123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293 |
- /*
- * FP/SIMD context switching and fault handling
- *
- * Copyright (C) 2012 ARM Ltd.
- * Author: Catalin Marinas <catalin.marinas@arm.com>
- *
- * This program is free software; you can redistribute it and/or modify
- * it under the terms of the GNU General Public License version 2 as
- * published by the Free Software Foundation.
- *
- * This program is distributed in the hope that it will be useful,
- * but WITHOUT ANY WARRANTY; without even the implied warranty of
- * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
- * GNU General Public License for more details.
- *
- * You should have received a copy of the GNU General Public License
- * along with this program. If not, see <http://www.gnu.org/licenses/>.
- */
- #include <linux/bitmap.h>
- #include <linux/bottom_half.h>
- #include <linux/bug.h>
- #include <linux/cache.h>
- #include <linux/compat.h>
- #include <linux/cpu.h>
- #include <linux/cpu_pm.h>
- #include <linux/kernel.h>
- #include <linux/linkage.h>
- #include <linux/irqflags.h>
- #include <linux/init.h>
- #include <linux/percpu.h>
- #include <linux/prctl.h>
- #include <linux/preempt.h>
- #include <linux/ptrace.h>
- #include <linux/sched/signal.h>
- #include <linux/sched/task_stack.h>
- #include <linux/signal.h>
- #include <linux/slab.h>
- #include <linux/stddef.h>
- #include <linux/sysctl.h>
- #include <asm/esr.h>
- #include <asm/fpsimd.h>
- #include <asm/cpufeature.h>
- #include <asm/cputype.h>
- #include <asm/processor.h>
- #include <asm/simd.h>
- #include <asm/sigcontext.h>
- #include <asm/sysreg.h>
- #include <asm/traps.h>
- #define FPEXC_IOF (1 << 0)
- #define FPEXC_DZF (1 << 1)
- #define FPEXC_OFF (1 << 2)
- #define FPEXC_UFF (1 << 3)
- #define FPEXC_IXF (1 << 4)
- #define FPEXC_IDF (1 << 7)
- /*
- * (Note: in this discussion, statements about FPSIMD apply equally to SVE.)
- *
- * In order to reduce the number of times the FPSIMD state is needlessly saved
- * and restored, we need to keep track of two things:
- * (a) for each task, we need to remember which CPU was the last one to have
- * the task's FPSIMD state loaded into its FPSIMD registers;
- * (b) for each CPU, we need to remember which task's userland FPSIMD state has
- * been loaded into its FPSIMD registers most recently, or whether it has
- * been used to perform kernel mode NEON in the meantime.
- *
- * For (a), we add a fpsimd_cpu field to thread_struct, which gets updated to
- * the id of the current CPU every time the state is loaded onto a CPU. For (b),
- * we add the per-cpu variable 'fpsimd_last_state' (below), which contains the
- * address of the userland FPSIMD state of the task that was loaded onto the CPU
- * the most recently, or NULL if kernel mode NEON has been performed after that.
- *
- * With this in place, we no longer have to restore the next FPSIMD state right
- * when switching between tasks. Instead, we can defer this check to userland
- * resume, at which time we verify whether the CPU's fpsimd_last_state and the
- * task's fpsimd_cpu are still mutually in sync. If this is the case, we
- * can omit the FPSIMD restore.
- *
- * As an optimization, we use the thread_info flag TIF_FOREIGN_FPSTATE to
- * indicate whether or not the userland FPSIMD state of the current task is
- * present in the registers. The flag is set unless the FPSIMD registers of this
- * CPU currently contain the most recent userland FPSIMD state of the current
- * task.
- *
- * In order to allow softirq handlers to use FPSIMD, kernel_neon_begin() may
- * save the task's FPSIMD context back to task_struct from softirq context.
- * To prevent this from racing with the manipulation of the task's FPSIMD state
- * from task context and thereby corrupting the state, it is necessary to
- * protect any manipulation of a task's fpsimd_state or TIF_FOREIGN_FPSTATE
- * flag with local_bh_disable() unless softirqs are already masked.
- *
- * For a certain task, the sequence may look something like this:
- * - the task gets scheduled in; if both the task's fpsimd_cpu field
- * contains the id of the current CPU, and the CPU's fpsimd_last_state per-cpu
- * variable points to the task's fpsimd_state, the TIF_FOREIGN_FPSTATE flag is
- * cleared, otherwise it is set;
- *
- * - the task returns to userland; if TIF_FOREIGN_FPSTATE is set, the task's
- * userland FPSIMD state is copied from memory to the registers, the task's
- * fpsimd_cpu field is set to the id of the current CPU, the current
- * CPU's fpsimd_last_state pointer is set to this task's fpsimd_state and the
- * TIF_FOREIGN_FPSTATE flag is cleared;
- *
- * - the task executes an ordinary syscall; upon return to userland, the
- * TIF_FOREIGN_FPSTATE flag will still be cleared, so no FPSIMD state is
- * restored;
- *
- * - the task executes a syscall which executes some NEON instructions; this is
- * preceded by a call to kernel_neon_begin(), which copies the task's FPSIMD
- * register contents to memory, clears the fpsimd_last_state per-cpu variable
- * and sets the TIF_FOREIGN_FPSTATE flag;
- *
- * - the task gets preempted after kernel_neon_end() is called; as we have not
- * returned from the 2nd syscall yet, TIF_FOREIGN_FPSTATE is still set so
- * whatever is in the FPSIMD registers is not saved to memory, but discarded.
