brd.c 13 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560
  1. /*
  2. * Ram backed block device driver.
  3. *
  4. * Copyright (C) 2007 Nick Piggin
  5. * Copyright (C) 2007 Novell Inc.
  6. *
  7. * Parts derived from drivers/block/rd.c, and drivers/block/loop.c, copyright
  8. * of their respective owners.
  9. */
  10. #include <linux/init.h>
  11. #include <linux/initrd.h>
  12. #include <linux/module.h>
  13. #include <linux/moduleparam.h>
  14. #include <linux/major.h>
  15. #include <linux/blkdev.h>
  16. #include <linux/bio.h>
  17. #include <linux/highmem.h>
  18. #include <linux/mutex.h>
  19. #include <linux/radix-tree.h>
  20. #include <linux/fs.h>
  21. #include <linux/slab.h>
  22. #include <linux/backing-dev.h>
  23. #include <linux/uaccess.h>
  24. #define PAGE_SECTORS_SHIFT (PAGE_SHIFT - SECTOR_SHIFT)
  25. #define PAGE_SECTORS (1 << PAGE_SECTORS_SHIFT)
  26. /*
  27. * Each block ramdisk device has a radix_tree brd_pages of pages that stores
  28. * the pages containing the block device's contents. A brd page's ->index is
  29. * its offset in PAGE_SIZE units. This is similar to, but in no way connected
  30. * with, the kernel's pagecache or buffer cache (which sit above our block
  31. * device).
  32. */
  33. struct brd_device {
  34. int brd_number;
  35. struct request_queue *brd_queue;
  36. struct gendisk *brd_disk;
  37. struct list_head brd_list;
  38. /*
  39. * Backing store of pages and lock to protect it. This is the contents
  40. * of the block device.
  41. */
  42. spinlock_t brd_lock;
  43. struct radix_tree_root brd_pages;
  44. };
  45. /*
  46. * Look up and return a brd's page for a given sector.
  47. */
  48. static struct page *brd_lookup_page(struct brd_device *brd, sector_t sector)
  49. {
  50. pgoff_t idx;
  51. struct page *page;
  52. /*
  53. * The page lifetime is protected by the fact that we have opened the
  54. * device node -- brd pages will never be deleted under us, so we
  55. * don't need any further locking or refcounting.
  56. *
  57. * This is strictly true for the radix-tree nodes as well (ie. we
  58. * don't actually need the rcu_read_lock()), however that is not a
  59. * documented feature of the radix-tree API so it is better to be
  60. * safe here (we don't have total exclusion from radix tree updates
  61. * here, only deletes).
  62. */
  63. rcu_read_lock();
  64. idx = sector >> PAGE_SECTORS_SHIFT; /* sector to page index */
  65. page = radix_tree_lookup(&brd->brd_pages, idx);
  66. rcu_read_unlock();
  67. BUG_ON(page && page->index != idx);
  68. return page;
  69. }
  70. /*
  71. * Look up and return a brd's page for a given sector.
  72. * If one does not exist, allocate an empty page, and insert that. Then
  73. * return it.
  74. */
  75. static struct page *brd_insert_page(struct brd_device *brd, sector_t sector)
  76. {
  77. pgoff_t idx;
  78. struct page *page;
  79. gfp_t gfp_flags;
  80. page = brd_lookup_page(brd, sector);
  81. if (page)
  82. return page;
  83. /*
  84. * Must use NOIO because we don't want to recurse back into the
  85. * block or filesystem layers from page reclaim.
