OFFSET(NM_I(sbi)->max_nid)))
  192. blkno = 0;
  193. /* get nat block addr */
  194. fio.new_blkaddr = current_nat_addr(sbi,
  195. blkno * NAT_ENTRY_PER_BLOCK);
  196. break;
  197. case META_SIT:
  198. if (unlikely(blkno >= TOTAL_SEGS(sbi)))
  199. goto out;
  200. /* get sit block addr */
  201. fio.new_blkaddr = current_sit_addr(sbi,
  202. blkno * SIT_ENTRY_PER_BLOCK);
  203. break;
  204. case META_SSA:
  205. case META_CP:
  206. case META_POR:
  207. fio.new_blkaddr = blkno;
  208. break;
  209. default:
  210. BUG();
  211. }
  212. page = f2fs_grab_cache_page(META_MAPPING(sbi),
  213. fio.new_blkaddr, false);
  214. if (!page)
  215. continue;
  216. if (PageUptodate(page)) {
  217. f2fs_put_page(page, 1);
  218. continue;
  219. }
  220. fio.page = page;
  221. f2fs_submit_page_bio(&fio);
  222. f2fs_put_page(page, 0);
  223. }
  224. out:
  225. blk_finish_plug(&plug);
  226. return blkno - start;
  227. }
  228. void f2fs_ra_meta_pages_cond(struct f2fs_sb_info *sbi, pgoff_t index)
  229. {
  230. struct page *page;
  231. bool readahead = false;
  232. page = find_get_page(META_MAPPING(sbi), index);
  233. if (!page || !PageUptodate(page))
  234. readahead = true;
  235. f2fs_put_page(page, 0);
  236. if (readahead)
  237. f2fs_ra_meta_pages(sbi, index, BIO_MAX_PAGES, META_POR, true);
  238. }
  239. static int __f2fs_write_meta_page(struct page *page,
  240. struct writeback_control *wbc,
  241. enum iostat_type io_type)
  242. {
  243. struct f2fs_sb_info *sbi = F2FS_P_SB(page);
  244. trace_f2fs_writepage(page, META);
  245. if (unlikely(f2fs_cp_error(sbi)))
  246. goto redirty_out;
  247. if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
  248. goto redirty_out;
  249. if (wbc->for_reclaim && page->index < GET_SUM_BLOCK(sbi, 0))
  250. goto redirty_out;
  251. f2fs_do_write_meta_page(sbi, page, io_type);
  252. dec_page_count(sbi, F2FS_DIRTY_META);
  253. if (wbc->for_reclaim)
  254. f2fs_submit_merged_write_cond(sbi, page->mapping->host,
  255. 0, page->index, META);
  256. unlock_page(page);
  257. if (unlikely(f2fs_cp_error(sbi)))
  258. f2fs_submit_merged_write(sbi, META);
  259. return 0;
  260. redirty_out:
  261. redirty_page_for_writepage(wbc, page);
  262. return AOP_WRITEPAGE_ACTIVATE;
  263. }
  264. static int f2fs_write_meta_page(struct page *page,
  265. struct writeback_control *wbc)
  266. {
  267. return __f2fs_write_meta_page(page, wbc, FS_META_IO);
  268. }
  269. static int f2fs_write_meta_pages(struct address_space *mapping,
  270. struct writeback_control *wbc)
  271. {
  272. struct f2fs_sb_info *sbi = F2FS_M_SB(mapping);
  273. long diff, written;
  274. if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
  275. goto skip_write;
  276. /* collect a number of dirty meta pages and write together */
  277. if (wbc->for_kupdate ||
  278. get_pages(sbi, F2FS_DIRTY_META) < nr_pages_to_skip(sbi, META))
  279. goto skip_write;
  280. /* if locked failed, cp will flush dirty pages instead */
  281. if (!mutex_trylock(&sbi->cp_mutex))
  282. goto skip_write;
  283. trace_f2fs_writepages(mapping->host, wbc, META);
  284. diff = nr_pages_to_write(sbi, META, wbc);
  285. written = f2fs_sync_meta_pages(sbi, META, wbc->nr_to_write, FS_META_IO);
  286. mutex_unlock(&sbi->cp_mutex);
  287. wbc->nr_to_write = max((long)0, wbc->nr_to_write - written - diff);
  288. return 0;
  289. skip_write:
  290. wbc->pages_skipped += get_pages(sbi, F2FS_DIRTY_META);
  291. trace_f2fs_writepages(mapping->host, wbc, META);
  292. return 0;
  293. }
  294. long f2fs_sync_meta_pages(struct f2fs_sb_info *sbi, enum page_type type,
  295. long nr_to_write, enum iostat_type io_type)
  296. {
  297. struct address_space *mapping = META_MAPPING(sbi);
  298. pgoff_t index = 0, prev = ULONG_MAX;
  299. struct pagevec pvec;
  300. long nwritten = 0;
  301. int nr_pages;
  302. struct writeback_control wbc = {
  303. .for_reclaim = 0,
  304. };
  305. struct blk_plug plug;
  306. pagevec_init(&pvec);
  307. blk_start_plug(&plug);
  308. while ((nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
  309. PAGECACHE_TAG_DIRTY))) {
  310. int i;
  311. for (i = 0; i < nr_pages; i++) {
  312. struct page *page = pvec.pages[i];
  313. if (prev == ULONG_MAX)
  314. prev = page->index - 1;
  315. if (nr_to_write != LONG_MAX && page->index != prev + 1) {
  316. pagevec_release(&pvec);
  317. goto stop;
  318. }
  319. lock_page(page);
  320. if (unlikely(page->mapping != mapping)) {
  321. continue_unlock:
  322. unlock_page(page);
  323. continue;
  324. }
  325. if (!PageDirty(page)) {
  326. /* someone wrote it for us */
  327. goto continue_unlock;
  328. }
  329. f2fs_wait_on_page_writeback(page, META, true);
  330. BUG_ON(PageWriteback(page));
  331. if (!clear_page_dirty_for_io(page))
  332. goto continue_unlock;
  333. if (__f2fs_write_meta_page(page, &wbc, io_type)) {
  334. unlock_page(page);
  335. break;
  336. }
  337. nwritten++;
  338. prev = page->index;
  339. if (unlikely(nwritten >= nr_to_write))
  340. break;
  341. }
  342. pagevec_release(&pvec);
  343. cond_resched();
  344. }
  345. stop:
  346. if (nwritten)
  347. f2fs_submit_merged_write(sbi, type);
  348. blk_finish_plug(&plug);
  349. return nwritten;
  350. }
  351. static int f2fs_set_meta_page_dirty(struct page *page)
  352. {
  353. trace_f2fs_set_page_dirty(page, META);
  354. if (!PageUptodate(page))
  355. SetPageUptodate(page);
  356. if (!PageDirty(page)) {
  357. __set_page_dirty_nobuffers(page);