- */
- struct fpsimd_last_state_struct {
- struct user_fpsimd_state *st;
- };
- static DEFINE_PER_CPU(struct fpsimd_last_state_struct, fpsimd_last_state);
- /* Default VL for tasks that don't set it explicitly: */
- static int sve_default_vl = -1;
- #ifdef CONFIG_ARM64_SVE
- /* Maximum supported vector length across all CPUs (initially poisoned) */
- int __ro_after_init sve_max_vl = SVE_VL_MIN;
- /* Set of available vector lengths, as vq_to_bit(vq): */
- static __ro_after_init DECLARE_BITMAP(sve_vq_map, SVE_VQ_MAX);
- static void __percpu *efi_sve_state;
- #else /* ! CONFIG_ARM64_SVE */
- /* Dummy declaration for code that will be optimised out: */
- extern __ro_after_init DECLARE_BITMAP(sve_vq_map, SVE_VQ_MAX);
- extern void __percpu *efi_sve_state;
- #endif /* ! CONFIG_ARM64_SVE */
- /*
- * Call __sve_free() directly only if you know task can't be scheduled
- * or preempted.
- */
- static void __sve_free(struct task_struct *task)
- {
- kfree(task->thread.sve_state);
- task->thread.sve_state = NULL;
- }
- static void sve_free(struct task_struct *task)
- {
- WARN_ON(test_tsk_thread_flag(task, TIF_SVE));
- __sve_free(task);
- }
- /*
- * TIF_SVE controls whether a task can use SVE without trapping while
- * in userspace, and also the way a task's FPSIMD/SVE state is stored
- * in thread_struct.
- *
- * The kernel uses this flag to track whether a user task is actively
- * using SVE, and therefore whether full SVE register state needs to
- * be tracked. If not, the cheaper FPSIMD context handling code can
- * be used instead of the more costly SVE equivalents.
- *
- * * TIF_SVE set:
- *
- * The task can execute SVE instructions while in userspace without
- * trapping to the kernel.
- *
- * When stored, Z0-Z31 (incorporating Vn in bits[127:0] or the
- * corresponding Zn), P0-P15 and FFR are encoded in in
- * task->thread.sve_state, formatted appropriately for vector
- * length task->thread.sve_vl.
- *
- * task->thread.sve_state must point to a valid buffer at least
- * sve_state_size(task) bytes in size.
- *
- * During any syscall, the kernel may optionally clear TIF_SVE and
- * discard the vector state except for the FPSIMD subset.
- *
- * * TIF_SVE clear:
- *
- * An attempt by the user task to execute an SVE instruction causes
- * do_sve_acc() to be called, which does some preparation and then
- * sets TIF_SVE.
- *
- * When stored, FPSIMD registers V0-V31 are encoded in
- * task->thread.uw.fpsimd_state; bits [max : 128] for each of Z0-Z31 are
- * logically zero but not stored anywhere; P0-P15 and FFR are not
- * stored and have unspecified values from userspace's point of
- * view. For hygiene purposes, the kernel zeroes them on next use,
- * but userspace is discouraged from relying on this.
- *
- * task->thread.sve_state does not need to be non-NULL, valid or any
- * particular size: it must not be dereferenced.
- *
- * * FPSR and FPCR are always stored in task->thread.uw.fpsimd_state
- * irrespective of whether TIF_SVE is clear or set, since these are
- * not vector length dependent.
- */
- /*
- * Update current's FPSIMD/SVE registers from thread_struct.
- *
- * This function should be called only when the FPSIMD/SVE state in
- * thread_struct is known to be up to date, when preparing to enter
- * userspace.
- *
- * Softirqs (and preemption) must be disabled.
- */
- static void task_fpsimd_load(void)
- {
- WARN_ON(!in_softirq() && !irqs_disabled());
- WARN_ON(!system_supports_fpsimd());
- if (system_supports_sve() && test_thread_flag(TIF_SVE))
- sve_load_state(sve_pffr(¤t->thread),
- ¤t->thread.uw.fpsimd_state.fpsr,
- sve_vq_from_vl(current->thread.sve_vl) - 1);
- else
- fpsimd_load_state(¤t->thread.uw.fpsimd_state);
- }
- /*
- * Ensure FPSIMD/SVE storage in memory for the loaded context is up to
- * date with respect to the CPU registers.
- *
- * Softirqs (and preemption) must be disabled.
- */
- void fpsimd_save(void)
- {
- struct user_fpsimd_state *st = __this_cpu_read(fpsimd_last_state.st);
- /* set by fpsimd_bind_task_to_cpu() or fpsimd_bind_state_to_cpu() */
- WARN_ON(!system_supports_fpsimd());
- WARN_ON(!in_softirq() && !irqs_disabled());
- if (!test_thread_flag(TIF_FOREIGN_FPSTATE)) {
- if (system_supports_sve() && test_thread_flag(TIF_SVE)) {
- if (WARN_ON(sve_get_vl() != current->thread.sve_vl)) {
- /*
- * Can't save the user regs, so current would
- * re-enter user with corrupt state.
- * There's no way to recover, so kill it:
- */
- force_signal_inject(SIGKILL, SI_KERNEL, 0);
- return;
- }
- sve_save_state(sve_pffr(¤t->thread), &st->fpsr);
- } else
- fpsimd_save_state(st);
- }
- }
- /*
- * Helpers to translate bit indices in sve_vq_map to VQ values (and
- * vice versa). This allows find_next_bit() to be used to find the
- * _maximum_ VQ not exceeding a certain value.
