inline.c 17 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735
  1. /*
  2. * fs/f2fs/inline.c
  3. * Copyright (c) 2013, Intel Corporation
  4. * Authors: Huajun Li <huajun.li@intel.com>
  5. * Haicheng Li <haicheng.li@intel.com>
  6. * This program is free software; you can redistribute it and/or modify
  7. * it under the terms of the GNU General Public License version 2 as
  8. * published by the Free Software Foundation.
  9. */
  10. #include <linux/fs.h>
  11. #include <linux/f2fs_fs.h>
  12. #include "f2fs.h"
  13. #include "node.h"
  14. bool f2fs_may_inline_data(struct inode *inode)
  15. {
  16. if (f2fs_is_atomic_file(inode))
  17. return false;
  18. if (!S_ISREG(inode->i_mode) && !S_ISLNK(inode->i_mode))
  19. return false;
  20. if (i_size_read(inode) > MAX_INLINE_DATA(inode))
  21. return false;
  22. if (f2fs_post_read_required(inode))
  23. return false;
  24. return true;
  25. }
  26. bool f2fs_may_inline_dentry(struct inode *inode)
  27. {
  28. if (!test_opt(F2FS_I_SB(inode), INLINE_DENTRY))
  29. return false;
  30. if (!S_ISDIR(inode->i_mode))
  31. return false;
  32. return true;
  33. }
  34. void f2fs_do_read_inline_data(struct page *page, struct page *ipage)
  35. {
  36. struct inode *inode = page->mapping->host;
  37. void *src_addr, *dst_addr;
  38. if (PageUptodate(page))
  39. return;
  40. f2fs_bug_on(F2FS_P_SB(page), page->index);
  41. zero_user_segment(page, MAX_INLINE_DATA(inode), PAGE_SIZE);
  42. /* Copy the whole inline data block */
  43. src_addr = inline_data_addr(inode, ipage);
  44. dst_addr = kmap_atomic(page);
  45. memcpy(dst_addr, src_addr, MAX_INLINE_DATA(inode));
  46. flush_dcache_page(page);
  47. kunmap_atomic(dst_addr);
  48. if (!PageUptodate(page))
  49. SetPageUptodate(page);
  50. }
  51. void f2fs_truncate_inline_inode(struct inode *inode,
  52. struct page *ipage, u64 from)
  53. {
  54. void *addr;
  55. if (from >= MAX_INLINE_DATA(inode))
  56. return;
  57. addr = inline_data_addr(inode, ipage);
  58. f2fs_wait_on_page_writeback(ipage, NODE, true);
  59. memset(addr + from, 0, MAX_INLINE_DATA(inode) - from);
  60. set_page_dirty(ipage);
  61. if (from == 0)
  62. clear_inode_flag(inode, FI_DATA_EXIST);
  63. }
  64. int f2fs_read_inline_data(struct inode *inode, struct page *page)
  65. {
  66. struct page *ipage;
  67. ipage = f2fs_get_node_page(F2FS_I_SB(inode), inode->i_ino);
  68. if (IS_ERR(ipage)) {
  69. unlock_page(page);
  70. return PTR_ERR(ipage);
  71. }
  72. if (!f2fs_has_inline_data(inode)) {
  73. f2fs_put_page(ipage, 1);
  74. return -EAGAIN;
  75. }
  76. if (page->index)
  77. zero_user_segment(page, 0, PAGE_SIZE);
  78. else
  79. f2fs_do_read_inline_data(page, ipage);
  80. if (!PageUptodate(page))
  81. SetPageUptodate(page);
  82. f2fs_put_page(ipage, 1);
  83. unlock_page(page);
  84. return 0;
  85. }
  86. int f2fs_convert_inline_page(struct dnode_of_data *dn, struct page *page)
  87. {
  88. struct f2fs_io_info fio = {
