devmap.c 16 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552
  1. /* Copyright (c) 2017 Covalent IO, Inc. http://covalent.io
  2. *
  3. * This program is free software; you can redistribute it and/or
  4. * modify it under the terms of version 2 of the GNU General Public
  5. * License as published by the Free Software Foundation.
  6. *
  7. * This program is distributed in the hope that it will be useful, but
  8. * WITHOUT ANY WARRANTY; without even the implied warranty of
  9. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  10. * General Public License for more details.
  11. */
  12. /* Devmaps primary use is as a backend map for XDP BPF helper call
  13. * bpf_redirect_map(). Because XDP is mostly concerned with performance we
  14. * spent some effort to ensure the datapath with redirect maps does not use
  15. * any locking. This is a quick note on the details.
  16. *
  17. * We have three possible paths to get into the devmap control plane bpf
  18. * syscalls, bpf programs, and driver side xmit/flush operations. A bpf syscall
  19. * will invoke an update, delete, or lookup operation. To ensure updates and
  20. * deletes appear atomic from the datapath side xchg() is used to modify the
  21. * netdev_map array. Then because the datapath does a lookup into the netdev_map
  22. * array (read-only) from an RCU critical section we use call_rcu() to wait for
  23. * an rcu grace period before free'ing the old data structures. This ensures the
  24. * datapath always has a valid copy. However, the datapath does a "flush"
  25. * operation that pushes any pending packets in the driver outside the RCU
  26. * critical section. Each bpf_dtab_netdev tracks these pending operations using
  27. * an atomic per-cpu bitmap. The bpf_dtab_netdev object will not be destroyed
  28. * until all bits are cleared indicating outstanding flush operations have
  29. * completed.
  30. *
  31. * BPF syscalls may race with BPF program calls on any of the update, delete
  32. * or lookup operations. As noted above the xchg() operation also keep the
  33. * netdev_map consistent in this case. From the devmap side BPF programs
  34. * calling into these operations are the same as multiple user space threads
  35. * making system calls.
  36. *
  37. * Finally, any of the above may race with a netdev_unregister notifier. The
  38. * unregister notifier must search for net devices in the map structure that
  39. * contain a reference to the net device and remove them. This is a two step
  40. * process (a) dereference the bpf_dtab_netdev object in netdev_map and (b)
  41. * check to see if the ifindex is the same as the net_device being removed.
  42. * When removing the dev a cmpxchg() is used to ensure the correct dev is
  43. * removed, in the case of a concurrent update or delete operation it is
  44. * possible that the initially referenced dev is no longer in the map. As the
  45. * notifier hook walks the map we know that new dev references can not be
  46. * added by the user because core infrastructure ensures dev_get_by_index()
  47. * calls will fail at this point.
  48. */
  49. #include <linux/bpf.h>
  50. #include <net/xdp.h>
  51. #include <linux/filter.h>
  52. #include <trace/events/xdp.h>
  53. #define DEV_CREATE_FLAG_MASK \
  54. (BPF_F_NUMA_NODE | BPF_F_RDONLY | BPF_F_WRONLY)
  55. #define DEV_MAP_BULK_SIZE 16
  56. struct xdp_bulk_queue {
  57. struct xdp_frame *q[DEV_MAP_BULK_SIZE];
  58. struct net_device *dev_rx;
  59. unsigned int count;
  60. };
  61. struct bpf_dtab_netdev {
