123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682 |
- /* bpf/cpumap.c
- *
- * Copyright (c) 2017 Jesper Dangaard Brouer, Red Hat Inc.
- * Released under terms in GPL version 2. See COPYING.
- */
- /* The 'cpumap' is primarily used as a backend map for XDP BPF helper
- * call bpf_redirect_map() and XDP_REDIRECT action, like 'devmap'.
- *
- * Unlike devmap which redirects XDP frames out another NIC device,
- * this map type redirects raw XDP frames to another CPU. The remote
- * CPU will do SKB-allocation and call the normal network stack.
- *
- * This is a scalability and isolation mechanism, that allow
- * separating the early driver network XDP layer, from the rest of the
- * netstack, and assigning dedicated CPUs for this stage. This
- * basically allows for 10G wirespeed pre-filtering via bpf.
- */
- #include <linux/bpf.h>
- #include <linux/filter.h>
- #include <linux/ptr_ring.h>
- #include <net/xdp.h>
- #include <linux/sched.h>
- #include <linux/workqueue.h>
- #include <linux/kthread.h>
- #include <linux/capability.h>
- #include <trace/events/xdp.h>
- #include <linux/netdevice.h> /* netif_receive_skb_core */
- #include <linux/etherdevice.h> /* eth_type_trans */
- /* General idea: XDP packets getting XDP redirected to another CPU,
- * will maximum be stored/queued for one driver ->poll() call. It is
- * guaranteed that setting flush bit and flush operation happen on
- * same CPU. Thus, cpu_map_flush operation can deduct via this_cpu_ptr()
- * which queue in bpf_cpu_map_entry contains packets.
- */
- #define CPU_MAP_BULK_SIZE 8 /* 8 == one cacheline on 64-bit archs */
- struct xdp_bulk_queue {
- void *q[CPU_MAP_BULK_SIZE];
- unsigned int count;
- };
- /* Struct for every remote "destination" CPU in map */
- struct bpf_cpu_map_entry {
- u32 cpu; /* kthread CPU and map index */
- int map_id; /* Back reference to map */
- u32 qsize; /* Queue size placeholder for map lookup */
- /* XDP can run multiple RX-ring queues, need __percpu enqueue store */
- struct xdp_bulk_queue __percpu *bulkq;
- /* Queue with potential multi-producers, and single-consumer kthread */
- struct ptr_ring *queue;
- struct task_struct *kthread;
- struct work_struct kthread_stop_wq;
- atomic_t refcnt; /* Control when this struct can be free'ed */
- struct rcu_head rcu;
- };
- struct bpf_cpu_map {
- struct bpf_map map;
- /* Below members specific for map type */
- struct bpf_cpu_map_entry **cpu_map;
- unsigned long __percpu *flush_needed;
- };
- static int bq_flush_to_queue(struct bpf_cpu_map_entry *rcpu,
- struct xdp_bulk_queue *bq, bool in_napi_ctx);
- static u64 cpu_map_bitmap_size(const union bpf_attr *attr)
- {
- return BITS_TO_LONGS(attr->max_entries) * sizeof(unsigned long);
- }
- static struct bpf_map *cpu_map_alloc(union bpf_attr *attr)
- {
- struct bpf_cpu_map *cmap;
- int err = -ENOMEM;
- u64 cost;
- int ret;
- if (!capable(CAP_SYS_ADMIN))
- return ERR_PTR(-EPERM);
- /* check sanity of attributes */
- if (attr->max_entries == 0 || attr->key_size != 4 ||
- attr->value_size != 4 || attr->map_flags & ~BPF_F_NUMA_NODE)
- return ERR_PTR(-EINVAL);
- cmap = kzalloc(sizeof(*cmap), GFP_USER);
- if (!cmap)
- return ERR_PTR(-ENOMEM);
- bpf_map_init_from_attr(&cmap->map, attr);
- /* Pre-limit array size based on NR_CPUS, not final CPU check */
- if (cmap->map.max_entries > NR_CPUS) {
- err = -E2BIG;
- goto free_cmap;
- }
- /* make sure page count doesn't overflow */
- cost = (u64) cmap->map.max_entries * sizeof(struct bpf_cpu_map_entry *);
- cost += cpu_map_bitmap_size(attr) * num_possible_cpus();