  89. .sbi = F2FS_I_SB(dn->inode),
  90. .ino = dn->inode->i_ino,
  91. .type = DATA,
  92. .op = REQ_OP_WRITE,
  93. .op_flags = REQ_SYNC | REQ_PRIO,
  94. .page = page,
  95. .encrypted_page = NULL,
  96. .io_type = FS_DATA_IO,
  97. };
  98. struct node_info ni;
  99. int dirty, err;
  100. if (!f2fs_exist_data(dn->inode))
  101. goto clear_out;
  102. err = f2fs_reserve_block(dn, 0);
  103. if (err)
  104. return err;
  105. err = f2fs_get_node_info(fio.sbi, dn->nid, &ni);
  106. if (err) {
  107. f2fs_truncate_data_blocks_range(dn, 1);
  108. f2fs_put_dnode(dn);
  109. return err;
  110. }
  111. fio.version = ni.version;
  112. if (unlikely(dn->data_blkaddr != NEW_ADDR)) {
  113. f2fs_put_dnode(dn);
  114. set_sbi_flag(fio.sbi, SBI_NEED_FSCK);
  115. f2fs_msg(fio.sbi->sb, KERN_WARNING,
  116. "%s: corrupted inline inode ino=%lx, i_addr[0]:0x%x, "
  117. "run fsck to fix.",
  118. __func__, dn->inode->i_ino, dn->data_blkaddr);
  119. return -EFSCORRUPTED;
  120. }
  121. f2fs_bug_on(F2FS_P_SB(page), PageWriteback(page));
  122. f2fs_do_read_inline_data(page, dn->inode_page);
  123. set_page_dirty(page);
  124. /* clear dirty state */
  125. dirty = clear_page_dirty_for_io(page);
  126. /* write data page to try to make data consistent */
  127. set_page_writeback(page);
  128. ClearPageError(page);
  129. fio.old_blkaddr = dn->data_blkaddr;
  130. set_inode_flag(dn->inode, FI_HOT_DATA);
  131. f2fs_outplace_write_data(dn, &fio);
  132. f2fs_wait_on_page_writeback(page, DATA, true);
  133. if (dirty) {
  134. inode_dec_dirty_pages(dn->inode);
  135. f2fs_remove_dirty_inode(dn->inode);
  136. }
  137. /* this converted inline_data should be recovered. */
  138. set_inode_flag(dn->inode, FI_APPEND_WRITE);
  139. /* clear inline data and flag after data writeback */
  140. f2fs_truncate_inline_inode(dn->inode, dn->inode_page, 0);
  141. clear_inline_node(dn->inode_page);
  142. clear_out:
  143. stat_dec_inline_inode(dn->inode);
  144. clear_inode_flag(dn->inode, FI_INLINE_DATA);
  145. f2fs_put_dnode(dn);
  146. return 0;
  147. }
  148. int f2fs_convert_inline_inode(struct inode *inode)
  149. {
  150. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  151. struct dnode_of_data dn;
  152. struct page *ipage, *page;
  153. int err = 0;
  154. if (!f2fs_has_inline_data(inode))
  155. return 0;
  156. err = dquot_initialize(inode);
  157. if (err)
  158. return err;
  159. page = f2fs_grab_cache_page(inode->i_mapping, 0, false);
  160. if (!page)
  161. return -ENOMEM;
  162. f2fs_lock_op(sbi);
  163. ipage = f2fs_get_node_page(sbi, inode->i_ino);
  164. if (IS_ERR(ipage)) {
  165. err = PTR_ERR(ipage);
  166. goto out;
  167. }
  168. set_new_dnode(&dn, inode, ipage, ipage, 0);
  169. if (f2fs_has_inline_data(inode))
  170. err = f2fs_convert_inline_page(&dn, page);
  171. f2fs_put_dnode(&dn);
  172. out:
  173. f2fs_unlock_op(sbi);
  174. f2fs_put_page(page, 1);
  175. if (!err)
  176. f2fs_balance_fs(sbi, dn.node_changed);
  177. return err;