- */
- static unsigned int vq_to_bit(unsigned int vq)
- {
- return SVE_VQ_MAX - vq;
- }
- static unsigned int bit_to_vq(unsigned int bit)
- {
- if (WARN_ON(bit >= SVE_VQ_MAX))
- bit = SVE_VQ_MAX - 1;
- return SVE_VQ_MAX - bit;
- }
- /*
- * All vector length selection from userspace comes through here.
- * We're on a slow path, so some sanity-checks are included.
- * If things go wrong there's a bug somewhere, but try to fall back to a
- * safe choice.
- */
- static unsigned int find_supported_vector_length(unsigned int vl)
- {
- int bit;
- int max_vl = sve_max_vl;
- if (WARN_ON(!sve_vl_valid(vl)))
- vl = SVE_VL_MIN;
- if (WARN_ON(!sve_vl_valid(max_vl)))
- max_vl = SVE_VL_MIN;
- if (vl > max_vl)
- vl = max_vl;
- bit = find_next_bit(sve_vq_map, SVE_VQ_MAX,
- vq_to_bit(sve_vq_from_vl(vl)));
- return sve_vl_from_vq(bit_to_vq(bit));
- }
- #if defined(CONFIG_ARM64_SVE) && defined(CONFIG_SYSCTL)
- static int sve_proc_do_default_vl(struct ctl_table *table, int write,
- void __user *buffer, size_t *lenp,
- loff_t *ppos)
- {
- int ret;
- int vl = sve_default_vl;
- struct ctl_table tmp_table = {
- .data = &vl,
- .maxlen = sizeof(vl),
- };
- ret = proc_dointvec(&tmp_table, write, buffer, lenp, ppos);
- if (ret || !write)
- return ret;
- /* Writing -1 has the special meaning "set to max": */
- if (vl == -1)
- vl = sve_max_vl;
- if (!sve_vl_valid(vl))
- return -EINVAL;
- sve_default_vl = find_supported_vector_length(vl);
- return 0;
- }
- static struct ctl_table sve_default_vl_table[] = {
- {
- .procname = "sve_default_vector_length",
- .mode = 0644,
- .proc_handler = sve_proc_do_default_vl,
- },
- { }
- };
- static int __init sve_sysctl_init(void)
- {
- if (system_supports_sve())
- if (!register_sysctl("abi", sve_default_vl_table))
- return -EINVAL;
- return 0;
- }
- #else /* ! (CONFIG_ARM64_SVE && CONFIG_SYSCTL) */
- static int __init sve_sysctl_init(void) { return 0; }
- #endif /* ! (CONFIG_ARM64_SVE && CONFIG_SYSCTL) */
- #define ZREG(sve_state, vq, n) ((char *)(sve_state) + \
- (SVE_SIG_ZREG_OFFSET(vq, n) - SVE_SIG_REGS_OFFSET))
- /*
- * Transfer the FPSIMD state in task->thread.uw.fpsimd_state to
- * task->thread.sve_state.
- *
- * Task can be a non-runnable task, or current. In the latter case,
- * softirqs (and preemption) must be disabled.
- * task->thread.sve_state must point to at least sve_state_size(task)
- * bytes of allocated kernel memory.
- * task->thread.uw.fpsimd_state must be up to date before calling this
- * function.
- */
- static void fpsimd_to_sve(struct task_struct *task)
- {
- unsigned int vq;
- void *sst = task->thread.sve_state;
- struct user_fpsimd_state const *fst = &task->thread.uw.fpsimd_state;
- unsigned int i;
- if (!system_supports_sve())
- return;
- vq = sve_vq_from_vl(task->thread.sve_vl);
- for (i = 0; i < 32; ++i)
- memcpy(ZREG(sst, vq, i), &fst->vregs[i],
- sizeof(fst->vregs[i]));
- }
- /*
- * Transfer the SVE state in task->thread.sve_state to
- * task->thread.uw.fpsimd_state.
- *
- * Task can be a non-runnable task, or current. In the latter case,
- * softirqs (and preemption) must be disabled.
- * task->thread.sve_state must point to at least sve_state_size(task)
- * bytes of allocated kernel memory.
- * task->thread.sve_state must be up to date before calling this function.
- */
- static void sve_to_fpsimd(struct task_struct *task)
- {
- unsigned int vq;
- void const *sst = task->thread.sve_state;
- struct user_fpsimd_state *fst = &task->thread.uw.fpsimd_state;
- unsigned int i;
- if (!system_supports_sve())
- return;
- vq = sve_vq_from_vl(task->thread.sve_vl);
- for (i = 0; i < 32; ++i)
- memcpy(&fst->vregs[i], ZREG(sst, vq, i),
- sizeof(fst->vregs[i]));
- }
- #ifdef CONFIG_ARM64_SVE
- /*
- * Return how many bytes of memory are required to store the full SVE
- * state for task, given task's currently configured vector length.
- */
- size_t sve_state_size(struct task_struct const *task)
- {
- return SVE_SIG_REGS_SIZE(sve_vq_from_vl(task->thread.sve_vl));
- }
- /*
- * Ensure that task->thread.sve_state is allocated and sufficiently large.
- *
- * This function should be used only in preparation for replacing
- * task->thread.sve_state with new data. The memory is always zeroed
- * here to prevent stale data from showing through: this is done in
- * the interest of testability and predictability: except in the
- * do_sve_acc() case, there is no ABI requirement to hide stale data
- * written previously be task.