  62. struct net_device *dev; /* must be first member, due to tracepoint */
  63. struct bpf_dtab *dtab;
  64. unsigned int bit;
  65. struct xdp_bulk_queue __percpu *bulkq;
  66. struct rcu_head rcu;
  67. };
  68. struct bpf_dtab {
  69. struct bpf_map map;
  70. struct bpf_dtab_netdev **netdev_map;
  71. unsigned long __percpu *flush_needed;
  72. struct list_head list;
  73. };
  74. static DEFINE_SPINLOCK(dev_map_lock);
  75. static LIST_HEAD(dev_map_list);
  76. static u64 dev_map_bitmap_size(const union bpf_attr *attr)
  77. {
  78. return BITS_TO_LONGS((u64) attr->max_entries) * sizeof(unsigned long);
  79. }
  80. static struct bpf_map *dev_map_alloc(union bpf_attr *attr)
  81. {
  82. struct bpf_dtab *dtab;
  83. int err = -EINVAL;
  84. u64 cost;
  85. if (!capable(CAP_NET_ADMIN))
  86. return ERR_PTR(-EPERM);
  87. /* check sanity of attributes */
  88. if (attr->max_entries == 0 || attr->key_size != 4 ||
  89. attr->value_size != 4 || attr->map_flags & ~DEV_CREATE_FLAG_MASK)
  90. return ERR_PTR(-EINVAL);
  91. dtab = kzalloc(sizeof(*dtab), GFP_USER);
  92. if (!dtab)
  93. return ERR_PTR(-ENOMEM);
  94. bpf_map_init_from_attr(&dtab->map, attr);
  95. /* make sure page count doesn't overflow */
  96. cost = (u64) dtab->map.max_entries * sizeof(struct bpf_dtab_netdev *);
  97. cost += dev_map_bitmap_size(attr) * num_possible_cpus();
  98. if (cost >= U32_MAX - PAGE_SIZE)
  99. goto free_dtab;
  100. dtab->map.pages = round_up(cost, PAGE_SIZE) >> PAGE_SHIFT;
  101. /* if map size is larger than memlock limit, reject it early */
  102. err = bpf_map_precharge_memlock(dtab->map.pages);
  103. if (err)
  104. goto free_dtab;
  105. err = -ENOMEM;
  106. /* A per cpu bitfield with a bit per possible net device */
  107. dtab->flush_needed = __alloc_percpu_gfp(dev_map_bitmap_size(attr),
  108. __alignof__(unsigned long),
  109. GFP_KERNEL | __GFP_NOWARN);
  110. if (!dtab->flush_needed)
  111. goto free_dtab;
  112. dtab->netdev_map = bpf_map_area_alloc(dtab->map.max_entries *
  113. sizeof(struct bpf_dtab_netdev *),
  114. dtab->map.numa_node);
  115. if (!dtab->netdev_map)
  116. goto free_dtab;
  117. spin_lock(&dev_map_lock);
  118. list_add_tail_rcu(&dtab->list, &dev_map_list);
  119. spin_unlock(&dev_map_lock);
  120. return &dtab->map;
  121. free_dtab:
  122. free_percpu(dtab->flush_needed);
  123. kfree(dtab);
  124. return ERR_PTR(err);
  125. }
  126. static void dev_map_free(struct bpf_map *map)
  127. {
  128. struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map);
  129. int i, cpu;
  130. /* At this point bpf_prog->aux->refcnt == 0 and this map->refcnt == 0,
  131. * so the programs (can be more than one that used this map) were
  132. * disconnected from events. Wait for outstanding critical sections in
  133. * these programs to complete. The rcu critical section only guarantees
  134. * no further reads against netdev_map. It does __not__ ensure pending
  135. * flush operations (if any) are complete.
  136. */
  137. spin_lock(&dev_map_lock);
  138. list_del_rcu(&dtab->list);
  139. spin_unlock(&dev_map_lock);
  140. bpf_clear_redirect_map(map);
  141. synchronize_rcu();
  142. /* Make sure prior __dev_map_entry_free() have completed. */
  143. rcu_barrier();
  144. /* To ensure all pending flush operations have completed wait for flush
  145. * bitmap to indicate all flush_needed bits to be zero on _all_ cpus.
  146. * Because the above synchronize_rcu() ensures the map is disconnected
  147. * from the program we can assume no new bits will be set.
