task_mmu.c 45 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869
  1. // SPDX-License-Identifier: GPL-2.0
  2. #include <linux/mm.h>
  3. #include <linux/vmacache.h>
  4. #include <linux/hugetlb.h>
  5. #include <linux/huge_mm.h>
  6. #include <linux/mount.h>
  7. #include <linux/seq_file.h>
  8. #include <linux/highmem.h>
  9. #include <linux/ptrace.h>
  10. #include <linux/slab.h>
  11. #include <linux/pagemap.h>
  12. #include <linux/mempolicy.h>
  13. #include <linux/rmap.h>
  14. #include <linux/swap.h>
  15. #include <linux/sched/mm.h>
  16. #include <linux/swapops.h>
  17. #include <linux/mmu_notifier.h>
  18. #include <linux/page_idle.h>
  19. #include <linux/shmem_fs.h>
  20. #include <linux/uaccess.h>
  21. #include <linux/pkeys.h>
  22. #include <asm/elf.h>
  23. #include <asm/tlb.h>
  24. #include <asm/tlbflush.h>
  25. #include "internal.h"
  26. #define SEQ_PUT_DEC(str, val) \
  27. seq_put_decimal_ull_width(m, str, (val) << (PAGE_SHIFT-10), 8)
  28. void task_mem(struct seq_file *m, struct mm_struct *mm)
  29. {
  30. unsigned long text, lib, swap, anon, file, shmem;
  31. unsigned long hiwater_vm, total_vm, hiwater_rss, total_rss;
  32. anon = get_mm_counter(mm, MM_ANONPAGES);
  33. file = get_mm_counter(mm, MM_FILEPAGES);
  34. shmem = get_mm_counter(mm, MM_SHMEMPAGES);
  35. /*
  36. * Note: to minimize their overhead, mm maintains hiwater_vm and
  37. * hiwater_rss only when about to *lower* total_vm or rss. Any
  38. * collector of these hiwater stats must therefore get total_vm
  39. * and rss too, which will usually be the higher. Barriers? not
  40. * worth the effort, such snapshots can always be inconsistent.
  41. */
  42. hiwater_vm = total_vm = mm->total_vm;
  43. if (hiwater_vm < mm->hiwater_vm)
  44. hiwater_vm = mm->hiwater_vm;
  45. hiwater_rss = total_rss = anon + file + shmem;
  46. if (hiwater_rss < mm->hiwater_rss)
  47. hiwater_rss = mm->hiwater_rss;
  48. /* split executable areas between text and lib */
  49. text = PAGE_ALIGN(mm->end_code) - (mm->start_code & PAGE_MASK);
  50. text = min(text, mm->exec_vm << PAGE_SHIFT);
  51. lib = (mm->exec_vm << PAGE_SHIFT) - text;
  52. swap = get_mm_counter(mm, MM_SWAPENTS);
  53. SEQ_PUT_DEC("VmPeak:\t", hiwater_vm);
  54. SEQ_PUT_DEC(" kB\nVmSize:\t", total_vm);
  55. SEQ_PUT_DEC(" kB\nVmLck:\t", mm->locked_vm);
  56. SEQ_PUT_DEC(" kB\nVmPin:\t", mm->pinned_vm);
  57. SEQ_PUT_DEC(" kB\nVmHWM:\t", hiwater_rss);
  58. SEQ_PUT_DEC(" kB\nVmRSS:\t", total_rss);
  59. SEQ_PUT_DEC(" kB\nRssAnon:\t", anon);
  60. SEQ_PUT_DEC(" kB\nRssFile:\t", file);
  61. SEQ_PUT_DEC(" kB\nRssShmem:\t", shmem);
  62. SEQ_PUT_DEC(" kB\nVmData:\t", mm->data_vm);
  63. SEQ_PUT_DEC(" kB\nVmStk:\t", mm->stack_vm);
  64. seq_put_decimal_ull_width(m,
  65. " kB\nVmExe:\t", text >> 10, 8);
  66. seq_put_decimal_ull_width(m,
  67. " kB\nVmLib:\t", lib >> 10, 8);
  68. seq_put_decimal_ull_width(m,
  69. " kB\nVmPTE:\t", mm_pgtables_bytes(mm) >> 10, 8);
  70. SEQ_PUT_DEC(" kB\nVmSwap:\t", swap);
  71. seq_puts(m, " kB\n");
  72. hugetlb_report_usage(m, mm);
  73. }
  74. #undef SEQ_PUT_DEC
  75. unsigned long task_vsize(struct mm_struct *mm)
  76. {
  77. return PAGE_SIZE * mm->total_vm;
  78. }
  79. unsigned long task_statm(struct mm_struct *mm,
  80. unsigned long *shared, unsigned long *text,
  81. unsigned long *data, unsigned long *resident)
  82. {
  83. *shared = get_mm_counter(mm, MM_FILEPAGES) +
  84. get_mm_counter(mm, MM_SHMEMPAGES);
  85. *text = (PAGE_ALIGN(mm->end_code) - (mm->start_code & PAGE_MASK))
  86. >> PAGE_SHIFT;
  87. *data = mm->data_vm + mm->stack_vm;
  88. *resident = *shared + get_mm_counter(mm, MM_ANONPAGES);
  89. return mm->total_vm;
  90. }
  91. #ifdef CONFIG_NUMA
  92. /*
  93. * Save get_task_policy() for show_numa_map().
  94. */
  95. static void hold_task_mempolicy(struct proc_maps_private *priv)
  96. {
  97. struct task_struct *task = priv->task;
  98. task_lock(task);
  99. priv->task_mempolicy = get_task_policy(task);
  100. mpol_get(priv->task_mempolicy);
  101. task_unlock(task);
  102. }
  103. static void release_task_mempolicy(struct proc_maps_private *priv)
  104. {
  105. mpol_put(priv->task_mempolicy);
  106. }
  107. #else
  108. static void hold_task_mempolicy(struct proc_maps_private *priv)
  109. {
  110. }
  111. static void release_task_mempolicy(struct proc_maps_private *priv)
  112. {
  113. }
  114. #endif
  115. static void vma_stop(struct proc_maps_private *priv)
  116. {
  117. struct mm_struct *mm = priv->mm;
  118. release_task_mempolicy(priv);
  119. up_read(&mm->mmap_sem);
  120. mmput(mm);
  121. }
  122. static struct vm_area_struct *
  123. m_next_vma(struct proc_maps_private *priv, struct vm_area_struct *vma)
  124. {
  125. if (vma == priv->tail_vma)
  126. return NULL;
  127. return vma->vm_next ?: priv->tail_vma;
  128. }
  129. static void m_cache_vma(struct seq_file *m, struct vm_area_struct *vma)
  130. {
  131. if (m->count < m->size) /* vma is copied successfully */
  132. m->version = m_next_vma(m->private, vma) ? vma->vm_end : -1UL;
  133. }
  134. static void *m_start(struct seq_file *m, loff_t *ppos)
  135. {
  136. struct proc_maps_private *priv = m->private;
  137. unsigned long last_addr = m->version;
  138. struct mm_struct *mm;
  139. struct vm_area_struct *vma;
  140. unsigned int pos = *ppos;
  141. /* See m_cache_vma(). Zero at the start or after lseek. */
  142. if (last_addr == -1UL)
  143. return NULL;
  144. priv->task = get_proc_task(priv->inode);
  145. if (!priv->task)
  146. return ERR_PTR(-ESRCH);
  147. mm = priv->mm;
  148. if (!mm || !mmget_not_zero(mm))
  149. return NULL;
  150. if (down_read_killable(&mm->mmap_sem)) {
  151. mmput(mm);
  152. return ERR_PTR(-EINTR);
  153. }
  154. hold_task_mempolicy(priv);
  155. priv->tail_vma = get_gate_vma(mm);
  156. if (last_addr) {
  157. vma = find_vma(mm, last_addr - 1);
  158. if (vma && vma->vm_start <= last_addr)
  159. vma = m_next_vma(priv, vma);
  160. if (vma)
  161. return vma;
  162. }
  163. m->version = 0;
  164. if (pos < mm->map_count) {
  165. for (vma = mm->mmap; pos; pos--) {
  166. m->version = vma->vm_start;
  167. vma = vma->vm_next;
  168. }
  169. return vma;
  170. }
  171. /* we do not bother to update m->version in this case */
  172. if (pos == mm->map_count && priv->tail_vma)
  173. return priv->tail_vma;
  174. vma_stop(priv);
  175. return NULL;
  176. }
  177. static void *m_next(struct seq_file *m, void *v, loff_t *pos)
  178. {
  179. struct proc_maps_private *priv = m->private;
  180. struct vm_area_struct *next;
  181. (*pos)++;
  182. next = m_next_vma(priv, v);
  183. if (!next)
  184. vma_stop(priv);
  185. return next;
  186. }
  187. static void m_stop(struct seq_file *m, void *v)
  188. {
  189. struct proc_maps_private *priv = m->private;
  190. if (!IS_ERR_OR_NULL(v))
  191. vma_stop(priv);
  192. if (priv->task) {
  193. put_task_struct(priv->task);
  194. priv->task = NULL;
  195. }
  196. }
  197. static int proc_maps_open(struct inode *inode, struct file *file,
  198. const struct seq_operations *ops, int psize)
  199. {
  200. struct proc_maps_private *priv = __seq_open_private(file, ops, psize);
  201. if (!priv)
  202. return -ENOMEM;
  203. priv->inode = inode;
  204. priv->mm = proc_mem_open(inode, PTRACE_MODE_READ);
  205. if (IS_ERR(priv->mm)) {
  206. int err = PTR_ERR(priv->mm);
  207. seq_release_private(inode, file);
  208. return err;
  209. }
  210. return 0;
  211. }
  212. static int proc_map_release(struct inode *inode, struct file *file)
  213. {
  214. struct seq_file *seq = file->private_data;
  215. struct proc_maps_private *priv = seq->private;
  216. if (priv->mm)
  217. mmdrop(priv->mm);
  218. return seq_release_private(inode, file);
  219. }
  220. static int do_maps_open(struct inode *inode, struct file *file,
  221. const struct seq_operations *ops)
  222. {
  223. return proc_maps_open(inode, file, ops,
  224. sizeof(struct proc_maps_private));
  225. }
  226. /*
  227. * Indicate if the VMA is a stack for the given task; for
  228. * /proc/PID/maps that is the stack of the main task.