- if (cost >= U32_MAX - PAGE_SIZE)
- goto free_cmap;
- cmap->map.pages = round_up(cost, PAGE_SIZE) >> PAGE_SHIFT;
- /* Notice returns -EPERM on if map size is larger than memlock limit */
- ret = bpf_map_precharge_memlock(cmap->map.pages);
- if (ret) {
- err = ret;
- goto free_cmap;
- }
- /* A per cpu bitfield with a bit per possible CPU in map */
- cmap->flush_needed = __alloc_percpu(cpu_map_bitmap_size(attr),
- __alignof__(unsigned long));
- if (!cmap->flush_needed)
- goto free_cmap;
- /* Alloc array for possible remote "destination" CPUs */
- cmap->cpu_map = bpf_map_area_alloc(cmap->map.max_entries *
- sizeof(struct bpf_cpu_map_entry *),
- cmap->map.numa_node);
- if (!cmap->cpu_map)
- goto free_percpu;
- return &cmap->map;
- free_percpu:
- free_percpu(cmap->flush_needed);
- free_cmap:
- kfree(cmap);
- return ERR_PTR(err);
- }
- static void get_cpu_map_entry(struct bpf_cpu_map_entry *rcpu)
- {
- atomic_inc(&rcpu->refcnt);
- }
- /* called from workqueue, to workaround syscall using preempt_disable */
- static void cpu_map_kthread_stop(struct work_struct *work)
- {
- struct bpf_cpu_map_entry *rcpu;
- rcpu = container_of(work, struct bpf_cpu_map_entry, kthread_stop_wq);
- /* Wait for flush in __cpu_map_entry_free(), via full RCU barrier,
- * as it waits until all in-flight call_rcu() callbacks complete.
- */
- rcu_barrier();
- /* kthread_stop will wake_up_process and wait for it to complete */
- kthread_stop(rcpu->kthread);
- }
- static struct sk_buff *cpu_map_build_skb(struct bpf_cpu_map_entry *rcpu,
- struct xdp_frame *xdpf)
- {
- unsigned int hard_start_headroom;
- unsigned int frame_size;
- void *pkt_data_start;
- struct sk_buff *skb;
- /* Part of headroom was reserved to xdpf */
- hard_start_headroom = sizeof(struct xdp_frame) + xdpf->headroom;
- /* build_skb need to place skb_shared_info after SKB end, and
- * also want to know the memory "truesize". Thus, need to
- * know the memory frame size backing xdp_buff.
- *
- * XDP was designed to have PAGE_SIZE frames, but this
- * assumption is not longer true with ixgbe and i40e. It
- * would be preferred to set frame_size to 2048 or 4096
- * depending on the driver.
- * frame_size = 2048;
- * frame_len = frame_size - sizeof(*xdp_frame);
- *
- * Instead, with info avail, skb_shared_info in placed after
- * packet len. This, unfortunately fakes the truesize.
- * Another disadvantage of this approach, the skb_shared_info
- * is not at a fixed memory location, with mixed length
- * packets, which is bad for cache-line hotness.
- */
- frame_size = SKB_DATA_ALIGN(xdpf->len + hard_start_headroom) +
- SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
- pkt_data_start = xdpf->data - hard_start_headroom;
- skb = build_skb(pkt_data_start, frame_size);
- if (!skb)
- return NULL;
- skb_reserve(skb, hard_start_headroom);
- __skb_put(skb, xdpf->len);
- if (xdpf->metasize)
- skb_metadata_set(skb, xdpf->metasize);
- /* Essential SKB info: protocol and skb->dev */
- skb->protocol = eth_type_trans(skb, xdpf->dev_rx);
- /* Optional SKB info, currently missing:
- * - HW checksum info (skb->ip_summed)
- * - HW RX hash (skb_set_hash)
- * - RX ring dev queue index (skb_record_rx_queue)
- */
- /* Allow SKB to reuse area used by xdp_frame */
- xdp_scrub_frame(xdpf);
- return skb;
- }
- static void __cpu_map_ring_cleanup(struct ptr_ring *ring)
- {
- /* The tear-down procedure should have made sure that queue is
- * empty. See __cpu_map_entry_replace() and work-queue
- * invoked cpu_map_kthread_stop(). Catch any broken behaviour
- * gracefully and warn once.