  358. inc_page_count(F2FS_P_SB(page), F2FS_DIRTY_META);
  359. SetPagePrivate(page);
  360. f2fs_trace_pid(page);
  361. return 1;
  362. }
  363. return 0;
  364. }
  365. const struct address_space_operations f2fs_meta_aops = {
  366. .writepage = f2fs_write_meta_page,
  367. .writepages = f2fs_write_meta_pages,
  368. .set_page_dirty = f2fs_set_meta_page_dirty,
  369. .invalidatepage = f2fs_invalidate_page,
  370. .releasepage = f2fs_release_page,
  371. #ifdef CONFIG_MIGRATION
  372. .migratepage = f2fs_migrate_page,
  373. #endif
  374. };
  375. static void __add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino,
  376. unsigned int devidx, int type)
  377. {
  378. struct inode_management *im = &sbi->im[type];
  379. struct ino_entry *e, *tmp;
  380. tmp = f2fs_kmem_cache_alloc(ino_entry_slab, GFP_NOFS);
  381. radix_tree_preload(GFP_NOFS | __GFP_NOFAIL);
  382. spin_lock(&im->ino_lock);
  383. e = radix_tree_lookup(&im->ino_root, ino);
  384. if (!e) {
  385. e = tmp;
  386. if (unlikely(radix_tree_insert(&im->ino_root, ino, e)))
  387. f2fs_bug_on(sbi, 1);
  388. memset(e, 0, sizeof(struct ino_entry));
  389. e->ino = ino;
  390. list_add_tail(&e->list, &im->ino_list);
  391. if (type != ORPHAN_INO)
  392. im->ino_num++;
  393. }
  394. if (type == FLUSH_INO)
  395. f2fs_set_bit(devidx, (char *)&e->dirty_device);
  396. spin_unlock(&im->ino_lock);
  397. radix_tree_preload_end();
  398. if (e != tmp)
  399. kmem_cache_free(ino_entry_slab, tmp);
  400. }
  401. static void __remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type)
  402. {
  403. struct inode_management *im = &sbi->im[type];
  404. struct ino_entry *e;
  405. spin_lock(&im->ino_lock);
  406. e = radix_tree_lookup(&im->ino_root, ino);
  407. if (e) {
  408. list_del(&e->list);
  409. radix_tree_delete(&im->ino_root, ino);
  410. im->ino_num--;
  411. spin_unlock(&im->ino_lock);
  412. kmem_cache_free(ino_entry_slab, e);
  413. return;
  414. }
  415. spin_unlock(&im->ino_lock);
  416. }
  417. void f2fs_add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type)
  418. {
  419. /* add new dirty ino entry into list */
  420. __add_ino_entry(sbi, ino, 0, type);
  421. }
  422. void f2fs_remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type)
  423. {
  424. /* remove dirty ino entry from list */
  425. __remove_ino_entry(sbi, ino, type);
  426. }
  427. /* mode should be APPEND_INO or UPDATE_INO */
  428. bool f2fs_exist_written_data(struct f2fs_sb_info *sbi, nid_t ino, int mode)
  429. {
  430. struct inode_management *im = &sbi->im[mode];
  431. struct ino_entry *e;
  432. spin_lock(&im->ino_lock);
  433. e = radix_tree_lookup(&im->ino_root, ino);
  434. spin_unlock(&im->ino_lock);
  435. return e ? true : false;
  436. }
  437. void f2fs_release_ino_entry(struct f2fs_sb_info *sbi, bool all)
  438. {
  439. struct ino_entry *e, *tmp;
  440. int i;
  441. for (i = all ? ORPHAN_INO : APPEND_INO; i < MAX_INO_ENTRY; i++) {
  442. struct inode_management *im = &sbi->im[i];
  443. spin_lock(&im->ino_lock);
  444. list_for_each_entry_safe(e, tmp, &im->ino_list, list) {
  445. list_del(&e->list);
  446. radix_tree_delete(&im->ino_root, e->ino);
  447. kmem_cache_free(ino_entry_slab, e);
  448. im->ino_num--;
  449. }
  450. spin_unlock(&im->ino_lock);
  451. }
  452. }
  453. void f2fs_set_dirty_device(struct f2fs_sb_info *sbi, nid_t ino,
  454. unsigned int devidx, int type)
  455. {
  456. __add_ino_entry(sbi, ino, devidx, type);
  457. }
  458. bool f2fs_is_dirty_device(struct f2fs_sb_info *sbi, nid_t ino,
  459. unsigned int devidx, int type)
  460. {
  461. struct inode_management *im = &sbi->im[type];
  462. struct ino_entry *e;
  463. bool is_dirty = false;
  464. spin_lock(&im->ino_lock);
  465. e = radix_tree_lookup(&im->ino_root, ino);
  466. if (e && f2fs_test_bit(devidx, (char *)&e->dirty_device))
  467. is_dirty = true;
  468. spin_unlock(&im->ino_lock);
  469. return is_dirty;
  470. }
  471. int f2fs_acquire_orphan_inode(struct f2fs_sb_info *sbi)
  472. {
  473. struct inode_management *im = &sbi->im[ORPHAN_INO];
  474. int err = 0;
  475. spin_lock(&im->ino_lock);
  476. if (time_to_inject(sbi, FAULT_ORPHAN)) {
  477. spin_unlock(&im->ino_lock);
  478. f2fs_show_injection_info(FAULT_ORPHAN);
  479. return -ENOSPC;
  480. }
  481. if (unlikely(im->ino_num >= sbi->max_orphans))
  482. err = -ENOSPC;
  483. else
  484. im->ino_num++;
  485. spin_unlock(&im->ino_lock);
  486. return err;
  487. }
  488. void f2fs_release_orphan_inode(struct f2fs_sb_info *sbi)
  489. {
  490. struct inode_management *im = &sbi->im[ORPHAN_INO];
  491. spin_lock(&im->ino_lock);
  492. f2fs_bug_on(sbi, im->ino_num == 0);
  493. im->ino_num--;
  494. spin_unlock(&im->ino_lock);
  495. }
  496. void f2fs_add_orphan_inode(struct inode *inode)
  497. {
  498. /* add new orphan ino entry into list */
  499. __add_ino_entry(F2FS_I_SB(inode), inode->i_ino, 0, ORPHAN_INO);
  500. f2fs_update_inode_page(inode);
  501. }
  502. void f2fs_remove_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino)
  503. {
  504. /* remove orphan entry from orphan list */
  505. __remove_ino_entry(sbi, ino, ORPHAN_INO);
  506. }
  507. static int recover_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino)
  508. {
  509. struct inode *inode;
  510. struct node_info ni;
  511. int err;
  512. inode = f2fs_iget_retry(sbi->sb, ino);
  513. if (IS_ERR(inode)) {
  514. /*
  515. * there should be a bug that we can't find the entry
  516. * to orphan inode.
