uaccess.h 9.6 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336
  1. /* SPDX-License-Identifier: GPL-2.0 */
  2. #ifndef __ALPHA_UACCESS_H
  3. #define __ALPHA_UACCESS_H
  4. /*
  5. * The fs value determines whether argument validity checking should be
  6. * performed or not. If get_fs() == USER_DS, checking is performed, with
  7. * get_fs() == KERNEL_DS, checking is bypassed.
  8. *
  9. * Or at least it did once upon a time. Nowadays it is a mask that
  10. * defines which bits of the address space are off limits. This is a
  11. * wee bit faster than the above.
  12. *
  13. * For historical reasons, these macros are grossly misnamed.
  14. */
  15. #define KERNEL_DS ((mm_segment_t) { 0UL })
  16. #define USER_DS ((mm_segment_t) { -0x40000000000UL })
  17. #define get_fs() (current_thread_info()->addr_limit)
  18. #define get_ds() (KERNEL_DS)
  19. #define set_fs(x) (current_thread_info()->addr_limit = (x))
  20. #define segment_eq(a, b) ((a).seg == (b).seg)
  21. /*
  22. * Is a address valid? This does a straightforward calculation rather
  23. * than tests.
  24. *
  25. * Address valid if:
  26. * - "addr" doesn't have any high-bits set
  27. * - AND "size" doesn't have any high-bits set
  28. * - AND "addr+size-(size != 0)" doesn't have any high-bits set
  29. * - OR we are in kernel mode.
  30. */
  31. #define __access_ok(addr, size) ({ \
  32. unsigned long __ao_a = (addr), __ao_b = (size); \
  33. unsigned long __ao_end = __ao_a + __ao_b - !!__ao_b; \
  34. (get_fs().seg & (__ao_a | __ao_b | __ao_end)) == 0; })
  35. #define access_ok(type, addr, size) \
  36. ({ \
  37. __chk_user_ptr(addr); \
  38. __access_ok(((unsigned long)(addr)), (size)); \
  39. })
  40. /*
  41. * These are the main single-value transfer routines. They automatically
  42. * use the right size if we just have the right pointer type.
  43. *
  44. * As the alpha uses the same address space for kernel and user
  45. * data, we can just do these as direct assignments. (Of course, the
  46. * exception handling means that it's no longer "just"...)
  47. *
  48. * Careful to not
  49. * (a) re-use the arguments for side effects (sizeof/typeof is ok)
  50. * (b) require any knowledge of processes at this stage
  51. */
  52. #define put_user(x, ptr) \
  53. __put_user_check((__typeof__(*(ptr)))(x), (ptr), sizeof(*(ptr)))
  54. #define get_user(x, ptr) \
  55. __get_user_check((x), (ptr), sizeof(*(ptr)))
  56. /*
  57. * The "__xxx" versions do not do address space checking, useful when
  58. * doing multiple accesses to the same area (the programmer has to do the
  59. * checks by hand with "access_ok()")
  60. */
  61. #define __put_user(x, ptr) \
  62. __put_user_nocheck((__typeof__(*(ptr)))(x), (ptr), sizeof(*(ptr)))
  63. #define __get_user(x, ptr) \
  64. __get_user_nocheck((x), (ptr), sizeof(*(ptr)))
  65. /*
  66. * The "lda %1, 2b-1b(%0)" bits are magic to get the assembler to
  67. * encode the bits we need for resolving the exception. See the
  68. * more extensive comments with fixup_inline_exception below for
  69. * more information.