- */
- struct xdp_frame *xdpf;
- while ((xdpf = ptr_ring_consume(ring)))
- if (WARN_ON_ONCE(xdpf))
- xdp_return_frame(xdpf);
- }
- static void put_cpu_map_entry(struct bpf_cpu_map_entry *rcpu)
- {
- if (atomic_dec_and_test(&rcpu->refcnt)) {
- /* The queue should be empty at this point */
- __cpu_map_ring_cleanup(rcpu->queue);
- ptr_ring_cleanup(rcpu->queue, NULL);
- kfree(rcpu->queue);
- kfree(rcpu);
- }
- }
- static int cpu_map_kthread_run(void *data)
- {
- struct bpf_cpu_map_entry *rcpu = data;
- set_current_state(TASK_INTERRUPTIBLE);
- /* When kthread gives stop order, then rcpu have been disconnected
- * from map, thus no new packets can enter. Remaining in-flight
- * per CPU stored packets are flushed to this queue. Wait honoring
- * kthread_stop signal until queue is empty.
- */
- while (!kthread_should_stop() || !__ptr_ring_empty(rcpu->queue)) {
- unsigned int processed = 0, drops = 0, sched = 0;
- struct xdp_frame *xdpf;
- /* Release CPU reschedule checks */
- if (__ptr_ring_empty(rcpu->queue)) {
- set_current_state(TASK_INTERRUPTIBLE);
- /* Recheck to avoid lost wake-up */
- if (__ptr_ring_empty(rcpu->queue)) {
- schedule();
- sched = 1;
- } else {
- __set_current_state(TASK_RUNNING);
- }
- } else {
- sched = cond_resched();
- }
- /* Process packets in rcpu->queue */
- local_bh_disable();
- /*
- * The bpf_cpu_map_entry is single consumer, with this
- * kthread CPU pinned. Lockless access to ptr_ring
- * consume side valid as no-resize allowed of queue.
- */
- while ((xdpf = __ptr_ring_consume(rcpu->queue))) {
- struct sk_buff *skb;
- int ret;
- skb = cpu_map_build_skb(rcpu, xdpf);
- if (!skb) {
- xdp_return_frame(xdpf);
- continue;
- }
- /* Inject into network stack */
- ret = netif_receive_skb_core(skb);
- if (ret == NET_RX_DROP)
- drops++;
- /* Limit BH-disable period */
- if (++processed == 8)
- break;
- }
- /* Feedback loop via tracepoint */
- trace_xdp_cpumap_kthread(rcpu->map_id, processed, drops, sched);
- local_bh_enable(); /* resched point, may call do_softirq() */
- }
- __set_current_state(TASK_RUNNING);
- put_cpu_map_entry(rcpu);
- return 0;
- }
- static struct bpf_cpu_map_entry *__cpu_map_entry_alloc(u32 qsize, u32 cpu,
- int map_id)
- {
- gfp_t gfp = GFP_KERNEL | __GFP_NOWARN;
- struct bpf_cpu_map_entry *rcpu;
- int numa, err;
- /* Have map->numa_node, but choose node of redirect target CPU */
- numa = cpu_to_node(cpu);
- rcpu = kzalloc_node(sizeof(*rcpu), gfp, numa);
- if (!rcpu)
- return NULL;
- /* Alloc percpu bulkq */
- rcpu->bulkq = __alloc_percpu_gfp(sizeof(*rcpu->bulkq),
- sizeof(void *), gfp);
- if (!rcpu->bulkq)
- goto free_rcu;
- /* Alloc queue */
- rcpu->queue = kzalloc_node(sizeof(*rcpu->queue), gfp, numa);
- if (!rcpu->queue)
- goto free_bulkq;
- err = ptr_ring_init(rcpu->queue, qsize, gfp);
- if (err)
- goto free_queue;
- rcpu->cpu = cpu;
- rcpu->map_id = map_id;
- rcpu->qsize = qsize;
- /* Setup kthread */
- rcpu->kthread = kthread_create_on_node(cpu_map_kthread_run, rcpu, numa,
- "cpumap/%d/map:%d", cpu, map_id);
- if (IS_ERR(rcpu->kthread))
- goto free_ptr_ring;
- get_cpu_map_entry(rcpu); /* 1-refcnt for being in cmap->cpu_map[] */
- get_cpu_map_entry(rcpu); /* 1-refcnt for kthread */
- /* Make sure kthread runs on a single CPU */
- kthread_bind(rcpu->kthread, cpu);
- wake_up_process(rcpu->kthread);
- return rcpu;
- free_ptr_ring:
- ptr_ring_cleanup(rcpu->queue, NULL);
- free_queue:
- kfree(rcpu->queue);
- free_bulkq:
- free_percpu(rcpu->bulkq);
- free_rcu:
- kfree(rcpu);
- return NULL;
- }
- static void __cpu_map_entry_free(struct rcu_head *rcu)
- {
- struct bpf_cpu_map_entry *rcpu;
- int cpu;
- /* This cpu_map_entry have been disconnected from map and one
- * RCU graze-period have elapsed. Thus, XDP cannot queue any
- * new packets and cannot change/set flush_needed that can
- * find this entry.