  178. }
  179. int f2fs_write_inline_data(struct inode *inode, struct page *page)
  180. {
  181. void *src_addr, *dst_addr;
  182. struct dnode_of_data dn;
  183. int err;
  184. set_new_dnode(&dn, inode, NULL, NULL, 0);
  185. err = f2fs_get_dnode_of_data(&dn, 0, LOOKUP_NODE);
  186. if (err)
  187. return err;
  188. if (!f2fs_has_inline_data(inode)) {
  189. f2fs_put_dnode(&dn);
  190. return -EAGAIN;
  191. }
  192. f2fs_bug_on(F2FS_I_SB(inode), page->index);
  193. f2fs_wait_on_page_writeback(dn.inode_page, NODE, true);
  194. src_addr = kmap_atomic(page);
  195. dst_addr = inline_data_addr(inode, dn.inode_page);
  196. memcpy(dst_addr, src_addr, MAX_INLINE_DATA(inode));
  197. kunmap_atomic(src_addr);
  198. set_page_dirty(dn.inode_page);
  199. f2fs_clear_radix_tree_dirty_tag(page);
  200. set_inode_flag(inode, FI_APPEND_WRITE);
  201. set_inode_flag(inode, FI_DATA_EXIST);
  202. clear_inline_node(dn.inode_page);
  203. f2fs_put_dnode(&dn);
  204. return 0;
  205. }
  206. int f2fs_recover_inline_data(struct inode *inode, struct page *npage)
  207. {
  208. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  209. struct f2fs_inode *ri = NULL;
  210. void *src_addr, *dst_addr;
  211. struct page *ipage;
  212. /*
  213. * The inline_data recovery policy is as follows.
  214. * [prev.] [next] of inline_data flag
  215. * o o -> recover inline_data
  216. * o x -> remove inline_data, and then recover data blocks
  217. * x o -> remove inline_data, and then recover inline_data
  218. * x x -> recover data blocks
  219. */
  220. if (IS_INODE(npage))
  221. ri = F2FS_INODE(npage);
  222. if (f2fs_has_inline_data(inode) &&
  223. ri && (ri->i_inline & F2FS_INLINE_DATA)) {
  224. process_inline:
  225. ipage = f2fs_get_node_page(sbi, inode->i_ino);
  226. if (IS_ERR(ipage))
  227. return PTR_ERR(ipage);
  228. f2fs_wait_on_page_writeback(ipage, NODE, true);
  229. src_addr = inline_data_addr(inode, npage);
  230. dst_addr = inline_data_addr(inode, ipage);
  231. memcpy(dst_addr, src_addr, MAX_INLINE_DATA(inode));
  232. set_inode_flag(inode, FI_INLINE_DATA);
  233. set_inode_flag(inode, FI_DATA_EXIST);
  234. set_page_dirty(ipage);
  235. f2fs_put_page(ipage, 1);
  236. return 1;
  237. }
  238. if (f2fs_has_inline_data(inode)) {
  239. ipage = f2fs_get_node_page(sbi, inode->i_ino);
  240. if (IS_ERR(ipage))
  241. return PTR_ERR(ipage);
  242. f2fs_truncate_inline_inode(inode, ipage, 0);
  243. clear_inode_flag(inode, FI_INLINE_DATA);
  244. f2fs_put_page(ipage, 1);
  245. } else if (ri && (ri->i_inline & F2FS_INLINE_DATA)) {
  246. int ret;
  247. ret = f2fs_truncate_blocks(inode, 0, false);
  248. if (ret)
  249. return ret;
  250. goto process_inline;
  251. }
  252. return 0;
  253. }
  254. struct f2fs_dir_entry *f2fs_find_in_inline_dir(struct inode *dir,
  255. struct fscrypt_name *fname, struct page **res_page)
  256. {
  257. struct f2fs_sb_info *sbi = F2FS_SB(dir->i_sb);
  258. struct qstr name = FSTR_TO_QSTR(&fname->disk_name);