- */
- void sve_alloc(struct task_struct *task)
- {
- if (task->thread.sve_state) {
- memset(task->thread.sve_state, 0, sve_state_size(current));
- return;
- }
- /* This is a small allocation (maximum ~8KB) and Should Not Fail. */
- task->thread.sve_state =
- kzalloc(sve_state_size(task), GFP_KERNEL);
- /*
- * If future SVE revisions can have larger vectors though,
- * this may cease to be true:
- */
- BUG_ON(!task->thread.sve_state);
- }
- /*
- * Ensure that task->thread.sve_state is up to date with respect to
- * the user task, irrespective of when SVE is in use or not.
- *
- * This should only be called by ptrace. task must be non-runnable.
- * task->thread.sve_state must point to at least sve_state_size(task)
- * bytes of allocated kernel memory.
- */
- void fpsimd_sync_to_sve(struct task_struct *task)
- {
- if (!test_tsk_thread_flag(task, TIF_SVE))
- fpsimd_to_sve(task);
- }
- /*
- * Ensure that task->thread.uw.fpsimd_state is up to date with respect to
- * the user task, irrespective of whether SVE is in use or not.
- *
- * This should only be called by ptrace. task must be non-runnable.
- * task->thread.sve_state must point to at least sve_state_size(task)
- * bytes of allocated kernel memory.
- */
- void sve_sync_to_fpsimd(struct task_struct *task)
- {
- if (test_tsk_thread_flag(task, TIF_SVE))
- sve_to_fpsimd(task);
- }
- /*
- * Ensure that task->thread.sve_state is up to date with respect to
- * the task->thread.uw.fpsimd_state.
- *
- * This should only be called by ptrace to merge new FPSIMD register
- * values into a task for which SVE is currently active.
- * task must be non-runnable.
- * task->thread.sve_state must point to at least sve_state_size(task)
- * bytes of allocated kernel memory.
- * task->thread.uw.fpsimd_state must already have been initialised with
- * the new FPSIMD register values to be merged in.
- */
- void sve_sync_from_fpsimd_zeropad(struct task_struct *task)
- {
- unsigned int vq;
- void *sst = task->thread.sve_state;
- struct user_fpsimd_state const *fst = &task->thread.uw.fpsimd_state;
- unsigned int i;
- if (!test_tsk_thread_flag(task, TIF_SVE))
- return;
- vq = sve_vq_from_vl(task->thread.sve_vl);
- memset(sst, 0, SVE_SIG_REGS_SIZE(vq));
- for (i = 0; i < 32; ++i)
- memcpy(ZREG(sst, vq, i), &fst->vregs[i],
- sizeof(fst->vregs[i]));
- }
- int sve_set_vector_length(struct task_struct *task,
- unsigned long vl, unsigned long flags)
- {
- if (flags & ~(unsigned long)(PR_SVE_VL_INHERIT |
- PR_SVE_SET_VL_ONEXEC))
- return -EINVAL;
- if (!sve_vl_valid(vl))
- return -EINVAL;
- /*
- * Clamp to the maximum vector length that VL-agnostic SVE code can
- * work with. A flag may be assigned in the future to allow setting
- * of larger vector lengths without confusing older software.
- */
- if (vl > SVE_VL_ARCH_MAX)
- vl = SVE_VL_ARCH_MAX;
- vl = find_supported_vector_length(vl);
- if (flags & (PR_SVE_VL_INHERIT |
- PR_SVE_SET_VL_ONEXEC))
- task->thread.sve_vl_onexec = vl;
- else
- /* Reset VL to system default on next exec: */
- task->thread.sve_vl_onexec = 0;
- /* Only actually set the VL if not deferred: */
- if (flags & PR_SVE_SET_VL_ONEXEC)
- goto out;
- if (vl == task->thread.sve_vl)
- goto out;
- /*
- * To ensure the FPSIMD bits of the SVE vector registers are preserved,
- * write any live register state back to task_struct, and convert to a
- * non-SVE thread.
- */
- if (task == current) {
- local_bh_disable();
- fpsimd_save();
- set_thread_flag(TIF_FOREIGN_FPSTATE);
- }
- fpsimd_flush_task_state(task);
- if (test_and_clear_tsk_thread_flag(task, TIF_SVE))
- sve_to_fpsimd(task);
- if (task == current)
- local_bh_enable();
- /*
- * Force reallocation of task SVE state to the correct size
- * on next use:
- */
- sve_free(task);
- task->thread.sve_vl = vl;
- out:
- update_tsk_thread_flag(task, TIF_SVE_VL_INHERIT,
- flags & PR_SVE_VL_INHERIT);
- return 0;
- }
- /*
- * Encode the current vector length and flags for return.
- * This is only required for prctl(): ptrace has separate fields
- *
- * flags are as for sve_set_vector_length().
