file.c 73 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108
  1. /*
  2. * fs/f2fs/file.c
  3. *
  4. * Copyright (c) 2012 Samsung Electronics Co., Ltd.
  5. * http://www.samsung.com/
  6. *
  7. * This program is free software; you can redistribute it and/or modify
  8. * it under the terms of the GNU General Public License version 2 as
  9. * published by the Free Software Foundation.
  10. */
  11. #include <linux/fs.h>
  12. #include <linux/f2fs_fs.h>
  13. #include <linux/stat.h>
  14. #include <linux/buffer_head.h>
  15. #include <linux/writeback.h>
  16. #include <linux/blkdev.h>
  17. #include <linux/falloc.h>
  18. #include <linux/types.h>
  19. #include <linux/compat.h>
  20. #include <linux/uaccess.h>
  21. #include <linux/mount.h>
  22. #include <linux/pagevec.h>
  23. #include <linux/uio.h>
  24. #include <linux/uuid.h>
  25. #include <linux/file.h>
  26. #include "f2fs.h"
  27. #include "node.h"
  28. #include "segment.h"
  29. #include "xattr.h"
  30. #include "acl.h"
  31. #include "gc.h"
  32. #include "trace.h"
  33. #include <trace/events/f2fs.h>
  34. static vm_fault_t f2fs_filemap_fault(struct vm_fault *vmf)
  35. {
  36. struct inode *inode = file_inode(vmf->vma->vm_file);
  37. vm_fault_t ret;
  38. down_read(&F2FS_I(inode)->i_mmap_sem);
  39. ret = filemap_fault(vmf);
  40. up_read(&F2FS_I(inode)->i_mmap_sem);
  41. return ret;
  42. }
  43. static vm_fault_t f2fs_vm_page_mkwrite(struct vm_fault *vmf)
  44. {
  45. struct page *page = vmf->page;
  46. struct inode *inode = file_inode(vmf->vma->vm_file);
  47. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  48. struct dnode_of_data dn;
  49. int err;
  50. if (unlikely(f2fs_cp_error(sbi))) {
  51. err = -EIO;
  52. goto err;
  53. }
  54. sb_start_pagefault(inode->i_sb);
  55. f2fs_bug_on(sbi, f2fs_has_inline_data(inode));
  56. /* block allocation */
  57. f2fs_lock_op(sbi);
  58. set_new_dnode(&dn, inode, NULL, NULL, 0);
  59. err = f2fs_reserve_block(&dn, page->index);
  60. if (err) {
  61. f2fs_unlock_op(sbi);
  62. goto out;
  63. }
  64. f2fs_put_dnode(&dn);
  65. f2fs_unlock_op(sbi);
  66. f2fs_balance_fs(sbi, dn.node_changed);
  67. file_update_time(vmf->vma->vm_file);
  68. down_read(&F2FS_I(inode)->i_mmap_sem);
  69. lock_page(page);
  70. if (unlikely(page->mapping != inode->i_mapping ||
  71. page_offset(page) > i_size_read(inode) ||
  72. !PageUptodate(page))) {
  73. unlock_page(page);
  74. err = -EFAULT;
  75. goto out_sem;
  76. }
  77. /*
  78. * check to see if the page is mapped already (no holes)
  79. */
  80. if (PageMappedToDisk(page))
  81. goto mapped;
  82. /* page is wholly or partially inside EOF */
  83. if (((loff_t)(page->index + 1) << PAGE_SHIFT) >
  84. i_size_read(inode)) {
  85. loff_t offset;
  86. offset = i_size_read(inode) & ~PAGE_MASK;
  87. zero_user_segment(page, offset, PAGE_SIZE);
  88. }
  89. set_page_dirty(page);
  90. if (!PageUptodate(page))
  91. SetPageUptodate(page);
  92. f2fs_update_iostat(sbi, APP_MAPPED_IO, F2FS_BLKSIZE);
  93. trace_f2fs_vm_page_mkwrite(page, DATA);
  94. mapped:
  95. /* fill the page */
  96. f2fs_wait_on_page_writeback(page, DATA, false);
  97. /* wait for GCed page writeback via META_MAPPING */
  98. f2fs_wait_on_block_writeback(inode, dn.data_blkaddr);
  99. out_sem:
  100. up_read(&F2FS_I(inode)->i_mmap_sem);
  101. out:
  102. sb_end_pagefault(inode->i_sb);
  103. f2fs_update_time(sbi, REQ_TIME);
  104. err:
  105. return block_page_mkwrite_return(err);
  106. }
  107. static const struct vm_operations_struct f2fs_file_vm_ops = {
  108. .fault = f2fs_filemap_fault,
  109. .map_pages = filemap_map_pages,
  110. .page_mkwrite = f2fs_vm_page_mkwrite,
  111. };
  112. static int get_parent_ino(struct inode *inode, nid_t *pino)
  113. {
  114. struct dentry *dentry;
  115. inode = igrab(inode);
  116. dentry = d_find_any_alias(inode);
  117. iput(inode);
  118. if (!dentry)
  119. return 0;
  120. *pino = parent_ino(dentry);
  121. dput(dentry);
  122. return 1;
  123. }
  124. static inline enum cp_reason_type need_do_checkpoint(struct inode *inode)
  125. {
  126. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  127. enum cp_reason_type cp_reason = CP_NO_NEEDED;
  128. if (!S_ISREG(inode->i_mode))
  129. cp_reason = CP_NON_REGULAR;
  130. else if (inode->i_nlink != 1)
  131. cp_reason = CP_HARDLINK;
  132. else if (is_sbi_flag_set(sbi, SBI_NEED_CP))
  133. cp_reason = CP_SB_NEED_CP;
  134. else if (file_wrong_pino(inode))
  135. cp_reason = CP_WRONG_PINO;
  136. else if (!f2fs_space_for_roll_forward(sbi))
  137. cp_reason = CP_NO_SPC_ROLL;
  138. else if (!f2fs_is_checkpointed_node(sbi, F2FS_I(inode)->i_pino))
  139. cp_reason = CP_NODE_NEED_CP;
  140. else if (test_opt(sbi, FASTBOOT))
  141. cp_reason = CP_FASTBOOT_MODE;
  142. else if (F2FS_OPTION(sbi).active_logs == 2)
  143. cp_reason = CP_SPEC_LOG_NUM;
  144. else if (F2FS_OPTION(sbi).fsync_mode == FSYNC_MODE_STRICT &&
  145. f2fs_need_dentry_mark(sbi, inode->i_ino) &&
  146. f2fs_exist_written_data(sbi, F2FS_I(inode)->i_pino,
  147. TRANS_DIR_INO))
  148. cp_reason = CP_RECOVER_DIR;
  149. return cp_reason;
  150. }
  151. static bool need_inode_page_update(struct f2fs_sb_info *sbi, nid_t ino)
  152. {
  153. struct page *i = find_get_page(NODE_MAPPING(sbi), ino);
  154. bool ret = false;
  155. /* But we need to avoid that there are some inode updates */
  156. if ((i && PageDirty(i)) || f2fs_need_inode_block_update(sbi, ino))
  157. ret = true;
  158. f2fs_put_page(i, 0);
  159. return ret;
  160. }
  161. static void try_to_fix_pino(struct inode *inode)
  162. {
  163. struct f2fs_inode_info *fi = F2FS_I(inode);
  164. nid_t pino;
  165. down_write(&fi->i_sem);
  166. if (file_wrong_pino(inode) && inode->i_nlink == 1 &&
  167. get_parent_ino(inode, &pino)) {
  168. f2fs_i_pino_write(inode, pino);
  169. file_got_pino(inode);
  170. }
  171. up_write(&fi->i_sem);
  172. }
  173. static int f2fs_do_sync_file(struct file *file, loff_t start, loff_t end,
  174. int datasync, bool atomic)
  175. {
  176. struct inode *inode = file->f_mapping->host;
  177. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  178. nid_t ino = inode->i_ino;
  179. int ret = 0;
  180. enum cp_reason_type cp_reason = 0;
  181. struct writeback_control wbc = {
  182. .sync_mode = WB_SYNC_ALL,
  183. .nr_to_write = LONG_MAX,
  184. .for_reclaim = 0,
  185. };
  186. unsigned int seq_id = 0;
  187. if (unlikely(f2fs_readonly(inode->i_sb)))
  188. return 0;
  189. trace_f2fs_sync_file_enter(inode);
  190. if (S_ISDIR(inode->i_mode))
  191. goto go_write;
  192. /* if fdatasync is triggered, let's do in-place-update */
  193. if (datasync || get_dirty_pages(inode) <= SM_I(sbi)->min_fsync_blocks)
  194. set_inode_flag(inode, FI_NEED_IPU);
  195. ret = file_write_and_wait_range(file, start, end);
  196. clear_inode_flag(inode, FI_NEED_IPU);
  197. if (ret) {
  198. trace_f2fs_sync_file_exit(inode, cp_reason, datasync, ret);
  199. return ret;
  200. }
  201. /* if the inode is dirty, let's recover all the time */
  202. if (!f2fs_skip_inode_update(inode, datasync)) {
  203. f2fs_write_inode(inode, NULL);
  204. goto go_write;
  205. }
  206. /*
  207. * if there is no written data, don't waste time to write recovery info.
  208. */
  209. if (!is_inode_flag_set(inode, FI_APPEND_WRITE) &&
  210. !f2fs_exist_written_data(sbi, ino, APPEND_INO)) {
  211. /* it may call write_inode just prior to fsync */
  212. if (need_inode_page_update(sbi, ino))
  213. goto go_write;
  214. if (is_inode_flag_set(inode, FI_UPDATE_WRITE) ||
  215. f2fs_exist_written_data(sbi, ino, UPDATE_INO))
  216. goto flush_out;
  217. goto out;
  218. }
  219. go_write:
  220. /*
  221. * Both of fdatasync() and fsync() are able to be recovered from
  222. * sudden-power-off.
  223. */
  224. down_read(&F2FS_I(inode)->i_sem);
  225. cp_reason = need_do_checkpoint(inode);
  226. up_read(&F2FS_I(inode)->i_sem);
  227. if (cp_reason) {
  228. /* all the dirty node pages should be flushed for POR */
  229. ret = f2fs_sync_fs(inode->i_sb, 1);
  230. /*
  231. * We've secured consistency through sync_fs. Following pino
  232. * will be used only for fsynced inodes after checkpoint.
  233. */
  234. try_to_fix_pino(inode);
  235. clear_inode_flag(inode, FI_APPEND_WRITE);
  236. clear_inode_flag(inode, FI_UPDATE_WRITE);
  237. goto out;
  238. }
  239. sync_nodes:
  240. atomic_inc(&sbi->wb_sync_req[NODE]);
  241. ret = f2fs_fsync_node_pages(sbi, inode, &wbc, atomic, &seq_id);
  242. atomic_dec(&sbi->wb_sync_req[NODE]);
  243. if (ret)
  244. goto out;
  245. /* if cp_error was enabled, we should avoid infinite loop */
  246. if (unlikely(f2fs_cp_error(sbi))) {
  247. ret = -EIO;
  248. goto out;
  249. }
  250. if (f2fs_need_inode_block_update(sbi, ino)) {
  251. f2fs_mark_inode_dirty_sync(inode, true);
  252. f2fs_write_inode(inode, NULL);
  253. goto sync_nodes;
  254. }
  255. /*
  256. * If it's atomic_write, it's just fine to keep write ordering. So
  257. * here we don't need to wait for node write completion, since we use
  258. * node chain which serializes node blocks. If one of node writes are
  259. * reordered, we can see simply broken chain, resulting in stopping
  260. * roll-forward recovery. It means we'll recover all or none node blocks
  261. * given fsync mark.