  70. */
  71. #define EXC(label,cont,res,err) \
  72. ".section __ex_table,\"a\"\n" \
  73. " .long "#label"-.\n" \
  74. " lda "#res","#cont"-"#label"("#err")\n" \
  75. ".previous\n"
  76. extern void __get_user_unknown(void);
  77. #define __get_user_nocheck(x, ptr, size) \
  78. ({ \
  79. long __gu_err = 0; \
  80. unsigned long __gu_val; \
  81. __chk_user_ptr(ptr); \
  82. switch (size) { \
  83. case 1: __get_user_8(ptr); break; \
  84. case 2: __get_user_16(ptr); break; \
  85. case 4: __get_user_32(ptr); break; \
  86. case 8: __get_user_64(ptr); break; \
  87. default: __get_user_unknown(); break; \
  88. } \
  89. (x) = (__force __typeof__(*(ptr))) __gu_val; \
  90. __gu_err; \
  91. })
  92. #define __get_user_check(x, ptr, size) \
  93. ({ \
  94. long __gu_err = -EFAULT; \
  95. unsigned long __gu_val = 0; \
  96. const __typeof__(*(ptr)) __user *__gu_addr = (ptr); \
  97. if (__access_ok((unsigned long)__gu_addr, size)) { \
  98. __gu_err = 0; \
  99. switch (size) { \
  100. case 1: __get_user_8(__gu_addr); break; \
  101. case 2: __get_user_16(__gu_addr); break; \
  102. case 4: __get_user_32(__gu_addr); break; \
  103. case 8: __get_user_64(__gu_addr); break; \
  104. default: __get_user_unknown(); break; \
  105. } \
  106. } \
  107. (x) = (__force __typeof__(*(ptr))) __gu_val; \
  108. __gu_err; \
  109. })
  110. struct __large_struct { unsigned long buf[100]; };
  111. #define __m(x) (*(struct __large_struct __user *)(x))
  112. #define __get_user_64(addr) \
  113. __asm__("1: ldq %0,%2\n" \
  114. "2:\n" \
  115. EXC(1b,2b,%0,%1) \
  116. : "=r"(__gu_val), "=r"(__gu_err) \
  117. : "m"(__m(addr)), "1"(__gu_err))
  118. #define __get_user_32(addr) \
  119. __asm__("1: ldl %0,%2\n" \
  120. "2:\n" \
  121. EXC(1b,2b,%0,%1) \
  122. : "=r"(__gu_val), "=r"(__gu_err) \
  123. : "m"(__m(addr)), "1"(__gu_err))
  124. #ifdef __alpha_bwx__
  125. /* Those lucky bastards with ev56 and later CPUs can do byte/word moves. */
  126. #define __get_user_16(addr) \
  127. __asm__("1: ldwu %0,%2\n" \
  128. "2:\n" \
  129. EXC(1b,2b,%0,%1) \
  130. : "=r"(__gu_val), "=r"(__gu_err) \
  131. : "m"(__m(addr)), "1"(__gu_err))
  132. #define __get_user_8(addr) \
  133. __asm__("1: ldbu %0,%2\n" \
  134. "2:\n" \
  135. EXC(1b,2b,%0,%1) \
  136. : "=r"(__gu_val), "=r"(__gu_err) \
  137. : "m"(__m(addr)), "1"(__gu_err))
  138. #else
  139. /* Unfortunately, we can't get an unaligned access trap for the sub-word
  140. load, so we have to do a general unaligned operation. */
  141. #define __get_user_16(addr) \
  142. { \
  143. long __gu_tmp; \
  144. __asm__("1: ldq_u %0,0(%3)\n" \
  145. "2: ldq_u %1,1(%3)\n" \
  146. " extwl %0,%3,%0\n" \
  147. " extwh %1,%3,%1\n" \
  148. " or %0,%1,%0\n" \
  149. "3:\n" \
  150. EXC(1b,3b,%0,%2) \
  151. EXC(2b,3b,%0,%2) \
  152. : "=&r"(__gu_val), "=&r"(__gu_tmp), "=r"(__gu_err) \
  153. : "r"(addr), "2"(__gu_err)); \
  154. }
  155. #define __get_user_8(addr) \
  156. __asm__("1: ldq_u %0,0(%2)\n" \
  157. " extbl %0,%2,%0\n" \
  158. "2:\n" \
  159. EXC(1b,2b,%0,%1) \
  160. : "=&r"(__gu_val), "=r"(__gu_err) \
  161. : "r"(addr), "1"(__gu_err))
  162. #endif
  163. extern void __put_user_unknown(void);
  164. #define __put_user_nocheck(x, ptr, size) \
  165. ({ \
  166. long __pu_err = 0; \
  167. __chk_user_ptr(ptr); \
  168. switch (size) { \
  169. case 1: __put_user_8(x, ptr); break; \
  170. case 2: __put_user_16(x, ptr); break; \
  171. case 4: __put_user_32(x, ptr); break; \
  172. case 8: __put_user_64(x, ptr); break; \
  173. default: __put_user_unknown(); break; \
  174. } \
  175. __pu_err; \
  176. })
  177. #define __put_user_check(x, ptr, size) \
  178. ({ \
  179. long __pu_err = -EFAULT; \
  180. __typeof__(*(ptr)) __user *__pu_addr = (ptr); \
  181. if (__access_ok((unsigned long)__pu_addr, size)) { \
  182. __pu_err = 0; \
  183. switch (size) { \
  184. case 1: __put_user_8(x, __pu_addr); break; \