  148. */
  149. for_each_online_cpu(cpu) {
  150. unsigned long *bitmap = per_cpu_ptr(dtab->flush_needed, cpu);
  151. while (!bitmap_empty(bitmap, dtab->map.max_entries))
  152. cond_resched();
  153. }
  154. for (i = 0; i < dtab->map.max_entries; i++) {
  155. struct bpf_dtab_netdev *dev;
  156. dev = dtab->netdev_map[i];
  157. if (!dev)
  158. continue;
  159. free_percpu(dev->bulkq);
  160. dev_put(dev->dev);
  161. kfree(dev);
  162. }
  163. free_percpu(dtab->flush_needed);
  164. bpf_map_area_free(dtab->netdev_map);
  165. kfree(dtab);
  166. }
  167. static int dev_map_get_next_key(struct bpf_map *map, void *key, void *next_key)
  168. {
  169. struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map);
  170. u32 index = key ? *(u32 *)key : U32_MAX;
  171. u32 *next = next_key;
  172. if (index >= dtab->map.max_entries) {
  173. *next = 0;
  174. return 0;
  175. }
  176. if (index == dtab->map.max_entries - 1)
  177. return -ENOENT;
  178. *next = index + 1;
  179. return 0;
  180. }
  181. void __dev_map_insert_ctx(struct bpf_map *map, u32 bit)
  182. {
  183. struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map);
  184. unsigned long *bitmap = this_cpu_ptr(dtab->flush_needed);
  185. __set_bit(bit, bitmap);
  186. }
  187. static int bq_xmit_all(struct bpf_dtab_netdev *obj,
  188. struct xdp_bulk_queue *bq, u32 flags,
  189. bool in_napi_ctx)
  190. {
  191. struct net_device *dev = obj->dev;
  192. int sent = 0, drops = 0, err = 0;
  193. int i;
  194. if (unlikely(!bq->count))
  195. return 0;
  196. for (i = 0; i < bq->count; i++) {
  197. struct xdp_frame *xdpf = bq->q[i];
  198. prefetch(xdpf);
  199. }
  200. sent = dev->netdev_ops->ndo_xdp_xmit(dev, bq->count, bq->q, flags);
  201. if (sent < 0) {
  202. err = sent;
  203. sent = 0;
  204. goto error;
  205. }
  206. drops = bq->count - sent;
  207. out:
  208. bq->count = 0;
  209. trace_xdp_devmap_xmit(&obj->dtab->map, obj->bit,
  210. sent, drops, bq->dev_rx, dev, err);
  211. bq->dev_rx = NULL;
  212. return 0;
  213. error:
  214. /* If ndo_xdp_xmit fails with an errno, no frames have been
  215. * xmit'ed and it's our responsibility to them free all.
  216. */
  217. for (i = 0; i < bq->count; i++) {
  218. struct xdp_frame *xdpf = bq->q[i];
  219. /* RX path under NAPI protection, can return frames faster */
  220. if (likely(in_napi_ctx))
  221. xdp_return_frame_rx_napi(xdpf);
  222. else
  223. xdp_return_frame(xdpf);
  224. drops++;
  225. }
  226. goto out;
  227. }
  228. /* __dev_map_flush is called from xdp_do_flush_map() which _must_ be signaled
  229. * from the driver before returning from its napi->poll() routine. The poll()
  230. * routine is called either from busy_poll context or net_rx_action signaled
  231. * from NET_RX_SOFTIRQ. Either way the poll routine must complete before the
  232. * net device can be torn down. On devmap tear down we ensure the ctx bitmap
  233. * is zeroed before completing to ensure all flush operations have completed.
  234. */
  235. void __dev_map_flush(struct bpf_map *map)
  236. {
  237. struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map);
  238. unsigned long *bitmap = this_cpu_ptr(dtab->flush_needed);
  239. u32 bit;
  240. rcu_read_lock();
  241. for_each_set_bit(bit, bitmap, map->max_entries) {
  242. struct bpf_dtab_netdev *dev = READ_ONCE(dtab->netdev_map[bit]);
  243. struct xdp_bulk_queue *bq;
  244. /* This is possible if the dev entry is removed by user space
  245. * between xdp redirect and flush op.
  246. */
  247. if (unlikely(!dev))
  248. continue;
  249. bq = this_cpu_ptr(dev->bulkq);
  250. bq_xmit_all(dev, bq, XDP_XMIT_FLUSH, true);
  251. __clear_bit(bit, bitmap);
  252. }
  253. rcu_read_unlock();
  254. }
  255. /* rcu_read_lock (from syscall and BPF contexts) ensures that if a delete and/or
  256. * update happens in parallel here a dev_put wont happen until after reading the
  257. * ifindex.
  258. */
  259. struct bpf_dtab_netdev *__dev_map_lookup_elem(struct bpf_map *map, u32 key)
  260. {
  261. struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map);
  262. struct bpf_dtab_netdev *obj;
  263. if (key >= map->max_entries)
  264. return NULL;
  265. obj = READ_ONCE(dtab->netdev_map[key]);
  266. return obj;
  267. }
  268. /* Runs under RCU-read-side, plus in softirq under NAPI protection.
  269. * Thus, safe percpu variable access.