  229. */
  230. static int is_stack(struct vm_area_struct *vma)
  231. {
  232. /*
  233. * We make no effort to guess what a given thread considers to be
  234. * its "stack". It's not even well-defined for programs written
  235. * languages like Go.
  236. */
  237. return vma->vm_start <= vma->vm_mm->start_stack &&
  238. vma->vm_end >= vma->vm_mm->start_stack;
  239. }
  240. static void show_vma_header_prefix(struct seq_file *m,
  241. unsigned long start, unsigned long end,
  242. vm_flags_t flags, unsigned long long pgoff,
  243. dev_t dev, unsigned long ino)
  244. {
  245. seq_setwidth(m, 25 + sizeof(void *) * 6 - 1);
  246. seq_put_hex_ll(m, NULL, start, 8);
  247. seq_put_hex_ll(m, "-", end, 8);
  248. seq_putc(m, ' ');
  249. seq_putc(m, flags & VM_READ ? 'r' : '-');
  250. seq_putc(m, flags & VM_WRITE ? 'w' : '-');
  251. seq_putc(m, flags & VM_EXEC ? 'x' : '-');
  252. seq_putc(m, flags & VM_MAYSHARE ? 's' : 'p');
  253. seq_put_hex_ll(m, " ", pgoff, 8);
  254. seq_put_hex_ll(m, " ", MAJOR(dev), 2);
  255. seq_put_hex_ll(m, ":", MINOR(dev), 2);
  256. seq_put_decimal_ull(m, " ", ino);
  257. seq_putc(m, ' ');
  258. }
  259. static void
  260. show_map_vma(struct seq_file *m, struct vm_area_struct *vma)
  261. {
  262. struct mm_struct *mm = vma->vm_mm;
  263. struct file *file = vma->vm_file;
  264. vm_flags_t flags = vma->vm_flags;
  265. unsigned long ino = 0;
  266. unsigned long long pgoff = 0;
  267. unsigned long start, end;
  268. dev_t dev = 0;
  269. const char *name = NULL;
  270. if (file) {
  271. struct inode *inode = file_inode(vma->vm_file);
  272. dev = inode->i_sb->s_dev;
  273. ino = inode->i_ino;
  274. pgoff = ((loff_t)vma->vm_pgoff) << PAGE_SHIFT;
  275. }
  276. start = vma->vm_start;
  277. end = vma->vm_end;
  278. show_vma_header_prefix(m, start, end, flags, pgoff, dev, ino);
  279. /*
  280. * Print the dentry name for named mappings, and a
  281. * special [heap] marker for the heap:
  282. */
  283. if (file) {
  284. seq_pad(m, ' ');
  285. seq_file_path(m, file, "\n");
  286. goto done;
  287. }
  288. if (vma->vm_ops && vma->vm_ops->name) {
  289. name = vma->vm_ops->name(vma);
  290. if (name)
  291. goto done;
  292. }
  293. name = arch_vma_name(vma);
  294. if (!name) {
  295. if (!mm) {
  296. name = "[vdso]";
  297. goto done;
  298. }
  299. if (vma->vm_start <= mm->brk &&
  300. vma->vm_end >= mm->start_brk) {
  301. name = "[heap]";
  302. goto done;
  303. }
  304. if (is_stack(vma))
  305. name = "[stack]";
  306. }
  307. done:
  308. if (name) {
  309. seq_pad(m, ' ');
  310. seq_puts(m, name);
  311. }
  312. seq_putc(m, '\n');
  313. }
  314. static int show_map(struct seq_file *m, void *v)
  315. {
  316. show_map_vma(m, v);
  317. m_cache_vma(m, v);
  318. return 0;
  319. }
  320. static const struct seq_operations proc_pid_maps_op = {
  321. .start = m_start,
  322. .next = m_next,
  323. .stop = m_stop,
  324. .show = show_map
  325. };
  326. static int pid_maps_open(struct inode *inode, struct file *file)
  327. {
  328. return do_maps_open(inode, file, &proc_pid_maps_op);
  329. }
  330. const struct file_operations proc_pid_maps_operations = {
  331. .open = pid_maps_open,
  332. .read = seq_read,
  333. .llseek = seq_lseek,
  334. .release = proc_map_release,
  335. };
  336. /*
  337. * Proportional Set Size(PSS): my share of RSS.
  338. *
  339. * PSS of a process is the count of pages it has in memory, where each
  340. * page is divided by the number of processes sharing it. So if a
  341. * process has 1000 pages all to itself, and 1000 shared with one other
  342. * process, its PSS will be 1500.
  343. *
  344. * To keep (accumulated) division errors low, we adopt a 64bit
  345. * fixed-point pss counter to minimize division errors. So (pss >>
  346. * PSS_SHIFT) would be the real byte count.
  347. *
  348. * A shift of 12 before division means (assuming 4K page size):
  349. * - 1M 3-user-pages add up to 8KB errors;
  350. * - supports mapcount up to 2^24, or 16M;
  351. * - supports PSS up to 2^52 bytes, or 4PB.
  352. */
  353. #define PSS_SHIFT 12
  354. #ifdef CONFIG_PROC_PAGE_MONITOR
  355. struct mem_size_stats {
  356. unsigned long resident;
  357. unsigned long shared_clean;
  358. unsigned long shared_dirty;
  359. unsigned long private_clean;
  360. unsigned long private_dirty;
  361. unsigned long referenced;
  362. unsigned long anonymous;
  363. unsigned long lazyfree;
  364. unsigned long anonymous_thp;
  365. unsigned long shmem_thp;
  366. unsigned long swap;
  367. unsigned long shared_hugetlb;
  368. unsigned long private_hugetlb;
  369. u64 pss;
  370. u64 pss_locked;
  371. u64 swap_pss;
  372. bool check_shmem_swap;
  373. };
  374. static void smaps_account(struct mem_size_stats *mss, struct page *page,
  375. bool compound, bool young, bool dirty, bool locked)
  376. {
  377. int i, nr = compound ? 1 << compound_order(page) : 1;
  378. unsigned long size = nr * PAGE_SIZE;
  379. if (PageAnon(page)) {
  380. mss->anonymous += size;
  381. if (!PageSwapBacked(page) && !dirty && !PageDirty(page))
  382. mss->lazyfree += size;
  383. }
  384. mss->resident += size;
  385. /* Accumulate the size in pages that have been accessed. */
  386. if (young || page_is_young(page) || PageReferenced(page))
  387. mss->referenced += size;
  388. /*
  389. * page_count(page) == 1 guarantees the page is mapped exactly once.
  390. * If any subpage of the compound page mapped with PTE it would elevate
  391. * page_count().