  259. struct f2fs_dir_entry *de;
  260. struct f2fs_dentry_ptr d;
  261. struct page *ipage;
  262. void *inline_dentry;
  263. f2fs_hash_t namehash;
  264. ipage = f2fs_get_node_page(sbi, dir->i_ino);
  265. if (IS_ERR(ipage)) {
  266. *res_page = ipage;
  267. return NULL;
  268. }
  269. namehash = f2fs_dentry_hash(&name, fname);
  270. inline_dentry = inline_data_addr(dir, ipage);
  271. make_dentry_ptr_inline(dir, &d, inline_dentry);
  272. de = f2fs_find_target_dentry(fname, namehash, NULL, &d);
  273. unlock_page(ipage);
  274. if (de)
  275. *res_page = ipage;
  276. else
  277. f2fs_put_page(ipage, 0);
  278. return de;
  279. }
  280. int f2fs_make_empty_inline_dir(struct inode *inode, struct inode *parent,
  281. struct page *ipage)
  282. {
  283. struct f2fs_dentry_ptr d;
  284. void *inline_dentry;
  285. inline_dentry = inline_data_addr(inode, ipage);
  286. make_dentry_ptr_inline(inode, &d, inline_dentry);
  287. f2fs_do_make_empty_dir(inode, parent, &d);
  288. set_page_dirty(ipage);
  289. /* update i_size to MAX_INLINE_DATA */
  290. if (i_size_read(inode) < MAX_INLINE_DATA(inode))
  291. f2fs_i_size_write(inode, MAX_INLINE_DATA(inode));
  292. return 0;
  293. }
  294. /*
  295. * NOTE: ipage is grabbed by caller, but if any error occurs, we should
  296. * release ipage in this function.
  297. */
  298. static int f2fs_move_inline_dirents(struct inode *dir, struct page *ipage,
  299. void *inline_dentry)
  300. {
  301. struct page *page;
  302. struct dnode_of_data dn;
  303. struct f2fs_dentry_block *dentry_blk;
  304. struct f2fs_dentry_ptr src, dst;
  305. int err;
  306. page = f2fs_grab_cache_page(dir->i_mapping, 0, false);
  307. if (!page) {
  308. f2fs_put_page(ipage, 1);
  309. return -ENOMEM;
  310. }
  311. set_new_dnode(&dn, dir, ipage, NULL, 0);
  312. err = f2fs_reserve_block(&dn, 0);
  313. if (err)
  314. goto out;
  315. if (unlikely(dn.data_blkaddr != NEW_ADDR)) {
  316. f2fs_put_dnode(&dn);
  317. set_sbi_flag(F2FS_P_SB(page), SBI_NEED_FSCK);
  318. f2fs_msg(F2FS_P_SB(page)->sb, KERN_WARNING,
  319. "%s: corrupted inline inode ino=%lx, i_addr[0]:0x%x, "
  320. "run fsck to fix.",
  321. __func__, dir->i_ino, dn.data_blkaddr);
  322. err = -EFSCORRUPTED;
  323. goto out;
  324. }
  325. f2fs_wait_on_page_writeback(page, DATA, true);
  326. dentry_blk = page_address(page);
  327. make_dentry_ptr_inline(dir, &src, inline_dentry);
  328. make_dentry_ptr_block(dir, &dst, dentry_blk);
  329. /* copy data from inline dentry block to new dentry block */
  330. memcpy(dst.bitmap, src.bitmap, src.nr_bitmap);
  331. memset(dst.bitmap + src.nr_bitmap, 0, dst.nr_bitmap - src.nr_bitmap);
  332. /*
  333. * we do not need to zero out remainder part of dentry and filename
  334. * field, since we have used bitmap for marking the usage status of
  335. * them, besides, we can also ignore copying/zeroing reserved space
  336. * of dentry block, because them haven't been used so far.
