123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553 |
- /*
- * Based on arch/arm/kernel/process.c
- *
- * Original Copyright (C) 1995 Linus Torvalds
- * Copyright (C) 1996-2000 Russell King - Converted to ARM.
- * Copyright (C) 2012 ARM Ltd.
- *
- * This program is free software; you can redistribute it and/or modify
- * it under the terms of the GNU General Public License version 2 as
- * published by the Free Software Foundation.
- *
- * This program is distributed in the hope that it will be useful,
- * but WITHOUT ANY WARRANTY; without even the implied warranty of
- * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
- * GNU General Public License for more details.
- *
- * You should have received a copy of the GNU General Public License
- * along with this program. If not, see <http://www.gnu.org/licenses/>.
- */
- #include <stdarg.h>
- #include <linux/compat.h>
- #include <linux/efi.h>
- #include <linux/export.h>
- #include <linux/sched.h>
- #include <linux/sched/debug.h>
- #include <linux/sched/task.h>
- #include <linux/sched/task_stack.h>
- #include <linux/kernel.h>
- #include <linux/mm.h>
- #include <linux/stddef.h>
- #include <linux/unistd.h>
- #include <linux/user.h>
- #include <linux/delay.h>
- #include <linux/reboot.h>
- #include <linux/interrupt.h>
- #include <linux/init.h>
- #include <linux/cpu.h>
- #include <linux/elfcore.h>
- #include <linux/pm.h>
- #include <linux/tick.h>
- #include <linux/utsname.h>
- #include <linux/uaccess.h>
- #include <linux/random.h>
- #include <linux/hw_breakpoint.h>
- #include <linux/personality.h>
- #include <linux/notifier.h>
- #include <trace/events/power.h>
- #include <linux/percpu.h>
- #include <linux/thread_info.h>
- #include <asm/alternative.h>
- #include <asm/compat.h>
- #include <asm/cacheflush.h>
- #include <asm/exec.h>
- #include <asm/fpsimd.h>
- #include <asm/mmu_context.h>
- #include <asm/processor.h>
- #include <asm/stacktrace.h>
- #ifdef CONFIG_STACKPROTECTOR
- #include <linux/stackprotector.h>
- unsigned long __stack_chk_guard __read_mostly;
- EXPORT_SYMBOL(__stack_chk_guard);
- #endif
- /*
- * Function pointers to optional machine specific functions
- */
- void (*pm_power_off)(void);
- EXPORT_SYMBOL_GPL(pm_power_off);
- void (*arm_pm_restart)(enum reboot_mode reboot_mode, const char *cmd);
- /*
- * This is our default idle handler.
- */
- void arch_cpu_idle(void)
- {
- /*
- * This should do all the clock switching and wait for interrupt
- * tricks
- */
- trace_cpu_idle_rcuidle(1, smp_processor_id());
- cpu_do_idle();
- local_irq_enable();
- trace_cpu_idle_rcuidle(PWR_EVENT_EXIT, smp_processor_id());
- }
- #ifdef CONFIG_HOTPLUG_CPU
- void arch_cpu_idle_dead(void)
- {
- cpu_die();
- }
- #endif
- /*
- * Called by kexec, immediately prior to machine_kexec().
- *
- * This must completely disable all secondary CPUs; simply causing those CPUs
- * to execute e.g. a RAM-based pin loop is not sufficient. This allows the
- * kexec'd kernel to use any and all RAM as it sees fit, without having to
- * avoid any code or data used by any SW CPU pin loop. The CPU hotplug
- * functionality embodied in disable_nonboot_cpus() to achieve this.
- */
- void machine_shutdown(void)
- {
- disable_nonboot_cpus();
- }
- /*
- * Halting simply requires that the secondary CPUs stop performing any
- * activity (executing tasks, handling interrupts). smp_send_stop()
- * achieves this.
- */
- void machine_halt(void)
- {
- local_irq_disable();
- smp_send_stop();
- while (1);
- }
- /*
- * Power-off simply requires that the secondary CPUs stop performing any
- * activity (executing tasks, handling interrupts). smp_send_stop()
- * achieves this. When the system power is turned off, it will take all CPUs
- * with it.
- */
- void machine_power_off(void)
- {
- local_irq_disable();
- smp_send_stop();
- if (pm_power_off)
- pm_power_off();
- }
- /*
- * Restart requires that the secondary CPUs stop performing any activity
- * while the primary CPU resets the system. Systems with multiple CPUs must
- * provide a HW restart implementation, to ensure that all CPUs reset at once.