  262. */
  263. if (!atomic) {
  264. ret = f2fs_wait_on_node_pages_writeback(sbi, seq_id);
  265. if (ret)
  266. goto out;
  267. }
  268. /* once recovery info is written, don't need to tack this */
  269. f2fs_remove_ino_entry(sbi, ino, APPEND_INO);
  270. clear_inode_flag(inode, FI_APPEND_WRITE);
  271. flush_out:
  272. if (!atomic && F2FS_OPTION(sbi).fsync_mode != FSYNC_MODE_NOBARRIER)
  273. ret = f2fs_issue_flush(sbi, inode->i_ino);
  274. if (!ret) {
  275. f2fs_remove_ino_entry(sbi, ino, UPDATE_INO);
  276. clear_inode_flag(inode, FI_UPDATE_WRITE);
  277. f2fs_remove_ino_entry(sbi, ino, FLUSH_INO);
  278. }
  279. f2fs_update_time(sbi, REQ_TIME);
  280. out:
  281. trace_f2fs_sync_file_exit(inode, cp_reason, datasync, ret);
  282. f2fs_trace_ios(NULL, 1);
  283. return ret;
  284. }
  285. int f2fs_sync_file(struct file *file, loff_t start, loff_t end, int datasync)
  286. {
  287. if (unlikely(f2fs_cp_error(F2FS_I_SB(file_inode(file)))))
  288. return -EIO;
  289. return f2fs_do_sync_file(file, start, end, datasync, false);
  290. }
  291. static pgoff_t __get_first_dirty_index(struct address_space *mapping,
  292. pgoff_t pgofs, int whence)
  293. {
  294. struct page *page;
  295. int nr_pages;
  296. if (whence != SEEK_DATA)
  297. return 0;
  298. /* find first dirty page index */
  299. nr_pages = find_get_pages_tag(mapping, &pgofs, PAGECACHE_TAG_DIRTY,
  300. 1, &page);
  301. if (!nr_pages)
  302. return ULONG_MAX;
  303. pgofs = page->index;
  304. put_page(page);
  305. return pgofs;
  306. }
  307. static bool __found_offset(struct f2fs_sb_info *sbi, block_t blkaddr,
  308. pgoff_t dirty, pgoff_t pgofs, int whence)
  309. {
  310. switch (whence) {
  311. case SEEK_DATA:
  312. if ((blkaddr == NEW_ADDR && dirty == pgofs) ||
  313. is_valid_data_blkaddr(sbi, blkaddr))
  314. return true;
  315. break;
  316. case SEEK_HOLE:
  317. if (blkaddr == NULL_ADDR)
  318. return true;
  319. break;
  320. }
  321. return false;
  322. }
  323. static loff_t f2fs_seek_block(struct file *file, loff_t offset, int whence)
  324. {
  325. struct inode *inode = file->f_mapping->host;
  326. loff_t maxbytes = inode->i_sb->s_maxbytes;
  327. struct dnode_of_data dn;
  328. pgoff_t pgofs, end_offset, dirty;
  329. loff_t data_ofs = offset;
  330. loff_t isize;
  331. int err = 0;
  332. inode_lock(inode);
  333. isize = i_size_read(inode);
  334. if (offset >= isize)
  335. goto fail;
  336. /* handle inline data case */
  337. if (f2fs_has_inline_data(inode) || f2fs_has_inline_dentry(inode)) {
  338. if (whence == SEEK_HOLE)
  339. data_ofs = isize;
  340. goto found;
  341. }
  342. pgofs = (pgoff_t)(offset >> PAGE_SHIFT);
  343. dirty = __get_first_dirty_index(inode->i_mapping, pgofs, whence);
  344. for (; data_ofs < isize; data_ofs = (loff_t)pgofs << PAGE_SHIFT) {
  345. set_new_dnode(&dn, inode, NULL, NULL, 0);
  346. err = f2fs_get_dnode_of_data(&dn, pgofs, LOOKUP_NODE);
  347. if (err && err != -ENOENT) {
  348. goto fail;
  349. } else if (err == -ENOENT) {
  350. /* direct node does not exists */
  351. if (whence == SEEK_DATA) {
  352. pgofs = f2fs_get_next_page_offset(&dn, pgofs);
  353. continue;
  354. } else {
  355. goto found;
  356. }
  357. }
  358. end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
  359. /* find data/hole in dnode block */
  360. for (; dn.ofs_in_node < end_offset;
  361. dn.ofs_in_node++, pgofs++,
  362. data_ofs = (loff_t)pgofs << PAGE_SHIFT) {
  363. block_t blkaddr;
  364. blkaddr = datablock_addr(dn.inode,
  365. dn.node_page, dn.ofs_in_node);
  366. if (__is_valid_data_blkaddr(blkaddr) &&
  367. !f2fs_is_valid_blkaddr(F2FS_I_SB(inode),
  368. blkaddr, DATA_GENERIC)) {
  369. f2fs_put_dnode(&dn);
  370. goto fail;
  371. }
  372. if (__found_offset(F2FS_I_SB(inode), blkaddr, dirty,
  373. pgofs, whence)) {
  374. f2fs_put_dnode(&dn);
  375. goto found;
  376. }
  377. }
  378. f2fs_put_dnode(&dn);
  379. }
  380. if (whence == SEEK_DATA)
  381. goto fail;
  382. found:
  383. if (whence == SEEK_HOLE && data_ofs > isize)
  384. data_ofs = isize;
  385. inode_unlock(inode);
  386. return vfs_setpos(file, data_ofs, maxbytes);
  387. fail:
  388. inode_unlock(inode);
  389. return -ENXIO;
  390. }
  391. static loff_t f2fs_llseek(struct file *file, loff_t offset, int whence)
  392. {
  393. struct inode *inode = file->f_mapping->host;
  394. loff_t maxbytes = inode->i_sb->s_maxbytes;
  395. switch (whence) {
  396. case SEEK_SET:
  397. case SEEK_CUR:
  398. case SEEK_END:
  399. return generic_file_llseek_size(file, offset, whence,
  400. maxbytes, i_size_read(inode));
  401. case SEEK_DATA:
  402. case SEEK_HOLE:
  403. if (offset < 0)
  404. return -ENXIO;
  405. return f2fs_seek_block(file, offset, whence);
  406. }
  407. return -EINVAL;
  408. }
  409. static int f2fs_file_mmap(struct file *file, struct vm_area_struct *vma)
  410. {
  411. struct inode *inode = file_inode(file);
  412. int err;
  413. if (unlikely(f2fs_cp_error(F2FS_I_SB(inode))))
  414. return -EIO;
  415. /* we don't need to use inline_data strictly */
  416. err = f2fs_convert_inline_inode(inode);
  417. if (err)
  418. return err;
  419. file_accessed(file);
  420. vma->vm_ops = &f2fs_file_vm_ops;
  421. return 0;
  422. }
  423. static int f2fs_file_open(struct inode *inode, struct file *filp)
  424. {
  425. int err = fscrypt_file_open(inode, filp);
  426. if (err)
  427. return err;
  428. filp->f_mode |= FMODE_NOWAIT;
  429. return dquot_file_open(inode, filp);
  430. }
  431. void f2fs_truncate_data_blocks_range(struct dnode_of_data *dn, int count)
  432. {
  433. struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
  434. struct f2fs_node *raw_node;
  435. int nr_free = 0, ofs = dn->ofs_in_node, len = count;
  436. __le32 *addr;
  437. int base = 0;
  438. if (IS_INODE(dn->node_page) && f2fs_has_extra_attr(dn->inode))
  439. base = get_extra_isize(dn->inode);
  440. raw_node = F2FS_NODE(dn->node_page);
  441. addr = blkaddr_in_node(raw_node) + base + ofs;
  442. for (; count > 0; count--, addr++, dn->ofs_in_node++) {
  443. block_t blkaddr = le32_to_cpu(*addr);
  444. if (blkaddr == NULL_ADDR)
  445. continue;
  446. dn->data_blkaddr = NULL_ADDR;
  447. f2fs_set_data_blkaddr(dn);
  448. if (__is_valid_data_blkaddr(blkaddr) &&
  449. !f2fs_is_valid_blkaddr(sbi, blkaddr, DATA_GENERIC))
  450. continue;
  451. f2fs_invalidate_blocks(sbi, blkaddr);
  452. if (dn->ofs_in_node == 0 && IS_INODE(dn->node_page))
  453. clear_inode_flag(dn->inode, FI_FIRST_BLOCK_WRITTEN);
  454. nr_free++;
  455. }
  456. if (nr_free) {
  457. pgoff_t fofs;
  458. /*
  459. * once we invalidate valid blkaddr in range [ofs, ofs + count],
  460. * we will invalidate all blkaddr in the whole range.
  461. */
  462. fofs = f2fs_start_bidx_of_node(ofs_of_node(dn->node_page),
  463. dn->inode) + ofs;
  464. f2fs_update_extent_cache_range(dn, fofs, 0, len);
  465. dec_valid_block_count(sbi, dn->inode, nr_free);
  466. }
  467. dn->ofs_in_node = ofs;
  468. f2fs_update_time(sbi, REQ_TIME);
  469. trace_f2fs_truncate_data_blocks_range(dn->inode, dn->nid,
  470. dn->ofs_in_node, nr_free);
  471. }
  472. void f2fs_truncate_data_blocks(struct dnode_of_data *dn)
  473. {
  474. f2fs_truncate_data_blocks_range(dn, ADDRS_PER_BLOCK);
  475. }
  476. static int truncate_partial_data_page(struct inode *inode, u64 from,
  477. bool cache_only)
  478. {
  479. loff_t offset = from & (PAGE_SIZE - 1);
  480. pgoff_t index = from >> PAGE_SHIFT;
  481. struct address_space *mapping = inode->i_mapping;
  482. struct page *page;
  483. if (!offset && !cache_only)
  484. return 0;
  485. if (cache_only) {
  486. page = find_lock_page(mapping, index);
  487. if (page && PageUptodate(page))
  488. goto truncate_out;
  489. f2fs_put_page(page, 1);
  490. return 0;
  491. }
  492. page = f2fs_get_lock_data_page(inode, index, true);
  493. if (IS_ERR(page))
  494. return PTR_ERR(page) == -ENOENT ? 0 : PTR_ERR(page);
  495. truncate_out:
  496. f2fs_wait_on_page_writeback(page, DATA, true);
  497. zero_user(page, offset, PAGE_SIZE - offset);
  498. /* An encrypted inode should have a key and truncate the last page. */
  499. f2fs_bug_on(F2FS_I_SB(inode), cache_only && f2fs_encrypted_inode(inode));
  500. if (!cache_only)
  501. set_page_dirty(page);
  502. f2fs_put_page(page, 1);
  503. return 0;
  504. }
  505. int f2fs_truncate_blocks(struct inode *inode, u64 from, bool lock)
  506. {
  507. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  508. struct dnode_of_data dn;
  509. pgoff_t free_from;
  510. int count = 0, err = 0;
  511. struct page *ipage;
  512. bool truncate_page = false;
  513. trace_f2fs_truncate_blocks_enter(inode, from);
  514. free_from = (pgoff_t)F2FS_BLK_ALIGN(from);
  515. if (free_from >= sbi->max_file_blocks)
  516. goto free_partial;
  517. if (lock)
  518. f2fs_lock_op(sbi);
  519. ipage = f2fs_get_node_page(sbi, inode->i_ino);
  520. if (IS_ERR(ipage)) {
  521. err = PTR_ERR(ipage);
  522. goto out;
  523. }
  524. if (f2fs_has_inline_data(inode)) {
  525. f2fs_truncate_inline_inode(inode, ipage, from);
  526. f2fs_put_page(ipage, 1);
  527. truncate_page = true;
  528. goto out;
  529. }
  530. set_new_dnode(&dn, inode, ipage, NULL, 0);
  531. err = f2fs_get_dnode_of_data(&dn, free_from, LOOKUP_NODE_RA);
  532. if (err) {
  533. if (err == -ENOENT)
  534. goto free_next;
  535. goto out;
  536. }
  537. count = ADDRS_PER_PAGE(dn.node_page, inode);
  538. count -= dn.ofs_in_node;
  539. f2fs_bug_on(sbi, count < 0);
  540. if (dn.ofs_in_node || IS_INODE(dn.node_page)) {
  541. f2fs_truncate_data_blocks_range(&dn, count);
  542. free_from += count;
  543. }
  544. f2fs_put_dnode(&dn);
  545. free_next:
  546. err = f2fs_truncate_inode_blocks(inode, free_from);
  547. out:
  548. if (lock)
  549. f2fs_unlock_op(sbi);
  550. free_partial:
  551. /* lastly zero out the first data page */
  552. if (!err)
  553. err = truncate_partial_data_page(inode, from, truncate_page);
  554. trace_f2fs_truncate_blocks_exit(inode, err);
  555. return err;
  556. }
  557. int f2fs_truncate(struct inode *inode)
  558. {
  559. int err;
  560. if (unlikely(f2fs_cp_error(F2FS_I_SB(inode))))
  561. return -EIO;
  562. if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
  563. S_ISLNK(inode->i_mode)))
  564. return 0;
  565. trace_f2fs_truncate(inode);
  566. if (time_to_inject(F2FS_I_SB(inode), FAULT_TRUNCATE)) {
  567. f2fs_show_injection_info(FAULT_TRUNCATE);
  568. return -EIO;
  569. }
  570. err = dquot_initialize(inode);
  571. if (err)
  572. return err;
  573. /* we should check inline_data size */
  574. if (!f2fs_may_inline_data(inode)) {
  575. err = f2fs_convert_inline_inode(inode);
  576. if (err)
  577. return err;
  578. }
  579. err = f2fs_truncate_blocks(inode, i_size_read(inode), true);
  580. if (err)
  581. return err;
  582. inode->i_mtime = inode->i_ctime = current_time(inode);
  583. f2fs_mark_inode_dirty_sync(inode, false);
  584. return 0;
  585. }
  586. int f2fs_getattr(const struct path *path, struct kstat *stat,
  587. u32 request_mask, unsigned int query_flags)
  588. {
  589. struct inode *inode = d_inode(path->dentry);
  590. struct f2fs_inode_info *fi = F2FS_I(inode);
  591. struct f2fs_inode *ri;
  592. unsigned int flags;
  593. if (f2fs_has_extra_attr(inode) &&
  594. f2fs_sb_has_inode_crtime(inode->i_sb) &&
  595. F2FS_FITS_IN_INODE(ri, fi->i_extra_isize, i_crtime)) {
  596. stat->result_mask |= STATX_BTIME;
  597. stat->btime.tv_sec = fi->i_crtime.tv_sec;
  598. stat->btime.tv_nsec = fi->i_crtime.tv_nsec;
  599. }
  600. flags = fi->i_flags & F2FS_FL_USER_VISIBLE;
  601. if (flags & F2FS_APPEND_FL)
  602. stat->attributes |= STATX_ATTR_APPEND;
  603. if (flags & F2FS_COMPR_FL)
  604. stat->attributes |= STATX_ATTR_COMPRESSED;
  605. if (f2fs_encrypted_inode(inode))
  606. stat->attributes |= STATX_ATTR_ENCRYPTED;
  607. if (flags & F2FS_IMMUTABLE_FL)
  608. stat->attributes |= STATX_ATTR_IMMUTABLE;
  609. if (flags & F2FS_NODUMP_FL)
  610. stat->attributes |= STATX_ATTR_NODUMP;
  611. stat->attributes_mask |= (STATX_ATTR_APPEND |
  612. STATX_ATTR_COMPRESSED |
  613. STATX_ATTR_ENCRYPTED |
  614. STATX_ATTR_IMMUTABLE |
  615. STATX_ATTR_NODUMP);
  616. generic_fillattr(inode, stat);
  617. /* we need to show initial sectors used for inline_data/dentries */
  618. if ((S_ISREG(inode->i_mode) && f2fs_has_inline_data(inode)) ||
  619. f2fs_has_inline_dentry(inode))
  620. stat->blocks += (stat->size + 511) >> 9;
  621. return 0;
  622. }
  623. #ifdef CONFIG_F2FS_FS_POSIX_ACL
  624. static void __setattr_copy(struct inode *inode, const struct iattr *attr)
  625. {
  626. unsigned int ia_valid = attr->ia_valid;
  627. if (ia_valid & ATTR_UID)
  628. inode->i_uid = attr->ia_uid;
  629. if (ia_valid & ATTR_GID)
  630. inode->i_gid = attr->ia_gid;
  631. if (ia_valid & ATTR_ATIME)
  632. inode->i_atime = timespec64_trunc(attr->ia_atime,
  633. inode->i_sb->s_time_gran);
  634. if (ia_valid & ATTR_MTIME)
  635. inode->i_mtime = timespec64_trunc(attr->ia_mtime,
  636. inode->i_sb->s_time_gran);
  637. if (ia_valid & ATTR_CTIME)
  638. inode->i_ctime = timespec64_trunc(attr->ia_ctime,
  639. inode->i_sb->s_time_gran);
  640. if (ia_valid & ATTR_MODE) {
  641. umode_t mode = attr->ia_mode;
  642. if (!in_group_p(inode->i_gid) &&
  643. !capable_wrt_inode_uidgid(inode, CAP_FSETID))
  644. mode &= ~S_ISGID;
  645. set_acl_inode(inode, mode);
  646. }
  647. }
  648. #else
  649. #define __setattr_copy setattr_copy
  650. #endif
  651. int f2fs_setattr(struct dentry *dentry, struct iattr *attr)
  652. {
  653. struct inode *inode = d_inode(dentry);
  654. int err;
  655. if (unlikely(f2fs_cp_error(F2FS_I_SB(inode))))
  656. return -EIO;
  657. err = setattr_prepare(dentry, attr);
  658. if (err)
  659. return err;
  660. err = fscrypt_prepare_setattr(dentry, attr);
  661. if (err)
  662. return err;
  663. if (is_quota_modification(inode, attr)) {
  664. err = dquot_initialize(inode);
  665. if (err)
  666. return err;
  667. }
  668. if ((attr->ia_valid & ATTR_UID &&
  669. !uid_eq(attr->ia_uid, inode->i_uid)) ||
  670. (attr->ia_valid & ATTR_GID &&
  671. !gid_eq(attr->ia_gid, inode->i_gid))) {
  672. err = dquot_transfer(inode, attr);
  673. if (err)
  674. return err;
  675. }
  676. if (attr->ia_valid & ATTR_SIZE) {
  677. bool to_smaller = (attr->ia_size <= i_size_read(inode));
  678. down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
  679. down_write(&F2FS_I(inode)->i_mmap_sem);
  680. truncate_setsize(inode, attr->ia_size);
  681. if (to_smaller)
  682. err = f2fs_truncate(inode);
  683. /*
  684. * do not trim all blocks after i_size if target size is
  685. * larger than i_size.