  392. */
  393. if (page_count(page) == 1) {
  394. if (dirty || PageDirty(page))
  395. mss->private_dirty += size;
  396. else
  397. mss->private_clean += size;
  398. mss->pss += (u64)size << PSS_SHIFT;
  399. if (locked)
  400. mss->pss_locked += (u64)size << PSS_SHIFT;
  401. return;
  402. }
  403. for (i = 0; i < nr; i++, page++) {
  404. int mapcount = page_mapcount(page);
  405. unsigned long pss = (PAGE_SIZE << PSS_SHIFT);
  406. if (mapcount >= 2) {
  407. if (dirty || PageDirty(page))
  408. mss->shared_dirty += PAGE_SIZE;
  409. else
  410. mss->shared_clean += PAGE_SIZE;
  411. mss->pss += pss / mapcount;
  412. if (locked)
  413. mss->pss_locked += pss / mapcount;
  414. } else {
  415. if (dirty || PageDirty(page))
  416. mss->private_dirty += PAGE_SIZE;
  417. else
  418. mss->private_clean += PAGE_SIZE;
  419. mss->pss += pss;
  420. if (locked)
  421. mss->pss_locked += pss;
  422. }
  423. }
  424. }
  425. #ifdef CONFIG_SHMEM
  426. static int smaps_pte_hole(unsigned long addr, unsigned long end,
  427. struct mm_walk *walk)
  428. {
  429. struct mem_size_stats *mss = walk->private;
  430. mss->swap += shmem_partial_swap_usage(
  431. walk->vma->vm_file->f_mapping, addr, end);
  432. return 0;
  433. }
  434. #endif
  435. static void smaps_pte_entry(pte_t *pte, unsigned long addr,
  436. struct mm_walk *walk)
  437. {
  438. struct mem_size_stats *mss = walk->private;
  439. struct vm_area_struct *vma = walk->vma;
  440. bool locked = !!(vma->vm_flags & VM_LOCKED);
  441. struct page *page = NULL;
  442. if (pte_present(*pte)) {
  443. page = vm_normal_page(vma, addr, *pte);
  444. } else if (is_swap_pte(*pte)) {
  445. swp_entry_t swpent = pte_to_swp_entry(*pte);
  446. if (!non_swap_entry(swpent)) {
  447. int mapcount;
  448. mss->swap += PAGE_SIZE;
  449. mapcount = swp_swapcount(swpent);
  450. if (mapcount >= 2) {
  451. u64 pss_delta = (u64)PAGE_SIZE << PSS_SHIFT;
  452. do_div(pss_delta, mapcount);
  453. mss->swap_pss += pss_delta;
  454. } else {
  455. mss->swap_pss += (u64)PAGE_SIZE << PSS_SHIFT;
  456. }
  457. } else if (is_migration_entry(swpent))
  458. page = migration_entry_to_page(swpent);
  459. else if (is_device_private_entry(swpent))
  460. page = device_private_entry_to_page(swpent);
  461. } else if (unlikely(IS_ENABLED(CONFIG_SHMEM) && mss->check_shmem_swap
  462. && pte_none(*pte))) {
  463. page = find_get_entry(vma->vm_file->f_mapping,
  464. linear_page_index(vma, addr));
  465. if (!page)
  466. return;
  467. if (radix_tree_exceptional_entry(page))
  468. mss->swap += PAGE_SIZE;
  469. else
  470. put_page(page);
  471. return;
  472. }
  473. if (!page)
  474. return;
  475. smaps_account(mss, page, false, pte_young(*pte), pte_dirty(*pte), locked);
  476. }
  477. #ifdef CONFIG_TRANSPARENT_HUGEPAGE
  478. static void smaps_pmd_entry(pmd_t *pmd, unsigned long addr,
  479. struct mm_walk *walk)
  480. {
  481. struct mem_size_stats *mss = walk->private;
  482. struct vm_area_struct *vma = walk->vma;
  483. bool locked = !!(vma->vm_flags & VM_LOCKED);
  484. struct page *page;
  485. /* FOLL_DUMP will return -EFAULT on huge zero page */
  486. page = follow_trans_huge_pmd(vma, addr, pmd, FOLL_DUMP);
  487. if (IS_ERR_OR_NULL(page))
  488. return;
  489. if (PageAnon(page))
  490. mss->anonymous_thp += HPAGE_PMD_SIZE;
  491. else if (PageSwapBacked(page))
  492. mss->shmem_thp += HPAGE_PMD_SIZE;
  493. else if (is_zone_device_page(page))
  494. /* pass */;
  495. else
  496. VM_BUG_ON_PAGE(1, page);
  497. smaps_account(mss, page, true, pmd_young(*pmd), pmd_dirty(*pmd), locked);
  498. }
  499. #else
  500. static void smaps_pmd_entry(pmd_t *pmd, unsigned long addr,
  501. struct mm_walk *walk)
  502. {
  503. }
  504. #endif
  505. static int smaps_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end,
  506. struct mm_walk *walk)
  507. {
  508. struct vm_area_struct *vma = walk->vma;
  509. pte_t *pte;
  510. spinlock_t *ptl;
  511. ptl = pmd_trans_huge_lock(pmd, vma);
  512. if (ptl) {
  513. if (pmd_present(*pmd))
  514. smaps_pmd_entry(pmd, addr, walk);
  515. spin_unlock(ptl);
  516. goto out;
  517. }
  518. if (pmd_trans_unstable(pmd))
  519. goto out;
  520. /*
  521. * The mmap_sem held all the way back in m_start() is what
  522. * keeps khugepaged out of here and from collapsing things
  523. * in here.
  524. */
  525. pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
  526. for (; addr != end; pte++, addr += PAGE_SIZE)
  527. smaps_pte_entry(pte, addr, walk);
  528. pte_unmap_unlock(pte - 1, ptl);
  529. out:
  530. cond_resched();
  531. return 0;
  532. }
  533. static void show_smap_vma_flags(struct seq_file *m, struct vm_area_struct *vma)
  534. {
  535. /*
  536. * Don't forget to update Documentation/ on changes.
  537. */
  538. static const char mnemonics[BITS_PER_LONG][2] = {
  539. /*
  540. * In case if we meet a flag we don't know about.
  541. */
  542. [0 ... (BITS_PER_LONG-1)] = "??",
  543. [ilog2(VM_READ)] = "rd",
  544. [ilog2(VM_WRITE)] = "wr",
  545. [ilog2(VM_EXEC)] = "ex",
  546. [ilog2(VM_SHARED)] = "sh",
  547. [ilog2(VM_MAYREAD)] = "mr",
  548. [ilog2(VM_MAYWRITE)] = "mw",
  549. [ilog2(VM_MAYEXEC)] = "me",
  550. [ilog2(VM_MAYSHARE)] = "ms",
  551. [ilog2(VM_GROWSDOWN)] = "gd",
  552. [ilog2(VM_PFNMAP)] = "pf",
  553. [ilog2(VM_DENYWRITE)] = "dw",
  554. #ifdef CONFIG_X86_INTEL_MPX
  555. [ilog2(VM_MPX)] = "mp",
  556. #endif
  557. [ilog2(VM_LOCKED)] = "lo",
  558. [ilog2(VM_IO)] = "io",
  559. [ilog2(VM_SEQ_READ)] = "sr",
  560. [ilog2(VM_RAND_READ)] = "rr",
  561. [ilog2(VM_DONTCOPY)] = "dc",
  562. [ilog2(VM_DONTEXPAND)] = "de",
  563. [ilog2(VM_ACCOUNT)] = "ac",
  564. [ilog2(VM_NORESERVE)] = "nr",
  565. [ilog2(VM_HUGETLB)] = "ht",
  566. [ilog2(VM_SYNC)] = "sf",
  567. [ilog2(VM_ARCH_1)] = "ar",
  568. [ilog2(VM_WIPEONFORK)] = "wf",
  569. [ilog2(VM_DONTDUMP)] = "dd",
  570. #ifdef CONFIG_MEM_SOFT_DIRTY
  571. [ilog2(VM_SOFTDIRTY)] = "sd",
  572. #endif
  573. [ilog2(VM_MIXEDMAP)] = "mm",
  574. [ilog2(VM_HUGEPAGE)] = "hg",
  575. [ilog2(VM_NOHUGEPAGE)] = "nh",
  576. [ilog2(VM_MERGEABLE)] = "mg",
  577. [ilog2(VM_UFFD_MISSING)]= "um",
  578. [ilog2(VM_UFFD_WP)] = "uw",
  579. #ifdef CONFIG_ARCH_HAS_PKEYS
  580. /* These come out via ProtectionKey: */
  581. [ilog2(VM_PKEY_BIT0)] = "",
  582. [ilog2(VM_PKEY_BIT1)] = "",
  583. [ilog2(VM_PKEY_BIT2)] = "",
  584. [ilog2(VM_PKEY_BIT3)] = "",
  585. #if VM_PKEY_BIT4
  586. [ilog2(VM_PKEY_BIT4)] = "",
  587. #endif
  588. #endif /* CONFIG_ARCH_HAS_PKEYS */
  589. };
  590. size_t i;
  591. seq_puts(m, "VmFlags: ");
  592. for (i = 0; i < BITS_PER_LONG; i++) {
  593. if (!mnemonics[i][0])
  594. continue;
  595. if (vma->vm_flags & (1UL << i)) {
  596. seq_putc(m, mnemonics[i][0]);
  597. seq_putc(m, mnemonics[i][1]);
  598. seq_putc(m, ' ');
  599. }
  600. }
  601. seq_putc(m, '\n');
  602. }
  603. #ifdef CONFIG_HUGETLB_PAGE
  604. static int smaps_hugetlb_range(pte_t *pte, unsigned long hmask,
  605. unsigned long addr, unsigned long end,
  606. struct mm_walk *walk)
  607. {
  608. struct mem_size_stats *mss = walk->private;
  609. struct vm_area_struct *vma = walk->vma;
  610. struct page *page = NULL;
  611. if (pte_present(*pte)) {
  612. page = vm_normal_page(vma, addr, *pte);
  613. } else if (is_swap_pte(*pte)) {
  614. swp_entry_t swpent = pte_to_swp_entry(*pte);
  615. if (is_migration_entry(swpent))
  616. page = migration_entry_to_page(swpent);
  617. else if (is_device_private_entry(swpent))
  618. page = device_private_entry_to_page(swpent);
  619. }
  620. if (page) {
  621. int mapcount = page_mapcount(page);
  622. if (mapcount >= 2)
  623. mss->shared_hugetlb += huge_page_size(hstate_vma(vma));
  624. else
  625. mss->private_hugetlb += huge_page_size(hstate_vma(vma));
  626. }
  627. return 0;
  628. }
  629. #endif /* HUGETLB_PAGE */
  630. static void smap_gather_stats(struct vm_area_struct *vma,
  631. struct mem_size_stats *mss)
  632. {
  633. struct mm_walk smaps_walk = {
  634. .pmd_entry = smaps_pte_range,
  635. #ifdef CONFIG_HUGETLB_PAGE
  636. .hugetlb_entry = smaps_hugetlb_range,
  637. #endif
  638. .mm = vma->vm_mm,
  639. };
  640. smaps_walk.private = mss;
  641. #ifdef CONFIG_SHMEM
  642. /* In case of smaps_rollup, reset the value from previous vma */
  643. mss->check_shmem_swap = false;
  644. if (vma->vm_file && shmem_mapping(vma->vm_file->f_mapping)) {
  645. /*
  646. * For shared or readonly shmem mappings we know that all
  647. * swapped out pages belong to the shmem object, and we can
  648. * obtain the swap value much more efficiently. For private
  649. * writable mappings, we might have COW pages that are
  650. * not affected by the parent swapped out pages of the shmem
  651. * object, so we have to distinguish them during the page walk.