- */
- static int sve_prctl_status(unsigned long flags)
- {
- int ret;
- if (flags & PR_SVE_SET_VL_ONEXEC)
- ret = current->thread.sve_vl_onexec;
- else
- ret = current->thread.sve_vl;
- if (test_thread_flag(TIF_SVE_VL_INHERIT))
- ret |= PR_SVE_VL_INHERIT;
- return ret;
- }
- /* PR_SVE_SET_VL */
- int sve_set_current_vl(unsigned long arg)
- {
- unsigned long vl, flags;
- int ret;
- vl = arg & PR_SVE_VL_LEN_MASK;
- flags = arg & ~vl;
- if (!system_supports_sve())
- return -EINVAL;
- ret = sve_set_vector_length(current, vl, flags);
- if (ret)
- return ret;
- return sve_prctl_status(flags);
- }
- /* PR_SVE_GET_VL */
- int sve_get_current_vl(void)
- {
- if (!system_supports_sve())
- return -EINVAL;
- return sve_prctl_status(0);
- }
- /*
- * Bitmap for temporary storage of the per-CPU set of supported vector lengths
- * during secondary boot.
- */
- static DECLARE_BITMAP(sve_secondary_vq_map, SVE_VQ_MAX);
- static void sve_probe_vqs(DECLARE_BITMAP(map, SVE_VQ_MAX))
- {
- unsigned int vq, vl;
- unsigned long zcr;
- bitmap_zero(map, SVE_VQ_MAX);
- zcr = ZCR_ELx_LEN_MASK;
- zcr = read_sysreg_s(SYS_ZCR_EL1) & ~zcr;
- for (vq = SVE_VQ_MAX; vq >= SVE_VQ_MIN; --vq) {
- write_sysreg_s(zcr | (vq - 1), SYS_ZCR_EL1); /* self-syncing */
- vl = sve_get_vl();
- vq = sve_vq_from_vl(vl); /* skip intervening lengths */
- set_bit(vq_to_bit(vq), map);
- }
- }
- void __init sve_init_vq_map(void)
- {
- sve_probe_vqs(sve_vq_map);
- }
- /*
- * If we haven't committed to the set of supported VQs yet, filter out
- * those not supported by the current CPU.
- */
- void sve_update_vq_map(void)
- {
- sve_probe_vqs(sve_secondary_vq_map);
- bitmap_and(sve_vq_map, sve_vq_map, sve_secondary_vq_map, SVE_VQ_MAX);
- }
- /* Check whether the current CPU supports all VQs in the committed set */
- int sve_verify_vq_map(void)
- {
- int ret = 0;
- sve_probe_vqs(sve_secondary_vq_map);
- bitmap_andnot(sve_secondary_vq_map, sve_vq_map, sve_secondary_vq_map,
- SVE_VQ_MAX);
- if (!bitmap_empty(sve_secondary_vq_map, SVE_VQ_MAX)) {
- pr_warn("SVE: cpu%d: Required vector length(s) missing\n",
- smp_processor_id());
- ret = -EINVAL;
- }
- return ret;
- }
- static void __init sve_efi_setup(void)
- {
- if (!IS_ENABLED(CONFIG_EFI))
- return;
- /*
- * alloc_percpu() warns and prints a backtrace if this goes wrong.
- * This is evidence of a crippled system and we are returning void,
- * so no attempt is made to handle this situation here.
- */
- if (!sve_vl_valid(sve_max_vl))
- goto fail;
- efi_sve_state = __alloc_percpu(
- SVE_SIG_REGS_SIZE(sve_vq_from_vl(sve_max_vl)), SVE_VQ_BYTES);
- if (!efi_sve_state)
- goto fail;
- return;
- fail:
- panic("Cannot allocate percpu memory for EFI SVE save/restore");
- }
- /*
- * Enable SVE for EL1.
- * Intended for use by the cpufeatures code during CPU boot.
- */
- void sve_kernel_enable(const struct arm64_cpu_capabilities *__always_unused p)
- {
- write_sysreg(read_sysreg(CPACR_EL1) | CPACR_EL1_ZEN_EL1EN, CPACR_EL1);
- isb();
- }
- /*
- * Read the pseudo-ZCR used by cpufeatures to identify the supported SVE
- * vector length.
- *
- * Use only if SVE is present.
- * This function clobbers the SVE vector length.
- */
- u64 read_zcr_features(void)
- {
- u64 zcr;
- unsigned int vq_max;
- /*
- * Set the maximum possible VL, and write zeroes to all other
- * bits to see if they stick.
- */
- sve_kernel_enable(NULL);
- write_sysreg_s(ZCR_ELx_LEN_MASK, SYS_ZCR_EL1);
- zcr = read_sysreg_s(SYS_ZCR_EL1);
- zcr &= ~(u64)ZCR_ELx_LEN_MASK; /* find sticky 1s outside LEN field */
- vq_max = sve_vq_from_vl(sve_get_vl());
- zcr |= vq_max - 1; /* set LEN field to maximum effective value */
- return zcr;
- }
- void __init sve_setup(void)
- {
- u64 zcr;
- if (!system_supports_sve())
- return;
- /*
- * The SVE architecture mandates support for 128-bit vectors,
- * so sve_vq_map must have at least SVE_VQ_MIN set.
- * If something went wrong, at least try to patch it up:
- */
- if (WARN_ON(!test_bit(vq_to_bit(SVE_VQ_MIN), sve_vq_map)))
- set_bit(vq_to_bit(SVE_VQ_MIN), sve_vq_map);
- zcr = read_sanitised_ftr_reg(SYS_ZCR_EL1);
- sve_max_vl = sve_vl_from_vq((zcr & ZCR_ELx_LEN_MASK) + 1);
- /*
- * Sanity-check that the max VL we determined through CPU features
- * corresponds properly to sve_vq_map. If not, do our best:
- */
- if (WARN_ON(sve_max_vl != find_supported_vector_length(sve_max_vl)))
- sve_max_vl = find_supported_vector_length(sve_max_vl);
- /*
- * For the default VL, pick the maximum supported value <= 64.