  686. */
  687. up_write(&F2FS_I(inode)->i_mmap_sem);
  688. up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
  689. if (err)
  690. return err;
  691. if (!to_smaller) {
  692. /* should convert inline inode here */
  693. if (!f2fs_may_inline_data(inode)) {
  694. err = f2fs_convert_inline_inode(inode);
  695. if (err)
  696. return err;
  697. }
  698. inode->i_mtime = inode->i_ctime = current_time(inode);
  699. }
  700. down_write(&F2FS_I(inode)->i_sem);
  701. F2FS_I(inode)->last_disk_size = i_size_read(inode);
  702. up_write(&F2FS_I(inode)->i_sem);
  703. }
  704. __setattr_copy(inode, attr);
  705. if (attr->ia_valid & ATTR_MODE) {
  706. err = posix_acl_chmod(inode, f2fs_get_inode_mode(inode));
  707. if (err || is_inode_flag_set(inode, FI_ACL_MODE)) {
  708. inode->i_mode = F2FS_I(inode)->i_acl_mode;
  709. clear_inode_flag(inode, FI_ACL_MODE);
  710. }
  711. }
  712. /* file size may changed here */
  713. f2fs_mark_inode_dirty_sync(inode, true);
  714. /* inode change will produce dirty node pages flushed by checkpoint */
  715. f2fs_balance_fs(F2FS_I_SB(inode), true);
  716. return err;
  717. }
  718. const struct inode_operations f2fs_file_inode_operations = {
  719. .getattr = f2fs_getattr,
  720. .setattr = f2fs_setattr,
  721. .get_acl = f2fs_get_acl,
  722. .set_acl = f2fs_set_acl,
  723. #ifdef CONFIG_F2FS_FS_XATTR
  724. .listxattr = f2fs_listxattr,
  725. #endif
  726. .fiemap = f2fs_fiemap,
  727. };
  728. static int fill_zero(struct inode *inode, pgoff_t index,
  729. loff_t start, loff_t len)
  730. {
  731. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  732. struct page *page;
  733. if (!len)
  734. return 0;
  735. f2fs_balance_fs(sbi, true);
  736. f2fs_lock_op(sbi);
  737. page = f2fs_get_new_data_page(inode, NULL, index, false);
  738. f2fs_unlock_op(sbi);
  739. if (IS_ERR(page))
  740. return PTR_ERR(page);
  741. f2fs_wait_on_page_writeback(page, DATA, true);
  742. zero_user(page, start, len);
  743. set_page_dirty(page);
  744. f2fs_put_page(page, 1);
  745. return 0;
  746. }
  747. int f2fs_truncate_hole(struct inode *inode, pgoff_t pg_start, pgoff_t pg_end)
  748. {
  749. int err;
  750. while (pg_start < pg_end) {
  751. struct dnode_of_data dn;
  752. pgoff_t end_offset, count;
  753. set_new_dnode(&dn, inode, NULL, NULL, 0);
  754. err = f2fs_get_dnode_of_data(&dn, pg_start, LOOKUP_NODE);
  755. if (err) {
  756. if (err == -ENOENT) {
  757. pg_start = f2fs_get_next_page_offset(&dn,
  758. pg_start);
  759. continue;
  760. }
  761. return err;
  762. }
  763. end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
  764. count = min(end_offset - dn.ofs_in_node, pg_end - pg_start);
  765. f2fs_bug_on(F2FS_I_SB(inode), count == 0 || count > end_offset);
  766. f2fs_truncate_data_blocks_range(&dn, count);
  767. f2fs_put_dnode(&dn);
  768. pg_start += count;
  769. }
  770. return 0;
  771. }
  772. static int punch_hole(struct inode *inode, loff_t offset, loff_t len)
  773. {
  774. pgoff_t pg_start, pg_end;
  775. loff_t off_start, off_end;
  776. int ret;
  777. ret = f2fs_convert_inline_inode(inode);
  778. if (ret)
  779. return ret;
  780. pg_start = ((unsigned long long) offset) >> PAGE_SHIFT;
  781. pg_end = ((unsigned long long) offset + len) >> PAGE_SHIFT;
  782. off_start = offset & (PAGE_SIZE - 1);
  783. off_end = (offset + len) & (PAGE_SIZE - 1);
  784. if (pg_start == pg_end) {
  785. ret = fill_zero(inode, pg_start, off_start,
  786. off_end - off_start);
  787. if (ret)
  788. return ret;
  789. } else {
  790. if (off_start) {
  791. ret = fill_zero(inode, pg_start++, off_start,
  792. PAGE_SIZE - off_start);
  793. if (ret)
  794. return ret;
  795. }
  796. if (off_end) {
  797. ret = fill_zero(inode, pg_end, 0, off_end);
  798. if (ret)
  799. return ret;
  800. }
  801. if (pg_start < pg_end) {
  802. struct address_space *mapping = inode->i_mapping;
  803. loff_t blk_start, blk_end;
  804. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  805. f2fs_balance_fs(sbi, true);
  806. blk_start = (loff_t)pg_start << PAGE_SHIFT;
  807. blk_end = (loff_t)pg_end << PAGE_SHIFT;
  808. down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
  809. down_write(&F2FS_I(inode)->i_mmap_sem);
  810. truncate_inode_pages_range(mapping, blk_start,
  811. blk_end - 1);
  812. f2fs_lock_op(sbi);
  813. ret = f2fs_truncate_hole(inode, pg_start, pg_end);
  814. f2fs_unlock_op(sbi);
  815. up_write(&F2FS_I(inode)->i_mmap_sem);
  816. up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
  817. }
  818. }
  819. return ret;
  820. }
  821. static int __read_out_blkaddrs(struct inode *inode, block_t *blkaddr,
  822. int *do_replace, pgoff_t off, pgoff_t len)
  823. {
  824. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  825. struct dnode_of_data dn;
  826. int ret, done, i;
  827. next_dnode:
  828. set_new_dnode(&dn, inode, NULL, NULL, 0);
  829. ret = f2fs_get_dnode_of_data(&dn, off, LOOKUP_NODE_RA);
  830. if (ret && ret != -ENOENT) {
  831. return ret;
  832. } else if (ret == -ENOENT) {
  833. if (dn.max_level == 0)
  834. return -ENOENT;
  835. done = min((pgoff_t)ADDRS_PER_BLOCK - dn.ofs_in_node, len);
  836. blkaddr += done;
  837. do_replace += done;
  838. goto next;
  839. }
  840. done = min((pgoff_t)ADDRS_PER_PAGE(dn.node_page, inode) -
  841. dn.ofs_in_node, len);
  842. for (i = 0; i < done; i++, blkaddr++, do_replace++, dn.ofs_in_node++) {
  843. *blkaddr = datablock_addr(dn.inode,
  844. dn.node_page, dn.ofs_in_node);
  845. if (!f2fs_is_checkpointed_data(sbi, *blkaddr)) {
  846. if (test_opt(sbi, LFS)) {
  847. f2fs_put_dnode(&dn);
  848. return -ENOTSUPP;
  849. }
  850. /* do not invalidate this block address */
  851. f2fs_update_data_blkaddr(&dn, NULL_ADDR);
  852. *do_replace = 1;
  853. }
  854. }
  855. f2fs_put_dnode(&dn);
  856. next:
  857. len -= done;
  858. off += done;
  859. if (len)
  860. goto next_dnode;
  861. return 0;
  862. }
  863. static int __roll_back_blkaddrs(struct inode *inode, block_t *blkaddr,
  864. int *do_replace, pgoff_t off, int len)
  865. {
  866. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  867. struct dnode_of_data dn;
  868. int ret, i;
  869. for (i = 0; i < len; i++, do_replace++, blkaddr++) {
  870. if (*do_replace == 0)
  871. continue;
  872. set_new_dnode(&dn, inode, NULL, NULL, 0);
  873. ret = f2fs_get_dnode_of_data(&dn, off + i, LOOKUP_NODE_RA);
  874. if (ret) {
  875. dec_valid_block_count(sbi, inode, 1);
  876. f2fs_invalidate_blocks(sbi, *blkaddr);
  877. } else {
  878. f2fs_update_data_blkaddr(&dn, *blkaddr);
  879. }
  880. f2fs_put_dnode(&dn);
  881. }
  882. return 0;
  883. }
  884. static int __clone_blkaddrs(struct inode *src_inode, struct inode *dst_inode,
  885. block_t *blkaddr, int *do_replace,
  886. pgoff_t src, pgoff_t dst, pgoff_t len, bool full)
  887. {
  888. struct f2fs_sb_info *sbi = F2FS_I_SB(src_inode);
  889. pgoff_t i = 0;
  890. int ret;
  891. while (i < len) {
  892. if (blkaddr[i] == NULL_ADDR && !full) {
  893. i++;
  894. continue;
  895. }
  896. if (do_replace[i] || blkaddr[i] == NULL_ADDR) {
  897. struct dnode_of_data dn;
  898. struct node_info ni;
  899. size_t new_size;
  900. pgoff_t ilen;
  901. set_new_dnode(&dn, dst_inode, NULL, NULL, 0);
  902. ret = f2fs_get_dnode_of_data(&dn, dst + i, ALLOC_NODE);
  903. if (ret)
  904. return ret;
  905. ret = f2fs_get_node_info(sbi, dn.nid, &ni);
  906. if (ret) {
  907. f2fs_put_dnode(&dn);
  908. return ret;
  909. }
  910. ilen = min((pgoff_t)
  911. ADDRS_PER_PAGE(dn.node_page, dst_inode) -
  912. dn.ofs_in_node, len - i);
  913. do {
  914. dn.data_blkaddr = datablock_addr(dn.inode,
  915. dn.node_page, dn.ofs_in_node);
  916. f2fs_truncate_data_blocks_range(&dn, 1);
  917. if (do_replace[i]) {
  918. f2fs_i_blocks_write(src_inode,
  919. 1, false, false);
  920. f2fs_i_blocks_write(dst_inode,
  921. 1, true, false);
  922. f2fs_replace_block(sbi, &dn, dn.data_blkaddr,
  923. blkaddr[i], ni.version, true, false);
  924. do_replace[i] = 0;
  925. }
  926. dn.ofs_in_node++;
  927. i++;
  928. new_size = (loff_t)(dst + i) << PAGE_SHIFT;
  929. if (dst_inode->i_size < new_size)
  930. f2fs_i_size_write(dst_inode, new_size);
  931. } while (--ilen && (do_replace[i] || blkaddr[i] == NULL_ADDR));
  932. f2fs_put_dnode(&dn);
  933. } else {
  934. struct page *psrc, *pdst;
  935. psrc = f2fs_get_lock_data_page(src_inode,
  936. src + i, true);
  937. if (IS_ERR(psrc))
  938. return PTR_ERR(psrc);
  939. pdst = f2fs_get_new_data_page(dst_inode, NULL, dst + i,
  940. true);
  941. if (IS_ERR(pdst)) {
  942. f2fs_put_page(psrc, 1);
  943. return PTR_ERR(pdst);
  944. }
  945. f2fs_copy_page(psrc, pdst);
  946. set_page_dirty(pdst);
  947. f2fs_put_page(pdst, 1);
  948. f2fs_put_page(psrc, 1);
  949. ret = f2fs_truncate_hole(src_inode,
  950. src + i, src + i + 1);
  951. if (ret)
  952. return ret;
  953. i++;
  954. }
  955. }
  956. return 0;
  957. }
  958. static int __exchange_data_block(struct inode *src_inode,
  959. struct inode *dst_inode, pgoff_t src, pgoff_t dst,
  960. pgoff_t len, bool full)
  961. {
  962. block_t *src_blkaddr;
  963. int *do_replace;
  964. pgoff_t olen;
  965. int ret;
  966. while (len) {
  967. olen = min((pgoff_t)4 * ADDRS_PER_BLOCK, len);
  968. src_blkaddr = f2fs_kvzalloc(F2FS_I_SB(src_inode),
  969. array_size(olen, sizeof(block_t)),
  970. GFP_KERNEL);
  971. if (!src_blkaddr)
  972. return -ENOMEM;
  973. do_replace = f2fs_kvzalloc(F2FS_I_SB(src_inode),
  974. array_size(olen, sizeof(int)),
  975. GFP_KERNEL);
  976. if (!do_replace) {
  977. kvfree(src_blkaddr);
  978. return -ENOMEM;
  979. }
  980. ret = __read_out_blkaddrs(src_inode, src_blkaddr,
  981. do_replace, src, olen);
  982. if (ret)
  983. goto roll_back;
  984. ret = __clone_blkaddrs(src_inode, dst_inode, src_blkaddr,
  985. do_replace, src, dst, olen, full);
  986. if (ret)
  987. goto roll_back;
  988. src += olen;
  989. dst += olen;
  990. len -= olen;
  991. kvfree(src_blkaddr);
  992. kvfree(do_replace);
  993. }
  994. return 0;
  995. roll_back:
  996. __roll_back_blkaddrs(src_inode, src_blkaddr, do_replace, src, olen);
  997. kvfree(src_blkaddr);
  998. kvfree(do_replace);
  999. return ret;
  1000. }
  1001. static int f2fs_do_collapse(struct inode *inode, loff_t offset, loff_t len)
  1002. {
  1003. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  1004. pgoff_t nrpages = (i_size_read(inode) + PAGE_SIZE - 1) / PAGE_SIZE;
  1005. pgoff_t start = offset >> PAGE_SHIFT;
  1006. pgoff_t end = (offset + len) >> PAGE_SHIFT;
  1007. int ret;
  1008. f2fs_balance_fs(sbi, true);
  1009. /* avoid gc operation during block exchange */
  1010. down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
  1011. down_write(&F2FS_I(inode)->i_mmap_sem);
  1012. f2fs_lock_op(sbi);
  1013. f2fs_drop_extent_tree(inode);
  1014. truncate_pagecache(inode, offset);
  1015. ret = __exchange_data_block(inode, inode, end, start, nrpages - end, true);
  1016. f2fs_unlock_op(sbi);
  1017. up_write(&F2FS_I(inode)->i_mmap_sem);
  1018. up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
  1019. return ret;
  1020. }
  1021. static int f2fs_collapse_range(struct inode *inode, loff_t offset, loff_t len)
  1022. {
  1023. loff_t new_size;
  1024. int ret;
  1025. if (offset + len >= i_size_read(inode))
  1026. return -EINVAL;
  1027. /* collapse range should be aligned to block size of f2fs. */
  1028. if (offset & (F2FS_BLKSIZE - 1) || len & (F2FS_BLKSIZE - 1))
  1029. return -EINVAL;
  1030. ret = f2fs_convert_inline_inode(inode);
  1031. if (ret)
  1032. return ret;
  1033. /* write out all dirty pages from offset */
  1034. ret = filemap_write_and_wait_range(inode->i_mapping, offset, LLONG_MAX);
  1035. if (ret)
  1036. return ret;
  1037. ret = f2fs_do_collapse(inode, offset, len);
  1038. if (ret)
  1039. return ret;
  1040. /* write out all moved pages, if possible */
  1041. down_write(&F2FS_I(inode)->i_mmap_sem);
  1042. filemap_write_and_wait_range(inode->i_mapping, offset, LLONG_MAX);
  1043. truncate_pagecache(inode, offset);
  1044. new_size = i_size_read(inode) - len;
  1045. truncate_pagecache(inode, new_size);
  1046. ret = f2fs_truncate_blocks(inode, new_size, true);
  1047. up_write(&F2FS_I(inode)->i_mmap_sem);
  1048. if (!ret)
  1049. f2fs_i_size_write(inode, new_size);
  1050. return ret;
  1051. }
  1052. static int f2fs_do_zero_range(struct dnode_of_data *dn, pgoff_t start,
  1053. pgoff_t end)
  1054. {
  1055. struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
  1056. pgoff_t index = start;
  1057. unsigned int ofs_in_node = dn->ofs_in_node;
  1058. blkcnt_t count = 0;
  1059. int ret;
  1060. for (; index < end; index++, dn->ofs_in_node++) {
  1061. if (datablock_addr(dn->inode, dn->node_page,
  1062. dn->ofs_in_node) == NULL_ADDR)
  1063. count++;
  1064. }
  1065. dn->ofs_in_node = ofs_in_node;
  1066. ret = f2fs_reserve_new_blocks(dn, count);
  1067. if (ret)
  1068. return ret;
  1069. dn->ofs_in_node = ofs_in_node;
  1070. for (index = start; index < end; index++, dn->ofs_in_node++) {
  1071. dn->data_blkaddr = datablock_addr(dn->inode,
  1072. dn->node_page, dn->ofs_in_node);
  1073. /*
  1074. * f2fs_reserve_new_blocks will not guarantee entire block
  1075. * allocation.