  270. */
  271. static int bq_enqueue(struct bpf_dtab_netdev *obj, struct xdp_frame *xdpf,
  272. struct net_device *dev_rx)
  273. {
  274. struct xdp_bulk_queue *bq = this_cpu_ptr(obj->bulkq);
  275. if (unlikely(bq->count == DEV_MAP_BULK_SIZE))
  276. bq_xmit_all(obj, bq, 0, true);
  277. /* Ingress dev_rx will be the same for all xdp_frame's in
  278. * bulk_queue, because bq stored per-CPU and must be flushed
  279. * from net_device drivers NAPI func end.
  280. */
  281. if (!bq->dev_rx)
  282. bq->dev_rx = dev_rx;
  283. bq->q[bq->count++] = xdpf;
  284. return 0;
  285. }
  286. int dev_map_enqueue(struct bpf_dtab_netdev *dst, struct xdp_buff *xdp,
  287. struct net_device *dev_rx)
  288. {
  289. struct net_device *dev = dst->dev;
  290. struct xdp_frame *xdpf;
  291. int err;
  292. if (!dev->netdev_ops->ndo_xdp_xmit)
  293. return -EOPNOTSUPP;
  294. err = xdp_ok_fwd_dev(dev, xdp->data_end - xdp->data);
  295. if (unlikely(err))
  296. return err;
  297. xdpf = convert_to_xdp_frame(xdp);
  298. if (unlikely(!xdpf))
  299. return -EOVERFLOW;
  300. return bq_enqueue(dst, xdpf, dev_rx);
  301. }
  302. int dev_map_generic_redirect(struct bpf_dtab_netdev *dst, struct sk_buff *skb,
  303. struct bpf_prog *xdp_prog)
  304. {
  305. int err;
  306. err = xdp_ok_fwd_dev(dst->dev, skb->len);
  307. if (unlikely(err))
  308. return err;
  309. skb->dev = dst->dev;
  310. generic_xdp_tx(skb, xdp_prog);
  311. return 0;
  312. }
  313. static void *dev_map_lookup_elem(struct bpf_map *map, void *key)
  314. {
  315. struct bpf_dtab_netdev *obj = __dev_map_lookup_elem(map, *(u32 *)key);
  316. struct net_device *dev = obj ? obj->dev : NULL;
  317. return dev ? &dev->ifindex : NULL;
  318. }
  319. static void dev_map_flush_old(struct bpf_dtab_netdev *dev)
  320. {
  321. if (dev->dev->netdev_ops->ndo_xdp_xmit) {
  322. struct xdp_bulk_queue *bq;
  323. unsigned long *bitmap;
  324. int cpu;
  325. rcu_read_lock();
  326. for_each_online_cpu(cpu) {
  327. bitmap = per_cpu_ptr(dev->dtab->flush_needed, cpu);
  328. __clear_bit(dev->bit, bitmap);
  329. bq = per_cpu_ptr(dev->bulkq, cpu);
  330. bq_xmit_all(dev, bq, XDP_XMIT_FLUSH, false);
  331. }
  332. rcu_read_unlock();
  333. }
  334. }
  335. static void __dev_map_entry_free(struct rcu_head *rcu)
  336. {
  337. struct bpf_dtab_netdev *dev;
  338. dev = container_of(rcu, struct bpf_dtab_netdev, rcu);
  339. dev_map_flush_old(dev);
  340. free_percpu(dev->bulkq);
  341. dev_put(dev->dev);
  342. kfree(dev);
  343. }
  344. static int dev_map_delete_elem(struct bpf_map *map, void *key)
  345. {
  346. struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map);
  347. struct bpf_dtab_netdev *old_dev;
  348. int k = *(u32 *)key;
  349. if (k >= map->max_entries)
  350. return -EINVAL;
  351. /* Use call_rcu() here to ensure any rcu critical sections have
  352. * completed, but this does not guarantee a flush has happened
  353. * yet. Because driver side rcu_read_lock/unlock only protects the
  354. * running XDP program. However, for pending flush operations the
  355. * dev and ctx are stored in another per cpu map. And additionally,
  356. * the driver tear down ensures all soft irqs are complete before
  357. * removing the net device in the case of dev_put equals zero.