  652. * Unless we know that the shmem object (or the part mapped by
  653. * our VMA) has no swapped out pages at all.
  654. */
  655. unsigned long shmem_swapped = shmem_swap_usage(vma);
  656. if (!shmem_swapped || (vma->vm_flags & VM_SHARED) ||
  657. !(vma->vm_flags & VM_WRITE)) {
  658. mss->swap += shmem_swapped;
  659. } else {
  660. mss->check_shmem_swap = true;
  661. smaps_walk.pte_hole = smaps_pte_hole;
  662. }
  663. }
  664. #endif
  665. /* mmap_sem is held in m_start */
  666. walk_page_vma(vma, &smaps_walk);
  667. }
  668. #define SEQ_PUT_DEC(str, val) \
  669. seq_put_decimal_ull_width(m, str, (val) >> 10, 8)
  670. /* Show the contents common for smaps and smaps_rollup */
  671. static void __show_smap(struct seq_file *m, const struct mem_size_stats *mss)
  672. {
  673. SEQ_PUT_DEC("Rss: ", mss->resident);
  674. SEQ_PUT_DEC(" kB\nPss: ", mss->pss >> PSS_SHIFT);
  675. SEQ_PUT_DEC(" kB\nShared_Clean: ", mss->shared_clean);
  676. SEQ_PUT_DEC(" kB\nShared_Dirty: ", mss->shared_dirty);
  677. SEQ_PUT_DEC(" kB\nPrivate_Clean: ", mss->private_clean);
  678. SEQ_PUT_DEC(" kB\nPrivate_Dirty: ", mss->private_dirty);
  679. SEQ_PUT_DEC(" kB\nReferenced: ", mss->referenced);
  680. SEQ_PUT_DEC(" kB\nAnonymous: ", mss->anonymous);
  681. SEQ_PUT_DEC(" kB\nLazyFree: ", mss->lazyfree);
  682. SEQ_PUT_DEC(" kB\nAnonHugePages: ", mss->anonymous_thp);
  683. SEQ_PUT_DEC(" kB\nShmemPmdMapped: ", mss->shmem_thp);
  684. SEQ_PUT_DEC(" kB\nShared_Hugetlb: ", mss->shared_hugetlb);
  685. seq_put_decimal_ull_width(m, " kB\nPrivate_Hugetlb: ",
  686. mss->private_hugetlb >> 10, 7);
  687. SEQ_PUT_DEC(" kB\nSwap: ", mss->swap);
  688. SEQ_PUT_DEC(" kB\nSwapPss: ",
  689. mss->swap_pss >> PSS_SHIFT);
  690. SEQ_PUT_DEC(" kB\nLocked: ",
  691. mss->pss_locked >> PSS_SHIFT);
  692. seq_puts(m, " kB\n");
  693. }
  694. static int show_smap(struct seq_file *m, void *v)
  695. {
  696. struct vm_area_struct *vma = v;
  697. struct mem_size_stats mss;
  698. memset(&mss, 0, sizeof(mss));
  699. smap_gather_stats(vma, &mss);
  700. show_map_vma(m, vma);
  701. SEQ_PUT_DEC("Size: ", vma->vm_end - vma->vm_start);
  702. SEQ_PUT_DEC(" kB\nKernelPageSize: ", vma_kernel_pagesize(vma));
  703. SEQ_PUT_DEC(" kB\nMMUPageSize: ", vma_mmu_pagesize(vma));
  704. seq_puts(m, " kB\n");
  705. __show_smap(m, &mss);
  706. seq_printf(m, "THPeligible: %d\n", transparent_hugepage_enabled(vma));
  707. if (arch_pkeys_enabled())
  708. seq_printf(m, "ProtectionKey: %8u\n", vma_pkey(vma));
  709. show_smap_vma_flags(m, vma);
  710. m_cache_vma(m, vma);
  711. return 0;
  712. }
  713. static int show_smaps_rollup(struct seq_file *m, void *v)
  714. {
  715. struct proc_maps_private *priv = m->private;
  716. struct mem_size_stats mss;
  717. struct mm_struct *mm;
  718. struct vm_area_struct *vma;
  719. unsigned long last_vma_end = 0;
  720. int ret = 0;
  721. priv->task = get_proc_task(priv->inode);
  722. if (!priv->task)
  723. return -ESRCH;
  724. mm = priv->mm;
  725. if (!mm || !mmget_not_zero(mm)) {
  726. ret = -ESRCH;
  727. goto out_put_task;
  728. }
  729. memset(&mss, 0, sizeof(mss));
  730. ret = down_read_killable(&mm->mmap_sem);
  731. if (ret)
  732. goto out_put_mm;
  733. hold_task_mempolicy(priv);
  734. for (vma = priv->mm->mmap; vma; vma = vma->vm_next) {
  735. smap_gather_stats(vma, &mss);
  736. last_vma_end = vma->vm_end;
  737. }
  738. show_vma_header_prefix(m, priv->mm->mmap->vm_start,
  739. last_vma_end, 0, 0, 0, 0);
  740. seq_pad(m, ' ');
  741. seq_puts(m, "[rollup]\n");
  742. __show_smap(m, &mss);
  743. release_task_mempolicy(priv);
  744. up_read(&mm->mmap_sem);
  745. out_put_mm:
  746. mmput(mm);
  747. out_put_task:
  748. put_task_struct(priv->task);
  749. priv->task = NULL;
  750. return ret;
  751. }
  752. #undef SEQ_PUT_DEC
  753. static const struct seq_operations proc_pid_smaps_op = {
  754. .start = m_start,
  755. .next = m_next,
  756. .stop = m_stop,
  757. .show = show_smap
  758. };
  759. static int pid_smaps_open(struct inode *inode, struct file *file)
  760. {
  761. return do_maps_open(inode, file, &proc_pid_smaps_op);
  762. }
  763. static int smaps_rollup_open(struct inode *inode, struct file *file)
  764. {
  765. int ret;
  766. struct proc_maps_private *priv;
  767. priv = kzalloc(sizeof(*priv), GFP_KERNEL_ACCOUNT);
  768. if (!priv)
  769. return -ENOMEM;
  770. ret = single_open(file, show_smaps_rollup, priv);
  771. if (ret)
  772. goto out_free;
  773. priv->inode = inode;
  774. priv->mm = proc_mem_open(inode, PTRACE_MODE_READ);
  775. if (IS_ERR(priv->mm)) {
  776. ret = PTR_ERR(priv->mm);
  777. single_release(inode, file);
  778. goto out_free;
  779. }
  780. return 0;
  781. out_free:
  782. kfree(priv);
  783. return ret;
  784. }
  785. static int smaps_rollup_release(struct inode *inode, struct file *file)
  786. {
  787. struct seq_file *seq = file->private_data;
  788. struct proc_maps_private *priv = seq->private;
  789. if (priv->mm)
  790. mmdrop(priv->mm);
  791. kfree(priv);
  792. return single_release(inode, file);
  793. }
  794. const struct file_operations proc_pid_smaps_operations = {
  795. .open = pid_smaps_open,
  796. .read = seq_read,
  797. .llseek = seq_lseek,
  798. .release = proc_map_release,
  799. };
  800. const struct file_operations proc_pid_smaps_rollup_operations = {
  801. .open = smaps_rollup_open,
  802. .read = seq_read,
  803. .llseek = seq_lseek,
  804. .release = smaps_rollup_release,
  805. };
  806. enum clear_refs_types {
  807. CLEAR_REFS_ALL = 1,
  808. CLEAR_REFS_ANON,
  809. CLEAR_REFS_MAPPED,
  810. CLEAR_REFS_SOFT_DIRTY,
  811. CLEAR_REFS_MM_HIWATER_RSS,
  812. CLEAR_REFS_LAST,
  813. };
  814. struct clear_refs_private {
  815. enum clear_refs_types type;
  816. };
  817. #ifdef CONFIG_MEM_SOFT_DIRTY
  818. static inline void clear_soft_dirty(struct vm_area_struct *vma,
  819. unsigned long addr, pte_t *pte)
  820. {
  821. /*
  822. * The soft-dirty tracker uses #PF-s to catch writes
  823. * to pages, so write-protect the pte as well. See the
  824. * Documentation/admin-guide/mm/soft-dirty.rst for full description
  825. * of how soft-dirty works.
