| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378 | /* * Broadcom Brahma-B15 CPU read-ahead cache management functions * * Copyright (C) 2015-2016 Broadcom * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. */#include <linux/err.h>#include <linux/spinlock.h>#include <linux/io.h>#include <linux/bitops.h>#include <linux/of_address.h>#include <linux/notifier.h>#include <linux/cpu.h>#include <linux/syscore_ops.h>#include <linux/reboot.h>#include <asm/cacheflush.h>#include <asm/hardware/cache-b15-rac.h>extern void v7_flush_kern_cache_all(void);/* RAC register offsets, relative to the HIF_CPU_BIUCTRL register base */#define RAC_CONFIG0_REG			(0x78)#define  RACENPREF_MASK			(0x3)#define  RACPREFINST_SHIFT		(0)#define  RACENINST_SHIFT		(2)#define  RACPREFDATA_SHIFT		(4)#define  RACENDATA_SHIFT		(6)#define  RAC_CPU_SHIFT			(8)#define  RACCFG_MASK			(0xff)#define RAC_CONFIG1_REG			(0x7c)/* Brahma-B15 is a quad-core only design */#define B15_RAC_FLUSH_REG		(0x80)/* Brahma-B53 is an octo-core design */#define B53_RAC_FLUSH_REG		(0x84)#define  FLUSH_RAC			(1 << 0)/* Bitmask to enable instruction and data prefetching with a 256-bytes stride */#define RAC_DATA_INST_EN_MASK		(1 << RACPREFINST_SHIFT | \					 RACENPREF_MASK << RACENINST_SHIFT | \					 1 << RACPREFDATA_SHIFT | \					 RACENPREF_MASK << RACENDATA_SHIFT)#define RAC_ENABLED			0/* Special state where we want to bypass the spinlock and call directly * into the v7 cache maintenance operations during suspend/resume */#define RAC_SUSPENDED			1static void __iomem *b15_rac_base;static DEFINE_SPINLOCK(rac_lock);static u32 rac_config0_reg;static u32 rac_flush_offset;/* Initialization flag to avoid checking for b15_rac_base, and to prevent * multi-platform kernels from crashing here as well. */static unsigned long b15_rac_flags;static inline u32 __b15_rac_disable(void){	u32 val = __raw_readl(b15_rac_base + RAC_CONFIG0_REG);	__raw_writel(0, b15_rac_base + RAC_CONFIG0_REG);	dmb();	return val;}static inline void __b15_rac_flush(void){	u32 reg;	__raw_writel(FLUSH_RAC, b15_rac_base + rac_flush_offset);	do {		/* This dmb() is required to force the Bus Interface Unit		 * to clean oustanding writes, and forces an idle cycle		 * to be inserted.		 */		dmb();		reg = __raw_readl(b15_rac_base + rac_flush_offset);	} while (reg & FLUSH_RAC);}static inline u32 b15_rac_disable_and_flush(void){	u32 reg;	reg = __b15_rac_disable();	__b15_rac_flush();	return reg;}static inline void __b15_rac_enable(u32 val){	__raw_writel(val, b15_rac_base + RAC_CONFIG0_REG);	/* dsb() is required here to be consistent with __flush_icache_all() */	dsb();}#define BUILD_RAC_CACHE_OP(name, bar)				\void b15_flush_##name(void)					\{								\	unsigned int do_flush;					\	u32 val = 0;						\								\	if (test_bit(RAC_SUSPENDED, &b15_rac_flags)) {		\		v7_flush_##name();				\		bar;						\		return;						\	}							\								\	spin_lock(&rac_lock);					\	do_flush = test_bit(RAC_ENABLED, &b15_rac_flags);	\	if (do_flush)						\		val = b15_rac_disable_and_flush();		\	v7_flush_##name();					\	if (!do_flush)						\		bar;						\	else							\		__b15_rac_enable(val);				\	spin_unlock(&rac_lock);					\}#define nobarrier/* The readahead cache present in the Brahma-B15 CPU is a special piece of * hardware after the integrated L2 cache of the B15 CPU complex whose purpose * is to prefetch instruction and/or data with a line