- */
- rcpu = container_of(rcu, struct bpf_cpu_map_entry, rcu);
- /* Flush remaining packets in percpu bulkq */
- for_each_online_cpu(cpu) {
- struct xdp_bulk_queue *bq = per_cpu_ptr(rcpu->bulkq, cpu);
- /* No concurrent bq_enqueue can run at this point */
- bq_flush_to_queue(rcpu, bq, false);
- }
- free_percpu(rcpu->bulkq);
- /* Cannot kthread_stop() here, last put free rcpu resources */
- put_cpu_map_entry(rcpu);
- }
- /* After xchg pointer to bpf_cpu_map_entry, use the call_rcu() to
- * ensure any driver rcu critical sections have completed, but this
- * does not guarantee a flush has happened yet. Because driver side
- * rcu_read_lock/unlock only protects the running XDP program. The
- * atomic xchg and NULL-ptr check in __cpu_map_flush() makes sure a
- * pending flush op doesn't fail.
- *
- * The bpf_cpu_map_entry is still used by the kthread, and there can
- * still be pending packets (in queue and percpu bulkq). A refcnt
- * makes sure to last user (kthread_stop vs. call_rcu) free memory
- * resources.
- *
- * The rcu callback __cpu_map_entry_free flush remaining packets in
- * percpu bulkq to queue. Due to caller map_delete_elem() disable
- * preemption, cannot call kthread_stop() to make sure queue is empty.
- * Instead a work_queue is started for stopping kthread,
- * cpu_map_kthread_stop, which waits for an RCU graze period before
- * stopping kthread, emptying the queue.
- */
- static void __cpu_map_entry_replace(struct bpf_cpu_map *cmap,
- u32 key_cpu, struct bpf_cpu_map_entry *rcpu)
- {
- struct bpf_cpu_map_entry *old_rcpu;
- old_rcpu = xchg(&cmap->cpu_map[key_cpu], rcpu);
- if (old_rcpu) {
- call_rcu(&old_rcpu->rcu, __cpu_map_entry_free);
- INIT_WORK(&old_rcpu->kthread_stop_wq, cpu_map_kthread_stop);
- schedule_work(&old_rcpu->kthread_stop_wq);
- }
- }
- static int cpu_map_delete_elem(struct bpf_map *map, void *key)
- {
- struct bpf_cpu_map *cmap = container_of(map, struct bpf_cpu_map, map);
- u32 key_cpu = *(u32 *)key;
- if (key_cpu >= map->max_entries)
- return -EINVAL;
- /* notice caller map_delete_elem() use preempt_disable() */
- __cpu_map_entry_replace(cmap, key_cpu, NULL);
- return 0;
- }
- static int cpu_map_update_elem(struct bpf_map *map, void *key, void *value,
- u64 map_flags)
- {
- struct bpf_cpu_map *cmap = container_of(map, struct bpf_cpu_map, map);
- struct bpf_cpu_map_entry *rcpu;
- /* Array index key correspond to CPU number */
- u32 key_cpu = *(u32 *)key;
- /* Value is the queue size */
- u32 qsize = *(u32 *)value;
- if (unlikely(map_flags > BPF_EXIST))
- return -EINVAL;
- if (unlikely(key_cpu >= cmap->map.max_entries))
- return -E2BIG;
- if (unlikely(map_flags == BPF_NOEXIST))
- return -EEXIST;
- if (unlikely(qsize > 16384)) /* sanity limit on qsize */
- return -EOVERFLOW;
- /* Make sure CPU is a valid possible cpu */
- if (key_cpu >= nr_cpumask_bits || !cpu_possible(key_cpu))
- return -ENODEV;
- if (qsize == 0) {
- rcpu = NULL; /* Same as deleting */
- } else {
- /* Updating qsize cause re-allocation of bpf_cpu_map_entry */