  185. case 2: __put_user_16(x, __pu_addr); break; \
  186. case 4: __put_user_32(x, __pu_addr); break; \
  187. case 8: __put_user_64(x, __pu_addr); break; \
  188. default: __put_user_unknown(); break; \
  189. } \
  190. } \
  191. __pu_err; \
  192. })
  193. /*
  194. * The "__put_user_xx()" macros tell gcc they read from memory
  195. * instead of writing: this is because they do not write to
  196. * any memory gcc knows about, so there are no aliasing issues
  197. */
  198. #define __put_user_64(x, addr) \
  199. __asm__ __volatile__("1: stq %r2,%1\n" \
  200. "2:\n" \
  201. EXC(1b,2b,$31,%0) \
  202. : "=r"(__pu_err) \
  203. : "m" (__m(addr)), "rJ" (x), "0"(__pu_err))
  204. #define __put_user_32(x, addr) \
  205. __asm__ __volatile__("1: stl %r2,%1\n" \
  206. "2:\n" \
  207. EXC(1b,2b,$31,%0) \
  208. : "=r"(__pu_err) \
  209. : "m"(__m(addr)), "rJ"(x), "0"(__pu_err))
  210. #ifdef __alpha_bwx__
  211. /* Those lucky bastards with ev56 and later CPUs can do byte/word moves. */
  212. #define __put_user_16(x, addr) \
  213. __asm__ __volatile__("1: stw %r2,%1\n" \
  214. "2:\n" \
  215. EXC(1b,2b,$31,%0) \
  216. : "=r"(__pu_err) \
  217. : "m"(__m(addr)), "rJ"(x), "0"(__pu_err))
  218. #define __put_user_8(x, addr) \
  219. __asm__ __volatile__("1: stb %r2,%1\n" \
  220. "2:\n" \
  221. EXC(1b,2b,$31,%0) \
  222. : "=r"(__pu_err) \
  223. : "m"(__m(addr)), "rJ"(x), "0"(__pu_err))
  224. #else
  225. /* Unfortunately, we can't get an unaligned access trap for the sub-word
  226. write, so we have to do a general unaligned operation. */
  227. #define __put_user_16(x, addr) \
  228. { \
  229. long __pu_tmp1, __pu_tmp2, __pu_tmp3, __pu_tmp4; \
  230. __asm__ __volatile__( \
  231. "1: ldq_u %2,1(%5)\n" \
  232. "2: ldq_u %1,0(%5)\n" \
  233. " inswh %6,%5,%4\n" \
  234. " inswl %6,%5,%3\n" \
  235. " mskwh %2,%5,%2\n" \
  236. " mskwl %1,%5,%1\n" \
  237. " or %2,%4,%2\n" \
  238. " or %1,%3,%1\n" \
  239. "3: stq_u %2,1(%5)\n" \
  240. "4: stq_u %1,0(%5)\n" \
  241. "5:\n" \
  242. EXC(1b,5b,$31,%0) \
  243. EXC(2b,5b,$31,%0) \
  244. EXC(3b,5b,$31,%0) \
  245. EXC(4b,5b,$31,%0) \
  246. : "=r"(__pu_err), "=&r"(__pu_tmp1), \
  247. "=&r"(__pu_tmp2), "=&r"(__pu_tmp3), \
  248. "=&r"(__pu_tmp4) \
  249. : "r"(addr), "r"((unsigned long)(x)), "0"(__pu_err)); \
  250. }
  251. #define __put_user_8(x, addr) \
  252. { \
  253. long __pu_tmp1, __pu_tmp2; \
  254. __asm__ __volatile__( \
  255. "1: ldq_u %1,0(%4)\n" \
  256. " insbl %3,%4,%2\n" \
  257. " mskbl %1,%4,%1\n" \
  258. " or %1,%2,%1\n" \
  259. "2: stq_u %1,0(%4)\n" \
  260. "3:\n" \
  261. EXC(1b,3b,$31,%0) \
  262. EXC(2b,3b,$31,%0) \
  263. : "=r"(__pu_err), \
  264. "=&r"(__pu_tmp1), "=&r"(__pu_tmp2) \
  265. : "r"((unsigned long)(x)), "r"(addr), "0"(__pu_err)); \
  266. }
  267. #endif
  268. /*
  269. * Complex access routines
  270. */
  271. extern long __copy_user(void *to, const void *from, long len);
  272. static inline unsigned long
  273. raw_copy_from_user(void *to, const void __user *from, unsigned long len)
  274. {
  275. return __copy_user(to, (__force const void *)from, len);
  276. }
  277. static inline unsigned long
  278. raw_copy_to_user(void __user *to, const void *from, unsigned long len)
  279. {
  280. return __copy_user((__force void *)to, from, len);
  281. }
  282. extern long __clear_user(void __user *to, long len);
  283. extern inline long
  284. clear_user(void __user *to, long len)
  285. {
  286. if (__access_ok((unsigned long)to, len))
  287. len = __clear_user(to, len);
  288. return len;
  289. }
  290. #define user_addr_max() \
  291. (uaccess_kernel() ? ~0UL : TASK_SIZE)
  292. extern long strncpy_from_user(char *dest, const char __user *src, long count);
  293. extern __must_check long strnlen_user(const char __user *str, long n);
  294. #include <asm/extable.h>
  295. #endif /* __ALPHA_UACCESS_H */