  86. */
  87. gfp_flags = GFP_NOIO | __GFP_ZERO | __GFP_HIGHMEM;
  88. page = alloc_page(gfp_flags);
  89. if (!page)
  90. return NULL;
  91. if (radix_tree_preload(GFP_NOIO)) {
  92. __free_page(page);
  93. return NULL;
  94. }
  95. spin_lock(&brd->brd_lock);
  96. idx = sector >> PAGE_SECTORS_SHIFT;
  97. page->index = idx;
  98. if (radix_tree_insert(&brd->brd_pages, idx, page)) {
  99. __free_page(page);
  100. page = radix_tree_lookup(&brd->brd_pages, idx);
  101. BUG_ON(!page);
  102. BUG_ON(page->index != idx);
  103. }
  104. spin_unlock(&brd->brd_lock);
  105. radix_tree_preload_end();
  106. return page;
  107. }
  108. /*
  109. * Free all backing store pages and radix tree. This must only be called when
  110. * there are no other users of the device.
  111. */
  112. #define FREE_BATCH 16
  113. static void brd_free_pages(struct brd_device *brd)
  114. {
  115. unsigned long pos = 0;
  116. struct page *pages[FREE_BATCH];
  117. int nr_pages;
  118. do {
  119. int i;
  120. nr_pages = radix_tree_gang_lookup(&brd->brd_pages,
  121. (void **)pages, pos, FREE_BATCH);
  122. for (i = 0; i < nr_pages; i++) {
  123. void *ret;
  124. BUG_ON(pages[i]->index < pos);
  125. pos = pages[i]->index;
  126. ret = radix_tree_delete(&brd->brd_pages, pos);
  127. BUG_ON(!ret || ret != pages[i]);
  128. __free_page(pages[i]);
  129. }
  130. pos++;
  131. /*
  132. * This assumes radix_tree_gang_lookup always returns as
  133. * many pages as possible. If the radix-tree code changes,
  134. * so will this have to.
  135. */
  136. } while (nr_pages == FREE_BATCH);
  137. }
  138. /*
  139. * copy_to_brd_setup must be called before copy_to_brd. It may sleep.
  140. */
  141. static int copy_to_brd_setup(struct brd_device *brd, sector_t sector, size_t n)
  142. {
  143. unsigned int offset = (sector & (PAGE_SECTORS-1)) << SECTOR_SHIFT;
  144. size_t copy;
  145. copy = min_t(size_t, n, PAGE_SIZE - offset);
  146. if (!brd_insert_page(brd, sector))
  147. return -ENOSPC;
  148. if (copy < n) {
  149. sector += copy >> SECTOR_SHIFT;
  150. if (!brd_insert_page(brd, sector))
  151. return -ENOSPC;
  152. }
  153. return 0;
  154. }
  155. /*
  156. * Copy n bytes from src to the brd starting at sector. Does not sleep.
  157. */
  158. static void copy_to_brd(struct brd_device *brd, const void *src,
  159. sector_t sector, size_t n)
  160. {
  161. struct page *page;
  162. void *dst;
  163. unsigned int offset = (sector & (PAGE_SECTORS-1)) << SECTOR_SHIFT;
  164. size_t copy;
  165. copy = min_t(size_t, n, PAGE_SIZE - offset);
  166. page = brd_lookup_page(brd, sector);
  167. BUG_ON(!page);
  168. dst = kmap_atomic(page);
  169. memcpy(dst + offset, src, copy);
  170. kunmap_atomic(dst);
  171. if (copy < n) {
  172. src += copy;
  173. sector += copy >> SECTOR_SHIFT;
  174. copy = n - copy;
  175. page = brd_lookup_page(brd, sector);
  176. BUG_ON(!page);
  177. dst = kmap_atomic(page);
  178. memcpy(dst, src, copy);
  179. kunmap_atomic(dst);
  180. }
  181. }
  182. /*
  183. * Copy n bytes to dst from the brd starting at sector. Does not sleep.