  1076. */
  1077. if (dn->data_blkaddr == NULL_ADDR) {
  1078. ret = -ENOSPC;
  1079. break;
  1080. }
  1081. if (dn->data_blkaddr != NEW_ADDR) {
  1082. f2fs_invalidate_blocks(sbi, dn->data_blkaddr);
  1083. dn->data_blkaddr = NEW_ADDR;
  1084. f2fs_set_data_blkaddr(dn);
  1085. }
  1086. }
  1087. f2fs_update_extent_cache_range(dn, start, 0, index - start);
  1088. return ret;
  1089. }
  1090. static int f2fs_zero_range(struct inode *inode, loff_t offset, loff_t len,
  1091. int mode)
  1092. {
  1093. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  1094. struct address_space *mapping = inode->i_mapping;
  1095. pgoff_t index, pg_start, pg_end;
  1096. loff_t new_size = i_size_read(inode);
  1097. loff_t off_start, off_end;
  1098. int ret = 0;
  1099. ret = inode_newsize_ok(inode, (len + offset));
  1100. if (ret)
  1101. return ret;
  1102. ret = f2fs_convert_inline_inode(inode);
  1103. if (ret)
  1104. return ret;
  1105. ret = filemap_write_and_wait_range(mapping, offset, offset + len - 1);
  1106. if (ret)
  1107. return ret;
  1108. pg_start = ((unsigned long long) offset) >> PAGE_SHIFT;
  1109. pg_end = ((unsigned long long) offset + len) >> PAGE_SHIFT;
  1110. off_start = offset & (PAGE_SIZE - 1);
  1111. off_end = (offset + len) & (PAGE_SIZE - 1);
  1112. if (pg_start == pg_end) {
  1113. ret = fill_zero(inode, pg_start, off_start,
  1114. off_end - off_start);
  1115. if (ret)
  1116. return ret;
  1117. new_size = max_t(loff_t, new_size, offset + len);
  1118. } else {
  1119. if (off_start) {
  1120. ret = fill_zero(inode, pg_start++, off_start,
  1121. PAGE_SIZE - off_start);
  1122. if (ret)
  1123. return ret;
  1124. new_size = max_t(loff_t, new_size,
  1125. (loff_t)pg_start << PAGE_SHIFT);
  1126. }
  1127. for (index = pg_start; index < pg_end;) {
  1128. struct dnode_of_data dn;
  1129. unsigned int end_offset;
  1130. pgoff_t end;
  1131. down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
  1132. down_write(&F2FS_I(inode)->i_mmap_sem);
  1133. truncate_pagecache_range(inode,
  1134. (loff_t)index << PAGE_SHIFT,
  1135. ((loff_t)pg_end << PAGE_SHIFT) - 1);
  1136. f2fs_lock_op(sbi);
  1137. set_new_dnode(&dn, inode, NULL, NULL, 0);
  1138. ret = f2fs_get_dnode_of_data(&dn, index, ALLOC_NODE);
  1139. if (ret) {
  1140. f2fs_unlock_op(sbi);
  1141. up_write(&F2FS_I(inode)->i_mmap_sem);
  1142. up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
  1143. goto out;
  1144. }
  1145. end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
  1146. end = min(pg_end, end_offset - dn.ofs_in_node + index);
  1147. ret = f2fs_do_zero_range(&dn, index, end);
  1148. f2fs_put_dnode(&dn);
  1149. f2fs_unlock_op(sbi);
  1150. up_write(&F2FS_I(inode)->i_mmap_sem);
  1151. up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
  1152. f2fs_balance_fs(sbi, dn.node_changed);
  1153. if (ret)
  1154. goto out;
  1155. index = end;
  1156. new_size = max_t(loff_t, new_size,
  1157. (loff_t)index << PAGE_SHIFT);
  1158. }
  1159. if (off_end) {
  1160. ret = fill_zero(inode, pg_end, 0, off_end);
  1161. if (ret)
  1162. goto out;
  1163. new_size = max_t(loff_t, new_size, offset + len);
  1164. }
  1165. }
  1166. out:
  1167. if (new_size > i_size_read(inode)) {
  1168. if (mode & FALLOC_FL_KEEP_SIZE)
  1169. file_set_keep_isize(inode);
  1170. else
  1171. f2fs_i_size_write(inode, new_size);
  1172. }
  1173. return ret;
  1174. }
  1175. static int f2fs_insert_range(struct inode *inode, loff_t offset, loff_t len)
  1176. {
  1177. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  1178. pgoff_t nr, pg_start, pg_end, delta, idx;
  1179. loff_t new_size;
  1180. int ret = 0;
  1181. new_size = i_size_read(inode) + len;
  1182. ret = inode_newsize_ok(inode, new_size);
  1183. if (ret)
  1184. return ret;
  1185. if (offset >= i_size_read(inode))
  1186. return -EINVAL;
  1187. /* insert range should be aligned to block size of f2fs. */
  1188. if (offset & (F2FS_BLKSIZE - 1) || len & (F2FS_BLKSIZE - 1))
  1189. return -EINVAL;
  1190. ret = f2fs_convert_inline_inode(inode);
  1191. if (ret)
  1192. return ret;
  1193. f2fs_balance_fs(sbi, true);
  1194. down_write(&F2FS_I(inode)->i_mmap_sem);
  1195. ret = f2fs_truncate_blocks(inode, i_size_read(inode), true);
  1196. up_write(&F2FS_I(inode)->i_mmap_sem);
  1197. if (ret)
  1198. return ret;
  1199. /* write out all dirty pages from offset */
  1200. ret = filemap_write_and_wait_range(inode->i_mapping, offset, LLONG_MAX);
  1201. if (ret)
  1202. return ret;
  1203. pg_start = offset >> PAGE_SHIFT;
  1204. pg_end = (offset + len) >> PAGE_SHIFT;
  1205. delta = pg_end - pg_start;
  1206. idx = (i_size_read(inode) + PAGE_SIZE - 1) / PAGE_SIZE;
  1207. /* avoid gc operation during block exchange */
  1208. down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
  1209. down_write(&F2FS_I(inode)->i_mmap_sem);
  1210. truncate_pagecache(inode, offset);
  1211. while (!ret && idx > pg_start) {
  1212. nr = idx - pg_start;
  1213. if (nr > delta)
  1214. nr = delta;
  1215. idx -= nr;
  1216. f2fs_lock_op(sbi);
  1217. f2fs_drop_extent_tree(inode);
  1218. ret = __exchange_data_block(inode, inode, idx,
  1219. idx + delta, nr, false);
  1220. f2fs_unlock_op(sbi);
  1221. }
  1222. up_write(&F2FS_I(inode)->i_mmap_sem);
  1223. up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
  1224. /* write out all moved pages, if possible */
  1225. down_write(&F2FS_I(inode)->i_mmap_sem);
  1226. filemap_write_and_wait_range(inode->i_mapping, offset, LLONG_MAX);
  1227. truncate_pagecache(inode, offset);
  1228. up_write(&F2FS_I(inode)->i_mmap_sem);
  1229. if (!ret)
  1230. f2fs_i_size_write(inode, new_size);
  1231. return ret;
  1232. }
  1233. static int expand_inode_data(struct inode *inode, loff_t offset,
  1234. loff_t len, int mode)
  1235. {
  1236. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  1237. struct f2fs_map_blocks map = { .m_next_pgofs = NULL,
  1238. .m_next_extent = NULL, .m_seg_type = NO_CHECK_TYPE };
  1239. pgoff_t pg_end;
  1240. loff_t new_size = i_size_read(inode);
  1241. loff_t off_end;
  1242. int err;
  1243. err = inode_newsize_ok(inode, (len + offset));
  1244. if (err)
  1245. return err;
  1246. err = f2fs_convert_inline_inode(inode);
  1247. if (err)
  1248. return err;
  1249. f2fs_balance_fs(sbi, true);
  1250. pg_end = ((unsigned long long)offset + len) >> PAGE_SHIFT;
  1251. off_end = (offset + len) & (PAGE_SIZE - 1);
  1252. map.m_lblk = ((unsigned long long)offset) >> PAGE_SHIFT;
  1253. map.m_len = pg_end - map.m_lblk;
  1254. if (off_end)
  1255. map.m_len++;
  1256. err = f2fs_map_blocks(inode, &map, 1, F2FS_GET_BLOCK_PRE_AIO);
  1257. if (err) {
  1258. pgoff_t last_off;
  1259. if (!map.m_len)
  1260. return err;
  1261. last_off = map.m_lblk + map.m_len - 1;
  1262. /* update new size to the failed position */
  1263. new_size = (last_off == pg_end) ? offset + len :
  1264. (loff_t)(last_off + 1) << PAGE_SHIFT;
  1265. } else {
  1266. new_size = ((loff_t)pg_end << PAGE_SHIFT) + off_end;
  1267. }
  1268. if (new_size > i_size_read(inode)) {
  1269. if (mode & FALLOC_FL_KEEP_SIZE)
  1270. file_set_keep_isize(inode);
  1271. else
  1272. f2fs_i_size_write(inode, new_size);
  1273. }
  1274. return err;
  1275. }
  1276. static long f2fs_fallocate(struct file *file, int mode,
  1277. loff_t offset, loff_t len)
  1278. {
  1279. struct inode *inode = file_inode(file);
  1280. long ret = 0;
  1281. if (unlikely(f2fs_cp_error(F2FS_I_SB(inode))))
  1282. return -EIO;
  1283. /* f2fs only support ->fallocate for regular file */
  1284. if (!S_ISREG(inode->i_mode))
  1285. return -EINVAL;
  1286. if (f2fs_encrypted_inode(inode) &&
  1287. (mode & (FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_INSERT_RANGE)))
  1288. return -EOPNOTSUPP;
  1289. if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE |
  1290. FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_ZERO_RANGE |
  1291. FALLOC_FL_INSERT_RANGE))
  1292. return -EOPNOTSUPP;
  1293. inode_lock(inode);
  1294. if (mode & FALLOC_FL_PUNCH_HOLE) {
  1295. if (offset >= inode->i_size)
  1296. goto out;
  1297. ret = punch_hole(inode, offset, len);
  1298. } else if (mode & FALLOC_FL_COLLAPSE_RANGE) {
  1299. ret = f2fs_collapse_range(inode, offset, len);
  1300. } else if (mode & FALLOC_FL_ZERO_RANGE) {
  1301. ret = f2fs_zero_range(inode, offset, len, mode);
  1302. } else if (mode & FALLOC_FL_INSERT_RANGE) {
  1303. ret = f2fs_insert_range(inode, offset, len);
  1304. } else {
  1305. ret = expand_inode_data(inode, offset, len, mode);
  1306. }
  1307. if (!ret) {
  1308. inode->i_mtime = inode->i_ctime = current_time(inode);
  1309. f2fs_mark_inode_dirty_sync(inode, false);
  1310. f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
  1311. }
  1312. out:
  1313. inode_unlock(inode);
  1314. trace_f2fs_fallocate(inode, mode, offset, len, ret);
  1315. return ret;
  1316. }
  1317. static int f2fs_release_file(struct inode *inode, struct file *filp)
  1318. {
  1319. /*
  1320. * f2fs_relase_file is called at every close calls. So we should
  1321. * not drop any inmemory pages by close called by other process.