  517. */
  518. f2fs_bug_on(sbi, PTR_ERR(inode) == -ENOENT);
  519. return PTR_ERR(inode);
  520. }
  521. err = dquot_initialize(inode);
  522. if (err) {
  523. iput(inode);
  524. goto err_out;
  525. }
  526. clear_nlink(inode);
  527. /* truncate all the data during iput */
  528. iput(inode);
  529. err = f2fs_get_node_info(sbi, ino, &ni);
  530. if (err)
  531. goto err_out;
  532. /* ENOMEM was fully retried in f2fs_evict_inode. */
  533. if (ni.blk_addr != NULL_ADDR) {
  534. err = -EIO;
  535. goto err_out;
  536. }
  537. return 0;
  538. err_out:
  539. set_sbi_flag(sbi, SBI_NEED_FSCK);
  540. f2fs_msg(sbi->sb, KERN_WARNING,
  541. "%s: orphan failed (ino=%x), run fsck to fix.",
  542. __func__, ino);
  543. return err;
  544. }
  545. int f2fs_recover_orphan_inodes(struct f2fs_sb_info *sbi)
  546. {
  547. block_t start_blk, orphan_blocks, i, j;
  548. unsigned int s_flags = sbi->sb->s_flags;
  549. int err = 0;
  550. #ifdef CONFIG_QUOTA
  551. int quota_enabled;
  552. #endif
  553. if (!is_set_ckpt_flags(sbi, CP_ORPHAN_PRESENT_FLAG))
  554. return 0;
  555. if (s_flags & SB_RDONLY) {
  556. f2fs_msg(sbi->sb, KERN_INFO, "orphan cleanup on readonly fs");
  557. sbi->sb->s_flags &= ~SB_RDONLY;
  558. }
  559. #ifdef CONFIG_QUOTA
  560. /* Needed for iput() to work correctly and not trash data */
  561. sbi->sb->s_flags |= SB_ACTIVE;
  562. /*
  563. * Turn on quotas which were not enabled for read-only mounts if
  564. * filesystem has quota feature, so that they are updated correctly.
  565. */
  566. quota_enabled = f2fs_enable_quota_files(sbi, s_flags & SB_RDONLY);
  567. #endif
  568. start_blk = __start_cp_addr(sbi) + 1 + __cp_payload(sbi);
  569. orphan_blocks = __start_sum_addr(sbi) - 1 - __cp_payload(sbi);
  570. f2fs_ra_meta_pages(sbi, start_blk, orphan_blocks, META_CP, true);
  571. for (i = 0; i < orphan_blocks; i++) {
  572. struct page *page;
  573. struct f2fs_orphan_block *orphan_blk;
  574. page = f2fs_get_meta_page(sbi, start_blk + i);
  575. if (IS_ERR(page)) {
  576. err = PTR_ERR(page);
  577. goto out;
  578. }
  579. orphan_blk = (struct f2fs_orphan_block *)page_address(page);
  580. for (j = 0; j < le32_to_cpu(orphan_blk->entry_count); j++) {
  581. nid_t ino = le32_to_cpu(orphan_blk->ino[j]);
  582. err = recover_orphan_inode(sbi, ino);
  583. if (err) {
  584. f2fs_put_page(page, 1);
  585. goto out;
  586. }
  587. }
  588. f2fs_put_page(page, 1);
  589. }
  590. /* clear Orphan Flag */
  591. clear_ckpt_flags(sbi, CP_ORPHAN_PRESENT_FLAG);
  592. out:
  593. set_sbi_flag(sbi, SBI_IS_RECOVERED);
  594. #ifdef CONFIG_QUOTA
  595. /* Turn quotas off */
  596. if (quota_enabled)
  597. f2fs_quota_off_umount(sbi->sb);
  598. #endif
  599. sbi->sb->s_flags = s_flags; /* Restore SB_RDONLY status */
  600. return err;
  601. }
  602. static void write_orphan_inodes(struct f2fs_sb_info *sbi, block_t start_blk)
  603. {
  604. struct list_head *head;
  605. struct f2fs_orphan_block *orphan_blk = NULL;
  606. unsigned int nentries = 0;
  607. unsigned short index = 1;
  608. unsigned short orphan_blocks;
  609. struct page *page = NULL;
  610. struct ino_entry *orphan = NULL;
  611. struct inode_management *im = &sbi->im[ORPHAN_INO];
  612. orphan_blocks = GET_ORPHAN_BLOCKS(im->ino_num);
  613. /*
  614. * we don't need to do spin_lock(&im->ino_lock) here, since all the
  615. * orphan inode operations are covered under f2fs_lock_op().
  616. * And, spin_lock should be avoided due to page operations below.