- * VL == 64 is guaranteed not to grow the signal frame.
- */
- sve_default_vl = find_supported_vector_length(64);
- pr_info("SVE: maximum available vector length %u bytes per vector\n",
- sve_max_vl);
- pr_info("SVE: default vector length %u bytes per vector\n",
- sve_default_vl);
- sve_efi_setup();
- }
- /*
- * Called from the put_task_struct() path, which cannot get here
- * unless dead_task is really dead and not schedulable.
- */
- void fpsimd_release_task(struct task_struct *dead_task)
- {
- __sve_free(dead_task);
- }
- #endif /* CONFIG_ARM64_SVE */
- /*
- * Trapped SVE access
- *
- * Storage is allocated for the full SVE state, the current FPSIMD
- * register contents are migrated across, and TIF_SVE is set so that
- * the SVE access trap will be disabled the next time this task
- * reaches ret_to_user.
- *
- * TIF_SVE should be clear on entry: otherwise, task_fpsimd_load()
- * would have disabled the SVE access trap for userspace during
- * ret_to_user, making an SVE access trap impossible in that case.
- */
- asmlinkage void do_sve_acc(unsigned int esr, struct pt_regs *regs)
- {
- /* Even if we chose not to use SVE, the hardware could still trap: */
- if (unlikely(!system_supports_sve()) || WARN_ON(is_compat_task())) {
- force_signal_inject(SIGILL, ILL_ILLOPC, regs->pc);
- return;
- }
- sve_alloc(current);
- local_bh_disable();
- fpsimd_save();
- fpsimd_to_sve(current);
- /* Force ret_to_user to reload the registers: */
- fpsimd_flush_task_state(current);
- set_thread_flag(TIF_FOREIGN_FPSTATE);
- if (test_and_set_thread_flag(TIF_SVE))
- WARN_ON(1); /* SVE access shouldn't have trapped */
- local_bh_enable();
- }
- /*
- * Trapped FP/ASIMD access.
- */
- asmlinkage void do_fpsimd_acc(unsigned int esr, struct pt_regs *regs)
- {
- /* TODO: implement lazy context saving/restoring */
- WARN_ON(1);
- }
- /*
- * Raise a SIGFPE for the current process.
- */
- asmlinkage void do_fpsimd_exc(unsigned int esr, struct pt_regs *regs)
- {
- siginfo_t info;
- unsigned int si_code = FPE_FLTUNK;
- if (esr & ESR_ELx_FP_EXC_TFV) {
- if (esr & FPEXC_IOF)
- si_code = FPE_FLTINV;
- else if (esr & FPEXC_DZF)
- si_code = FPE_FLTDIV;
- else if (esr & FPEXC_OFF)
- si_code = FPE_FLTOVF;
- else if (esr & FPEXC_UFF)
- si_code = FPE_FLTUND;
- else if (esr & FPEXC_IXF)
- si_code = FPE_FLTRES;
- }
- clear_siginfo(&info);
- info.si_signo = SIGFPE;
- info.si_code = si_code;
- info.si_addr = (void __user *)instruction_pointer(regs);
- send_sig_info(SIGFPE, &info, current);
- }
- void fpsimd_thread_switch(struct task_struct *next)
- {
- bool wrong_task, wrong_cpu;
- if (!system_supports_fpsimd())
- return;
- /* Save unsaved fpsimd state, if any: */
- fpsimd_save();
- /*
- * Fix up TIF_FOREIGN_FPSTATE to correctly describe next's
- * state. For kernel threads, FPSIMD registers are never loaded
- * and wrong_task and wrong_cpu will always be true.
- */
- wrong_task = __this_cpu_read(fpsimd_last_state.st) !=
- &next->thread.uw.fpsimd_state;
- wrong_cpu = next->thread.fpsimd_cpu != smp_processor_id();
- update_tsk_thread_flag(next, TIF_FOREIGN_FPSTATE,
- wrong_task || wrong_cpu);
- }
- void fpsimd_flush_thread(void)
- {
- int vl, supported_vl;
- if (!system_supports_fpsimd())
- return;
- local_bh_disable();
- memset(¤t->thread.uw.fpsimd_state, 0,
- sizeof(current->thread.uw.fpsimd_state));
- fpsimd_flush_task_state(current);
- if (system_supports_sve()) {
- clear_thread_flag(TIF_SVE);
- sve_free(current);
- /*
- * Reset the task vector length as required.
- * This is where we ensure that all user tasks have a valid
- * vector length configured: no kernel task can become a user
- * task without an exec and hence a call to this function.
- * By the time the first call to this function is made, all
- * early hardware probing is complete, so sve_default_vl
- * should be valid.
- * If a bug causes this to go wrong, we make some noise and
- * try to fudge thread.sve_vl to a safe value here.
- */
- vl = current->thread.sve_vl_onexec ?