  826. */
  827. pte_t ptent = *pte;
  828. if (pte_present(ptent)) {
  829. ptent = ptep_modify_prot_start(vma->vm_mm, addr, pte);
  830. ptent = pte_wrprotect(ptent);
  831. ptent = pte_clear_soft_dirty(ptent);
  832. ptep_modify_prot_commit(vma->vm_mm, addr, pte, ptent);
  833. } else if (is_swap_pte(ptent)) {
  834. ptent = pte_swp_clear_soft_dirty(ptent);
  835. set_pte_at(vma->vm_mm, addr, pte, ptent);
  836. }
  837. }
  838. #else
  839. static inline void clear_soft_dirty(struct vm_area_struct *vma,
  840. unsigned long addr, pte_t *pte)
  841. {
  842. }
  843. #endif
  844. #if defined(CONFIG_MEM_SOFT_DIRTY) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
  845. static inline void clear_soft_dirty_pmd(struct vm_area_struct *vma,
  846. unsigned long addr, pmd_t *pmdp)
  847. {
  848. pmd_t old, pmd = *pmdp;
  849. if (pmd_present(pmd)) {
  850. /* See comment in change_huge_pmd() */
  851. old = pmdp_invalidate(vma, addr, pmdp);
  852. if (pmd_dirty(old))
  853. pmd = pmd_mkdirty(pmd);
  854. if (pmd_young(old))
  855. pmd = pmd_mkyoung(pmd);
  856. pmd = pmd_wrprotect(pmd);
  857. pmd = pmd_clear_soft_dirty(pmd);
  858. set_pmd_at(vma->vm_mm, addr, pmdp, pmd);
  859. } else if (is_migration_entry(pmd_to_swp_entry(pmd))) {
  860. pmd = pmd_swp_clear_soft_dirty(pmd);
  861. set_pmd_at(vma->vm_mm, addr, pmdp, pmd);
  862. }
  863. }
  864. #else
  865. static inline void clear_soft_dirty_pmd(struct vm_area_struct *vma,
  866. unsigned long addr, pmd_t *pmdp)
  867. {
  868. }
  869. #endif
  870. static int clear_refs_pte_range(pmd_t *pmd, unsigned long addr,
  871. unsigned long end, struct mm_walk *walk)
  872. {
  873. struct clear_refs_private *cp = walk->private;
  874. struct vm_area_struct *vma = walk->vma;
  875. pte_t *pte, ptent;
  876. spinlock_t *ptl;
  877. struct page *page;
  878. ptl = pmd_trans_huge_lock(pmd, vma);
  879. if (ptl) {
  880. if (cp->type == CLEAR_REFS_SOFT_DIRTY) {
  881. clear_soft_dirty_pmd(vma, addr, pmd);
  882. goto out;
  883. }
  884. if (!pmd_present(*pmd))
  885. goto out;
  886. page = pmd_page(*pmd);
  887. /* Clear accessed and referenced bits. */
  888. pmdp_test_and_clear_young(vma, addr, pmd);
  889. test_and_clear_page_young(page);
  890. ClearPageReferenced(page);
  891. out:
  892. spin_unlock(ptl);
  893. return 0;
  894. }
  895. if (pmd_trans_unstable(pmd))
  896. return 0;
  897. pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
  898. for (; addr != end; pte++, addr += PAGE_SIZE) {
  899. ptent = *pte;
  900. if (cp->type == CLEAR_REFS_SOFT_DIRTY) {
  901. clear_soft_dirty(vma, addr, pte);
  902. continue;
  903. }
  904. if (!pte_present(ptent))
  905. continue;
  906. page = vm_normal_page(vma, addr, ptent);
  907. if (!page)
  908. continue;
  909. /* Clear accessed and referenced bits. */
  910. ptep_test_and_clear_young(vma, addr, pte);
  911. test_and_clear_page_young(page);
  912. ClearPageReferenced(page);
  913. }
  914. pte_unmap_unlock(pte - 1, ptl);
  915. cond_resched();
  916. return 0;
  917. }
  918. static int clear_refs_test_walk(unsigned long start, unsigned long end,
  919. struct mm_walk *walk)
  920. {
  921. struct clear_refs_private *cp = walk->private;
  922. struct vm_area_struct *vma = walk->vma;
  923. if (vma->vm_flags & VM_PFNMAP)
  924. return 1;
  925. /*
  926. * Writing 1 to /proc/pid/clear_refs affects all pages.
  927. * Writing 2 to /proc/pid/clear_refs only affects anonymous pages.
  928. * Writing 3 to /proc/pid/clear_refs only affects file mapped pages.
  929. * Writing 4 to /proc/pid/clear_refs affects all pages.
  930. */
  931. if (cp->type == CLEAR_REFS_ANON && vma->vm_file)
  932. return 1;
  933. if (cp->type == CLEAR_REFS_MAPPED && !vma->vm_file)
  934. return 1;
  935. return 0;
  936. }
  937. static ssize_t clear_refs_write(struct file *file, const char __user *buf,
  938. size_t count, loff_t *ppos)
  939. {
  940. struct task_struct *task;
  941. char buffer[PROC_NUMBUF];
  942. struct mm_struct *mm;
  943. struct vm_area_struct *vma;
  944. enum clear_refs_types type;
  945. struct mmu_gather tlb;
  946. int itype;
  947. int rv;
  948. memset(buffer, 0, sizeof(buffer));
  949. if (count > sizeof(buffer) - 1)
  950. count = sizeof(buffer) - 1;
  951. if (copy_from_user(buffer, buf, count))
  952. return -EFAULT;
  953. rv = kstrtoint(strstrip(buffer), 10, &itype);
  954. if (rv < 0)
  955. return rv;
  956. type = (enum clear_refs_types)itype;
  957. if (type < CLEAR_REFS_ALL || type >= CLEAR_REFS_LAST)
  958. return -EINVAL;
  959. task = get_proc_task(file_inode(file));
  960. if (!task)
  961. return -ESRCH;
  962. mm = get_task_mm(task);
  963. if (mm) {
  964. struct clear_refs_private cp = {
  965. .type = type,
  966. };
  967. struct mm_walk clear_refs_walk = {
  968. .pmd_entry = clear_refs_pte_range,
  969. .test_walk = clear_refs_test_walk,
  970. .mm = mm,
  971. .private = &cp,
  972. };
  973. if (type == CLEAR_REFS_MM_HIWATER_RSS) {
  974. if (down_write_killable(&mm->mmap_sem)) {
  975. count = -EINTR;
  976. goto out_mm;
  977. }
  978. /*
  979. * Writing 5 to /proc/pid/clear_refs resets the peak
  980. * resident set size to this mm's current rss value.
  981. */
  982. reset_mm_hiwater_rss(mm);
  983. up_write(&mm->mmap_sem);
  984. goto out_mm;
  985. }
  986. if (down_read_killable(&mm->mmap_sem)) {
  987. count = -EINTR;
  988. goto out_mm;
  989. }
  990. tlb_gather_mmu(&tlb, mm, 0, -1);
  991. if (type == CLEAR_REFS_SOFT_DIRTY) {
  992. for (vma = mm->mmap; vma; vma = vma->vm_next) {
  993. if (!(vma->vm_flags & VM_SOFTDIRTY))
  994. continue;
  995. up_read(&mm->mmap_sem);
  996. if (down_write_killable(&mm->mmap_sem)) {
  997. count = -EINTR;
  998. goto out_mm;
  999. }
  1000. /*
  1001. * Avoid to modify vma->vm_flags
  1002. * without locked ops while the
  1003. * coredump reads the vm_flags.