  617. */
  618. head = &im->ino_list;
  619. /* loop for each orphan inode entry and write them in Jornal block */
  620. list_for_each_entry(orphan, head, list) {
  621. if (!page) {
  622. page = f2fs_grab_meta_page(sbi, start_blk++);
  623. orphan_blk =
  624. (struct f2fs_orphan_block *)page_address(page);
  625. memset(orphan_blk, 0, sizeof(*orphan_blk));
  626. }
  627. orphan_blk->ino[nentries++] = cpu_to_le32(orphan->ino);
  628. if (nentries == F2FS_ORPHANS_PER_BLOCK) {
  629. /*
  630. * an orphan block is full of 1020 entries,
  631. * then we need to flush current orphan blocks
  632. * and bring another one in memory
  633. */
  634. orphan_blk->blk_addr = cpu_to_le16(index);
  635. orphan_blk->blk_count = cpu_to_le16(orphan_blocks);
  636. orphan_blk->entry_count = cpu_to_le32(nentries);
  637. set_page_dirty(page);
  638. f2fs_put_page(page, 1);
  639. index++;
  640. nentries = 0;
  641. page = NULL;
  642. }
  643. }
  644. if (page) {
  645. orphan_blk->blk_addr = cpu_to_le16(index);
  646. orphan_blk->blk_count = cpu_to_le16(orphan_blocks);
  647. orphan_blk->entry_count = cpu_to_le32(nentries);
  648. set_page_dirty(page);
  649. f2fs_put_page(page, 1);
  650. }
  651. }
  652. static int get_checkpoint_version(struct f2fs_sb_info *sbi, block_t cp_addr,
  653. struct f2fs_checkpoint **cp_block, struct page **cp_page,
  654. unsigned long long *version)
  655. {
  656. unsigned long blk_size = sbi->blocksize;
  657. size_t crc_offset = 0;
  658. __u32 crc = 0;
  659. *cp_page = f2fs_get_meta_page(sbi, cp_addr);
  660. if (IS_ERR(*cp_page))
  661. return PTR_ERR(*cp_page);
  662. *cp_block = (struct f2fs_checkpoint *)page_address(*cp_page);
  663. crc_offset = le32_to_cpu((*cp_block)->checksum_offset);
  664. if (crc_offset > (blk_size - sizeof(__le32))) {
  665. f2fs_put_page(*cp_page, 1);
  666. f2fs_msg(sbi->sb, KERN_WARNING,
  667. "invalid crc_offset: %zu", crc_offset);
  668. return -EINVAL;
  669. }
  670. crc = cur_cp_crc(*cp_block);
  671. if (!f2fs_crc_valid(sbi, crc, *cp_block, crc_offset)) {
  672. f2fs_put_page(*cp_page, 1);
  673. f2fs_msg(sbi->sb, KERN_WARNING, "invalid crc value");
  674. return -EINVAL;
  675. }
  676. *version = cur_cp_version(*cp_block);
  677. return 0;
  678. }
  679. static struct page *validate_checkpoint(struct f2fs_sb_info *sbi,
  680. block_t cp_addr, unsigned long long *version)
  681. {
  682. struct page *cp_page_1 = NULL, *cp_page_2 = NULL;
  683. struct f2fs_checkpoint *cp_block = NULL;
  684. unsigned long long cur_version = 0, pre_version = 0;
  685. int err;
  686. err = get_checkpoint_version(sbi, cp_addr, &cp_block,
  687. &cp_page_1, version);
  688. if (err)
  689. return NULL;
  690. if (le32_to_cpu(cp_block->cp_pack_total_block_count) >
  691. sbi->blocks_per_seg) {
  692. f2fs_msg(sbi->sb, KERN_WARNING,
  693. "invalid cp_pack_total_block_count:%u",
  694. le32_to_cpu(cp_block->cp_pack_total_block_count));
  695. goto invalid_cp;
  696. }
  697. pre_version = *version;
  698. cp_addr += le32_to_cpu(cp_block->cp_pack_total_block_count) - 1;
  699. err = get_checkpoint_version(sbi, cp_addr, &cp_block,
  700. &cp_page_2, version);
  701. if (err)
  702. goto invalid_cp;
  703. cur_version = *version;
  704. if (cur_version == pre_version) {
  705. *version = cur_version;
  706. f2fs_put_page(cp_page_2, 1);
  707. return cp_page_1;
  708. }
  709. f2fs_put_page(cp_page_2, 1);
  710. invalid_cp:
  711. f2fs_put_page(cp_page_1, 1);
  712. return NULL;
  713. }
  714. int f2fs_get_valid_checkpoint(struct f2fs_sb_info *sbi)
  715. {
  716. struct f2fs_checkpoint *cp_block;
  717. struct f2fs_super_block *fsb = sbi->raw_super;
  718. struct page *cp1, *cp2, *cur_page;
  719. unsigned long blk_size = sbi->blocksize;
  720. unsigned long long cp1_version = 0, cp2_version = 0;
  721. unsigned long long cp_start_blk_no;
  722. unsigned int cp_blks = 1 + __cp_payload(sbi);
  723. block_t cp_blk_no;
  724. int i;
  725. int err;
  726. sbi->ckpt = f2fs_kzalloc(sbi, array_size(blk_size, cp_blks),
  727. GFP_KERNEL);
  728. if (!sbi->ckpt)
  729. return -ENOMEM;
  730. /*
  731. * Finding out valid cp block involves read both
  732. * sets( cp pack1 and cp pack 2)
  733. */
  734. cp_start_blk_no = le32_to_cpu(fsb->cp_blkaddr);
  735. cp1 = validate_checkpoint(sbi, cp_start_blk_no, &cp1_version);
  736. /* The second checkpoint pack should start at the next segment */
  737. cp_start_blk_no += ((unsigned long long)1) <<
  738. le32_to_cpu(fsb->log_blocks_per_seg);
  739. cp2 = validate_checkpoint(sbi, cp_start_blk_no, &cp2_version);
  740. if (cp1 && cp2) {
  741. if (ver_after(cp2_version, cp1_version))
  742. cur_page = cp2;
  743. else
  744. cur_page = cp1;
  745. } else if (cp1) {
  746. cur_page = cp1;
  747. } else if (cp2) {
  748. cur_page = cp2;
  749. } else {
  750. err = -EFSCORRUPTED;
  751. goto fail_no_cp;
  752. }
  753. cp_block = (struct f2fs_checkpoint *)page_address(cur_page);
  754. memcpy(sbi->ckpt, cp_block, blk_size);
  755. if (cur_page == cp1)
  756. sbi->cur_cp_pack = 1;
  757. else
  758. sbi->cur_cp_pack = 2;
  759. /* Sanity checking of checkpoint */
  760. if (f2fs_sanity_check_ckpt(sbi)) {
  761. err = -EFSCORRUPTED;
  762. goto free_fail_no_cp;
  763. }
  764. if (cp_blks <= 1)
  765. goto done;
  766. cp_blk_no = le32_to_cpu(fsb->cp_blkaddr);
  767. if (cur_page == cp2)
  768. cp_blk_no += 1 << le32_to_cpu(fsb->log_blocks_per_seg);
  769. for (i = 1; i < cp_blks; i++) {
  770. void *sit_bitmap_ptr;
  771. unsigned char *ckpt = (unsigned char *)sbi->ckpt;
  772. cur_page = f2fs_get_meta_page(sbi, cp_blk_no + i);
  773. if (IS_ERR(cur_page)) {
  774. err = PTR_ERR(cur_page);
  775. goto free_fail_no_cp;
  776. }
  777. sit_bitmap_ptr = page_address(cur_page);
  778. memcpy(ckpt + i * blk_size, sit_bitmap_ptr, blk_size);
  779. f2fs_put_page(cur_page, 1);
  780. }
  781. done:
  782. f2fs_put_page(cp1, 1);
  783. f2fs_put_page(cp2, 1);
  784. return 0;
  785. free_fail_no_cp:
  786. f2fs_put_page(cp1, 1);
  787. f2fs_put_page(cp2, 1);
  788. fail_no_cp:
  789. kfree(sbi->ckpt);
  790. return err;