- current->thread.sve_vl_onexec : sve_default_vl;
- if (WARN_ON(!sve_vl_valid(vl)))
- vl = SVE_VL_MIN;
- supported_vl = find_supported_vector_length(vl);
- if (WARN_ON(supported_vl != vl))
- vl = supported_vl;
- current->thread.sve_vl = vl;
- /*
- * If the task is not set to inherit, ensure that the vector
- * length will be reset by a subsequent exec:
- */
- if (!test_thread_flag(TIF_SVE_VL_INHERIT))
- current->thread.sve_vl_onexec = 0;
- }
- set_thread_flag(TIF_FOREIGN_FPSTATE);
- local_bh_enable();
- }
- /*
- * Save the userland FPSIMD state of 'current' to memory, but only if the state
- * currently held in the registers does in fact belong to 'current'
- */
- void fpsimd_preserve_current_state(void)
- {
- if (!system_supports_fpsimd())
- return;
- local_bh_disable();
- fpsimd_save();
- local_bh_enable();
- }
- /*
- * Like fpsimd_preserve_current_state(), but ensure that
- * current->thread.uw.fpsimd_state is updated so that it can be copied to
- * the signal frame.
- */
- void fpsimd_signal_preserve_current_state(void)
- {
- fpsimd_preserve_current_state();
- if (system_supports_sve() && test_thread_flag(TIF_SVE))
- sve_to_fpsimd(current);
- }
- /*
- * Associate current's FPSIMD context with this cpu
- * Preemption must be disabled when calling this function.
- */
- void fpsimd_bind_task_to_cpu(void)
- {
- struct fpsimd_last_state_struct *last =
- this_cpu_ptr(&fpsimd_last_state);
- WARN_ON(!system_supports_fpsimd());
- last->st = ¤t->thread.uw.fpsimd_state;
- current->thread.fpsimd_cpu = smp_processor_id();
- if (system_supports_sve()) {
- /* Toggle SVE trapping for userspace if needed */
- if (test_thread_flag(TIF_SVE))
- sve_user_enable();
- else
- sve_user_disable();
- /* Serialised by exception return to user */
- }
- }
- void fpsimd_bind_state_to_cpu(struct user_fpsimd_state *st)
- {
- struct fpsimd_last_state_struct *last =
- this_cpu_ptr(&fpsimd_last_state);
- WARN_ON(!system_supports_fpsimd());
- WARN_ON(!in_softirq() && !irqs_disabled());
- last->st = st;
- }
- /*
- * Load the userland FPSIMD state of 'current' from memory, but only if the
- * FPSIMD state already held in the registers is /not/ the most recent FPSIMD
- * state of 'current'
- */
- void fpsimd_restore_current_state(void)
- {
- /*
- * For the tasks that were created before we detected the absence of
- * FP/SIMD, the TIF_FOREIGN_FPSTATE could be set via fpsimd_thread_switch(),
- * e.g, init. This could be then inherited by the children processes.
- * If we later detect that the system doesn't support FP/SIMD,
- * we must clear the flag for all the tasks to indicate that the
- * FPSTATE is clean (as we can't have one) to avoid looping for ever in
- * do_notify_resume().
- */
- if (!system_supports_fpsimd()) {
- clear_thread_flag(TIF_FOREIGN_FPSTATE);
- return;
- }
- local_bh_disable();
- if (test_and_clear_thread_flag(TIF_FOREIGN_FPSTATE)) {
- task_fpsimd_load();
- fpsimd_bind_task_to_cpu();
- }
- local_bh_enable();
- }
- /*
- * Load an updated userland FPSIMD state for 'current' from memory and set the
- * flag that indicates that the FPSIMD register contents are the most recent
- * FPSIMD state of 'current'
- */
- void fpsimd_update_current_state(struct user_fpsimd_state const *state)
- {
- if (WARN_ON(!system_supports_fpsimd()))
- return;
- local_bh_disable();
- current->thread.uw.fpsimd_state = *state;
- if (system_supports_sve() && test_thread_flag(TIF_SVE))
- fpsimd_to_sve(current);
- task_fpsimd_load();
- fpsimd_bind_task_to_cpu();
- clear_thread_flag(TIF_FOREIGN_FPSTATE);
- local_bh_enable();
- }
- /*
- * Invalidate live CPU copies of task t's FPSIMD state
- */
- void fpsimd_flush_task_state(struct task_struct *t)
- {
- t->thread.fpsimd_cpu = NR_CPUS;
- }
- void fpsimd_flush_cpu_state(void)
- {
- WARN_ON(!system_supports_fpsimd());
- __this_cpu_write(fpsimd_last_state.st, NULL);
- set_thread_flag(TIF_FOREIGN_FPSTATE);
- }
- #ifdef CONFIG_KERNEL_MODE_NEON
- DEFINE_PER_CPU(bool, kernel_neon_busy);
- EXPORT_PER_CPU_SYMBOL(kernel_neon_busy);
- /*
- * Kernel-side NEON support functions
- */
- /*
- * kernel_neon_begin(): obtain the CPU FPSIMD registers for use by the calling
- * context
- *
- * Must not be called unless may_use_simd() returns true.
- * Task context in the FPSIMD registers is saved back to memory as necessary.
- *
- * A matching call to kernel_neon_end() must be made before returning from the
- * calling context.
- *
- * The caller may freely use the FPSIMD registers until kernel_neon_end() is
- * called.
- */
- void kernel_neon_begin(void)
- {
- if (WARN_ON(!system_supports_fpsimd()))
- return;
- BUG_ON(!may_use_simd());
- local_bh_disable();
- __this_cpu_write(kernel_neon_busy, true);
- /* Save unsaved fpsimd state, if any: */
- fpsimd_save();
- /* Invalidate any task state remaining in the fpsimd regs: */
- fpsimd_flush_cpu_state();
- preempt_disable();
- local_bh_enable();
- }
- EXPORT_SYMBOL(kernel_neon_begin);
- /*
- * kernel_neon_end(): give the CPU FPSIMD registers back to the current task
- *
- * Must be called from a context in which kernel_neon_begin() was previously
- * called, with no call to kernel_neon_end() in the meantime.