- * This is required so that any code running after reset on the primary CPU
- * doesn't have to co-ordinate with other CPUs to ensure they aren't still
- * executing pre-reset code, and using RAM that the primary CPU's code wishes
- * to use. Implementing such co-ordination would be essentially impossible.
- */
- void machine_restart(char *cmd)
- {
- /* Disable interrupts first */
- local_irq_disable();
- smp_send_stop();
- /*
- * UpdateCapsule() depends on the system being reset via
- * ResetSystem().
- */
- if (efi_enabled(EFI_RUNTIME_SERVICES))
- efi_reboot(reboot_mode, NULL);
- /* Now call the architecture specific reboot code. */
- if (arm_pm_restart)
- arm_pm_restart(reboot_mode, cmd);
- else
- do_kernel_restart(cmd);
- /*
- * Whoops - the architecture was unable to reboot.
- */
- printk("Reboot failed -- System halted\n");
- while (1);
- }
- static void print_pstate(struct pt_regs *regs)
- {
- u64 pstate = regs->pstate;
- if (compat_user_mode(regs)) {
- printk("pstate: %08llx (%c%c%c%c %c %s %s %c%c%c)\n",
- pstate,
- pstate & PSR_AA32_N_BIT ? 'N' : 'n',
- pstate & PSR_AA32_Z_BIT ? 'Z' : 'z',
- pstate & PSR_AA32_C_BIT ? 'C' : 'c',
- pstate & PSR_AA32_V_BIT ? 'V' : 'v',
- pstate & PSR_AA32_Q_BIT ? 'Q' : 'q',
- pstate & PSR_AA32_T_BIT ? "T32" : "A32",
- pstate & PSR_AA32_E_BIT ? "BE" : "LE",
- pstate & PSR_AA32_A_BIT ? 'A' : 'a',
- pstate & PSR_AA32_I_BIT ? 'I' : 'i',
- pstate & PSR_AA32_F_BIT ? 'F' : 'f');
- } else {
- printk("pstate: %08llx (%c%c%c%c %c%c%c%c %cPAN %cUAO)\n",
- pstate,
- pstate & PSR_N_BIT ? 'N' : 'n',
- pstate & PSR_Z_BIT ? 'Z' : 'z',
- pstate & PSR_C_BIT ? 'C' : 'c',
- pstate & PSR_V_BIT ? 'V' : 'v',
- pstate & PSR_D_BIT ? 'D' : 'd',
- pstate & PSR_A_BIT ? 'A' : 'a',
- pstate & PSR_I_BIT ? 'I' : 'i',
- pstate & PSR_F_BIT ? 'F' : 'f',
- pstate & PSR_PAN_BIT ? '+' : '-',
- pstate & PSR_UAO_BIT ? '+' : '-');
- }
- }
- void __show_regs(struct pt_regs *regs)
- {
- int i, top_reg;
- u64 lr, sp;
- if (compat_user_mode(regs)) {
- lr = regs->compat_lr;
- sp = regs->compat_sp;
- top_reg = 12;
- } else {
- lr = regs->regs[30];
- sp = regs->sp;
- top_reg = 29;
- }
- show_regs_print_info(KERN_DEFAULT);
- print_pstate(regs);
- if (!user_mode(regs)) {
- printk("pc : %pS\n", (void *)regs->pc);
- printk("lr : %pS\n", (void *)lr);
- } else {
- printk("pc : %016llx\n", regs->pc);
- printk("lr : %016llx\n", lr);
- }
- printk("sp : %016llx\n", sp);
- i = top_reg;
- while (i >= 0) {
- printk("x%-2d: %016llx ", i, regs->regs[i]);
- i--;
- if (i % 2 == 0) {
- pr_cont("x%-2d: %016llx ", i, regs->regs[i]);
- i--;
- }
- pr_cont("\n");
- }
- }
- void show_regs(struct pt_regs * regs)
- {
- __show_regs(regs);
- dump_backtrace(regs, NULL);
- }
- static void tls_thread_flush(void)
- {
- write_sysreg(0, tpidr_el0);
- if (is_compat_task()) {
- current->thread.uw.tp_value = 0;
- /*
- * We need to ensure ordering between the shadow state and the
- * hardware state, so that we don't corrupt the hardware state
- * with a stale shadow state during context switch.