  791. }
  792. static void __add_dirty_inode(struct inode *inode, enum inode_type type)
  793. {
  794. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  795. int flag = (type == DIR_INODE) ? FI_DIRTY_DIR : FI_DIRTY_FILE;
  796. if (is_inode_flag_set(inode, flag))
  797. return;
  798. set_inode_flag(inode, flag);
  799. if (!f2fs_is_volatile_file(inode))
  800. list_add_tail(&F2FS_I(inode)->dirty_list,
  801. &sbi->inode_list[type]);
  802. stat_inc_dirty_inode(sbi, type);
  803. }
  804. static void __remove_dirty_inode(struct inode *inode, enum inode_type type)
  805. {
  806. int flag = (type == DIR_INODE) ? FI_DIRTY_DIR : FI_DIRTY_FILE;
  807. if (get_dirty_pages(inode) || !is_inode_flag_set(inode, flag))
  808. return;
  809. list_del_init(&F2FS_I(inode)->dirty_list);
  810. clear_inode_flag(inode, flag);
  811. stat_dec_dirty_inode(F2FS_I_SB(inode), type);
  812. }
  813. void f2fs_update_dirty_page(struct inode *inode, struct page *page)
  814. {
  815. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  816. enum inode_type type = S_ISDIR(inode->i_mode) ? DIR_INODE : FILE_INODE;
  817. if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) &&
  818. !S_ISLNK(inode->i_mode))
  819. return;
  820. spin_lock(&sbi->inode_lock[type]);
  821. if (type != FILE_INODE || test_opt(sbi, DATA_FLUSH))
  822. __add_dirty_inode(inode, type);
  823. inode_inc_dirty_pages(inode);
  824. spin_unlock(&sbi->inode_lock[type]);
  825. SetPagePrivate(page);
  826. f2fs_trace_pid(page);
  827. }
  828. void f2fs_remove_dirty_inode(struct inode *inode)
  829. {
  830. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  831. enum inode_type type = S_ISDIR(inode->i_mode) ? DIR_INODE : FILE_INODE;
  832. if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) &&
  833. !S_ISLNK(inode->i_mode))
  834. return;
  835. if (type == FILE_INODE && !test_opt(sbi, DATA_FLUSH))
  836. return;
  837. spin_lock(&sbi->inode_lock[type]);
  838. __remove_dirty_inode(inode, type);
  839. spin_unlock(&sbi->inode_lock[type]);
  840. }
  841. int f2fs_sync_dirty_inodes(struct f2fs_sb_info *sbi, enum inode_type type)
  842. {
  843. struct list_head *head;
  844. struct inode *inode;
  845. struct f2fs_inode_info *fi;
  846. bool is_dir = (type == DIR_INODE);
  847. unsigned long ino = 0;
  848. trace_f2fs_sync_dirty_inodes_enter(sbi->sb, is_dir,
  849. get_pages(sbi, is_dir ?
  850. F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA));
  851. retry:
  852. if (unlikely(f2fs_cp_error(sbi))) {
  853. trace_f2fs_sync_dirty_inodes_exit(sbi->sb, is_dir,
  854. get_pages(sbi, is_dir ?
  855. F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA));
  856. return -EIO;
  857. }
  858. spin_lock(&sbi->inode_lock[type]);
  859. head = &sbi->inode_list[type];
  860. if (list_empty(head)) {
  861. spin_unlock(&sbi->inode_lock[type]);
  862. trace_f2fs_sync_dirty_inodes_exit(sbi->sb, is_dir,
  863. get_pages(sbi, is_dir ?
  864. F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA));
  865. return 0;
  866. }
  867. fi = list_first_entry(head, struct f2fs_inode_info, dirty_list);
  868. inode = igrab(&fi->vfs_inode);
  869. spin_unlock(&sbi->inode_lock[type]);
  870. if (inode) {
  871. unsigned long cur_ino = inode->i_ino;
  872. if (is_dir)
  873. F2FS_I(inode)->cp_task = current;
  874. filemap_fdatawrite(inode->i_mapping);
  875. if (is_dir)
  876. F2FS_I(inode)->cp_task = NULL;
  877. iput(inode);
  878. /* We need to give cpu to another writers. */
  879. if (ino == cur_ino)
  880. cond_resched();
  881. else
  882. ino = cur_ino;
  883. } else {
  884. /*
  885. * We should submit bio, since it exists several
  886. * wribacking dentry pages in the freeing inode.
  887. */
  888. f2fs_submit_merged_write(sbi, DATA);
  889. cond_resched();
  890. }
  891. goto retry;
  892. }
  893. int f2fs_sync_inode_meta(struct f2fs_sb_info *sbi)
  894. {
  895. struct list_head *head = &sbi->inode_list[DIRTY_META];
  896. struct inode *inode;
  897. struct f2fs_inode_info *fi;
  898. s64 total = get_pages(sbi, F2FS_DIRTY_IMETA);
  899. while (total--) {
  900. if (unlikely(f2fs_cp_error(sbi)))
  901. return -EIO;
  902. spin_lock(&sbi->inode_lock[DIRTY_META]);
  903. if (list_empty(head)) {
  904. spin_unlock(&sbi->inode_lock[DIRTY_META]);
  905. return 0;
  906. }
  907. fi = list_first_entry(head, struct f2fs_inode_info,
  908. gdirty_list);
  909. inode = igrab(&fi->vfs_inode);
  910. spin_unlock(&sbi->inode_lock[DIRTY_META]);
  911. if (inode) {
  912. sync_inode_metadata(inode, 0);
  913. /* it's on eviction */
  914. if (is_inode_flag_set(inode, FI_DIRTY_INODE))
  915. f2fs_update_inode_page(inode);
  916. iput(inode);
  917. }
  918. }
  919. return 0;
  920. }
  921. static void __prepare_cp_block(struct f2fs_sb_info *sbi)
  922. {
  923. struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
  924. struct f2fs_nm_info *nm_i = NM_I(sbi);
  925. nid_t last_nid = nm_i->next_scan_nid;
  926. next_free_nid(sbi, &last_nid);
  927. ckpt->valid_block_count = cpu_to_le64(valid_user_blocks(sbi));
  928. ckpt->valid_node_count = cpu_to_le32(valid_node_count(sbi));
  929. ckpt->valid_inode_count = cpu_to_le32(valid_inode_count(sbi));
  930. ckpt->next_free_nid = cpu_to_le32(last_nid);
  931. }
  932. /*
  933. * Freeze all the FS-operations for checkpoint.
  934. */
  935. static int block_operations(struct f2fs_sb_info *sbi)
  936. {
  937. struct writeback_control wbc = {
  938. .sync_mode = WB_SYNC_ALL,
  939. .nr_to_write = LONG_MAX,
  940. .for_reclaim = 0,
  941. };
  942. struct blk_plug plug;
  943. int err = 0;
  944. blk_start_plug(&plug);
  945. retry_flush_dents:
  946. f2fs_lock_all(sbi);
  947. /* write all the dirty dentry pages */
  948. if (get_pages(sbi, F2FS_DIRTY_DENTS)) {
  949. f2fs_unlock_all(sbi);
  950. err = f2fs_sync_dirty_inodes(sbi, DIR_INODE);
  951. if (err)
  952. goto out;
  953. cond_resched();
  954. goto retry_flush_dents;
  955. }
  956. /*
  957. * POR: we should ensure that there are no dirty node pages
  958. * until finishing nat/sit flush. inode->i_blocks can be updated.