- rcpu = __cpu_map_entry_alloc(qsize, key_cpu, map->id);
- if (!rcpu)
- return -ENOMEM;
- }
- rcu_read_lock();
- __cpu_map_entry_replace(cmap, key_cpu, rcpu);
- rcu_read_unlock();
- return 0;
- }
- static void cpu_map_free(struct bpf_map *map)
- {
- struct bpf_cpu_map *cmap = container_of(map, struct bpf_cpu_map, map);
- int cpu;
- u32 i;
- /* At this point bpf_prog->aux->refcnt == 0 and this map->refcnt == 0,
- * so the bpf programs (can be more than one that used this map) were
- * disconnected from events. Wait for outstanding critical sections in
- * these programs to complete. The rcu critical section only guarantees
- * no further "XDP/bpf-side" reads against bpf_cpu_map->cpu_map.
- * It does __not__ ensure pending flush operations (if any) are
- * complete.
- */
- bpf_clear_redirect_map(map);
- synchronize_rcu();
- /* To ensure all pending flush operations have completed wait for flush
- * bitmap to indicate all flush_needed bits to be zero on _all_ cpus.
- * Because the above synchronize_rcu() ensures the map is disconnected
- * from the program we can assume no new bits will be set.
- */
- for_each_online_cpu(cpu) {
- unsigned long *bitmap = per_cpu_ptr(cmap->flush_needed, cpu);
- while (!bitmap_empty(bitmap, cmap->map.max_entries))
- cond_resched();
- }
- /* For cpu_map the remote CPUs can still be using the entries
- * (struct bpf_cpu_map_entry).
- */
- for (i = 0; i < cmap->map.max_entries; i++) {
- struct bpf_cpu_map_entry *rcpu;
- rcpu = READ_ONCE(cmap->cpu_map[i]);
- if (!rcpu)
- continue;
- /* bq flush and cleanup happens after RCU graze-period */
- __cpu_map_entry_replace(cmap, i, NULL); /* call_rcu */
- }
- free_percpu(cmap->flush_needed);
- bpf_map_area_free(cmap->cpu_map);
- kfree(cmap);
- }
- struct bpf_cpu_map_entry *__cpu_map_lookup_elem(struct bpf_map *map, u32 key)
- {
- struct bpf_cpu_map *cmap = container_of(map, struct bpf_cpu_map, map);
- struct bpf_cpu_map_entry *rcpu;
- if (key >= map->max_entries)
- return NULL;
- rcpu = READ_ONCE(cmap->cpu_map[key]);
- return rcpu;
- }
- static void *cpu_map_lookup_elem(struct bpf_map *map, void *key)
- {
- struct bpf_cpu_map_entry *rcpu =
- __cpu_map_lookup_elem(map, *(u32 *)key);
- return rcpu ? &rcpu->qsize : NULL;
- }
- static int cpu_map_get_next_key(struct bpf_map *map, void *key, void *next_key)
- {
- struct bpf_cpu_map *cmap = container_of(map, struct bpf_cpu_map, map);
- u32 index = key ? *(u32 *)key : U32_MAX;
- u32 *next = next_key;
- if (index >= cmap->map.max_entries) {
- *next = 0;
- return 0;
- }
- if (index == cmap->map.max_entries - 1)
- return -ENOENT;
- *next = index + 1;
- return 0;
- }
- const struct bpf_map_ops cpu_map_ops = {
- .map_alloc = cpu_map_alloc,
- .map_free = cpu_map_free,
- .map_delete_elem = cpu_map_delete_elem,
- .map_update_elem = cpu_map_update_elem,
- .map_lookup_elem = cpu_map_lookup_elem,
- .map_get_next_key = cpu_map_get_next_key,
- .map_check_btf = map_check_no_btf,
- };