- *
- * The caller must not use the FPSIMD registers after this function is called,
- * unless kernel_neon_begin() is called again in the meantime.
- */
- void kernel_neon_end(void)
- {
- bool busy;
- if (!system_supports_fpsimd())
- return;
- busy = __this_cpu_xchg(kernel_neon_busy, false);
- WARN_ON(!busy); /* No matching kernel_neon_begin()? */
- preempt_enable();
- }
- EXPORT_SYMBOL(kernel_neon_end);
- #ifdef CONFIG_EFI
- static DEFINE_PER_CPU(struct user_fpsimd_state, efi_fpsimd_state);
- static DEFINE_PER_CPU(bool, efi_fpsimd_state_used);
- static DEFINE_PER_CPU(bool, efi_sve_state_used);
- /*
- * EFI runtime services support functions
- *
- * The ABI for EFI runtime services allows EFI to use FPSIMD during the call.
- * This means that for EFI (and only for EFI), we have to assume that FPSIMD
- * is always used rather than being an optional accelerator.
- *
- * These functions provide the necessary support for ensuring FPSIMD
- * save/restore in the contexts from which EFI is used.
- *
- * Do not use them for any other purpose -- if tempted to do so, you are
- * either doing something wrong or you need to propose some refactoring.
- */
- /*
- * __efi_fpsimd_begin(): prepare FPSIMD for making an EFI runtime services call
- */
- void __efi_fpsimd_begin(void)
- {
- if (!system_supports_fpsimd())
- return;
- WARN_ON(preemptible());
- if (may_use_simd()) {
- kernel_neon_begin();
- } else {
- /*
- * If !efi_sve_state, SVE can't be in use yet and doesn't need
- * preserving:
- */
- if (system_supports_sve() && likely(efi_sve_state)) {
- char *sve_state = this_cpu_ptr(efi_sve_state);
- __this_cpu_write(efi_sve_state_used, true);
- sve_save_state(sve_state + sve_ffr_offset(sve_max_vl),
- &this_cpu_ptr(&efi_fpsimd_state)->fpsr);
- } else {
- fpsimd_save_state(this_cpu_ptr(&efi_fpsimd_state));
- }
- __this_cpu_write(efi_fpsimd_state_used, true);
- }
- }
- /*
- * __efi_fpsimd_end(): clean up FPSIMD after an EFI runtime services call
- */
- void __efi_fpsimd_end(void)
- {
- if (!system_supports_fpsimd())
- return;
- if (!__this_cpu_xchg(efi_fpsimd_state_used, false)) {
- kernel_neon_end();
- } else {
- if (system_supports_sve() &&
- likely(__this_cpu_read(efi_sve_state_used))) {
- char const *sve_state = this_cpu_ptr(efi_sve_state);
- sve_load_state(sve_state + sve_ffr_offset(sve_max_vl),
- &this_cpu_ptr(&efi_fpsimd_state)->fpsr,
- sve_vq_from_vl(sve_get_vl()) - 1);
- __this_cpu_write(efi_sve_state_used, false);
- } else {
- fpsimd_load_state(this_cpu_ptr(&efi_fpsimd_state));
- }
- }
- }
- #endif /* CONFIG_EFI */
- #endif /* CONFIG_KERNEL_MODE_NEON */
- #ifdef CONFIG_CPU_PM
- static int fpsimd_cpu_pm_notifier(struct notifier_block *self,
- unsigned long cmd, void *v)
- {
- switch (cmd) {
- case CPU_PM_ENTER:
- fpsimd_save();
- fpsimd_flush_cpu_state();
- break;
- case CPU_PM_EXIT:
- break;
- case CPU_PM_ENTER_FAILED:
- default:
- return NOTIFY_DONE;
- }
- return NOTIFY_OK;
- }
- static struct notifier_block fpsimd_cpu_pm_notifier_block = {
- .notifier_call = fpsimd_cpu_pm_notifier,
- };
- static void __init fpsimd_pm_init(void)
- {
- cpu_pm_register_notifier(&fpsimd_cpu_pm_notifier_block);
- }
- #else
- static inline void fpsimd_pm_init(void) { }
- #endif /* CONFIG_CPU_PM */
- #ifdef CONFIG_HOTPLUG_CPU
- static int fpsimd_cpu_dead(unsigned int cpu)
- {
- per_cpu(fpsimd_last_state.st, cpu) = NULL;
- return 0;
- }
- static inline void fpsimd_hotplug_init(void)
- {
- cpuhp_setup_state_nocalls(CPUHP_ARM64_FPSIMD_DEAD, "arm64/fpsimd:dead",
- NULL, fpsimd_cpu_dead);
- }
- #else
- static inline void fpsimd_hotplug_init(void) { }
- #endif
- /*
- * FP/SIMD support code initialisation.
- */
- static int __init fpsimd_init(void)
- {
- if (elf_hwcap & HWCAP_FP) {
- fpsimd_pm_init();
- fpsimd_hotplug_init();
- } else {
- pr_notice("Floating-point is not implemented\n");
- }
- if (!(elf_hwcap & HWCAP_ASIMD))
- pr_notice("Advanced SIMD is not implemented\n");
- return sve_sysctl_init();
- }
- core_initcall(fpsimd_init);
|