  959. */
  960. down_write(&sbi->node_change);
  961. if (get_pages(sbi, F2FS_DIRTY_IMETA)) {
  962. up_write(&sbi->node_change);
  963. f2fs_unlock_all(sbi);
  964. err = f2fs_sync_inode_meta(sbi);
  965. if (err)
  966. goto out;
  967. cond_resched();
  968. goto retry_flush_dents;
  969. }
  970. retry_flush_nodes:
  971. down_write(&sbi->node_write);
  972. if (get_pages(sbi, F2FS_DIRTY_NODES)) {
  973. up_write(&sbi->node_write);
  974. atomic_inc(&sbi->wb_sync_req[NODE]);
  975. err = f2fs_sync_node_pages(sbi, &wbc, false, FS_CP_NODE_IO);
  976. atomic_dec(&sbi->wb_sync_req[NODE]);
  977. if (err) {
  978. up_write(&sbi->node_change);
  979. f2fs_unlock_all(sbi);
  980. goto out;
  981. }
  982. cond_resched();
  983. goto retry_flush_nodes;
  984. }
  985. /*
  986. * sbi->node_change is used only for AIO write_begin path which produces
  987. * dirty node blocks and some checkpoint values by block allocation.
  988. */
  989. __prepare_cp_block(sbi);
  990. up_write(&sbi->node_change);
  991. out:
  992. blk_finish_plug(&plug);
  993. return err;
  994. }
  995. static void unblock_operations(struct f2fs_sb_info *sbi)
  996. {
  997. up_write(&sbi->node_write);
  998. f2fs_unlock_all(sbi);
  999. }
  1000. void f2fs_wait_on_all_pages_writeback(struct f2fs_sb_info *sbi)
  1001. {
  1002. DEFINE_WAIT(wait);
  1003. for (;;) {
  1004. prepare_to_wait(&sbi->cp_wait, &wait, TASK_UNINTERRUPTIBLE);
  1005. if (!get_pages(sbi, F2FS_WB_CP_DATA))
  1006. break;
  1007. if (unlikely(f2fs_cp_error(sbi)))
  1008. break;
  1009. io_schedule_timeout(5*HZ);
  1010. }
  1011. finish_wait(&sbi->cp_wait, &wait);
  1012. }
  1013. static void update_ckpt_flags(struct f2fs_sb_info *sbi, struct cp_control *cpc)
  1014. {
  1015. unsigned long orphan_num = sbi->im[ORPHAN_INO].ino_num;
  1016. struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
  1017. unsigned long flags;
  1018. spin_lock_irqsave(&sbi->cp_lock, flags);
  1019. if ((cpc->reason & CP_UMOUNT) &&
  1020. le32_to_cpu(ckpt->cp_pack_total_block_count) >
  1021. sbi->blocks_per_seg - NM_I(sbi)->nat_bits_blocks)
  1022. disable_nat_bits(sbi, false);
  1023. if (cpc->reason & CP_TRIMMED)
  1024. __set_ckpt_flags(ckpt, CP_TRIMMED_FLAG);
  1025. else
  1026. __clear_ckpt_flags(ckpt, CP_TRIMMED_FLAG);
  1027. if (cpc->reason & CP_UMOUNT)
  1028. __set_ckpt_flags(ckpt, CP_UMOUNT_FLAG);
  1029. else
  1030. __clear_ckpt_flags(ckpt, CP_UMOUNT_FLAG);
  1031. if (cpc->reason & CP_FASTBOOT)
  1032. __set_ckpt_flags(ckpt, CP_FASTBOOT_FLAG);
  1033. else
  1034. __clear_ckpt_flags(ckpt, CP_FASTBOOT_FLAG);
  1035. if (orphan_num)
  1036. __set_ckpt_flags(ckpt, CP_ORPHAN_PRESENT_FLAG);
  1037. else
  1038. __clear_ckpt_flags(ckpt, CP_ORPHAN_PRESENT_FLAG);
  1039. if (is_sbi_flag_set(sbi, SBI_NEED_FSCK))
  1040. __set_ckpt_flags(ckpt, CP_FSCK_FLAG);
  1041. /* set this flag to activate crc|cp_ver for recovery */
  1042. __set_ckpt_flags(ckpt, CP_CRC_RECOVERY_FLAG);
  1043. __clear_ckpt_flags(ckpt, CP_NOCRC_RECOVERY_FLAG);
  1044. spin_unlock_irqrestore(&sbi->cp_lock, flags);
  1045. }
  1046. static void commit_checkpoint(struct f2fs_sb_info *sbi,
  1047. void *src, block_t blk_addr)
  1048. {
  1049. struct writeback_control wbc = {
  1050. .for_reclaim = 0,
  1051. };
  1052. /*
  1053. * pagevec_lookup_tag and lock_page again will take
  1054. * some extra time. Therefore, f2fs_update_meta_pages and
  1055. * f2fs_sync_meta_pages are combined in this function.