  1004. */
  1005. if (!mmget_still_valid(mm)) {
  1006. /*
  1007. * Silently return "count"
  1008. * like if get_task_mm()
  1009. * failed. FIXME: should this
  1010. * function have returned
  1011. * -ESRCH if get_task_mm()
  1012. * failed like if
  1013. * get_proc_task() fails?
  1014. */
  1015. up_write(&mm->mmap_sem);
  1016. goto out_mm;
  1017. }
  1018. for (vma = mm->mmap; vma; vma = vma->vm_next) {
  1019. vma->vm_flags &= ~VM_SOFTDIRTY;
  1020. vma_set_page_prot(vma);
  1021. }
  1022. downgrade_write(&mm->mmap_sem);
  1023. break;
  1024. }
  1025. mmu_notifier_invalidate_range_start(mm, 0, -1);
  1026. }
  1027. walk_page_range(0, mm->highest_vm_end, &clear_refs_walk);
  1028. if (type == CLEAR_REFS_SOFT_DIRTY)
  1029. mmu_notifier_invalidate_range_end(mm, 0, -1);
  1030. tlb_finish_mmu(&tlb, 0, -1);
  1031. up_read(&mm->mmap_sem);
  1032. out_mm:
  1033. mmput(mm);
  1034. }
  1035. put_task_struct(task);
  1036. return count;
  1037. }
  1038. const struct file_operations proc_clear_refs_operations = {
  1039. .write = clear_refs_write,
  1040. .llseek = noop_llseek,
  1041. };
  1042. typedef struct {
  1043. u64 pme;
  1044. } pagemap_entry_t;
  1045. struct pagemapread {
  1046. int pos, len; /* units: PM_ENTRY_BYTES, not bytes */
  1047. pagemap_entry_t *buffer;
  1048. bool show_pfn;
  1049. };
  1050. #define PAGEMAP_WALK_SIZE (PMD_SIZE)
  1051. #define PAGEMAP_WALK_MASK (PMD_MASK)
  1052. #define PM_ENTRY_BYTES sizeof(pagemap_entry_t)
  1053. #define PM_PFRAME_BITS 55
  1054. #define PM_PFRAME_MASK GENMASK_ULL(PM_PFRAME_BITS - 1, 0)
  1055. #define PM_SOFT_DIRTY BIT_ULL(55)
  1056. #define PM_MMAP_EXCLUSIVE BIT_ULL(56)
  1057. #define PM_FILE BIT_ULL(61)
  1058. #define PM_SWAP BIT_ULL(62)
  1059. #define PM_PRESENT BIT_ULL(63)
  1060. #define PM_END_OF_BUFFER 1
  1061. static inline pagemap_entry_t make_pme(u64 frame, u64 flags)
  1062. {
  1063. return (pagemap_entry_t) { .pme = (frame & PM_PFRAME_MASK) | flags };
  1064. }
  1065. static int add_to_pagemap(unsigned long addr, pagemap_entry_t *pme,
  1066. struct pagemapread *pm)
  1067. {
  1068. pm->buffer[pm->pos++] = *pme;
  1069. if (pm->pos >= pm->len)
  1070. return PM_END_OF_BUFFER;
  1071. return 0;
  1072. }
  1073. static int pagemap_pte_hole(unsigned long start, unsigned long end,
  1074. struct mm_walk *walk)
  1075. {
  1076. struct pagemapread *pm = walk->private;
  1077. unsigned long addr = start;
  1078. int err = 0;
  1079. while (addr < end) {
  1080. struct vm_area_struct *vma = find_vma(walk->mm, addr);
  1081. pagemap_entry_t pme = make_pme(0, 0);
  1082. /* End of address space hole, which we mark as non-present. */
  1083. unsigned long hole_end;
  1084. if (vma)
  1085. hole_end = min(end, vma->vm_start);
  1086. else
  1087. hole_end = end;
  1088. for (; addr < hole_end; addr += PAGE_SIZE) {
  1089. err = add_to_pagemap(addr, &pme, pm);
  1090. if (err)
  1091. goto out;
  1092. }
  1093. if (!vma)
  1094. break;
  1095. /* Addresses in the VMA. */
  1096. if (vma->vm_flags & VM_SOFTDIRTY)
  1097. pme = make_pme(0, PM_SOFT_DIRTY);
  1098. for (; addr < min(end, vma->vm_end); addr += PAGE_SIZE) {
  1099. err = add_to_pagemap(addr, &pme, pm);
  1100. if (err)
  1101. goto out;
  1102. }
  1103. }
  1104. out:
  1105. return err;
  1106. }
  1107. static pagemap_entry_t pte_to_pagemap_entry(struct pagemapread *pm,
  1108. struct vm_area_struct *vma, unsigned long addr, pte_t pte)
  1109. {
  1110. u64 frame = 0, flags = 0;
  1111. struct page *page = NULL;
  1112. if (pte_present(pte)) {
  1113. if (pm->show_pfn)
  1114. frame = pte_pfn(pte);
  1115. flags |= PM_PRESENT;
  1116. page = _vm_normal_page(vma, addr, pte, true);
  1117. if (pte_soft_dirty(pte))
  1118. flags |= PM_SOFT_DIRTY;
  1119. } else if (is_swap_pte(pte)) {
  1120. swp_entry_t entry;
  1121. if (pte_swp_soft_dirty(pte))
  1122. flags |= PM_SOFT_DIRTY;
  1123. entry = pte_to_swp_entry(pte);
  1124. if (pm->show_pfn)
  1125. frame = swp_type(entry) |
  1126. (swp_offset(entry) << MAX_SWAPFILES_SHIFT);
  1127. flags |= PM_SWAP;
  1128. if (is_migration_entry(entry))
  1129. page = migration_entry_to_page(entry);
  1130. if (is_device_private_entry(entry))
  1131. page = device_private_entry_to_page(entry);
  1132. }
  1133. if (page && !PageAnon(page))
  1134. flags |= PM_FILE;
  1135. if (page && page_mapcount(page) == 1)
  1136. flags |= PM_MMAP_EXCLUSIVE;
  1137. if (vma->vm_flags & VM_SOFTDIRTY)
  1138. flags |= PM_SOFT_DIRTY;
  1139. return make_pme(frame, flags);
  1140. }
  1141. static int pagemap_pmd_range(pmd_t *pmdp, unsigned long addr, unsigned long end,
  1142. struct mm_walk *walk)
  1143. {
  1144. struct vm_area_struct *vma = walk->vma;
  1145. struct pagemapread *pm = walk->private;
  1146. spinlock_t *ptl;
  1147. pte_t *pte, *orig_pte;
  1148. int err = 0;
  1149. #ifdef CONFIG_TRANSPARENT_HUGEPAGE
  1150. ptl = pmd_trans_huge_lock(pmdp, vma);
  1151. if (ptl) {
  1152. u64 flags = 0, frame = 0;
  1153. pmd_t pmd = *pmdp;
  1154. struct page *page = NULL;
  1155. if (vma->vm_flags & VM_SOFTDIRTY)
  1156. flags |= PM_SOFT_DIRTY;
  1157. if (pmd_present(pmd)) {
  1158. page = pmd_page(pmd);
  1159. flags |= PM_PRESENT;
  1160. if (pmd_soft_dirty(pmd))
  1161. flags |= PM_SOFT_DIRTY;
  1162. if (pm->show_pfn)
  1163. frame = pmd_pfn(pmd) +
  1164. ((addr & ~PMD_MASK) >> PAGE_SHIFT);
  1165. }
  1166. #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
  1167. else if (is_swap_pmd(pmd)) {
  1168. swp_entry_t entry = pmd_to_swp_entry(pmd);
  1169. unsigned long offset;
  1170. if (pm->show_pfn) {
  1171. offset = swp_offset(entry) +
  1172. ((addr & ~PMD_MASK) >> PAGE_SHIFT);
  1173. frame = swp_type(entry) |
  1174. (offset << MAX_SWAPFILES_SHIFT);
  1175. }
  1176. flags |= PM_SWAP;
  1177. if (pmd_swp_soft_dirty(pmd))
  1178. flags |= PM_SOFT_DIRTY;
  1179. VM_BUG_ON(!is_pmd_migration_entry(pmd));
  1180. page = migration_entry_to_page(entry);
  1181. }
  1182. #endif
  1183. if (page && page_mapcount(page) == 1)
  1184. flags |= PM_MMAP_EXCLUSIVE;
  1185. for (; addr != end; addr += PAGE_SIZE) {
  1186. pagemap_entry_t pme = make_pme(frame, flags);
  1187. err = add_to_pagemap(addr, &pme, pm);
  1188. if (err)
  1189. break;
  1190. if (pm->show_pfn) {
  1191. if (flags & PM_PRESENT)
  1192. frame++;
  1193. else if (flags & PM_SWAP)
  1194. frame += (1 << MAX_SWAPFILES_SHIFT);
  1195. }
  1196. }
  1197. spin_unlock(ptl);
  1198. return err;
  1199. }
  1200. if (pmd_trans_unstable(pmdp))
  1201. return 0;
  1202. #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
  1203. /*
  1204. * We can assume that @vma always points to a valid one and @end never
  1205. * goes beyond vma->vm_end.