  184. */
  185. static void copy_from_brd(void *dst, struct brd_device *brd,
  186. sector_t sector, size_t n)
  187. {
  188. struct page *page;
  189. void *src;
  190. unsigned int offset = (sector & (PAGE_SECTORS-1)) << SECTOR_SHIFT;
  191. size_t copy;
  192. copy = min_t(size_t, n, PAGE_SIZE - offset);
  193. page = brd_lookup_page(brd, sector);
  194. if (page) {
  195. src = kmap_atomic(page);
  196. memcpy(dst, src + offset, copy);
  197. kunmap_atomic(src);
  198. } else
  199. memset(dst, 0, copy);
  200. if (copy < n) {
  201. dst += copy;
  202. sector += copy >> SECTOR_SHIFT;
  203. copy = n - copy;
  204. page = brd_lookup_page(brd, sector);
  205. if (page) {
  206. src = kmap_atomic(page);
  207. memcpy(dst, src, copy);
  208. kunmap_atomic(src);
  209. } else
  210. memset(dst, 0, copy);
  211. }
  212. }
  213. /*
  214. * Process a single bvec of a bio.
  215. */
  216. static int brd_do_bvec(struct brd_device *brd, struct page *page,
  217. unsigned int len, unsigned int off, unsigned int op,
  218. sector_t sector)
  219. {
  220. void *mem;
  221. int err = 0;
  222. if (op_is_write(op)) {
  223. err = copy_to_brd_setup(brd, sector, len);
  224. if (err)
  225. goto out;
  226. }
  227. mem = kmap_atomic(page);
  228. if (!op_is_write(op)) {
  229. copy_from_brd(mem + off, brd, sector, len);
  230. flush_dcache_page(page);
  231. } else {
  232. flush_dcache_page(page);
  233. copy_to_brd(brd, mem + off, sector, len);
  234. }
  235. kunmap_atomic(mem);
  236. out:
  237. return err;
  238. }
  239. static blk_qc_t brd_make_request(struct request_queue *q, struct bio *bio)
  240. {
  241. struct brd_device *brd = bio->bi_disk->private_data;
  242. struct bio_vec bvec;
  243. sector_t sector;
  244. struct bvec_iter iter;
  245. sector = bio->bi_iter.bi_sector;
  246. if (bio_end_sector(bio) > get_capacity(bio->bi_disk))
  247. goto io_error;
  248. bio_for_each_segment(bvec, bio, iter) {
  249. unsigned int len = bvec.bv_len;
  250. int err;
  251. err = brd_do_bvec(brd, bvec.bv_page, len, bvec.bv_offset,
  252. bio_op(bio), sector);
  253. if (err)
  254. goto io_error;
  255. sector += len >> SECTOR_SHIFT;
  256. }
  257. bio_endio(bio);
  258. return BLK_QC_T_NONE;
  259. io_error:
  260. bio_io_error(bio);
  261. return BLK_QC_T_NONE;
  262. }
  263. static int brd_rw_page(struct block_device *bdev, sector_t sector,
  264. struct page *page, unsigned int op)
  265. {
  266. struct brd_device *brd = bdev->bd_disk->private_data;
  267. int err;
  268. if (PageTransHuge(page))
  269. return -ENOTSUPP;
  270. err = brd_do_bvec(brd, page, PAGE_SIZE, 0, op, sector);
  271. page_endio(page, op_is_write(op), err);
  272. return err;
  273. }
  274. static const struct block_device_operations brd_fops = {
  275. .owner = THIS_MODULE,
  276. .rw_page = brd_rw_page,
  277. };
  278. /*
  279. * And now the modules code and kernel interface.
  280. */
  281. static int rd_nr = CONFIG_BLK_DEV_RAM_COUNT;
  282. module_param(rd_nr, int, 0444);
  283. MODULE_PARM_DESC(rd_nr, "Maximum number of brd devices");
  284. unsigned long rd_size = CONFIG_BLK_DEV_RAM_SIZE;
  285. module_param(rd_size, ulong, 0444);
  286. MODULE_PARM_DESC(rd_size, "Size of each RAM disk in kbytes.");
  287. static int max_part = 1;
  288. module_param(max_part, int, 0444);
  289. MODULE_PARM_DESC(max_part, "Num Minors to reserve between devices");
  290. MODULE_LICENSE("GPL");
  291. MODULE_ALIAS_BLOCKDEV_MAJOR(RAMDISK_MAJOR);
  292. MODULE_ALIAS("rd");
  293. #ifndef MODULE
  294. /* Legacy boot options - nonmodular */
  295. static int __init ramdisk_size(char *str)
  296. {
  297. rd_size = simple_strtol(str, NULL, 0);
  298. return 1;
  299. }
  300. __setup("ramdisk_size=", ramdisk_size);
  301. #endif
  302. /*
  303. * The device scheme is derived from loop.c. Keep them in synch where possible
  304. * (should share code eventually).