  1056. */
  1057. struct page *page = f2fs_grab_meta_page(sbi, blk_addr);
  1058. int err;
  1059. memcpy(page_address(page), src, PAGE_SIZE);
  1060. set_page_dirty(page);
  1061. f2fs_wait_on_page_writeback(page, META, true);
  1062. f2fs_bug_on(sbi, PageWriteback(page));
  1063. if (unlikely(!clear_page_dirty_for_io(page)))
  1064. f2fs_bug_on(sbi, 1);
  1065. /* writeout cp pack 2 page */
  1066. err = __f2fs_write_meta_page(page, &wbc, FS_CP_META_IO);
  1067. if (unlikely(err && f2fs_cp_error(sbi))) {
  1068. f2fs_put_page(page, 1);
  1069. return;
  1070. }
  1071. f2fs_bug_on(sbi, err);
  1072. f2fs_put_page(page, 0);
  1073. /* submit checkpoint (with barrier if NOBARRIER is not set) */
  1074. f2fs_submit_merged_write(sbi, META_FLUSH);
  1075. }
  1076. static int do_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc)
  1077. {
  1078. struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
  1079. struct f2fs_nm_info *nm_i = NM_I(sbi);
  1080. unsigned long orphan_num = sbi->im[ORPHAN_INO].ino_num, flags;
  1081. block_t start_blk;
  1082. unsigned int data_sum_blocks, orphan_blocks;
  1083. __u32 crc32 = 0;
  1084. int i;
  1085. int cp_payload_blks = __cp_payload(sbi);
  1086. struct super_block *sb = sbi->sb;
  1087. struct curseg_info *seg_i = CURSEG_I(sbi, CURSEG_HOT_NODE);
  1088. u64 kbytes_written;
  1089. int err;
  1090. /* Flush all the NAT/SIT pages */
  1091. while (get_pages(sbi, F2FS_DIRTY_META)) {
  1092. f2fs_sync_meta_pages(sbi, META, LONG_MAX, FS_CP_META_IO);
  1093. if (unlikely(f2fs_cp_error(sbi)))
  1094. break;
  1095. }
  1096. /*
  1097. * modify checkpoint
  1098. * version number is already updated
  1099. */
  1100. ckpt->elapsed_time = cpu_to_le64(get_mtime(sbi, true));
  1101. ckpt->free_segment_count = cpu_to_le32(free_segments(sbi));
  1102. for (i = 0; i < NR_CURSEG_NODE_TYPE; i++) {
  1103. ckpt->cur_node_segno[i] =
  1104. cpu_to_le32(curseg_segno(sbi, i + CURSEG_HOT_NODE));
  1105. ckpt->cur_node_blkoff[i] =
  1106. cpu_to_le16(curseg_blkoff(sbi, i + CURSEG_HOT_NODE));
  1107. ckpt->alloc_type[i + CURSEG_HOT_NODE] =
  1108. curseg_alloc_type(sbi, i + CURSEG_HOT_NODE);
  1109. }
  1110. for (i = 0; i < NR_CURSEG_DATA_TYPE; i++) {
  1111. ckpt->cur_data_segno[i] =
  1112. cpu_to_le32(curseg_segno(sbi, i + CURSEG_HOT_DATA));
  1113. ckpt->cur_data_blkoff[i] =
  1114. cpu_to_le16(curseg_blkoff(sbi, i + CURSEG_HOT_DATA));
  1115. ckpt->alloc_type[i + CURSEG_HOT_DATA] =
  1116. curseg_alloc_type(sbi, i + CURSEG_HOT_DATA);
  1117. }
  1118. /* 2 cp + n data seg summary + orphan inode blocks */
  1119. data_sum_blocks = f2fs_npages_for_summary_flush(sbi, false);
  1120. spin_lock_irqsave(&sbi->cp_lock, flags);
  1121. if (data_sum_blocks < NR_CURSEG_DATA_TYPE)
  1122. __set_ckpt_flags(ckpt, CP_COMPACT_SUM_FLAG);
  1123. else
  1124. __clear_ckpt_flags(ckpt, CP_COMPACT_SUM_FLAG);
  1125. spin_unlock_irqrestore(&sbi->cp_lock, flags);
  1126. orphan_blocks = GET_ORPHAN_BLOCKS(orphan_num);
  1127. ckpt->cp_pack_start_sum = cpu_to_le32(1 + cp_payload_blks +
  1128. orphan_blocks);
  1129. if (__remain_node_summaries(cpc->reason))
  1130. ckpt->cp_pack_total_block_count = cpu_to_le32(F2FS_CP_PACKS+
  1131. cp_payload_blks + data_sum_blocks +
  1132. orphan_blocks + NR_CURSEG_NODE_TYPE);
  1133. else
  1134. ckpt->cp_pack_total_block_count = cpu_to_le32(F2FS_CP_PACKS +
  1135. cp_payload_blks + data_sum_blocks +
  1136. orphan_blocks);
  1137. /* update ckpt flag for checkpoint */
  1138. update_ckpt_flags(sbi, cpc);
  1139. /* update SIT/NAT bitmap */
  1140. get_sit_bitmap(sbi, __bitmap_ptr(sbi, SIT_BITMAP));
  1141. get_nat_bitmap(sbi, __bitmap_ptr(sbi, NAT_BITMAP));
  1142. crc32 = f2fs_crc32(sbi, ckpt, le32_to_cpu(ckpt->checksum_offset));
  1143. *((__le32 *)((unsigned char *)ckpt +
  1144. le32_to_cpu(ckpt->checksum_offset)))
  1145. = cpu_to_le32(crc32);
  1146. start_blk = __start_cp_next_addr(sbi);
  1147. /* write nat bits */
  1148. if (enabled_nat_bits(sbi, cpc)) {
  1149. __u64 cp_ver = cur_cp_version(ckpt);
  1150. block_t blk;
  1151. cp_ver |= ((__u64)crc32 << 32);
  1152. *(__le64 *)nm_i->nat_bits = cpu_to_le64(cp_ver);
  1153. blk = start_blk + sbi->blocks_per_seg - nm_i->nat_bits_blocks;
  1154. for (i = 0; i < nm_i->nat_bits_blocks; i++)
  1155. f2fs_update_meta_page(sbi, nm_i->nat_bits +
  1156. (i << F2FS_BLKSIZE_BITS), blk + i);
  1157. /* Flush all the NAT BITS pages */
  1158. while (get_pages(sbi, F2FS_DIRTY_META)) {
  1159. f2fs_sync_meta_pages(sbi, META, LONG_MAX,
  1160. FS_CP_META_IO);
  1161. if (unlikely(f2fs_cp_error(sbi)))
  1162. break;
  1163. }
  1164. }
  1165. /* write out checkpoint buffer at block 0 */
  1166. f2fs_update_meta_page(sbi, ckpt, start_blk++);
  1167. for (i = 1; i < 1 + cp_payload_blks; i++)
  1168. f2fs_update_meta_page(sbi, (char *)ckpt + i * F2FS_BLKSIZE,
  1169. start_blk++);
  1170. if (orphan_num) {
  1171. write_orphan_inodes(sbi, start_blk);
  1172. start_blk += orphan_blocks;
  1173. }
  1174. f2fs_write_data_summaries(sbi, start_blk);
  1175. start_blk += data_sum_blocks;
  1176. /* Record write statistics in the hot node summary */
  1177. kbytes_written = sbi->kbytes_written;
  1178. if (sb->s_bdev->bd_part)
  1179. kbytes_written += BD_PART_WRITTEN(sbi);
  1180. seg_i->journal->info.kbytes_written = cpu_to_le64(kbytes_written);
  1181. if (__remain_node_summaries(cpc->reason)) {
  1182. f2fs_write_node_summaries(sbi, start_blk);
  1183. start_blk += NR_CURSEG_NODE_TYPE;
  1184. }
  1185. /* update user_block_counts */
  1186. sbi->last_valid_block_count = sbi->total_valid_block_count;
  1187. percpu_counter_set(&sbi->alloc_valid_block_count, 0);
  1188. /* Here, we have one bio having CP pack except cp pack 2 page */
  1189. f2fs_sync_meta_pages(sbi, META, LONG_MAX, FS_CP_META_IO);
  1190. /* wait for previous submitted meta pages writeback */
  1191. f2fs_wait_on_all_pages_writeback(sbi);
  1192. /* flush all device cache */
  1193. err = f2fs_flush_device_cache(sbi);
  1194. if (err)
  1195. return err;
  1196. /* barrier and flush checkpoint cp pack 2 page if it can */
  1197. commit_checkpoint(sbi, ckpt, start_blk);
  1198. f2fs_wait_on_all_pages_writeback(sbi);
  1199. /*
  1200. * invalidate intermediate page cache borrowed from meta inode
  1201. * which are used for migration of encrypted inode's blocks.