  1322. */
  1323. if (!(filp->f_mode & FMODE_WRITE) ||
  1324. atomic_read(&inode->i_writecount) != 1)
  1325. return 0;
  1326. /* some remained atomic pages should discarded */
  1327. if (f2fs_is_atomic_file(inode))
  1328. f2fs_drop_inmem_pages(inode);
  1329. if (f2fs_is_volatile_file(inode)) {
  1330. set_inode_flag(inode, FI_DROP_CACHE);
  1331. filemap_fdatawrite(inode->i_mapping);
  1332. clear_inode_flag(inode, FI_DROP_CACHE);
  1333. clear_inode_flag(inode, FI_VOLATILE_FILE);
  1334. stat_dec_volatile_write(inode);
  1335. }
  1336. return 0;
  1337. }
  1338. static int f2fs_file_flush(struct file *file, fl_owner_t id)
  1339. {
  1340. struct inode *inode = file_inode(file);
  1341. /*
  1342. * If the process doing a transaction is crashed, we should do
  1343. * roll-back. Otherwise, other reader/write can see corrupted database
  1344. * until all the writers close its file. Since this should be done
  1345. * before dropping file lock, it needs to do in ->flush.
  1346. */
  1347. if (f2fs_is_atomic_file(inode) &&
  1348. F2FS_I(inode)->inmem_task == current)
  1349. f2fs_drop_inmem_pages(inode);
  1350. return 0;
  1351. }
  1352. static int f2fs_ioc_getflags(struct file *filp, unsigned long arg)
  1353. {
  1354. struct inode *inode = file_inode(filp);
  1355. struct f2fs_inode_info *fi = F2FS_I(inode);
  1356. unsigned int flags = fi->i_flags;
  1357. if (f2fs_encrypted_inode(inode))
  1358. flags |= F2FS_ENCRYPT_FL;
  1359. if (f2fs_has_inline_data(inode) || f2fs_has_inline_dentry(inode))
  1360. flags |= F2FS_INLINE_DATA_FL;
  1361. flags &= F2FS_FL_USER_VISIBLE;
  1362. return put_user(flags, (int __user *)arg);
  1363. }
  1364. static int __f2fs_ioc_setflags(struct inode *inode, unsigned int flags)
  1365. {
  1366. struct f2fs_inode_info *fi = F2FS_I(inode);
  1367. unsigned int oldflags;
  1368. /* Is it quota file? Do not allow user to mess with it */
  1369. if (IS_NOQUOTA(inode))
  1370. return -EPERM;
  1371. flags = f2fs_mask_flags(inode->i_mode, flags);
  1372. oldflags = fi->i_flags;
  1373. if ((flags ^ oldflags) & (F2FS_APPEND_FL | F2FS_IMMUTABLE_FL))
  1374. if (!capable(CAP_LINUX_IMMUTABLE))
  1375. return -EPERM;
  1376. flags = flags & F2FS_FL_USER_MODIFIABLE;
  1377. flags |= oldflags & ~F2FS_FL_USER_MODIFIABLE;
  1378. fi->i_flags = flags;
  1379. if (fi->i_flags & F2FS_PROJINHERIT_FL)
  1380. set_inode_flag(inode, FI_PROJ_INHERIT);
  1381. else
  1382. clear_inode_flag(inode, FI_PROJ_INHERIT);
  1383. inode->i_ctime = current_time(inode);
  1384. f2fs_set_inode_flags(inode);
  1385. f2fs_mark_inode_dirty_sync(inode, true);
  1386. return 0;
  1387. }
  1388. static int f2fs_ioc_setflags(struct file *filp, unsigned long arg)
  1389. {
  1390. struct inode *inode = file_inode(filp);
  1391. unsigned int flags;
  1392. int ret;
  1393. if (!inode_owner_or_capable(inode))
  1394. return -EACCES;
  1395. if (get_user(flags, (int __user *)arg))
  1396. return -EFAULT;
  1397. ret = mnt_want_write_file(filp);
  1398. if (ret)
  1399. return ret;
  1400. inode_lock(inode);
  1401. ret = __f2fs_ioc_setflags(inode, flags);
  1402. inode_unlock(inode);
  1403. mnt_drop_write_file(filp);
  1404. return ret;
  1405. }
  1406. static int f2fs_ioc_getversion(struct file *filp, unsigned long arg)
  1407. {
  1408. struct inode *inode = file_inode(filp);
  1409. return put_user(inode->i_generation, (int __user *)arg);
  1410. }
  1411. static int f2fs_ioc_start_atomic_write(struct file *filp)
  1412. {
  1413. struct inode *inode = file_inode(filp);
  1414. int ret;
  1415. if (!inode_owner_or_capable(inode))
  1416. return -EACCES;
  1417. if (!S_ISREG(inode->i_mode))
  1418. return -EINVAL;
  1419. ret = mnt_want_write_file(filp);
  1420. if (ret)
  1421. return ret;
  1422. inode_lock(inode);
  1423. if (f2fs_is_atomic_file(inode)) {
  1424. if (is_inode_flag_set(inode, FI_ATOMIC_REVOKE_REQUEST))
  1425. ret = -EINVAL;
  1426. goto out;
  1427. }
  1428. ret = f2fs_convert_inline_inode(inode);
  1429. if (ret)
  1430. goto out;
  1431. down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
  1432. /*
  1433. * Should wait end_io to count F2FS_WB_CP_DATA correctly by
  1434. * f2fs_is_atomic_file.
  1435. */
  1436. if (get_dirty_pages(inode))
  1437. f2fs_msg(F2FS_I_SB(inode)->sb, KERN_WARNING,
  1438. "Unexpected flush for atomic writes: ino=%lu, npages=%u",
  1439. inode->i_ino, get_dirty_pages(inode));
  1440. ret = filemap_write_and_wait_range(inode->i_mapping, 0, LLONG_MAX);
  1441. if (ret) {
  1442. up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
  1443. goto out;
  1444. }
  1445. set_inode_flag(inode, FI_ATOMIC_FILE);
  1446. clear_inode_flag(inode, FI_ATOMIC_REVOKE_REQUEST);
  1447. up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
  1448. f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
  1449. F2FS_I(inode)->inmem_task = current;
  1450. stat_inc_atomic_write(inode);
  1451. stat_update_max_atomic_write(inode);
  1452. out:
  1453. inode_unlock(inode);
  1454. mnt_drop_write_file(filp);
  1455. return ret;
  1456. }
  1457. static int f2fs_ioc_commit_atomic_write(struct file *filp)
  1458. {
  1459. struct inode *inode = file_inode(filp);
  1460. int ret;
  1461. if (!inode_owner_or_capable(inode))
  1462. return -EACCES;
  1463. ret = mnt_want_write_file(filp);
  1464. if (ret)
  1465. return ret;
  1466. f2fs_balance_fs(F2FS_I_SB(inode), true);
  1467. inode_lock(inode);
  1468. if (f2fs_is_volatile_file(inode)) {
  1469. ret = -EINVAL;
  1470. goto err_out;
  1471. }
  1472. if (f2fs_is_atomic_file(inode)) {
  1473. ret = f2fs_commit_inmem_pages(inode);
  1474. if (ret)
  1475. goto err_out;
  1476. ret = f2fs_do_sync_file(filp, 0, LLONG_MAX, 0, true);
  1477. if (!ret) {
  1478. clear_inode_flag(inode, FI_ATOMIC_FILE);
  1479. F2FS_I(inode)->i_gc_failures[GC_FAILURE_ATOMIC] = 0;
  1480. stat_dec_atomic_write(inode);
  1481. }
  1482. } else {
  1483. ret = f2fs_do_sync_file(filp, 0, LLONG_MAX, 1, false);
  1484. }
  1485. err_out:
  1486. if (is_inode_flag_set(inode, FI_ATOMIC_REVOKE_REQUEST)) {
  1487. clear_inode_flag(inode, FI_ATOMIC_REVOKE_REQUEST);
  1488. ret = -EINVAL;
  1489. }
  1490. inode_unlock(inode);
  1491. mnt_drop_write_file(filp);
  1492. return ret;
  1493. }
  1494. static int f2fs_ioc_start_volatile_write(struct file *filp)
  1495. {
  1496. struct inode *inode = file_inode(filp);
  1497. int ret;
  1498. if (!inode_owner_or_capable(inode))
  1499. return -EACCES;
  1500. if (!S_ISREG(inode->i_mode))
  1501. return -EINVAL;
  1502. ret = mnt_want_write_file(filp);
  1503. if (ret)
  1504. return ret;
  1505. inode_lock(inode);
  1506. if (f2fs_is_volatile_file(inode))
  1507. goto out;
  1508. ret = f2fs_convert_inline_inode(inode);
  1509. if (ret)
  1510. goto out;
  1511. stat_inc_volatile_write(inode);
  1512. stat_update_max_volatile_write(inode);
  1513. set_inode_flag(inode, FI_VOLATILE_FILE);
  1514. f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
  1515. out:
  1516. inode_unlock(inode);
  1517. mnt_drop_write_file(filp);
  1518. return ret;
  1519. }
  1520. static int f2fs_ioc_release_volatile_write(struct file *filp)
  1521. {
  1522. struct inode *inode = file_inode(filp);
  1523. int ret;
  1524. if (!inode_owner_or_capable(inode))
  1525. return -EACCES;
  1526. ret = mnt_want_write_file(filp);
  1527. if (ret)
  1528. return ret;
  1529. inode_lock(inode);
  1530. if (!f2fs_is_volatile_file(inode))
  1531. goto out;
  1532. if (!f2fs_is_first_block_written(inode)) {
  1533. ret = truncate_partial_data_page(inode, 0, true);
  1534. goto out;
  1535. }
  1536. ret = punch_hole(inode, 0, F2FS_BLKSIZE);
  1537. out:
  1538. inode_unlock(inode);
  1539. mnt_drop_write_file(filp);
  1540. return ret;
  1541. }
  1542. static int f2fs_ioc_abort_volatile_write(struct file *filp)
  1543. {
  1544. struct inode *inode = file_inode(filp);
  1545. int ret;
  1546. if (!inode_owner_or_capable(inode))
  1547. return -EACCES;
  1548. ret = mnt_want_write_file(filp);
  1549. if (ret)
  1550. return ret;
  1551. inode_lock(inode);
  1552. if (f2fs_is_atomic_file(inode))
  1553. f2fs_drop_inmem_pages(inode);
  1554. if (f2fs_is_volatile_file(inode)) {
  1555. clear_inode_flag(inode, FI_VOLATILE_FILE);
  1556. stat_dec_volatile_write(inode);
  1557. ret = f2fs_do_sync_file(filp, 0, LLONG_MAX, 0, true);
  1558. }
  1559. clear_inode_flag(inode, FI_ATOMIC_REVOKE_REQUEST);
  1560. inode_unlock(inode);
  1561. mnt_drop_write_file(filp);
  1562. f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
  1563. return ret;
  1564. }
  1565. static int f2fs_ioc_shutdown(struct file *filp, unsigned long arg)
  1566. {
  1567. struct inode *inode = file_inode(filp);
  1568. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  1569. struct super_block *sb = sbi->sb;
  1570. __u32 in;
  1571. int ret = 0;
  1572. if (!capable(CAP_SYS_ADMIN))
  1573. return -EPERM;
  1574. if (get_user(in, (__u32 __user *)arg))
  1575. return -EFAULT;
  1576. if (in != F2FS_GOING_DOWN_FULLSYNC) {
  1577. ret = mnt_want_write_file(filp);
  1578. if (ret)
  1579. return ret;
  1580. }
  1581. switch (in) {
  1582. case F2FS_GOING_DOWN_FULLSYNC:
  1583. sb = freeze_bdev(sb->s_bdev);
  1584. if (IS_ERR(sb)) {
  1585. ret = PTR_ERR(sb);
  1586. goto out;
  1587. }
  1588. if (sb) {
  1589. f2fs_stop_checkpoint(sbi, false);
  1590. set_sbi_flag(sbi, SBI_IS_SHUTDOWN);
  1591. thaw_bdev(sb->s_bdev, sb);
  1592. }
  1593. break;
  1594. case F2FS_GOING_DOWN_METASYNC:
  1595. /* do checkpoint only */
  1596. ret = f2fs_sync_fs(sb, 1);
  1597. if (ret)
  1598. goto out;
  1599. f2fs_stop_checkpoint(sbi, false);
  1600. set_sbi_flag(sbi, SBI_IS_SHUTDOWN);
  1601. break;
  1602. case F2FS_GOING_DOWN_NOSYNC:
  1603. f2fs_stop_checkpoint(sbi, false);
  1604. set_sbi_flag(sbi, SBI_IS_SHUTDOWN);
  1605. break;
  1606. case F2FS_GOING_DOWN_METAFLUSH:
  1607. f2fs_sync_meta_pages(sbi, META, LONG_MAX, FS_META_IO);
  1608. f2fs_stop_checkpoint(sbi, false);
  1609. set_sbi_flag(sbi, SBI_IS_SHUTDOWN);
  1610. break;
  1611. default:
  1612. ret = -EINVAL;
  1613. goto out;
  1614. }
  1615. f2fs_stop_gc_thread(sbi);
  1616. f2fs_stop_discard_thread(sbi);
  1617. f2fs_drop_discard_cmd(sbi);
  1618. clear_opt(sbi, DISCARD);
  1619. f2fs_update_time(sbi, REQ_TIME);
  1620. out:
  1621. if (in != F2FS_GOING_DOWN_FULLSYNC)
  1622. mnt_drop_write_file(filp);
  1623. return ret;
  1624. }
  1625. static int f2fs_ioc_fitrim(struct file *filp, unsigned long arg)
  1626. {
  1627. struct inode *inode = file_inode(filp);
  1628. struct super_block *sb = inode->i_sb;
  1629. struct request_queue *q = bdev_get_queue(sb->s_bdev);