  305. */
  306. static LIST_HEAD(brd_devices);
  307. static DEFINE_MUTEX(brd_devices_mutex);
  308. static struct brd_device *brd_alloc(int i)
  309. {
  310. struct brd_device *brd;
  311. struct gendisk *disk;
  312. brd = kzalloc(sizeof(*brd), GFP_KERNEL);
  313. if (!brd)
  314. goto out;
  315. brd->brd_number = i;
  316. spin_lock_init(&brd->brd_lock);
  317. INIT_RADIX_TREE(&brd->brd_pages, GFP_ATOMIC);
  318. brd->brd_queue = blk_alloc_queue(GFP_KERNEL);
  319. if (!brd->brd_queue)
  320. goto out_free_dev;
  321. blk_queue_make_request(brd->brd_queue, brd_make_request);
  322. blk_queue_max_hw_sectors(brd->brd_queue, 1024);
  323. /* This is so fdisk will align partitions on 4k, because of
  324. * direct_access API needing 4k alignment, returning a PFN
  325. * (This is only a problem on very small devices <= 4M,
  326. * otherwise fdisk will align on 1M. Regardless this call
  327. * is harmless)
  328. */
  329. blk_queue_physical_block_size(brd->brd_queue, PAGE_SIZE);
  330. disk = brd->brd_disk = alloc_disk(max_part);
  331. if (!disk)
  332. goto out_free_queue;
  333. disk->major = RAMDISK_MAJOR;
  334. disk->first_minor = i * max_part;
  335. disk->fops = &brd_fops;
  336. disk->private_data = brd;
  337. disk->flags = GENHD_FL_EXT_DEVT;
  338. sprintf(disk->disk_name, "ram%d", i);
  339. set_capacity(disk, rd_size * 2);
  340. brd->brd_queue->backing_dev_info->capabilities |= BDI_CAP_SYNCHRONOUS_IO;
  341. /* Tell the block layer that this is not a rotational device */
  342. blk_queue_flag_set(QUEUE_FLAG_NONROT, brd->brd_queue);
  343. blk_queue_flag_clear(QUEUE_FLAG_ADD_RANDOM, brd->brd_queue);
  344. return brd;
  345. out_free_queue:
  346. blk_cleanup_queue(brd->brd_queue);
  347. out_free_dev:
  348. kfree(brd);
  349. out:
  350. return NULL;
  351. }
  352. static void brd_free(struct brd_device *brd)
  353. {
  354. put_disk(brd->brd_disk);
  355. blk_cleanup_queue(brd->brd_queue);
  356. brd_free_pages(brd);
  357. kfree(brd);
  358. }
  359. static struct brd_device *brd_init_one(int i, bool *new)
  360. {
  361. struct brd_device *brd;
  362. *new = false;
  363. list_for_each_entry(brd, &brd_devices, brd_list) {
  364. if (brd->brd_number == i)
  365. goto out;
  366. }
  367. brd = brd_alloc(i);
  368. if (brd) {
  369. brd->brd_disk->queue = brd->brd_queue;
  370. add_disk(brd->brd_disk);
  371. list_add_tail(&brd->brd_list, &brd_devices);
  372. }
  373. *new = true;
  374. out:
  375. return brd;
  376. }
  377. static void brd_del_one(struct brd_device *brd)
  378. {
  379. list_del(&brd->brd_list);
  380. del_gendisk(brd->brd_disk);
  381. brd_free(brd);
  382. }
  383. static struct kobject *brd_probe(dev_t dev, int *part, void *data)
  384. {
  385. struct brd_device *brd;
  386. struct kobject *kobj;
  387. bool new;
  388. mutex_lock(&brd_devices_mutex);
  389. brd = brd_init_one(MINOR(dev) / max_part, &new);
  390. kobj = brd ? get_disk_and_module(brd->brd_disk) : NULL;
  391. mutex_unlock(&brd_devices_mutex);
  392. if (new)
  393. *part = 0;
  394. return kobj;
  395. }
  396. static inline void brd_check_and_reset_par(void)
  397. {
  398. if (unlikely(!max_part))
  399. max_part = 1;
  400. /*
  401. * make sure 'max_part' can be divided exactly by (1U << MINORBITS),
  402. * otherwise, it is possiable to get same dev_t when adding partitions.