  1202. */
  1203. if (f2fs_sb_has_encrypt(sbi->sb))
  1204. invalidate_mapping_pages(META_MAPPING(sbi),
  1205. MAIN_BLKADDR(sbi), MAX_BLKADDR(sbi) - 1);
  1206. f2fs_release_ino_entry(sbi, false);
  1207. f2fs_reset_fsync_node_info(sbi);
  1208. clear_sbi_flag(sbi, SBI_IS_DIRTY);
  1209. clear_sbi_flag(sbi, SBI_NEED_CP);
  1210. __set_cp_next_pack(sbi);
  1211. /*
  1212. * redirty superblock if metadata like node page or inode cache is
  1213. * updated during writing checkpoint.
  1214. */
  1215. if (get_pages(sbi, F2FS_DIRTY_NODES) ||
  1216. get_pages(sbi, F2FS_DIRTY_IMETA))
  1217. set_sbi_flag(sbi, SBI_IS_DIRTY);
  1218. f2fs_bug_on(sbi, get_pages(sbi, F2FS_DIRTY_DENTS));
  1219. return unlikely(f2fs_cp_error(sbi)) ? -EIO : 0;
  1220. }
  1221. /*
  1222. * We guarantee that this checkpoint procedure will not fail.
  1223. */
  1224. int f2fs_write_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc)
  1225. {
  1226. struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
  1227. unsigned long long ckpt_ver;
  1228. int err = 0;
  1229. mutex_lock(&sbi->cp_mutex);
  1230. if (!is_sbi_flag_set(sbi, SBI_IS_DIRTY) &&
  1231. ((cpc->reason & CP_FASTBOOT) || (cpc->reason & CP_SYNC) ||
  1232. ((cpc->reason & CP_DISCARD) && !sbi->discard_blks)))
  1233. goto out;
  1234. if (unlikely(f2fs_cp_error(sbi))) {
  1235. err = -EIO;
  1236. goto out;
  1237. }
  1238. if (f2fs_readonly(sbi->sb)) {
  1239. err = -EROFS;
  1240. goto out;
  1241. }
  1242. trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "start block_ops");
  1243. err = block_operations(sbi);
  1244. if (err)
  1245. goto out;
  1246. trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "finish block_ops");
  1247. f2fs_flush_merged_writes(sbi);
  1248. /* this is the case of multiple fstrims without any changes */
  1249. if (cpc->reason & CP_DISCARD) {
  1250. if (!f2fs_exist_trim_candidates(sbi, cpc)) {
  1251. unblock_operations(sbi);
  1252. goto out;
  1253. }
  1254. if (NM_I(sbi)->dirty_nat_cnt == 0 &&
  1255. SIT_I(sbi)->dirty_sentries == 0 &&
  1256. prefree_segments(sbi) == 0) {
  1257. f2fs_flush_sit_entries(sbi, cpc);
  1258. f2fs_clear_prefree_segments(sbi, cpc);
  1259. unblock_operations(sbi);
  1260. goto out;
  1261. }
  1262. }
  1263. /*
  1264. * update checkpoint pack index
  1265. * Increase the version number so that
  1266. * SIT entries and seg summaries are written at correct place
  1267. */
  1268. ckpt_ver = cur_cp_version(ckpt);
  1269. ckpt->checkpoint_ver = cpu_to_le64(++ckpt_ver);
  1270. /* write cached NAT/SIT entries to NAT/SIT area */
  1271. f2fs_flush_nat_entries(sbi, cpc);
  1272. f2fs_flush_sit_entries(sbi, cpc);
  1273. /* unlock all the fs_lock[] in do_checkpoint() */
  1274. err = do_checkpoint(sbi, cpc);
  1275. if (err)
  1276. f2fs_release_discard_addrs(sbi);
  1277. else
  1278. f2fs_clear_prefree_segments(sbi, cpc);
  1279. unblock_operations(sbi);
  1280. stat_inc_cp_count(sbi->stat_info);
  1281. if (cpc->reason & CP_RECOVERY)
  1282. f2fs_msg(sbi->sb, KERN_NOTICE,
  1283. "checkpoint: version = %llx", ckpt_ver);
  1284. /* do checkpoint periodically */
  1285. f2fs_update_time(sbi, CP_TIME);
  1286. trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "finish checkpoint");
  1287. out:
  1288. mutex_unlock(&sbi->cp_mutex);
  1289. return err;
  1290. }
  1291. void f2fs_init_ino_entry_info(struct f2fs_sb_info *sbi)
  1292. {
  1293. int i;
  1294. for (i = 0; i < MAX_INO_ENTRY; i++) {
  1295. struct inode_management *im = &sbi->im[i];
  1296. INIT_RADIX_TREE(&im->ino_root, GFP_ATOMIC);
  1297. spin_lock_init(&im->ino_lock);
  1298. INIT_LIST_HEAD(&im->ino_list);
  1299. im->ino_num = 0;
  1300. }
  1301. sbi->max_orphans = (sbi->blocks_per_seg - F2FS_CP_PACKS -
  1302. NR_CURSEG_TYPE - __cp_payload(sbi)) *
  1303. F2FS_ORPHANS_PER_BLOCK;
  1304. }
  1305. int __init f2fs_create_checkpoint_caches(void)
  1306. {
  1307. ino_entry_slab = f2fs_kmem_cache_create("f2fs_ino_entry",
  1308. sizeof(struct ino_entry));
  1309. if (!ino_entry_slab)
  1310. return -ENOMEM;
  1311. f2fs_inode_entry_slab = f2fs_kmem_cache_create("f2fs_inode_entry",
  1312. sizeof(struct inode_entry));
  1313. if (!f2fs_inode_entry_slab) {
  1314. kmem_cache_destroy(ino_entry_slab);
  1315. return -ENOMEM;
  1316. }
  1317. return 0;
  1318. }
  1319. void f2fs_destroy_checkpoint_caches(void)
  1320. {
  1321. kmem_cache_destroy(ino_entry_slab);
  1322. kmem_cache_destroy(f2fs_inode_entry_slab);
  1323. }