  358. */
  359. old_dev = xchg(&dtab->netdev_map[k], NULL);
  360. if (old_dev)
  361. call_rcu(&old_dev->rcu, __dev_map_entry_free);
  362. return 0;
  363. }
  364. static int dev_map_update_elem(struct bpf_map *map, void *key, void *value,
  365. u64 map_flags)
  366. {
  367. struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map);
  368. struct net *net = current->nsproxy->net_ns;
  369. gfp_t gfp = GFP_ATOMIC | __GFP_NOWARN;
  370. struct bpf_dtab_netdev *dev, *old_dev;
  371. u32 i = *(u32 *)key;
  372. u32 ifindex = *(u32 *)value;
  373. if (unlikely(map_flags > BPF_EXIST))
  374. return -EINVAL;
  375. if (unlikely(i >= dtab->map.max_entries))
  376. return -E2BIG;
  377. if (unlikely(map_flags == BPF_NOEXIST))
  378. return -EEXIST;
  379. if (!ifindex) {
  380. dev = NULL;
  381. } else {
  382. dev = kmalloc_node(sizeof(*dev), gfp, map->numa_node);
  383. if (!dev)
  384. return -ENOMEM;
  385. dev->bulkq = __alloc_percpu_gfp(sizeof(*dev->bulkq),
  386. sizeof(void *), gfp);
  387. if (!dev->bulkq) {
  388. kfree(dev);
  389. return -ENOMEM;
  390. }
  391. dev->dev = dev_get_by_index(net, ifindex);
  392. if (!dev->dev) {
  393. free_percpu(dev->bulkq);
  394. kfree(dev);
  395. return -EINVAL;
  396. }
  397. dev->bit = i;
  398. dev->dtab = dtab;
  399. }
  400. /* Use call_rcu() here to ensure rcu critical sections have completed
  401. * Remembering the driver side flush operation will happen before the
  402. * net device is removed.
  403. */
  404. old_dev = xchg(&dtab->netdev_map[i], dev);
  405. if (old_dev)
  406. call_rcu(&old_dev->rcu, __dev_map_entry_free);
  407. return 0;
  408. }
  409. const struct bpf_map_ops dev_map_ops = {
  410. .map_alloc = dev_map_alloc,
  411. .map_free = dev_map_free,
  412. .map_get_next_key = dev_map_get_next_key,
  413. .map_lookup_elem = dev_map_lookup_elem,
  414. .map_update_elem = dev_map_update_elem,
  415. .map_delete_elem = dev_map_delete_elem,
  416. .map_check_btf = map_check_no_btf,
  417. };
  418. static int dev_map_notification(struct notifier_block *notifier,
  419. ulong event, void *ptr)
  420. {
  421. struct net_device *netdev = netdev_notifier_info_to_dev(ptr);
  422. struct bpf_dtab *dtab;
  423. int i;
  424. switch (event) {
  425. case NETDEV_UNREGISTER:
  426. /* This rcu_read_lock/unlock pair is needed because
  427. * dev_map_list is an RCU list AND to ensure a delete
  428. * operation does not free a netdev_map entry while we
  429. * are comparing it against the netdev being unregistered.
  430. */
  431. rcu_read_lock();
  432. list_for_each_entry_rcu(dtab, &dev_map_list, list) {
  433. for (i = 0; i < dtab->map.max_entries; i++) {
  434. struct bpf_dtab_netdev *dev, *odev;
  435. dev = READ_ONCE(dtab->netdev_map[i]);
  436. if (!dev || netdev != dev->dev)
  437. continue;
  438. odev = cmpxchg(&dtab->netdev_map[i], dev, NULL);
  439. if (dev == odev)
  440. call_rcu(&dev->rcu,
  441. __dev_map_entry_free);
  442. }
  443. }
  444. rcu_read_unlock();
  445. break;
  446. default:
  447. break;
  448. }
  449. return NOTIFY_OK;
  450. }
  451. static struct notifier_block dev_map_notifier = {
  452. .notifier_call = dev_map_notification,
  453. };
  454. static int __init dev_map_init(void)
  455. {
  456. /* Assure tracepoint shadow struct _bpf_dtab_netdev is in sync */
  457. BUILD_BUG_ON(offsetof(struct bpf_dtab_netdev, dev) !=
  458. offsetof(struct _bpf_dtab_netdev, dev));
  459. register_netdevice_notifier(&dev_map_notifier);
  460. return 0;
  461. }
  462. subsys_initcall(dev_map_init);