  1630. struct fstrim_range range;
  1631. int ret;
  1632. if (!capable(CAP_SYS_ADMIN))
  1633. return -EPERM;
  1634. if (!f2fs_hw_support_discard(F2FS_SB(sb)))
  1635. return -EOPNOTSUPP;
  1636. if (copy_from_user(&range, (struct fstrim_range __user *)arg,
  1637. sizeof(range)))
  1638. return -EFAULT;
  1639. ret = mnt_want_write_file(filp);
  1640. if (ret)
  1641. return ret;
  1642. range.minlen = max((unsigned int)range.minlen,
  1643. q->limits.discard_granularity);
  1644. ret = f2fs_trim_fs(F2FS_SB(sb), &range);
  1645. mnt_drop_write_file(filp);
  1646. if (ret < 0)
  1647. return ret;
  1648. if (copy_to_user((struct fstrim_range __user *)arg, &range,
  1649. sizeof(range)))
  1650. return -EFAULT;
  1651. f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
  1652. return 0;
  1653. }
  1654. static bool uuid_is_nonzero(__u8 u[16])
  1655. {
  1656. int i;
  1657. for (i = 0; i < 16; i++)
  1658. if (u[i])
  1659. return true;
  1660. return false;
  1661. }
  1662. static int f2fs_ioc_set_encryption_policy(struct file *filp, unsigned long arg)
  1663. {
  1664. struct inode *inode = file_inode(filp);
  1665. if (!f2fs_sb_has_encrypt(inode->i_sb))
  1666. return -EOPNOTSUPP;
  1667. f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
  1668. return fscrypt_ioctl_set_policy(filp, (const void __user *)arg);
  1669. }
  1670. static int f2fs_ioc_get_encryption_policy(struct file *filp, unsigned long arg)
  1671. {
  1672. if (!f2fs_sb_has_encrypt(file_inode(filp)->i_sb))
  1673. return -EOPNOTSUPP;
  1674. return fscrypt_ioctl_get_policy(filp, (void __user *)arg);
  1675. }
  1676. static int f2fs_ioc_get_encryption_pwsalt(struct file *filp, unsigned long arg)
  1677. {
  1678. struct inode *inode = file_inode(filp);
  1679. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  1680. int err;
  1681. if (!f2fs_sb_has_encrypt(inode->i_sb))
  1682. return -EOPNOTSUPP;
  1683. err = mnt_want_write_file(filp);
  1684. if (err)
  1685. return err;
  1686. down_write(&sbi->sb_lock);
  1687. if (uuid_is_nonzero(sbi->raw_super->encrypt_pw_salt))
  1688. goto got_it;
  1689. /* update superblock with uuid */
  1690. generate_random_uuid(sbi->raw_super->encrypt_pw_salt);
  1691. err = f2fs_commit_super(sbi, false);
  1692. if (err) {
  1693. /* undo new data */
  1694. memset(sbi->raw_super->encrypt_pw_salt, 0, 16);
  1695. goto out_err;
  1696. }
  1697. got_it:
  1698. if (copy_to_user((__u8 __user *)arg, sbi->raw_super->encrypt_pw_salt,
  1699. 16))
  1700. err = -EFAULT;
  1701. out_err:
  1702. up_write(&sbi->sb_lock);
  1703. mnt_drop_write_file(filp);
  1704. return err;
  1705. }
  1706. static int f2fs_ioc_gc(struct file *filp, unsigned long arg)
  1707. {
  1708. struct inode *inode = file_inode(filp);
  1709. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  1710. __u32 sync;
  1711. int ret;
  1712. if (!capable(CAP_SYS_ADMIN))
  1713. return -EPERM;
  1714. if (get_user(sync, (__u32 __user *)arg))
  1715. return -EFAULT;
  1716. if (f2fs_readonly(sbi->sb))
  1717. return -EROFS;
  1718. ret = mnt_want_write_file(filp);
  1719. if (ret)
  1720. return ret;
  1721. if (!sync) {
  1722. if (!mutex_trylock(&sbi->gc_mutex)) {
  1723. ret = -EBUSY;
  1724. goto out;
  1725. }
  1726. } else {
  1727. mutex_lock(&sbi->gc_mutex);
  1728. }
  1729. ret = f2fs_gc(sbi, sync, true, NULL_SEGNO);
  1730. out:
  1731. mnt_drop_write_file(filp);
  1732. return ret;
  1733. }
  1734. static int f2fs_ioc_gc_range(struct file *filp, unsigned long arg)
  1735. {
  1736. struct inode *inode = file_inode(filp);
  1737. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  1738. struct f2fs_gc_range range;
  1739. u64 end;
  1740. int ret;
  1741. if (!capable(CAP_SYS_ADMIN))
  1742. return -EPERM;
  1743. if (copy_from_user(&range, (struct f2fs_gc_range __user *)arg,
  1744. sizeof(range)))
  1745. return -EFAULT;
  1746. if (f2fs_readonly(sbi->sb))
  1747. return -EROFS;
  1748. end = range.start + range.len;
  1749. if (range.start < MAIN_BLKADDR(sbi) || end >= MAX_BLKADDR(sbi)) {
  1750. return -EINVAL;
  1751. }
  1752. ret = mnt_want_write_file(filp);
  1753. if (ret)
  1754. return ret;
  1755. do_more:
  1756. if (!range.sync) {
  1757. if (!mutex_trylock(&sbi->gc_mutex)) {
  1758. ret = -EBUSY;
  1759. goto out;
  1760. }
  1761. } else {
  1762. mutex_lock(&sbi->gc_mutex);
  1763. }
  1764. ret = f2fs_gc(sbi, range.sync, true, GET_SEGNO(sbi, range.start));
  1765. range.start += BLKS_PER_SEC(sbi);
  1766. if (range.start <= end)
  1767. goto do_more;
  1768. out:
  1769. mnt_drop_write_file(filp);
  1770. return ret;
  1771. }
  1772. static int f2fs_ioc_write_checkpoint(struct file *filp, unsigned long arg)
  1773. {
  1774. struct inode *inode = file_inode(filp);
  1775. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  1776. int ret;
  1777. if (!capable(CAP_SYS_ADMIN))
  1778. return -EPERM;
  1779. if (f2fs_readonly(sbi->sb))
  1780. return -EROFS;
  1781. ret = mnt_want_write_file(filp);
  1782. if (ret)
  1783. return ret;
  1784. ret = f2fs_sync_fs(sbi->sb, 1);
  1785. mnt_drop_write_file(filp);
  1786. return ret;
  1787. }
  1788. static int f2fs_defragment_range(struct f2fs_sb_info *sbi,
  1789. struct file *filp,
  1790. struct f2fs_defragment *range)
  1791. {
  1792. struct inode *inode = file_inode(filp);
  1793. struct f2fs_map_blocks map = { .m_next_extent = NULL,
  1794. .m_seg_type = NO_CHECK_TYPE };
  1795. struct extent_info ei = {0, 0, 0};
  1796. pgoff_t pg_start, pg_end, next_pgofs;
  1797. unsigned int blk_per_seg = sbi->blocks_per_seg;
  1798. unsigned int total = 0, sec_num;
  1799. block_t blk_end = 0;
  1800. bool fragmented = false;
  1801. int err;
  1802. /* if in-place-update policy is enabled, don't waste time here */
  1803. if (f2fs_should_update_inplace(inode, NULL))
  1804. return -EINVAL;
  1805. pg_start = range->start >> PAGE_SHIFT;
  1806. pg_end = (range->start + range->len) >> PAGE_SHIFT;
  1807. f2fs_balance_fs(sbi, true);
  1808. inode_lock(inode);
  1809. /* writeback all dirty pages in the range */
  1810. err = filemap_write_and_wait_range(inode->i_mapping, range->start,
  1811. range->start + range->len - 1);
  1812. if (err)
  1813. goto out;
  1814. /*
  1815. * lookup mapping info in extent cache, skip defragmenting if physical
  1816. * block addresses are continuous.
  1817. */
  1818. if (f2fs_lookup_extent_cache(inode, pg_start, &ei)) {
  1819. if (ei.fofs + ei.len >= pg_end)
  1820. goto out;
  1821. }
  1822. map.m_lblk = pg_start;
  1823. map.m_next_pgofs = &next_pgofs;
  1824. /*
  1825. * lookup mapping info in dnode page cache, skip defragmenting if all
  1826. * physical block addresses are continuous even if there are hole(s)
  1827. * in logical blocks.
  1828. */
  1829. while (map.m_lblk < pg_end) {
  1830. map.m_len = pg_end - map.m_lblk;
  1831. err = f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_DEFAULT);
  1832. if (err)
  1833. goto out;
  1834. if (!(map.m_flags & F2FS_MAP_FLAGS)) {
  1835. map.m_lblk = next_pgofs;
  1836. continue;
  1837. }
  1838. if (blk_end && blk_end != map.m_pblk)
  1839. fragmented = true;
  1840. /* record total count of block that we're going to move */
  1841. total += map.m_len;
  1842. blk_end = map.m_pblk + map.m_len;
  1843. map.m_lblk += map.m_len;
  1844. }
  1845. if (!fragmented)
  1846. goto out;
  1847. sec_num = (total + BLKS_PER_SEC(sbi) - 1) / BLKS_PER_SEC(sbi);
  1848. /*
  1849. * make sure there are enough free section for LFS allocation, this can
  1850. * avoid defragment running in SSR mode when free section are allocated
  1851. * intensively
  1852. */
  1853. if (has_not_enough_free_secs(sbi, 0, sec_num)) {
  1854. err = -EAGAIN;
  1855. goto out;
  1856. }
  1857. map.m_lblk = pg_start;
  1858. map.m_len = pg_end - pg_start;
  1859. total = 0;
  1860. while (map.m_lblk < pg_end) {
  1861. pgoff_t idx;
  1862. int cnt = 0;
  1863. do_map:
  1864. map.m_len = pg_end - map.m_lblk;
  1865. err = f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_DEFAULT);
  1866. if (err)
  1867. goto clear_out;
  1868. if (!(map.m_flags & F2FS_MAP_FLAGS)) {
  1869. map.m_lblk = next_pgofs;
  1870. continue;
  1871. }
  1872. set_inode_flag(inode, FI_DO_DEFRAG);
  1873. idx = map.m_lblk;
  1874. while (idx < map.m_lblk + map.m_len && cnt < blk_per_seg) {
  1875. struct page *page;
  1876. page = f2fs_get_lock_data_page(inode, idx, true);
  1877. if (IS_ERR(page)) {
  1878. err = PTR_ERR(page);
  1879. goto clear_out;
  1880. }
  1881. set_page_dirty(page);
  1882. f2fs_put_page(page, 1);
  1883. idx++;
  1884. cnt++;
  1885. total++;
  1886. }
  1887. map.m_lblk = idx;
  1888. if (idx < pg_end && cnt < blk_per_seg)
  1889. goto do_map;
  1890. clear_inode_flag(inode, FI_DO_DEFRAG);
  1891. err = filemap_fdatawrite(inode->i_mapping);
  1892. if (err)
  1893. goto out;
  1894. }
  1895. clear_out:
  1896. clear_inode_flag(inode, FI_DO_DEFRAG);
  1897. out:
  1898. inode_unlock(inode);
  1899. if (!err)
  1900. range->len = (u64)total << PAGE_SHIFT;
  1901. return err;
  1902. }
  1903. static int f2fs_ioc_defragment(struct file *filp, unsigned long arg)
  1904. {
  1905. struct inode *inode = file_inode(filp);
  1906. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  1907. struct f2fs_defragment range;
  1908. int err;
  1909. if (!capable(CAP_SYS_ADMIN))
  1910. return -EPERM;
  1911. if (!S_ISREG(inode->i_mode) || f2fs_is_atomic_file(inode))
  1912. return -EINVAL;
  1913. if (f2fs_readonly(sbi->sb))
  1914. return -EROFS;
  1915. if (copy_from_user(&range, (struct f2fs_defragment __user *)arg,
  1916. sizeof(range)))
  1917. return -EFAULT;
  1918. /* verify alignment of offset & size */
  1919. if (range.start & (F2FS_BLKSIZE - 1) || range.len & (F2FS_BLKSIZE - 1))
  1920. return -EINVAL;
  1921. if (unlikely((range.start + range.len) >> PAGE_SHIFT >
  1922. sbi->max_file_blocks))
  1923. return -EINVAL;
  1924. err = mnt_want_write_file(filp);
  1925. if (err)
  1926. return err;
  1927. err = f2fs_defragment_range(sbi, filp, &range);
  1928. mnt_drop_write_file(filp);
  1929. f2fs_update_time(sbi, REQ_TIME);
  1930. if (err < 0)
  1931. return err;
  1932. if (copy_to_user((struct f2fs_defragment __user *)arg, &range,
  1933. sizeof(range)))
  1934. return -EFAULT;
  1935. return 0;
  1936. }
  1937. static int f2fs_move_file_range(struct file *file_in, loff_t pos_in,
  1938. struct file *file_out, loff_t pos_out, size_t len)
  1939. {
  1940. struct inode *src = file_inode(file_in);
  1941. struct inode *dst = file_inode(file_out);
  1942. struct f2fs_sb_info *sbi = F2FS_I_SB(src);
