cpupri.c 6.7 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241
  1. /*
  2. * kernel/sched/cpupri.c
  3. *
  4. * CPU priority management
  5. *
  6. * Copyright (C) 2007-2008 Novell
  7. *
  8. * Author: Gregory Haskins <ghaskins@novell.com>
  9. *
  10. * This code tracks the priority of each CPU so that global migration
  11. * decisions are easy to calculate. Each CPU can be in a state as follows:
  12. *
  13. * (INVALID), IDLE, NORMAL, RT1, ... RT99
  14. *
  15. * going from the lowest priority to the highest. CPUs in the INVALID state
  16. * are not eligible for routing. The system maintains this state with
  17. * a 2 dimensional bitmap (the first for priority class, the second for CPUs
  18. * in that class). Therefore a typical application without affinity
  19. * restrictions can find a suitable CPU with O(1) complexity (e.g. two bit
  20. * searches). For tasks with affinity restrictions, the algorithm has a
  21. * worst case complexity of O(min(102, nr_domcpus)), though the scenario that
  22. * yields the worst case search is fairly contrived.
  23. *
  24. * This program is free software; you can redistribute it and/or
  25. * modify it under the terms of the GNU General Public License
  26. * as published by the Free Software Foundation; version 2
  27. * of the License.
  28. */
  29. #include "sched.h"
  30. /* Convert between a 140 based task->prio, and our 102 based cpupri */
  31. static int convert_prio(int prio)
  32. {
  33. int cpupri;
  34. if (prio == CPUPRI_INVALID)
  35. cpupri = CPUPRI_INVALID;
  36. else if (prio == MAX_PRIO)
  37. cpupri = CPUPRI_IDLE;
  38. else if (prio >= MAX_RT_PRIO)
  39. cpupri = CPUPRI_NORMAL;
  40. else
  41. cpupri = MAX_RT_PRIO - prio + 1;
  42. return cpupri;
  43. }
  44. /**
  45. * cpupri_find - find the best (lowest-pri) CPU in the system
  46. * @cp: The cpupri context
  47. * @p: The task
  48. * @lowest_mask: A mask to fill in with selected CPUs (or NULL)
  49. *
  50. * Note: This function returns the recommended CPUs as calculated during the
  51. * current invocation. By the time the call returns, the CPUs may have in
  52. * fact changed priorities any number of times. While not ideal, it is not
  53. * an issue of correctness since the normal rebalancer logic will correct
  54. * any discrepancies created by racing against the uncertainty of the current
  55. * priority configuration.
  56. *
  57. * Return: (int)bool - CPUs were found
  58. */
  59. int cpupri_find(struct cpupri *cp, struct task_struct *p,
  60. struct cpumask *lowest_mask)
  61. {
  62. int idx = 0;
  63. int task_pri = convert_prio(p->prio);
  64. BUG_ON(task_pri >= CPUPRI_NR_PRIORITIES);
  65. for (idx = 0; idx < task_pri; idx++) {
  66. struct cpupri_vec *vec = &cp->pri_to_cpu[idx];
  67. int skip = 0;
  68. if (!atomic_read(&(vec)->count))
  69. skip = 1;
  70. /*
  71. * When looking at the vector, we need to read the counter,
  72. * do a memory barrier, then read the mask.
  73. *
  74. * Note: This is still all racey, but we can deal with it.
  75. * Ideally, we only want to look at masks that are set.
  76. *
  77. * If a mask is not set, then the only thing wrong is that we
  78. * did a little more work than necessary.
  79. *
  80. * If we read a zero count but the mask is set, because of the
  81. * memory barriers, that can only happen when the highest prio
  82. * task for a run queue has left the run queue, in which case,
  83. * it will be followed by a pull. If the task we are processing
  84. * fails to find a proper place to go, that pull request will
  85. * pull this task if the run queue is running at a lower
  86. * priority.
  87. */
  88. smp_rmb();
  89. /* Need to do the rmb for every iteration */
  90. if (skip)
  91. continue;
  92. if (cpumask_any_and(&p->cpus_allowed, vec->mask) >= nr_cpu_ids)
  93. continue;
  94. if (lowest_mask) {
  95. cpumask_and(lowest_mask, &p->cpus_allowed, vec->mask);
  96. /*
  97. * We have to ensure that we have at least one bit
  98. * still set in the array, since the map could have
  99. * been concurrently emptied between the first and
  100. * second reads of vec->mask. If we hit this
  101. * condition, simply act as though we never hit this
  102. * priority level and continue on.