  403. */
  404. if ((1U << MINORBITS) % max_part != 0)
  405. max_part = 1UL << fls(max_part);
  406. if (max_part > DISK_MAX_PARTS) {
  407. pr_info("brd: max_part can't be larger than %d, reset max_part = %d.\n",
  408. DISK_MAX_PARTS, DISK_MAX_PARTS);
  409. max_part = DISK_MAX_PARTS;
  410. }
  411. }
  412. static int __init brd_init(void)
  413. {
  414. struct brd_device *brd, *next;
  415. int i;
  416. /*
  417. * brd module now has a feature to instantiate underlying device
  418. * structure on-demand, provided that there is an access dev node.
  419. *
  420. * (1) if rd_nr is specified, create that many upfront. else
  421. * it defaults to CONFIG_BLK_DEV_RAM_COUNT
  422. * (2) User can further extend brd devices by create dev node themselves
  423. * and have kernel automatically instantiate actual device
  424. * on-demand. Example:
  425. * mknod /path/devnod_name b 1 X # 1 is the rd major
  426. * fdisk -l /path/devnod_name
  427. * If (X / max_part) was not already created it will be created
  428. * dynamically.
  429. */
  430. if (register_blkdev(RAMDISK_MAJOR, "ramdisk"))
  431. return -EIO;
  432. brd_check_and_reset_par();
  433. for (i = 0; i < rd_nr; i++) {
  434. brd = brd_alloc(i);
  435. if (!brd)
  436. goto out_free;
  437. list_add_tail(&brd->brd_list, &brd_devices);
  438. }
  439. /* point of no return */
  440. list_for_each_entry(brd, &brd_devices, brd_list) {
  441. /*
  442. * associate with queue just before adding disk for
  443. * avoiding to mess up failure path
  444. */
  445. brd->brd_disk->queue = brd->brd_queue;
  446. add_disk(brd->brd_disk);
  447. }
  448. blk_register_region(MKDEV(RAMDISK_MAJOR, 0), 1UL << MINORBITS,
  449. THIS_MODULE, brd_probe, NULL, NULL);
  450. pr_info("brd: module loaded\n");
  451. return 0;
  452. out_free:
  453. list_for_each_entry_safe(brd, next, &brd_devices, brd_list) {
  454. list_del(&brd->brd_list);
  455. brd_free(brd);
  456. }
  457. unregister_blkdev(RAMDISK_MAJOR, "ramdisk");
  458. pr_info("brd: module NOT loaded !!!\n");
  459. return -ENOMEM;
  460. }
  461. static void __exit brd_exit(void)
  462. {
  463. struct brd_device *brd, *next;
  464. list_for_each_entry_safe(brd, next, &brd_devices, brd_list)
  465. brd_del_one(brd);
  466. blk_unregister_region(MKDEV(RAMDISK_MAJOR, 0), 1UL << MINORBITS);
  467. unregister_blkdev(RAMDISK_MAJOR, "ramdisk");
  468. pr_info("brd: module unloaded\n");
  469. }
  470. module_init(brd_init);
  471. module_exit(brd_exit);