- */
- barrier();
- write_sysreg(0, tpidrro_el0);
- }
- }
- void flush_thread(void)
- {
- fpsimd_flush_thread();
- tls_thread_flush();
- flush_ptrace_hw_breakpoint(current);
- }
- void release_thread(struct task_struct *dead_task)
- {
- }
- void arch_release_task_struct(struct task_struct *tsk)
- {
- fpsimd_release_task(tsk);
- }
- int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
- {
- if (current->mm)
- fpsimd_preserve_current_state();
- *dst = *src;
- /* We rely on the above assignment to initialize dst's thread_flags: */
- BUILD_BUG_ON(!IS_ENABLED(CONFIG_THREAD_INFO_IN_TASK));
- /*
- * Detach src's sve_state (if any) from dst so that it does not
- * get erroneously used or freed prematurely. dst's sve_state
- * will be allocated on demand later on if dst uses SVE.
- * For consistency, also clear TIF_SVE here: this could be done
- * later in copy_process(), but to avoid tripping up future
- * maintainers it is best not to leave TIF_SVE and sve_state in
- * an inconsistent state, even temporarily.
- */
- dst->thread.sve_state = NULL;
- clear_tsk_thread_flag(dst, TIF_SVE);
- return 0;
- }
- asmlinkage void ret_from_fork(void) asm("ret_from_fork");
- int copy_thread(unsigned long clone_flags, unsigned long stack_start,
- unsigned long stk_sz, struct task_struct *p)
- {
- struct pt_regs *childregs = task_pt_regs(p);
- memset(&p->thread.cpu_context, 0, sizeof(struct cpu_context));
- /*
- * In case p was allocated the same task_struct pointer as some
- * other recently-exited task, make sure p is disassociated from
- * any cpu that may have run that now-exited task recently.
- * Otherwise we could erroneously skip reloading the FPSIMD
- * registers for p.
- */
- fpsimd_flush_task_state(p);
- if (likely(!(p->flags & PF_KTHREAD))) {
- *childregs = *current_pt_regs();
- childregs->regs[0] = 0;
- /*
- * Read the current TLS pointer from tpidr_el0 as it may be
- * out-of-sync with the saved value.
- */
- *task_user_tls(p) = read_sysreg(tpidr_el0);
- if (stack_start) {
- if (is_compat_thread(task_thread_info(p)))
- childregs->compat_sp = stack_start;
- else
- childregs->sp = stack_start;
- }
- /*
- * If a TLS pointer was passed to clone (4th argument), use it
- * for the new thread.
- */
- if (clone_flags & CLONE_SETTLS)
- p->thread.uw.tp_value = childregs->regs[3];
- } else {
- memset(childregs, 0, sizeof(struct pt_regs));
- childregs->pstate = PSR_MODE_EL1h;
- if (IS_ENABLED(CONFIG_ARM64_UAO) &&
- cpus_have_const_cap(ARM64_HAS_UAO))
- childregs->pstate |= PSR_UAO_BIT;
- if (arm64_get_ssbd_state() == ARM64_SSBD_FORCE_DISABLE)
- set_ssbs_bit(childregs);
- p->thread.cpu_context.x19 = stack_start;
- p->thread.cpu_context.x20 = stk_sz;
- }
- p->thread.cpu_context.pc = (unsigned long)ret_from_fork;
- p->thread.cpu_context.sp = (unsigned long)childregs;
- ptrace_hw_copy_thread(p);
- return 0;
- }
- void tls_preserve_current_state(void)
- {
- *task_user_tls(current) = read_sysreg(tpidr_el0);
- }
- static void tls_thread_switch(struct task_struct *next)
- {
- tls_preserve_current_state();
- if (is_compat_thread(task_thread_info(next)))
- write_sysreg(next->thread.uw.tp_value, tpidrro_el0);
- else if (!arm64_kernel_unmapped_at_el0())
- write_sysreg(0, tpidrro_el0);
- write_sysreg(*task_user_tls(next), tpidr_el0);
- }
- /* Restore the UAO state depending on next's addr_limit */
- void uao_thread_switch(struct task_struct *next)
- {
- if (IS_ENABLED(CONFIG_ARM64_UAO)) {
- if (task_thread_info(next)->addr_limit == KERNEL_DS)
- asm(ALTERNATIVE("nop", SET_PSTATE_UAO(1), ARM64_HAS_UAO));
- else
- asm(ALTERNATIVE("nop", SET_PSTATE_UAO(0), ARM64_HAS_UAO));
- }
- }
- /*
- * Force SSBS state on context-switch, since it may be lost after migrating
- * from a CPU which treats the bit as RES0 in a heterogeneous system.