  337. */
  338. memcpy(dst.dentry, src.dentry, SIZE_OF_DIR_ENTRY * src.max);
  339. memcpy(dst.filename, src.filename, src.max * F2FS_SLOT_LEN);
  340. if (!PageUptodate(page))
  341. SetPageUptodate(page);
  342. set_page_dirty(page);
  343. /* clear inline dir and flag after data writeback */
  344. f2fs_truncate_inline_inode(dir, ipage, 0);
  345. stat_dec_inline_dir(dir);
  346. clear_inode_flag(dir, FI_INLINE_DENTRY);
  347. f2fs_i_depth_write(dir, 1);
  348. if (i_size_read(dir) < PAGE_SIZE)
  349. f2fs_i_size_write(dir, PAGE_SIZE);
  350. out:
  351. f2fs_put_page(page, 1);
  352. return err;
  353. }
  354. static int f2fs_add_inline_entries(struct inode *dir, void *inline_dentry)
  355. {
  356. struct f2fs_dentry_ptr d;
  357. unsigned long bit_pos = 0;
  358. int err = 0;
  359. make_dentry_ptr_inline(dir, &d, inline_dentry);
  360. while (bit_pos < d.max) {
  361. struct f2fs_dir_entry *de;
  362. struct qstr new_name;
  363. nid_t ino;
  364. umode_t fake_mode;
  365. if (!test_bit_le(bit_pos, d.bitmap)) {
  366. bit_pos++;
  367. continue;
  368. }
  369. de = &d.dentry[bit_pos];
  370. if (unlikely(!de->name_len)) {
  371. bit_pos++;
  372. continue;
  373. }
  374. new_name.name = d.filename[bit_pos];
  375. new_name.len = le16_to_cpu(de->name_len);
  376. ino = le32_to_cpu(de->ino);
  377. fake_mode = f2fs_get_de_type(de) << S_SHIFT;
  378. err = f2fs_add_regular_entry(dir, &new_name, NULL, NULL,
  379. ino, fake_mode);
  380. if (err)
  381. goto punch_dentry_pages;
  382. bit_pos += GET_DENTRY_SLOTS(le16_to_cpu(de->name_len));
  383. }
  384. return 0;
  385. punch_dentry_pages:
  386. truncate_inode_pages(&dir->i_data, 0);
  387. f2fs_truncate_blocks(dir, 0, false);
  388. f2fs_remove_dirty_inode(dir);
  389. return err;
  390. }
  391. static int f2fs_move_rehashed_dirents(struct inode *dir, struct page *ipage,
  392. void *inline_dentry)
  393. {
  394. void *backup_dentry;
  395. int err;
  396. backup_dentry = f2fs_kmalloc(F2FS_I_SB(dir),
  397. MAX_INLINE_DATA(dir), GFP_F2FS_ZERO);
  398. if (!backup_dentry) {
  399. f2fs_put_page(ipage, 1);
  400. return -ENOMEM;
  401. }
  402. memcpy(backup_dentry, inline_dentry, MAX_INLINE_DATA(dir));
  403. f2fs_truncate_inline_inode(dir, ipage, 0);
  404. unlock_page(ipage);
  405. err = f2fs_add_inline_entries(dir, backup_dentry);
  406. if (err)
  407. goto recover;
  408. lock_page(ipage);
  409. stat_dec_inline_dir(dir);
  410. clear_inode_flag(dir, FI_INLINE_DENTRY);
  411. kfree(backup_dentry);
  412. return 0;
  413. recover:
  414. lock_page(ipage);
  415. f2fs_wait_on_page_writeback(ipage, NODE, true);
  416. memcpy(inline_dentry, backup_dentry, MAX_INLINE_DATA(dir));
  417. f2fs_i_depth_write(dir, 0);
  418. f2fs_i_size_write(dir, MAX_INLINE_DATA(dir));
  419. set_page_dirty(ipage);
  420. f2fs_put_page(ipage, 1);
  421. kfree(backup_dentry);
  422. return err;
  423. }