  1206. */
  1207. orig_pte = pte = pte_offset_map_lock(walk->mm, pmdp, addr, &ptl);
  1208. for (; addr < end; pte++, addr += PAGE_SIZE) {
  1209. pagemap_entry_t pme;
  1210. pme = pte_to_pagemap_entry(pm, vma, addr, *pte);
  1211. err = add_to_pagemap(addr, &pme, pm);
  1212. if (err)
  1213. break;
  1214. }
  1215. pte_unmap_unlock(orig_pte, ptl);
  1216. cond_resched();
  1217. return err;
  1218. }
  1219. #ifdef CONFIG_HUGETLB_PAGE
  1220. /* This function walks within one hugetlb entry in the single call */
  1221. static int pagemap_hugetlb_range(pte_t *ptep, unsigned long hmask,
  1222. unsigned long addr, unsigned long end,
  1223. struct mm_walk *walk)
  1224. {
  1225. struct pagemapread *pm = walk->private;
  1226. struct vm_area_struct *vma = walk->vma;
  1227. u64 flags = 0, frame = 0;
  1228. int err = 0;
  1229. pte_t pte;
  1230. if (vma->vm_flags & VM_SOFTDIRTY)
  1231. flags |= PM_SOFT_DIRTY;
  1232. pte = huge_ptep_get(ptep);
  1233. if (pte_present(pte)) {
  1234. struct page *page = pte_page(pte);
  1235. if (!PageAnon(page))
  1236. flags |= PM_FILE;
  1237. if (page_mapcount(page) == 1)
  1238. flags |= PM_MMAP_EXCLUSIVE;
  1239. flags |= PM_PRESENT;
  1240. if (pm->show_pfn)
  1241. frame = pte_pfn(pte) +
  1242. ((addr & ~hmask) >> PAGE_SHIFT);
  1243. }
  1244. for (; addr != end; addr += PAGE_SIZE) {
  1245. pagemap_entry_t pme = make_pme(frame, flags);
  1246. err = add_to_pagemap(addr, &pme, pm);
  1247. if (err)
  1248. return err;
  1249. if (pm->show_pfn && (flags & PM_PRESENT))
  1250. frame++;
  1251. }
  1252. cond_resched();
  1253. return err;
  1254. }
  1255. #endif /* HUGETLB_PAGE */
  1256. /*
  1257. * /proc/pid/pagemap - an array mapping virtual pages to pfns
  1258. *
  1259. * For each page in the address space, this file contains one 64-bit entry
  1260. * consisting of the following:
  1261. *
  1262. * Bits 0-54 page frame number (PFN) if present
  1263. * Bits 0-4 swap type if swapped
  1264. * Bits 5-54 swap offset if swapped
  1265. * Bit 55 pte is soft-dirty (see Documentation/admin-guide/mm/soft-dirty.rst)
  1266. * Bit 56 page exclusively mapped
  1267. * Bits 57-60 zero
  1268. * Bit 61 page is file-page or shared-anon
  1269. * Bit 62 page swapped
  1270. * Bit 63 page present
  1271. *
  1272. * If the page is not present but in swap, then the PFN contains an
  1273. * encoding of the swap file number and the page's offset into the
  1274. * swap. Unmapped pages return a null PFN. This allows determining
  1275. * precisely which pages are mapped (or in swap) and comparing mapped
  1276. * pages between processes.
  1277. *
  1278. * Efficient users of this interface will use /proc/pid/maps to
  1279. * determine which areas of memory are actually mapped and llseek to
  1280. * skip over unmapped regions.
  1281. */
  1282. static ssize_t pagemap_read(struct file *file, char __user *buf,
  1283. size_t count, loff_t *ppos)
  1284. {
  1285. struct mm_struct *mm = file->private_data;
  1286. struct pagemapread pm;
  1287. struct mm_walk pagemap_walk = {};
  1288. unsigned long src;
  1289. unsigned long svpfn;
  1290. unsigned long start_vaddr;
  1291. unsigned long end_vaddr;
  1292. int ret = 0, copied = 0;
  1293. if (!mm || !mmget_not_zero(mm))
  1294. goto out;
  1295. ret = -EINVAL;
  1296. /* file position must be aligned */
  1297. if ((*ppos % PM_ENTRY_BYTES) || (count % PM_ENTRY_BYTES))
  1298. goto out_mm;
  1299. ret = 0;
  1300. if (!count)
  1301. goto out_mm;
  1302. /* do not disclose physical addresses: attack vector */
  1303. pm.show_pfn = file_ns_capable(file, &init_user_ns, CAP_SYS_ADMIN);
  1304. pm.len = (PAGEMAP_WALK_SIZE >> PAGE_SHIFT);
  1305. pm.buffer = kmalloc_array(pm.len, PM_ENTRY_BYTES, GFP_KERNEL);
  1306. ret = -ENOMEM;
  1307. if (!pm.buffer)
  1308. goto out_mm;
  1309. pagemap_walk.pmd_entry = pagemap_pmd_range;
  1310. pagemap_walk.pte_hole = pagemap_pte_hole;
  1311. #ifdef CONFIG_HUGETLB_PAGE
  1312. pagemap_walk.hugetlb_entry = pagemap_hugetlb_range;
  1313. #endif
  1314. pagemap_walk.mm = mm;
  1315. pagemap_walk.private = &pm;
  1316. src = *ppos;
  1317. svpfn = src / PM_ENTRY_BYTES;
  1318. start_vaddr = svpfn << PAGE_SHIFT;
  1319. end_vaddr = mm->task_size;
  1320. /* watch out for wraparound */
  1321. if (svpfn > mm->task_size >> PAGE_SHIFT)
  1322. start_vaddr = end_vaddr;
  1323. /*
  1324. * The odds are that this will stop walking way
  1325. * before end_vaddr, because the length of the
  1326. * user buffer is tracked in "pm", and the walk
  1327. * will stop when we hit the end of the buffer.