  1943. size_t olen = len, dst_max_i_size = 0;
  1944. size_t dst_osize;
  1945. int ret;
  1946. if (file_in->f_path.mnt != file_out->f_path.mnt ||
  1947. src->i_sb != dst->i_sb)
  1948. return -EXDEV;
  1949. if (unlikely(f2fs_readonly(src->i_sb)))
  1950. return -EROFS;
  1951. if (!S_ISREG(src->i_mode) || !S_ISREG(dst->i_mode))
  1952. return -EINVAL;
  1953. if (f2fs_encrypted_inode(src) || f2fs_encrypted_inode(dst))
  1954. return -EOPNOTSUPP;
  1955. if (src == dst) {
  1956. if (pos_in == pos_out)
  1957. return 0;
  1958. if (pos_out > pos_in && pos_out < pos_in + len)
  1959. return -EINVAL;
  1960. }
  1961. inode_lock(src);
  1962. if (src != dst) {
  1963. ret = -EBUSY;
  1964. if (!inode_trylock(dst))
  1965. goto out;
  1966. }
  1967. ret = -EINVAL;
  1968. if (pos_in + len > src->i_size || pos_in + len < pos_in)
  1969. goto out_unlock;
  1970. if (len == 0)
  1971. olen = len = src->i_size - pos_in;
  1972. if (pos_in + len == src->i_size)
  1973. len = ALIGN(src->i_size, F2FS_BLKSIZE) - pos_in;
  1974. if (len == 0) {
  1975. ret = 0;
  1976. goto out_unlock;
  1977. }
  1978. dst_osize = dst->i_size;
  1979. if (pos_out + olen > dst->i_size)
  1980. dst_max_i_size = pos_out + olen;
  1981. /* verify the end result is block aligned */
  1982. if (!IS_ALIGNED(pos_in, F2FS_BLKSIZE) ||
  1983. !IS_ALIGNED(pos_in + len, F2FS_BLKSIZE) ||
  1984. !IS_ALIGNED(pos_out, F2FS_BLKSIZE))
  1985. goto out_unlock;
  1986. ret = f2fs_convert_inline_inode(src);
  1987. if (ret)
  1988. goto out_unlock;
  1989. ret = f2fs_convert_inline_inode(dst);
  1990. if (ret)
  1991. goto out_unlock;
  1992. /* write out all dirty pages from offset */
  1993. ret = filemap_write_and_wait_range(src->i_mapping,
  1994. pos_in, pos_in + len);
  1995. if (ret)
  1996. goto out_unlock;
  1997. ret = filemap_write_and_wait_range(dst->i_mapping,
  1998. pos_out, pos_out + len);
  1999. if (ret)
  2000. goto out_unlock;
  2001. f2fs_balance_fs(sbi, true);
  2002. down_write(&F2FS_I(src)->i_gc_rwsem[WRITE]);
  2003. if (src != dst) {
  2004. ret = -EBUSY;
  2005. if (!down_write_trylock(&F2FS_I(dst)->i_gc_rwsem[WRITE]))
  2006. goto out_src;
  2007. }
  2008. f2fs_lock_op(sbi);
  2009. ret = __exchange_data_block(src, dst, pos_in >> F2FS_BLKSIZE_BITS,
  2010. pos_out >> F2FS_BLKSIZE_BITS,
  2011. len >> F2FS_BLKSIZE_BITS, false);
  2012. if (!ret) {
  2013. if (dst_max_i_size)
  2014. f2fs_i_size_write(dst, dst_max_i_size);
  2015. else if (dst_osize != dst->i_size)
  2016. f2fs_i_size_write(dst, dst_osize);
  2017. }
  2018. f2fs_unlock_op(sbi);
  2019. if (src != dst)
  2020. up_write(&F2FS_I(dst)->i_gc_rwsem[WRITE]);
  2021. out_src:
  2022. up_write(&F2FS_I(src)->i_gc_rwsem[WRITE]);
  2023. out_unlock:
  2024. if (src != dst)
  2025. inode_unlock(dst);
  2026. out:
  2027. inode_unlock(src);
  2028. return ret;
  2029. }
  2030. static int f2fs_ioc_move_range(struct file *filp, unsigned long arg)
  2031. {
  2032. struct f2fs_move_range range;
  2033. struct fd dst;
  2034. int err;
  2035. if (!(filp->f_mode & FMODE_READ) ||
  2036. !(filp->f_mode & FMODE_WRITE))
  2037. return -EBADF;
  2038. if (copy_from_user(&range, (struct f2fs_move_range __user *)arg,
  2039. sizeof(range)))
  2040. return -EFAULT;
  2041. dst = fdget(range.dst_fd);
  2042. if (!dst.file)
  2043. return -EBADF;
  2044. if (!(dst.file->f_mode & FMODE_WRITE)) {
  2045. err = -EBADF;
  2046. goto err_out;
  2047. }
  2048. err = mnt_want_write_file(filp);
  2049. if (err)
  2050. goto err_out;
  2051. err = f2fs_move_file_range(filp, range.pos_in, dst.file,
  2052. range.pos_out, range.len);
  2053. mnt_drop_write_file(filp);
  2054. if (err)
  2055. goto err_out;
  2056. if (copy_to_user((struct f2fs_move_range __user *)arg,
  2057. &range, sizeof(range)))
  2058. err = -EFAULT;
  2059. err_out:
  2060. fdput(dst);
  2061. return err;
  2062. }
  2063. static int f2fs_ioc_flush_device(struct file *filp, unsigned long arg)
  2064. {
  2065. struct inode *inode = file_inode(filp);
  2066. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  2067. struct sit_info *sm = SIT_I(sbi);
  2068. unsigned int start_segno = 0, end_segno = 0;
  2069. unsigned int dev_start_segno = 0, dev_end_segno = 0;
  2070. struct f2fs_flush_device range;
  2071. int ret;
  2072. if (!capable(CAP_SYS_ADMIN))
  2073. return -EPERM;
  2074. if (f2fs_readonly(sbi->sb))
  2075. return -EROFS;
  2076. if (copy_from_user(&range, (struct f2fs_flush_device __user *)arg,
  2077. sizeof(range)))
  2078. return -EFAULT;
  2079. if (!f2fs_is_multi_device(sbi) || sbi->s_ndevs - 1 <= range.dev_num ||
  2080. sbi->segs_per_sec != 1) {
  2081. f2fs_msg(sbi->sb, KERN_WARNING,
  2082. "Can't flush %u in %d for segs_per_sec %u != 1\n",
  2083. range.dev_num, sbi->s_ndevs,
  2084. sbi->segs_per_sec);
  2085. return -EINVAL;
  2086. }
  2087. ret = mnt_want_write_file(filp);
  2088. if (ret)
  2089. return ret;
  2090. if (range.dev_num != 0)
  2091. dev_start_segno = GET_SEGNO(sbi, FDEV(range.dev_num).start_blk);
  2092. dev_end_segno = GET_SEGNO(sbi, FDEV(range.dev_num).end_blk);
  2093. start_segno = sm->last_victim[FLUSH_DEVICE];
  2094. if (start_segno < dev_start_segno || start_segno >= dev_end_segno)
  2095. start_segno = dev_start_segno;
  2096. end_segno = min(start_segno + range.segments, dev_end_segno);
  2097. while (start_segno < end_segno) {
  2098. if (!mutex_trylock(&sbi->gc_mutex)) {
  2099. ret = -EBUSY;
  2100. goto out;
  2101. }
  2102. sm->last_victim[GC_CB] = end_segno + 1;
  2103. sm->last_victim[GC_GREEDY] = end_segno + 1;
  2104. sm->last_victim[ALLOC_NEXT] = end_segno + 1;
  2105. ret = f2fs_gc(sbi, true, true, start_segno);
  2106. if (ret == -EAGAIN)
  2107. ret = 0;
  2108. else if (ret < 0)
  2109. break;
  2110. start_segno++;
  2111. }
  2112. out:
  2113. mnt_drop_write_file(filp);
  2114. return ret;
  2115. }
  2116. static int f2fs_ioc_get_features(struct file *filp, unsigned long arg)
  2117. {
  2118. struct inode *inode = file_inode(filp);
  2119. u32 sb_feature = le32_to_cpu(F2FS_I_SB(inode)->raw_super->feature);
  2120. /* Must validate to set it with SQLite behavior in Android. */
  2121. sb_feature |= F2FS_FEATURE_ATOMIC_WRITE;
  2122. return put_user(sb_feature, (u32 __user *)arg);
  2123. }
  2124. #ifdef CONFIG_QUOTA
  2125. static int f2fs_ioc_setproject(struct file *filp, __u32 projid)
  2126. {
  2127. struct inode *inode = file_inode(filp);
  2128. struct f2fs_inode_info *fi = F2FS_I(inode);
  2129. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  2130. struct super_block *sb = sbi->sb;
  2131. struct dquot *transfer_to[MAXQUOTAS] = {};
  2132. struct page *ipage;
  2133. kprojid_t kprojid;
  2134. int err;
  2135. if (!f2fs_sb_has_project_quota(sb)) {
  2136. if (projid != F2FS_DEF_PROJID)
  2137. return -EOPNOTSUPP;
  2138. else
  2139. return 0;
  2140. }
  2141. if (!f2fs_has_extra_attr(inode))
  2142. return -EOPNOTSUPP;
  2143. kprojid = make_kprojid(&init_user_ns, (projid_t)projid);
  2144. if (projid_eq(kprojid, F2FS_I(inode)->i_projid))
  2145. return 0;
  2146. err = -EPERM;
  2147. /* Is it quota file? Do not allow user to mess with it */
  2148. if (IS_NOQUOTA(inode))
  2149. return err;
  2150. ipage = f2fs_get_node_page(sbi, inode->i_ino);
  2151. if (IS_ERR(ipage))
  2152. return PTR_ERR(ipage);
  2153. if (!F2FS_FITS_IN_INODE(F2FS_INODE(ipage), fi->i_extra_isize,
  2154. i_projid)) {
  2155. err = -EOVERFLOW;
  2156. f2fs_put_page(ipage, 1);
  2157. return err;
  2158. }
  2159. f2fs_put_page(ipage, 1);
  2160. err = dquot_initialize(inode);
  2161. if (err)
  2162. return err;
  2163. transfer_to[PRJQUOTA] = dqget(sb, make_kqid_projid(kprojid));
  2164. if (!IS_ERR(transfer_to[PRJQUOTA])) {
  2165. err = __dquot_transfer(inode, transfer_to);
  2166. dqput(transfer_to[PRJQUOTA]);
  2167. if (err)
  2168. goto out_dirty;
  2169. }
  2170. F2FS_I(inode)->i_projid = kprojid;
  2171. inode->i_ctime = current_time(inode);
  2172. out_dirty:
  2173. f2fs_mark_inode_dirty_sync(inode, true);
  2174. return err;
  2175. }
  2176. #else
  2177. static int f2fs_ioc_setproject(struct file *filp, __u32 projid)
  2178. {
  2179. if (projid != F2FS_DEF_PROJID)
  2180. return -EOPNOTSUPP;
  2181. return 0;
  2182. }
  2183. #endif
  2184. /* Transfer internal flags to xflags */
  2185. static inline __u32 f2fs_iflags_to_xflags(unsigned long iflags)
  2186. {
  2187. __u32 xflags = 0;
  2188. if (iflags & F2FS_SYNC_FL)
  2189. xflags |= FS_XFLAG_SYNC;
  2190. if (iflags & F2FS_IMMUTABLE_FL)
  2191. xflags |= FS_XFLAG_IMMUTABLE;
  2192. if (iflags & F2FS_APPEND_FL)
  2193. xflags |= FS_XFLAG_APPEND;
  2194. if (iflags & F2FS_NODUMP_FL)
  2195. xflags |= FS_XFLAG_NODUMP;
  2196. if (iflags & F2FS_NOATIME_FL)
  2197. xflags |= FS_XFLAG_NOATIME;
  2198. if (iflags & F2FS_PROJINHERIT_FL)
  2199. xflags |= FS_XFLAG_PROJINHERIT;
  2200. return xflags;
  2201. }
  2202. #define F2FS_SUPPORTED_FS_XFLAGS (FS_XFLAG_SYNC | FS_XFLAG_IMMUTABLE | \
  2203. FS_XFLAG_APPEND | FS_XFLAG_NODUMP | \
  2204. FS_XFLAG_NOATIME | FS_XFLAG_PROJINHERIT)
  2205. /* Transfer xflags flags to internal */
  2206. static inline unsigned long f2fs_xflags_to_iflags(__u32 xflags)
  2207. {
  2208. unsigned long iflags = 0;
  2209. if (xflags & FS_XFLAG_SYNC)
  2210. iflags |= F2FS_SYNC_FL;
  2211. if (xflags & FS_XFLAG_IMMUTABLE)
  2212. iflags |= F2FS_IMMUTABLE_FL;
  2213. if (xflags & FS_XFLAG_APPEND)
  2214. iflags |= F2FS_APPEND_FL;
  2215. if (xflags & FS_XFLAG_NODUMP)
  2216. iflags |= F2FS_NODUMP_FL;
  2217. if (xflags & FS_XFLAG_NOATIME)
  2218. iflags |= F2FS_NOATIME_FL;
  2219. if (xflags & FS_XFLAG_PROJINHERIT)
  2220. iflags |= F2FS_PROJINHERIT_FL;
  2221. return iflags;
  2222. }
  2223. static int f2fs_ioc_fsgetxattr(struct file *filp, unsigned long arg)
  2224. {
  2225. struct inode *inode = file_inode(filp);
  2226. struct f2fs_inode_info *fi = F2FS_I(inode);
  2227. struct fsxattr fa;
  2228. memset(&fa, 0, sizeof(struct fsxattr));
  2229. fa.fsx_xflags = f2fs_iflags_to_xflags(fi->i_flags &
  2230. F2FS_FL_USER_VISIBLE);
  2231. if (f2fs_sb_has_project_quota(inode->i_sb))
  2232. fa.fsx_projid = (__u32)from_kprojid(&init_user_ns,
  2233. fi->i_projid);
  2234. if (copy_to_user((struct fsxattr __user *)arg, &fa, sizeof(fa)))
  2235. return -EFAULT;
  2236. return 0;
  2237. }
  2238. static int f2fs_ioctl_check_project(struct inode *inode, struct fsxattr *fa)
  2239. {
  2240. /*
  2241. * Project Quota ID state is only allowed to change from within the init
  2242. * namespace. Enforce that restriction only if we are trying to change
  2243. * the quota ID state. Everything else is allowed in user namespaces.