  424. static int f2fs_convert_inline_dir(struct inode *dir, struct page *ipage,
  425. void *inline_dentry)
  426. {
  427. if (!F2FS_I(dir)->i_dir_level)
  428. return f2fs_move_inline_dirents(dir, ipage, inline_dentry);
  429. else
  430. return f2fs_move_rehashed_dirents(dir, ipage, inline_dentry);
  431. }
  432. int f2fs_add_inline_entry(struct inode *dir, const struct qstr *new_name,
  433. const struct qstr *orig_name,
  434. struct inode *inode, nid_t ino, umode_t mode)
  435. {
  436. struct f2fs_sb_info *sbi = F2FS_I_SB(dir);
  437. struct page *ipage;
  438. unsigned int bit_pos;
  439. f2fs_hash_t name_hash;
  440. void *inline_dentry = NULL;
  441. struct f2fs_dentry_ptr d;
  442. int slots = GET_DENTRY_SLOTS(new_name->len);
  443. struct page *page = NULL;
  444. int err = 0;
  445. ipage = f2fs_get_node_page(sbi, dir->i_ino);
  446. if (IS_ERR(ipage))
  447. return PTR_ERR(ipage);
  448. inline_dentry = inline_data_addr(dir, ipage);
  449. make_dentry_ptr_inline(dir, &d, inline_dentry);
  450. bit_pos = f2fs_room_for_filename(d.bitmap, slots, d.max);
  451. if (bit_pos >= d.max) {
  452. err = f2fs_convert_inline_dir(dir, ipage, inline_dentry);
  453. if (err)
  454. return err;
  455. err = -EAGAIN;
  456. goto out;
  457. }
  458. if (inode) {
  459. down_write(&F2FS_I(inode)->i_sem);
  460. page = f2fs_init_inode_metadata(inode, dir, new_name,
  461. orig_name, ipage);
  462. if (IS_ERR(page)) {
  463. err = PTR_ERR(page);
  464. goto fail;
  465. }
  466. }
  467. f2fs_wait_on_page_writeback(ipage, NODE, true);
  468. name_hash = f2fs_dentry_hash(new_name, NULL);
  469. f2fs_update_dentry(ino, mode, &d, new_name, name_hash, bit_pos);
  470. set_page_dirty(ipage);
  471. /* we don't need to mark_inode_dirty now */
  472. if (inode) {
  473. f2fs_i_pino_write(inode, dir->i_ino);
  474. /* synchronize inode page's data from inode cache */
  475. if (is_inode_flag_set(inode, FI_NEW_INODE))
  476. f2fs_update_inode(inode, page);
  477. f2fs_put_page(page, 1);
  478. }
  479. f2fs_update_parent_metadata(dir, inode, 0);
  480. fail:
  481. if (inode)
  482. up_write(&F2FS_I(inode)->i_sem);
  483. out:
  484. f2fs_put_page(ipage, 1);
  485. return err;
  486. }
  487. void f2fs_delete_inline_entry(struct f2fs_dir_entry *dentry, struct page *page,
  488. struct inode *dir, struct inode *inode)
  489. {
  490. struct f2fs_dentry_ptr d;
  491. void *inline_dentry;
  492. int slots = GET_DENTRY_SLOTS(le16_to_cpu(dentry->name_len));
  493. unsigned int bit_pos;
  494. int i;
  495. lock_page(page);
  496. f2fs_wait_on_page_writeback(page, NODE, true);
  497. inline_dentry = inline_data_addr(dir, page);
  498. make_dentry_ptr_inline(dir, &d, inline_dentry);
  499. bit_pos = dentry - d.dentry;
  500. for (i = 0; i < slots; i++)
  501. __clear_bit_le(bit_pos + i, d.bitmap);
  502. set_page_dirty(page);
  503. f2fs_put_page(page, 1);