  1328. */
  1329. ret = 0;
  1330. while (count && (start_vaddr < end_vaddr)) {
  1331. int len;
  1332. unsigned long end;
  1333. pm.pos = 0;
  1334. end = (start_vaddr + PAGEMAP_WALK_SIZE) & PAGEMAP_WALK_MASK;
  1335. /* overflow ? */
  1336. if (end < start_vaddr || end > end_vaddr)
  1337. end = end_vaddr;
  1338. ret = down_read_killable(&mm->mmap_sem);
  1339. if (ret)
  1340. goto out_free;
  1341. ret = walk_page_range(start_vaddr, end, &pagemap_walk);
  1342. up_read(&mm->mmap_sem);
  1343. start_vaddr = end;
  1344. len = min(count, PM_ENTRY_BYTES * pm.pos);
  1345. if (copy_to_user(buf, pm.buffer, len)) {
  1346. ret = -EFAULT;
  1347. goto out_free;
  1348. }
  1349. copied += len;
  1350. buf += len;
  1351. count -= len;
  1352. }
  1353. *ppos += copied;
  1354. if (!ret || ret == PM_END_OF_BUFFER)
  1355. ret = copied;
  1356. out_free:
  1357. kfree(pm.buffer);
  1358. out_mm:
  1359. mmput(mm);
  1360. out:
  1361. return ret;
  1362. }
  1363. static int pagemap_open(struct inode *inode, struct file *file)
  1364. {
  1365. struct mm_struct *mm;
  1366. mm = proc_mem_open(inode, PTRACE_MODE_READ);
  1367. if (IS_ERR(mm))
  1368. return PTR_ERR(mm);
  1369. file->private_data = mm;
  1370. return 0;
  1371. }
  1372. static int pagemap_release(struct inode *inode, struct file *file)
  1373. {
  1374. struct mm_struct *mm = file->private_data;
  1375. if (mm)
  1376. mmdrop(mm);
  1377. return 0;
  1378. }
  1379. const struct file_operations proc_pagemap_operations = {
  1380. .llseek = mem_lseek, /* borrow this */
  1381. .read = pagemap_read,
  1382. .open = pagemap_open,
  1383. .release = pagemap_release,
  1384. };
  1385. #endif /* CONFIG_PROC_PAGE_MONITOR */
  1386. #ifdef CONFIG_NUMA
  1387. struct numa_maps {
  1388. unsigned long pages;
  1389. unsigned long anon;
  1390. unsigned long active;
  1391. unsigned long writeback;
  1392. unsigned long mapcount_max;
  1393. unsigned long dirty;
  1394. unsigned long swapcache;
  1395. unsigned long node[MAX_NUMNODES];
  1396. };
  1397. struct numa_maps_private {
  1398. struct proc_maps_private proc_maps;
  1399. struct numa_maps md;
  1400. };
  1401. static void gather_stats(struct page *page, struct numa_maps *md, int pte_dirty,
  1402. unsigned long nr_pages)
  1403. {
  1404. int count = page_mapcount(page);
  1405. md->pages += nr_pages;
  1406. if (pte_dirty || PageDirty(page))
  1407. md->dirty += nr_pages;
  1408. if (PageSwapCache(page))
  1409. md->swapcache += nr_pages;
  1410. if (PageActive(page) || PageUnevictable(page))
  1411. md->active += nr_pages;
  1412. if (PageWriteback(page))
  1413. md->writeback += nr_pages;
  1414. if (PageAnon(page))
  1415. md->anon += nr_pages;
  1416. if (count > md->mapcount_max)
  1417. md->mapcount_max = count;
  1418. md->node[page_to_nid(page)] += nr_pages;
  1419. }
  1420. static struct page *can_gather_numa_stats(pte_t pte, struct vm_area_struct *vma,
  1421. unsigned long addr)
  1422. {
  1423. struct page *page;
  1424. int nid;
  1425. if (!pte_present(pte))
  1426. return NULL;
  1427. page = vm_normal_page(vma, addr, pte);
  1428. if (!page)
  1429. return NULL;
  1430. if (PageReserved(page))
  1431. return NULL;
  1432. nid = page_to_nid(page);
  1433. if (!node_isset(nid, node_states[N_MEMORY]))
  1434. return NULL;
  1435. return page;
  1436. }
  1437. #ifdef CONFIG_TRANSPARENT_HUGEPAGE
  1438. static struct page *can_gather_numa_stats_pmd(pmd_t pmd,
  1439. struct vm_area_struct *vma,
  1440. unsigned long addr)
  1441. {
  1442. struct page *page;
  1443. int nid;
  1444. if (!pmd_present(pmd))
  1445. return NULL;
  1446. page = vm_normal_page_pmd(vma, addr, pmd);
  1447. if (!page)
  1448. return NULL;
  1449. if (PageReserved(page))
  1450. return NULL;
  1451. nid = page_to_nid(page);
  1452. if (!node_isset(nid, node_states[N_MEMORY]))
  1453. return NULL;
  1454. return page;
  1455. }
  1456. #endif
  1457. static int gather_pte_stats(pmd_t *pmd, unsigned long addr,
  1458. unsigned long end, struct mm_walk *walk)
  1459. {
  1460. struct numa_maps *md = walk->private;
  1461. struct vm_area_struct *vma = walk->vma;
  1462. spinlock_t *ptl;
  1463. pte_t *orig_pte;
  1464. pte_t *pte;
  1465. #ifdef CONFIG_TRANSPARENT_HUGEPAGE
  1466. ptl = pmd_trans_huge_lock(pmd, vma);
  1467. if (ptl) {
  1468. struct page *page;
  1469. page = can_gather_numa_stats_pmd(*pmd, vma, addr);
  1470. if (page)
  1471. gather_stats(page, md, pmd_dirty(*pmd),
  1472. HPAGE_PMD_SIZE/PAGE_SIZE);
  1473. spin_unlock(ptl);
  1474. return 0;
  1475. }
  1476. if (pmd_trans_unstable(pmd))
  1477. return 0;
  1478. #endif
  1479. orig_pte = pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl);
  1480. do {
  1481. struct page *page = can_gather_numa_stats(*pte, vma, addr);
  1482. if (!page)
  1483. continue;
  1484. gather_stats(page, md, pte_dirty(*pte), 1);
  1485. } while (pte++, addr += PAGE_SIZE, addr != end);
  1486. pte_unmap_unlock(orig_pte, ptl);
  1487. cond_resched();
  1488. return 0;
  1489. }
  1490. #ifdef CONFIG_HUGETLB_PAGE
  1491. static int gather_hugetlb_stats(pte_t *pte, unsigned long hmask,
  1492. unsigned long addr, unsigned long end, struct mm_walk *walk)
  1493. {
  1494. pte_t huge_pte = huge_ptep_get(pte);
  1495. struct numa_maps *md;
  1496. struct page *page;
  1497. if (!pte_present(huge_pte))
  1498. return 0;
  1499. page = pte_page(huge_pte);
  1500. if (!page)
  1501. return 0;
  1502. md = walk->private;
  1503. gather_stats(page, md, pte_dirty(huge_pte), 1);
  1504. return 0;
  1505. }
  1506. #else
  1507. static int gather_hugetlb_stats(pte_t *pte, unsigned long hmask,
  1508. unsigned long addr, unsigned long end, struct mm_walk *walk)
  1509. {
  1510. return 0;
  1511. }
  1512. #endif
  1513. /*
  1514. * Display pages allocated per node and memory policy via /proc.
  1515. */
  1516. static int show_numa_map(struct seq_file *m, void *v)
  1517. {
  1518. struct numa_maps_private *numa_priv = m->private;
  1519. struct proc_maps_private *proc_priv = &numa_priv->proc_maps;
  1520. struct vm_area_struct *vma = v;
  1521. struct numa_maps *md = &numa_priv->md;
  1522. struct file *file = vma->vm_file;
  1523. struct mm_struct *mm = vma->vm_mm;
  1524. struct mm_walk walk = {
  1525. .hugetlb_entry = gather_hugetlb_stats,
  1526. .pmd_entry = gather_pte_stats,
  1527. .private = md,
  1528. .mm = mm,
  1529. };
  1530. struct mempolicy *pol;
  1531. char buffer[64];
  1532. int nid;
  1533. if (!mm)
  1534. return 0;
  1535. /* Ensure we start with an empty set of numa_maps statistics. */
  1536. memset(md, 0, sizeof(*md));
  1537. pol = __get_vma_policy(vma, vma->vm_start);
  1538. if (pol) {
  1539. mpol_to_str(buffer, sizeof(buffer), pol);
  1540. mpol_cond_put(pol);
  1541. } else {
  1542. mpol_to_str(buffer, sizeof(buffer), proc_priv->task_mempolicy);
  1543. }
  1544. seq_printf(m, "%08lx %s", vma->vm_start, buffer);
  1545. if (file) {
  1546. seq_puts(m, " file=");
  1547. seq_file_path(m, file, "\n\t= ");
  1548. } else if (vma->vm_start <= mm->brk && vma->vm_end >= mm->start_brk) {
  1549. seq_puts(m, " heap");
  1550. } else if (is_stack(vma)) {
  1551. seq_puts(m, " stack");
  1552. }
  1553. if (is_vm_hugetlb_page(vma))
  1554. seq_puts(m, " huge");
  1555. /* mmap_sem is held by m_start */
  1556. walk_page_vma(vma, &walk);
  1557. if (!md->pages)
  1558. goto out;
  1559. if (md->anon)
  1560. seq_printf(m, " anon=%lu", md->anon);
  1561. if (md->dirty)
  1562. seq_printf(m, " dirty=%lu", md->dirty);
  1563. if (md->pages != md->anon && md->pages != md->dirty)
  1564. seq_printf(m, " mapped=%lu", md->pages);
  1565. if (md->mapcount_max > 1)
  1566. seq_printf(m, " mapmax=%lu", md->mapcount_max);
  1567. if (md->swapcache)
  1568. seq_printf(m, " swapcache=%lu", md->swapcache);
  1569. if (md->active < md->pages && !is_vm_hugetlb_page(vma))
  1570. seq_printf(m, " active=%lu", md->active);
  1571. if (md->writeback)
  1572. seq_printf(m, " writeback=%lu", md->writeback);
  1573. for_each_node_state(nid, N_MEMORY)
  1574. if (md->node[nid])
  1575. seq_printf(m, " N%d=%lu", nid, md->node[nid]);
  1576. seq_printf(m, " kernelpagesize_kB=%lu", vma_kernel_pagesize(vma) >> 10);
  1577. out:
  1578. seq_putc(m, '\n');
  1579. m_cache_vma(m, vma);
  1580. return 0;
  1581. }
  1582. static const struct seq_operations proc_pid_numa_maps_op = {
  1583. .start = m_start,
  1584. .next = m_next,
  1585. .stop = m_stop,
  1586. .show = show_numa_map,
  1587. };
  1588. static int pid_numa_maps_open(struct inode *inode, struct file *file)
  1589. {
  1590. return proc_maps_open(inode, file, &proc_pid_numa_maps_op,
  1591. sizeof(struct numa_maps_private));
  1592. }
  1593. const struct file_operations proc_pid_numa_maps_operations = {
  1594. .open = pid_numa_maps_open,
  1595. .read = seq_read,
  1596. .llseek = seq_lseek,
  1597. .release = proc_map_release,
  1598. };
  1599. #endif /* CONFIG_NUMA */