  2244. */
  2245. if (current_user_ns() == &init_user_ns)
  2246. return 0;
  2247. if (__kprojid_val(F2FS_I(inode)->i_projid) != fa->fsx_projid)
  2248. return -EINVAL;
  2249. if (F2FS_I(inode)->i_flags & F2FS_PROJINHERIT_FL) {
  2250. if (!(fa->fsx_xflags & FS_XFLAG_PROJINHERIT))
  2251. return -EINVAL;
  2252. } else {
  2253. if (fa->fsx_xflags & FS_XFLAG_PROJINHERIT)
  2254. return -EINVAL;
  2255. }
  2256. return 0;
  2257. }
  2258. static int f2fs_ioc_fssetxattr(struct file *filp, unsigned long arg)
  2259. {
  2260. struct inode *inode = file_inode(filp);
  2261. struct f2fs_inode_info *fi = F2FS_I(inode);
  2262. struct fsxattr fa;
  2263. unsigned int flags;
  2264. int err;
  2265. if (copy_from_user(&fa, (struct fsxattr __user *)arg, sizeof(fa)))
  2266. return -EFAULT;
  2267. /* Make sure caller has proper permission */
  2268. if (!inode_owner_or_capable(inode))
  2269. return -EACCES;
  2270. if (fa.fsx_xflags & ~F2FS_SUPPORTED_FS_XFLAGS)
  2271. return -EOPNOTSUPP;
  2272. flags = f2fs_xflags_to_iflags(fa.fsx_xflags);
  2273. if (f2fs_mask_flags(inode->i_mode, flags) != flags)
  2274. return -EOPNOTSUPP;
  2275. err = mnt_want_write_file(filp);
  2276. if (err)
  2277. return err;
  2278. inode_lock(inode);
  2279. err = f2fs_ioctl_check_project(inode, &fa);
  2280. if (err)
  2281. goto out;
  2282. flags = (fi->i_flags & ~F2FS_FL_XFLAG_VISIBLE) |
  2283. (flags & F2FS_FL_XFLAG_VISIBLE);
  2284. err = __f2fs_ioc_setflags(inode, flags);
  2285. if (err)
  2286. goto out;
  2287. err = f2fs_ioc_setproject(filp, fa.fsx_projid);
  2288. out:
  2289. inode_unlock(inode);
  2290. mnt_drop_write_file(filp);
  2291. return err;
  2292. }
  2293. int f2fs_pin_file_control(struct inode *inode, bool inc)
  2294. {
  2295. struct f2fs_inode_info *fi = F2FS_I(inode);
  2296. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  2297. /* Use i_gc_failures for normal file as a risk signal. */
  2298. if (inc)
  2299. f2fs_i_gc_failures_write(inode,
  2300. fi->i_gc_failures[GC_FAILURE_PIN] + 1);
  2301. if (fi->i_gc_failures[GC_FAILURE_PIN] > sbi->gc_pin_file_threshold) {
  2302. f2fs_msg(sbi->sb, KERN_WARNING,
  2303. "%s: Enable GC = ino %lx after %x GC trials\n",
  2304. __func__, inode->i_ino,
  2305. fi->i_gc_failures[GC_FAILURE_PIN]);
  2306. clear_inode_flag(inode, FI_PIN_FILE);
  2307. return -EAGAIN;
  2308. }
  2309. return 0;
  2310. }
  2311. static int f2fs_ioc_set_pin_file(struct file *filp, unsigned long arg)
  2312. {
  2313. struct inode *inode = file_inode(filp);
  2314. __u32 pin;
  2315. int ret = 0;
  2316. if (!inode_owner_or_capable(inode))
  2317. return -EACCES;
  2318. if (get_user(pin, (__u32 __user *)arg))
  2319. return -EFAULT;
  2320. if (!S_ISREG(inode->i_mode))
  2321. return -EINVAL;
  2322. if (f2fs_readonly(F2FS_I_SB(inode)->sb))
  2323. return -EROFS;
  2324. ret = mnt_want_write_file(filp);
  2325. if (ret)
  2326. return ret;
  2327. inode_lock(inode);
  2328. if (f2fs_should_update_outplace(inode, NULL)) {
  2329. ret = -EINVAL;
  2330. goto out;
  2331. }
  2332. if (!pin) {
  2333. clear_inode_flag(inode, FI_PIN_FILE);
  2334. f2fs_i_gc_failures_write(inode, 0);
  2335. goto done;
  2336. }
  2337. if (f2fs_pin_file_control(inode, false)) {
  2338. ret = -EAGAIN;
  2339. goto out;
  2340. }
  2341. ret = f2fs_convert_inline_inode(inode);
  2342. if (ret)
  2343. goto out;
  2344. set_inode_flag(inode, FI_PIN_FILE);
  2345. ret = F2FS_I(inode)->i_gc_failures[GC_FAILURE_PIN];
  2346. done:
  2347. f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
  2348. out:
  2349. inode_unlock(inode);
  2350. mnt_drop_write_file(filp);
  2351. return ret;
  2352. }
  2353. static int f2fs_ioc_get_pin_file(struct file *filp, unsigned long arg)
  2354. {
  2355. struct inode *inode = file_inode(filp);
  2356. __u32 pin = 0;
  2357. if (is_inode_flag_set(inode, FI_PIN_FILE))
  2358. pin = F2FS_I(inode)->i_gc_failures[GC_FAILURE_PIN];
  2359. return put_user(pin, (u32 __user *)arg);
  2360. }
  2361. int f2fs_precache_extents(struct inode *inode)
  2362. {
  2363. struct f2fs_inode_info *fi = F2FS_I(inode);
  2364. struct f2fs_map_blocks map;
  2365. pgoff_t m_next_extent;
  2366. loff_t end;
  2367. int err;
  2368. if (is_inode_flag_set(inode, FI_NO_EXTENT))
  2369. return -EOPNOTSUPP;
  2370. map.m_lblk = 0;
  2371. map.m_next_pgofs = NULL;
  2372. map.m_next_extent = &m_next_extent;
  2373. map.m_seg_type = NO_CHECK_TYPE;
  2374. end = F2FS_I_SB(inode)->max_file_blocks;
  2375. while (map.m_lblk < end) {
  2376. map.m_len = end - map.m_lblk;
  2377. down_write(&fi->i_gc_rwsem[WRITE]);
  2378. err = f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_PRECACHE);
  2379. up_write(&fi->i_gc_rwsem[WRITE]);
  2380. if (err)
  2381. return err;
  2382. map.m_lblk = m_next_extent;
  2383. }
  2384. return err;
  2385. }
  2386. static int f2fs_ioc_precache_extents(struct file *filp, unsigned long arg)
  2387. {
  2388. return f2fs_precache_extents(file_inode(filp));
  2389. }
  2390. long f2fs_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
  2391. {
  2392. if (unlikely(f2fs_cp_error(F2FS_I_SB(file_inode(filp)))))
  2393. return -EIO;
  2394. switch (cmd) {
  2395. case F2FS_IOC_GETFLAGS:
  2396. return f2fs_ioc_getflags(filp, arg);
  2397. case F2FS_IOC_SETFLAGS:
  2398. return f2fs_ioc_setflags(filp, arg);
  2399. case F2FS_IOC_GETVERSION:
  2400. return f2fs_ioc_getversion(filp, arg);
  2401. case F2FS_IOC_START_ATOMIC_WRITE:
  2402. return f2fs_ioc_start_atomic_write(filp);
  2403. case F2FS_IOC_COMMIT_ATOMIC_WRITE:
  2404. return f2fs_ioc_commit_atomic_write(filp);
  2405. case F2FS_IOC_START_VOLATILE_WRITE:
  2406. return f2fs_ioc_start_volatile_write(filp);
  2407. case F2FS_IOC_RELEASE_VOLATILE_WRITE:
  2408. return f2fs_ioc_release_volatile_write(filp);
  2409. case F2FS_IOC_ABORT_VOLATILE_WRITE:
  2410. return f2fs_ioc_abort_volatile_write(filp);
  2411. case F2FS_IOC_SHUTDOWN:
  2412. return f2fs_ioc_shutdown(filp, arg);
  2413. case FITRIM:
  2414. return f2fs_ioc_fitrim(filp, arg);
  2415. case F2FS_IOC_SET_ENCRYPTION_POLICY:
  2416. return f2fs_ioc_set_encryption_policy(filp, arg);
  2417. case F2FS_IOC_GET_ENCRYPTION_POLICY:
  2418. return f2fs_ioc_get_encryption_policy(filp, arg);
  2419. case F2FS_IOC_GET_ENCRYPTION_PWSALT:
  2420. return f2fs_ioc_get_encryption_pwsalt(filp, arg);
  2421. case F2FS_IOC_GARBAGE_COLLECT:
  2422. return f2fs_ioc_gc(filp, arg);
  2423. case F2FS_IOC_GARBAGE_COLLECT_RANGE:
  2424. return f2fs_ioc_gc_range(filp, arg);
  2425. case F2FS_IOC_WRITE_CHECKPOINT:
  2426. return f2fs_ioc_write_checkpoint(filp, arg);
  2427. case F2FS_IOC_DEFRAGMENT:
  2428. return f2fs_ioc_defragment(filp, arg);
  2429. case F2FS_IOC_MOVE_RANGE:
  2430. return f2fs_ioc_move_range(filp, arg);
  2431. case F2FS_IOC_FLUSH_DEVICE:
  2432. return f2fs_ioc_flush_device(filp, arg);
  2433. case F2FS_IOC_GET_FEATURES:
  2434. return f2fs_ioc_get_features(filp, arg);
  2435. case F2FS_IOC_FSGETXATTR:
  2436. return f2fs_ioc_fsgetxattr(filp, arg);
  2437. case F2FS_IOC_FSSETXATTR:
  2438. return f2fs_ioc_fssetxattr(filp, arg);
  2439. case F2FS_IOC_GET_PIN_FILE:
  2440. return f2fs_ioc_get_pin_file(filp, arg);
  2441. case F2FS_IOC_SET_PIN_FILE:
  2442. return f2fs_ioc_set_pin_file(filp, arg);
  2443. case F2FS_IOC_PRECACHE_EXTENTS:
  2444. return f2fs_ioc_precache_extents(filp, arg);
  2445. default:
  2446. return -ENOTTY;
  2447. }
  2448. }
  2449. static ssize_t f2fs_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
  2450. {
  2451. struct file *file = iocb->ki_filp;
  2452. struct inode *inode = file_inode(file);
  2453. ssize_t ret;
  2454. if (unlikely(f2fs_cp_error(F2FS_I_SB(inode))))
  2455. return -EIO;
  2456. if ((iocb->ki_flags & IOCB_NOWAIT) && !(iocb->ki_flags & IOCB_DIRECT))
  2457. return -EINVAL;
  2458. if (!inode_trylock(inode)) {
  2459. if (iocb->ki_flags & IOCB_NOWAIT)
  2460. return -EAGAIN;
  2461. inode_lock(inode);
  2462. }
  2463. ret = generic_write_checks(iocb, from);
  2464. if (ret > 0) {
  2465. bool preallocated = false;
  2466. size_t target_size = 0;
  2467. int err;
  2468. if (iov_iter_fault_in_readable(from, iov_iter_count(from)))
  2469. set_inode_flag(inode, FI_NO_PREALLOC);
  2470. if ((iocb->ki_flags & IOCB_NOWAIT) &&
  2471. (iocb->ki_flags & IOCB_DIRECT)) {
  2472. if (!f2fs_overwrite_io(inode, iocb->ki_pos,
  2473. iov_iter_count(from)) ||
  2474. f2fs_has_inline_data(inode) ||
  2475. f2fs_force_buffered_io(inode, WRITE)) {
  2476. clear_inode_flag(inode,
  2477. FI_NO_PREALLOC);
  2478. inode_unlock(inode);
  2479. return -EAGAIN;
  2480. }
  2481. } else {
  2482. preallocated = true;
  2483. target_size = iocb->ki_pos + iov_iter_count(from);
  2484. err = f2fs_preallocate_blocks(iocb, from);
  2485. if (err) {
  2486. clear_inode_flag(inode, FI_NO_PREALLOC);
  2487. inode_unlock(inode);
  2488. return err;
  2489. }
  2490. }
  2491. ret = __generic_file_write_iter(iocb, from);
  2492. clear_inode_flag(inode, FI_NO_PREALLOC);
  2493. /* if we couldn't write data, we should deallocate blocks. */
  2494. if (preallocated && i_size_read(inode) < target_size)
  2495. f2fs_truncate(inode);
  2496. if (ret > 0)
  2497. f2fs_update_iostat(F2FS_I_SB(inode), APP_WRITE_IO, ret);
  2498. }
  2499. inode_unlock(inode);
  2500. if (ret > 0)
  2501. ret = generic_write_sync(iocb, ret);
  2502. return ret;
  2503. }
  2504. #ifdef CONFIG_COMPAT
  2505. long f2fs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
  2506. {
  2507. switch (cmd) {
  2508. case F2FS_IOC32_GETFLAGS:
  2509. cmd = F2FS_IOC_GETFLAGS;
  2510. break;
  2511. case F2FS_IOC32_SETFLAGS:
  2512. cmd = F2FS_IOC_SETFLAGS;
  2513. break;
  2514. case F2FS_IOC32_GETVERSION:
  2515. cmd = F2FS_IOC_GETVERSION;
  2516. break;
  2517. case F2FS_IOC_START_ATOMIC_WRITE:
  2518. case F2FS_IOC_COMMIT_ATOMIC_WRITE:
  2519. case F2FS_IOC_START_VOLATILE_WRITE:
  2520. case F2FS_IOC_RELEASE_VOLATILE_WRITE:
  2521. case F2FS_IOC_ABORT_VOLATILE_WRITE:
  2522. case F2FS_IOC_SHUTDOWN:
  2523. case F2FS_IOC_SET_ENCRYPTION_POLICY:
  2524. case F2FS_IOC_GET_ENCRYPTION_PWSALT:
  2525. case F2FS_IOC_GET_ENCRYPTION_POLICY:
  2526. case F2FS_IOC_GARBAGE_COLLECT:
  2527. case F2FS_IOC_GARBAGE_COLLECT_RANGE:
  2528. case F2FS_IOC_WRITE_CHECKPOINT:
  2529. case F2FS_IOC_DEFRAGMENT:
  2530. case F2FS_IOC_MOVE_RANGE:
  2531. case F2FS_IOC_FLUSH_DEVICE:
  2532. case F2FS_IOC_GET_FEATURES:
  2533. case F2FS_IOC_FSGETXATTR:
  2534. case F2FS_IOC_FSSETXATTR:
  2535. case F2FS_IOC_GET_PIN_FILE:
  2536. case F2FS_IOC_SET_PIN_FILE:
  2537. case F2FS_IOC_PRECACHE_EXTENTS:
  2538. break;
  2539. default:
  2540. return -ENOIOCTLCMD;
  2541. }
  2542. return f2fs_ioctl(file, cmd, (unsigned long) compat_ptr(arg));
  2543. }
  2544. #endif
  2545. const struct file_operations f2fs_file_operations = {
  2546. .llseek = f2fs_llseek,
  2547. .read_iter = generic_file_read_iter,
  2548. .write_iter = f2fs_file_write_iter,
  2549. .open = f2fs_file_open,
  2550. .release = f2fs_release_file,
  2551. .mmap = f2fs_file_mmap,
  2552. .flush = f2fs_file_flush,
  2553. .fsync = f2fs_sync_file,
  2554. .fallocate = f2fs_fallocate,
  2555. .unlocked_ioctl = f2fs_ioctl,
  2556. #ifdef CONFIG_COMPAT
  2557. .compat_ioctl = f2fs_compat_ioctl,
  2558. #endif
  2559. .splice_read = generic_file_splice_read,
  2560. .splice_write = iter_file_splice_write,
  2561. };