- static int bq_flush_to_queue(struct bpf_cpu_map_entry *rcpu,
- struct xdp_bulk_queue *bq, bool in_napi_ctx)
- {
- unsigned int processed = 0, drops = 0;
- const int to_cpu = rcpu->cpu;
- struct ptr_ring *q;
- int i;
- if (unlikely(!bq->count))
- return 0;
- q = rcpu->queue;
- spin_lock(&q->producer_lock);
- for (i = 0; i < bq->count; i++) {
- struct xdp_frame *xdpf = bq->q[i];
- int err;
- err = __ptr_ring_produce(q, xdpf);
- if (err) {
- drops++;
- if (likely(in_napi_ctx))
- xdp_return_frame_rx_napi(xdpf);
- else
- xdp_return_frame(xdpf);
- }
- processed++;
- }
- bq->count = 0;
- spin_unlock(&q->producer_lock);
- /* Feedback loop via tracepoints */
- trace_xdp_cpumap_enqueue(rcpu->map_id, processed, drops, to_cpu);
- return 0;
- }
- /* Runs under RCU-read-side, plus in softirq under NAPI protection.
- * Thus, safe percpu variable access.
- */
- static int bq_enqueue(struct bpf_cpu_map_entry *rcpu, struct xdp_frame *xdpf)
- {
- struct xdp_bulk_queue *bq = this_cpu_ptr(rcpu->bulkq);
- if (unlikely(bq->count == CPU_MAP_BULK_SIZE))
- bq_flush_to_queue(rcpu, bq, true);
- /* Notice, xdp_buff/page MUST be queued here, long enough for
- * driver to code invoking us to finished, due to driver
- * (e.g. ixgbe) recycle tricks based on page-refcnt.
- *
- * Thus, incoming xdp_frame is always queued here (else we race
- * with another CPU on page-refcnt and remaining driver code).
- * Queue time is very short, as driver will invoke flush
- * operation, when completing napi->poll call.
- */
- bq->q[bq->count++] = xdpf;
- return 0;
- }
- int cpu_map_enqueue(struct bpf_cpu_map_entry *rcpu, struct xdp_buff *xdp,
- struct net_device *dev_rx)
- {
- struct xdp_frame *xdpf;
- xdpf = convert_to_xdp_frame(xdp);
- if (unlikely(!xdpf))
- return -EOVERFLOW;
- /* Info needed when constructing SKB on remote CPU */
- xdpf->dev_rx = dev_rx;
- bq_enqueue(rcpu, xdpf);
- return 0;
- }
- void __cpu_map_insert_ctx(struct bpf_map *map, u32 bit)
- {
- struct bpf_cpu_map *cmap = container_of(map, struct bpf_cpu_map, map);
- unsigned long *bitmap = this_cpu_ptr(cmap->flush_needed);
- __set_bit(bit, bitmap);
- }
- void __cpu_map_flush(struct bpf_map *map)
- {
- struct bpf_cpu_map *cmap = container_of(map, struct bpf_cpu_map, map);
- unsigned long *bitmap = this_cpu_ptr(cmap->flush_needed);
- u32 bit;
- /* The napi->poll softirq makes sure __cpu_map_insert_ctx()
- * and __cpu_map_flush() happen on same CPU. Thus, the percpu
- * bitmap indicate which percpu bulkq have packets.
- */
- for_each_set_bit(bit, bitmap, map->max_entries) {
- struct bpf_cpu_map_entry *rcpu = READ_ONCE(cmap->cpu_map[bit]);
- struct xdp_bulk_queue *bq;
- /* This is possible if entry is removed by user space
- * between xdp redirect and flush op.
- */
- if (unlikely(!rcpu))
- continue;
- __clear_bit(bit, bitmap);
- /* Flush all frames in bulkq to real queue */
- bq = this_cpu_ptr(rcpu->bulkq);
- bq_flush_to_queue(rcpu, bq, true);
- /* If already running, costs spin_lock_irqsave + smb_mb */
- wake_up_process(rcpu->kthread);
- }
- }
|