  103. */
  104. if (cpumask_any(lowest_mask) >= nr_cpu_ids)
  105. continue;
  106. }
  107. return 1;
  108. }
  109. return 0;
  110. }
  111. /**
  112. * cpupri_set - update the CPU priority setting
  113. * @cp: The cpupri context
  114. * @cpu: The target CPU
  115. * @newpri: The priority (INVALID-RT99) to assign to this CPU
  116. *
  117. * Note: Assumes cpu_rq(cpu)->lock is locked
  118. *
  119. * Returns: (void)
  120. */
  121. void cpupri_set(struct cpupri *cp, int cpu, int newpri)
  122. {
  123. int *currpri = &cp->cpu_to_pri[cpu];
  124. int oldpri = *currpri;
  125. int do_mb = 0;
  126. newpri = convert_prio(newpri);
  127. BUG_ON(newpri >= CPUPRI_NR_PRIORITIES);
  128. if (newpri == oldpri)
  129. return;
  130. /*
  131. * If the CPU was currently mapped to a different value, we
  132. * need to map it to the new value then remove the old value.
  133. * Note, we must add the new value first, otherwise we risk the
  134. * cpu being missed by the priority loop in cpupri_find.
  135. */
  136. if (likely(newpri != CPUPRI_INVALID)) {
  137. struct cpupri_vec *vec = &cp->pri_to_cpu[newpri];
  138. cpumask_set_cpu(cpu, vec->mask);
  139. /*
  140. * When adding a new vector, we update the mask first,
  141. * do a write memory barrier, and then update the count, to
  142. * make sure the vector is visible when count is set.
  143. */
  144. smp_mb__before_atomic();
  145. atomic_inc(&(vec)->count);
  146. do_mb = 1;
  147. }
  148. if (likely(oldpri != CPUPRI_INVALID)) {
  149. struct cpupri_vec *vec = &cp->pri_to_cpu[oldpri];
  150. /*
  151. * Because the order of modification of the vec->count
  152. * is important, we must make sure that the update
  153. * of the new prio is seen before we decrement the
  154. * old prio. This makes sure that the loop sees
  155. * one or the other when we raise the priority of
  156. * the run queue. We don't care about when we lower the
  157. * priority, as that will trigger an rt pull anyway.
  158. *
  159. * We only need to do a memory barrier if we updated
  160. * the new priority vec.
  161. */
  162. if (do_mb)
  163. smp_mb__after_atomic();
  164. /*
  165. * When removing from the vector, we decrement the counter first
  166. * do a memory barrier and then clear the mask.
  167. */
  168. atomic_dec(&(vec)->count);
  169. smp_mb__after_atomic();
  170. cpumask_clear_cpu(cpu, vec->mask);
  171. }
  172. *currpri = newpri;
  173. }
  174. /**
  175. * cpupri_init - initialize the cpupri structure
  176. * @cp: The cpupri context
  177. *
  178. * Return: -ENOMEM on memory allocation failure.
  179. */
  180. int cpupri_init(struct cpupri *cp)
  181. {
  182. int i;
  183. for (i = 0; i < CPUPRI_NR_PRIORITIES; i++) {
  184. struct cpupri_vec *vec = &cp->pri_to_cpu[i];
  185. atomic_set(&vec->count, 0);
  186. if (!zalloc_cpumask_var(&vec->mask, GFP_KERNEL))
  187. goto cleanup;
  188. }
  189. cp->cpu_to_pri = kcalloc(nr_cpu_ids, sizeof(int), GFP_KERNEL);
  190. if (!cp->cpu_to_pri)
  191. goto cleanup;
  192. for_each_possible_cpu(i)
  193. cp->cpu_to_pri[i] = CPUPRI_INVALID;
  194. return 0;
  195. cleanup:
  196. for (i--; i >= 0; i--)
  197. free_cpumask_var(cp->pri_to_cpu[i].mask);
  198. return -ENOMEM;
  199. }
  200. /**
  201. * cpupri_cleanup - clean up the cpupri structure
  202. * @cp: The cpupri context
  203. */
  204. void cpupri_cleanup(struct cpupri *cp)
  205. {
  206. int i;
  207. kfree(cp->cpu_to_pri);
  208. for (i = 0; i < CPUPRI_NR_PRIORITIES; i++)
  209. free_cpumask_var(cp->pri_to_cpu[i].mask);
  210. }