size of either 64 bytes * or 256 bytes. The rationale is that the data-bus of the CPU interface is * optimized for 256-bytes transactions, and enabling the readahead cache * provides a significant performance boost we want it enabled (typically * twice the performance for a memcpy benchmark application). * * The readahead cache is transparent for Modified Virtual Addresses * cache maintenance operations: ICIMVAU, DCIMVAC, DCCMVAC, DCCMVAU and * DCCIMVAC. * * It is however not transparent for the following cache maintenance * operations: DCISW, DCCSW, DCCISW, ICIALLUIS and ICIALLU which is precisely * what we are patching here with our BUILD_RAC_CACHE_OP here. */BUILD_RAC_CACHE_OP(kern_cache_all, nobarrier);static void b15_rac_enable(void){	unsigned int cpu;	u32 enable = 0;	for_each_possible_cpu(cpu)		enable |= (RAC_DATA_INST_EN_MASK << (cpu * RAC_CPU_SHIFT));	b15_rac_disable_and_flush();	__b15_rac_enable(enable);}static int b15_rac_reboot_notifier(struct notifier_block *nb,				   unsigned long action,				   void *data){	/* During kexec, we are not yet migrated on the boot CPU, so we need to	 * make sure we are SMP safe here. Once the RAC is disabled, flag it as	 * suspended such that the hotplug notifier returns early.	 */	if (action == SYS_RESTART) {		spin_lock(&rac_lock);		b15_rac_disable_and_flush();		clear_bit(RAC_ENABLED, &b15_rac_flags);		set_bit(RAC_SUSPENDED, &b15_rac_flags);		spin_unlock(&rac_lock);	}	return NOTIFY_DONE;}static struct notifier_block b15_rac_reboot_nb = {	.notifier_call	= b15_rac_reboot_notifier,};/* The CPU hotplug case is the most interesting one, we basically need to make * sure that the RAC is disabled for the entire system prior to having a CPU * die, in particular prior to this dying CPU having exited the coherency * domain. * * Once this CPU is marked dead, we can safely re-enable the RAC for the * remaining CPUs in the system which are still online. * * Offlining a CPU is the problematic case, onlining a CPU is not much of an * issue since the CPU and its cache-level hierarchy will start filling with * the RAC disabled, so L1 and L2 only. * * In this function, we should NOT have to verify any unsafe setting/condition * b15_rac_base: * *   It is protected by the RAC_ENABLED flag which is cleared by default, and *   being cleared when initial procedure is done. b15_rac_base had been set at *   that time. * * RAC_ENABLED: *   There is a small timing windows, in b15_rac_init(), between *      cpuhp_setup_state_*() *      ... *      set RAC_ENABLED *   However, there is no hotplug activity based on the Linux booting procedure. * * Since we have to disable RAC for all cores, we keep RAC on as long as as * possible (disable it as late as possible) to gain the cache benefit. * * Thus, dying/dead states are chosen here * * We are choosing not do disable the RAC on a per-CPU basis, here, if we did * we would want to consider disabling it as early as possible to benefit the * other active CPUs. *//* Running on the dying CPU */static int b15_rac_dying_cpu(unsigned int cpu){	/* During kexec/reboot, the RAC is disabled via the reboot notifier	 * return early here.	 */	if (test_bit(RAC_SUSPENDED, &b15_rac_flags))		return 0;	spin_lock(&rac_lock);	/* Indicate that we are starting a hotplug procedure */	__clear_bit(RAC_ENABLED, &b15_rac_flags);	/* Disable the readahead cache and save its value to a global */	rac_config0_reg = b15_rac_disable_and_flush();	spin_unlock(&rac_lock);	return 0;}/* Running on a non-dying CPU */static int b15_rac_dead_cpu(unsigned int cpu){	/* During kexec/reboot, the RAC is disabled via the reboot notifier	 * return early here.	 */	if (test_bit(RAC_SUSPENDED, &b15_rac_flags))		return 0;	spin_lock(&rac_lock);	/* And enable it */	__b15_rac_enable(rac_config0_reg);	__set_bit(RAC_ENABLED, &b15_rac_flags);	spin_unlock(&rac_lock);	return 0;}static int b15_rac_suspend(void){	/* Suspend the read-ahead cache oeprations, forcing our cache	 * implementation to fallback to the regular ARMv7 calls.	 *	 * We are guaranteed to be running on the boot CPU at this point and	 * with every other CPU quiesced, so setting RAC_SUSPENDED is not racy	 * here.	 */	rac_config0_reg = b15_rac_disable_and_flush();	set_bit(RAC_SUSPENDED, &b15_rac_flags);	return 0;}static void b15_rac_resume(void){	/* Coming out of a S3 suspend/resume cycle, the read-ahead cache	 * register RAC_CONFIG0_REG will be restored to its default value, make	 * sure we re-enable it and set the enable flag, we are also guaranteed	 * to run on the boot CPU, so not racy again.	 */	__b15_rac_enable(rac_config0_reg);	clear_bit(RAC_SUSPENDED, &b15_rac_flags);}static struct syscore_ops b15_rac_syscore_ops = {	.suspend	= b15_rac_suspend,	.resume		= b15_rac_resume,};static int __init b15_rac_init(void){	struct device_node *dn, *cpu_dn;	int ret = 0, cpu;	u32 reg, en_mask = 0;	dn = of_find_compatible_node(NULL, NULL, "brcm,brcmstb-cpu-biu-ctrl");	if (!dn)		return -ENODEV;	if (WARN(num_possible_cpus() > 4, "RAC only supports 4 CPUs\n"))		goto out;	b15_rac_base = of_iomap(dn, 0);	if (!b15_rac_base) {		pr_err("failed to remap BIU control base\n");		ret = -ENOMEM;		goto out;	}	cpu_dn = of_get_cpu_node(0, NULL);	if (!cpu_dn) {		ret = -ENODEV;		goto out;	}	if (of_device_is_compatible(cpu_dn, "brcm,brahma-b15"))		rac_flush_offset = B15_RAC_FLUSH_REG;	else if (of_device_is_compatible(cpu_dn, "brcm,brahma-b53"))		rac_flush_offset = B53_RAC_FLUSH_REG;	else {		pr_err("Unsupported CPU\n");		of_node_put(cpu_dn);		ret = -EINVAL;		goto out;	}	of_node_put(cpu_dn);	ret = register_reboot_notifier(&b15_rac_reboot_nb);	if (ret) {		pr_err("failed to register reboot notifier\n");		iounmap(b15_rac_base);		goto out;	}	if (IS_ENABLED(CONFIG_HOTPLUG_CPU)) {		ret = cpuhp_setup_state_nocalls(CPUHP_AP_ARM_CACHE_B15_RAC_DEAD,					"arm/cache-b15-rac:dead",					NULL, b15_rac_dead_cpu);		if (ret)			goto out_unmap;		ret = cpuhp_setup_state_nocalls(CPUHP_AP_ARM_CACHE_B15_RAC_DYING,					"arm/cache-b15-rac:dying",					NULL, b15_rac_dying_cpu);		if (ret)			goto out_cpu_dead;	}	if (IS_ENABLED(CONFIG_PM_SLEEP))		register_syscore_ops(&b15_rac_syscore_ops);	spin_lock(&rac_lock);	reg = __raw_readl(b15_rac_base + RAC_CONFIG0_REG);	for_each_possible_cpu(cpu)		en_mask |= ((1 << RACPREFDATA_SHIFT) << (cpu * RAC_CPU_SHIFT));	WARN(reg & en_mask, "Read-ahead cache not previously disabled\n");	b15_rac_enable();	set_bit(RAC_ENABLED, &b15_rac_flags);	spin_unlock(&rac_lock);	pr_info("Broadcom Brahma-B15 readahead cache at: 0x%p\n",		b15_rac_base + RAC_CONFIG0_REG);	goto out;out_cpu_dead:	cpuhp_remove_state_nocalls(CPUHP_AP_ARM_CACHE_B15_RAC_DYING);out_unmap:	unregister_reboot_notifier(&b15_rac_reboot_nb);	iounmap(b15_rac_base);out:	of_node_put(dn);	return ret;}arch_initcall(b15_rac_init);
 |