- */
- static void ssbs_thread_switch(struct task_struct *next)
- {
- struct pt_regs *regs = task_pt_regs(next);
- /*
- * Nothing to do for kernel threads, but 'regs' may be junk
- * (e.g. idle task) so check the flags and bail early.
- */
- if (unlikely(next->flags & PF_KTHREAD))
- return;
- /*
- * If all CPUs implement the SSBS extension, then we just need to
- * context-switch the PSTATE field.
- */
- if (cpu_have_feature(cpu_feature(SSBS)))
- return;
- /* If the mitigation is enabled, then we leave SSBS clear. */
- if ((arm64_get_ssbd_state() == ARM64_SSBD_FORCE_ENABLE) ||
- test_tsk_thread_flag(next, TIF_SSBD))
- return;
- if (compat_user_mode(regs))
- set_compat_ssbs_bit(regs);
- else if (user_mode(regs))
- set_ssbs_bit(regs);
- }
- /*
- * We store our current task in sp_el0, which is clobbered by userspace. Keep a
- * shadow copy so that we can restore this upon entry from userspace.
- *
- * This is *only* for exception entry from EL0, and is not valid until we
- * __switch_to() a user task.
- */
- DEFINE_PER_CPU(struct task_struct *, __entry_task);
- static void entry_task_switch(struct task_struct *next)
- {
- __this_cpu_write(__entry_task, next);
- }
- /*
- * Thread switching.
- */
- __notrace_funcgraph struct task_struct *__switch_to(struct task_struct *prev,
- struct task_struct *next)
- {
- struct task_struct *last;
- fpsimd_thread_switch(next);
- tls_thread_switch(next);
- hw_breakpoint_thread_switch(next);
- contextidr_thread_switch(next);
- entry_task_switch(next);
- uao_thread_switch(next);
- ssbs_thread_switch(next);
- /*
- * Complete any pending TLB or cache maintenance on this CPU in case
- * the thread migrates to a different CPU.
- * This full barrier is also required by the membarrier system
- * call.
- */
- dsb(ish);
- /* the actual thread switch */
- last = cpu_switch_to(prev, next);
- return last;
- }
- unsigned long get_wchan(struct task_struct *p)
- {
- struct stackframe frame;
- unsigned long stack_page, ret = 0;
- int count = 0;
- if (!p || p == current || p->state == TASK_RUNNING)
- return 0;
- stack_page = (unsigned long)try_get_task_stack(p);
- if (!stack_page)
- return 0;
- frame.fp = thread_saved_fp(p);
- frame.pc = thread_saved_pc(p);
- #ifdef CONFIG_FUNCTION_GRAPH_TRACER
- frame.graph = p->curr_ret_stack;
- #endif
- do {
- if (unwind_frame(p, &frame))
- goto out;
- if (!in_sched_functions(frame.pc)) {
- ret = frame.pc;
- goto out;
- }
- } while (count ++ < 16);
- out:
- put_task_stack(p);
- return ret;
- }
- unsigned long arch_align_stack(unsigned long sp)
- {
- if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
- sp -= get_random_int() & ~PAGE_MASK;
- return sp & ~0xf;
- }
- unsigned long arch_randomize_brk(struct mm_struct *mm)
- {
- if (is_compat_task())
- return randomize_page(mm->brk, SZ_32M);
- else
- return randomize_page(mm->brk, SZ_1G);
- }
- /*
- * Called from setup_new_exec() after (COMPAT_)SET_PERSONALITY.
- */
- void arch_setup_new_exec(void)
- {
- current->mm->context.flags = is_compat_task() ? MMCF_AARCH32 : 0;
- }
- #ifdef CONFIG_GCC_PLUGIN_STACKLEAK
- void __used stackleak_check_alloca(unsigned long size)
- {
- unsigned long stack_left;
- unsigned long current_sp = current_stack_pointer;
- struct stack_info info;
- BUG_ON(!on_accessible_stack(current, current_sp, &info));
- stack_left = current_sp - info.low;
- /*
- * There's a good chance we're almost out of stack space if this
- * is true. Using panic() over BUG() is more likely to give
- * reliable debugging output.
- */
- if (size >= stack_left)
- panic("alloca() over the kernel stack boundary\n");
- }
- EXPORT_SYMBOL(stackleak_check_alloca);
- #endif
|