  504. dir->i_ctime = dir->i_mtime = current_time(dir);
  505. f2fs_mark_inode_dirty_sync(dir, false);
  506. if (inode)
  507. f2fs_drop_nlink(dir, inode);
  508. }
  509. bool f2fs_empty_inline_dir(struct inode *dir)
  510. {
  511. struct f2fs_sb_info *sbi = F2FS_I_SB(dir);
  512. struct page *ipage;
  513. unsigned int bit_pos = 2;
  514. void *inline_dentry;
  515. struct f2fs_dentry_ptr d;
  516. ipage = f2fs_get_node_page(sbi, dir->i_ino);
  517. if (IS_ERR(ipage))
  518. return false;
  519. inline_dentry = inline_data_addr(dir, ipage);
  520. make_dentry_ptr_inline(dir, &d, inline_dentry);
  521. bit_pos = find_next_bit_le(d.bitmap, d.max, bit_pos);
  522. f2fs_put_page(ipage, 1);
  523. if (bit_pos < d.max)
  524. return false;
  525. return true;
  526. }
  527. int f2fs_read_inline_dir(struct file *file, struct dir_context *ctx,
  528. struct fscrypt_str *fstr)
  529. {
  530. struct inode *inode = file_inode(file);
  531. struct page *ipage = NULL;
  532. struct f2fs_dentry_ptr d;
  533. void *inline_dentry = NULL;
  534. int err;
  535. make_dentry_ptr_inline(inode, &d, inline_dentry);
  536. if (ctx->pos == d.max)
  537. return 0;
  538. ipage = f2fs_get_node_page(F2FS_I_SB(inode), inode->i_ino);
  539. if (IS_ERR(ipage))
  540. return PTR_ERR(ipage);
  541. /*
  542. * f2fs_readdir was protected by inode.i_rwsem, it is safe to access
  543. * ipage without page's lock held.
  544. */
  545. unlock_page(ipage);
  546. inline_dentry = inline_data_addr(inode, ipage);
  547. make_dentry_ptr_inline(inode, &d, inline_dentry);
  548. err = f2fs_fill_dentries(ctx, &d, 0, fstr);
  549. if (!err)
  550. ctx->pos = d.max;
  551. f2fs_put_page(ipage, 0);
  552. return err < 0 ? err : 0;
  553. }
  554. int f2fs_inline_data_fiemap(struct inode *inode,
  555. struct fiemap_extent_info *fieinfo, __u64 start, __u64 len)
  556. {
  557. __u64 byteaddr, ilen;
  558. __u32 flags = FIEMAP_EXTENT_DATA_INLINE | FIEMAP_EXTENT_NOT_ALIGNED |
  559. FIEMAP_EXTENT_LAST;
  560. struct node_info ni;
  561. struct page *ipage;
  562. int err = 0;
  563. ipage = f2fs_get_node_page(F2FS_I_SB(inode), inode->i_ino);
  564. if (IS_ERR(ipage))
  565. return PTR_ERR(ipage);
  566. if (!f2fs_has_inline_data(inode)) {
  567. err = -EAGAIN;
  568. goto out;
  569. }
  570. ilen = min_t(size_t, MAX_INLINE_DATA(inode), i_size_read(inode));
  571. if (start >= ilen)
  572. goto out;
  573. if (start + len < ilen)
  574. ilen = start + len;
  575. ilen -= start;
  576. err = f2fs_get_node_info(F2FS_I_SB(inode), inode->i_ino, &ni);
  577. if (err)
  578. goto out;
  579. byteaddr = (__u64)ni.blk_addr << inode->i_sb->s_blocksize_bits;
  580. byteaddr += (char *)inline_data_addr(inode, ipage) -
  581. (char *)F2FS_INODE(ipage);
  582. err = fiemap_fill_next_extent(fieinfo, start, byteaddr, ilen, flags);
  583. out:
  584. f2fs_put_page(ipage, 1);
  585. return err;
  586. }