odroid.c 14 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514
  1. // SPDX-License-Identifier: GPL-2.0+
  2. /*
  3. * Copyright (C) 2014 Samsung Electronics
  4. * Przemyslaw Marczak <p.marczak@samsung.com>
  5. */
  6. #include <common.h>
  7. #include <asm/arch/pinmux.h>
  8. #include <asm/arch/power.h>
  9. #include <asm/arch/clock.h>
  10. #include <asm/arch/gpio.h>
  11. #include <asm/gpio.h>
  12. #include <asm/arch/cpu.h>
  13. #include <dm.h>
  14. #include <power/pmic.h>
  15. #include <power/regulator.h>
  16. #include <power/max77686_pmic.h>
  17. #include <errno.h>
  18. #include <mmc.h>
  19. #include <usb.h>
  20. #include <usb/dwc2_udc.h>
  21. #include <samsung/misc.h>
  22. #include "setup.h"
  23. DECLARE_GLOBAL_DATA_PTR;
  24. #ifdef CONFIG_BOARD_TYPES
  25. /* Odroid board types */
  26. enum {
  27. ODROID_TYPE_U3,
  28. ODROID_TYPE_X2,
  29. ODROID_TYPES,
  30. };
  31. void set_board_type(void)
  32. {
  33. /* Set GPA1 pin 1 to HI - enable XCL205 output */
  34. writel(XCL205_EN_GPIO_CON_CFG, XCL205_EN_GPIO_CON);
  35. writel(XCL205_EN_GPIO_DAT_CFG, XCL205_EN_GPIO_CON + 0x4);
  36. writel(XCL205_EN_GPIO_PUD_CFG, XCL205_EN_GPIO_CON + 0x8);
  37. writel(XCL205_EN_GPIO_DRV_CFG, XCL205_EN_GPIO_CON + 0xc);
  38. /* Set GPC1 pin 2 to IN - check XCL205 output state */
  39. writel(XCL205_STATE_GPIO_CON_CFG, XCL205_STATE_GPIO_CON);
  40. writel(XCL205_STATE_GPIO_PUD_CFG, XCL205_STATE_GPIO_CON + 0x8);
  41. /* XCL205 - needs some latch time */
  42. sdelay(200000);
  43. /* Check GPC1 pin2 - LED supplied by XCL205 - X2 only */
  44. if (readl(XCL205_STATE_GPIO_DAT) & (1 << XCL205_STATE_GPIO_PIN))
  45. gd->board_type = ODROID_TYPE_X2;
  46. else
  47. gd->board_type = ODROID_TYPE_U3;
  48. }
  49. const char *get_board_type(void)
  50. {
  51. const char *board_type[] = {"u3", "x2"};
  52. return board_type[gd->board_type];
  53. }
  54. #endif
  55. #ifdef CONFIG_SET_DFU_ALT_INFO
  56. char *get_dfu_alt_system(char *interface, char *devstr)
  57. {
  58. return env_get("dfu_alt_system");
  59. }
  60. char *get_dfu_alt_boot(char *interface, char *devstr)
  61. {
  62. struct mmc *mmc;
  63. char *alt_boot;
  64. int dev_num;
  65. dev_num = simple_strtoul(devstr, NULL, 10);
  66. mmc = find_mmc_device(dev_num);
  67. if (!mmc)
  68. return NULL;
  69. if (mmc_init(mmc))
  70. return NULL;
  71. alt_boot = IS_SD(mmc) ? CONFIG_DFU_ALT_BOOT_SD :
  72. CONFIG_DFU_ALT_BOOT_EMMC;
  73. return alt_boot;
  74. }
  75. #endif
  76. static void board_clock_init(void)
  77. {
  78. unsigned int set, clr, clr_src_cpu, clr_pll_con0, clr_src_dmc;
  79. struct exynos4x12_clock *clk = (struct exynos4x12_clock *)
  80. samsung_get_base_clock();
  81. /*
  82. * CMU_CPU clocks src to MPLL
  83. * Bit values: 0 ; 1
  84. * MUX_APLL_SEL: FIN_PLL ; FOUT_APLL
  85. * MUX_CORE_SEL: MOUT_APLL ; SCLK_MPLL
  86. * MUX_HPM_SEL: MOUT_APLL ; SCLK_MPLL_USER_C
  87. * MUX_MPLL_USER_SEL_C: FIN_PLL ; SCLK_MPLL
  88. */
  89. clr_src_cpu = MUX_APLL_SEL(1) | MUX_CORE_SEL(1) |
  90. MUX_HPM_SEL(1) | MUX_MPLL_USER_SEL_C(1);
  91. set = MUX_APLL_SEL(0) | MUX_CORE_SEL(1) | MUX_HPM_SEL(1) |
  92. MUX_MPLL_USER_SEL_C(1);
  93. clrsetbits_le32(&clk->src_cpu, clr_src_cpu, set);
  94. /* Wait for mux change */
  95. while (readl(&clk->mux_stat_cpu) & MUX_STAT_CPU_CHANGING)
  96. continue;
  97. /* Set APLL to 1000MHz */
  98. clr_pll_con0 = SDIV(7) | PDIV(63) | MDIV(1023) | FSEL(1);
  99. set = SDIV(0) | PDIV(3) | MDIV(125) | FSEL(1);
  100. clrsetbits_le32(&clk->apll_con0, clr_pll_con0, set);
  101. /* Wait for PLL to be locked */
  102. while (!(readl(&clk->apll_con0) & PLL_LOCKED_BIT))
  103. continue;
  104. /* Set CMU_CPU clocks src to APLL */
  105. set = MUX_APLL_SEL(1) | MUX_CORE_SEL(0) | MUX_HPM_SEL(0) |
  106. MUX_MPLL_USER_SEL_C(1);
  107. clrsetbits_le32(&clk->src_cpu, clr_src_cpu, set);
  108. /* Wait for mux change */
  109. while (readl(&clk->mux_stat_cpu) & MUX_STAT_CPU_CHANGING)
  110. continue;
  111. set = CORE_RATIO(0) | COREM0_RATIO(2) | COREM1_RATIO(5) |
  112. PERIPH_RATIO(0) | ATB_RATIO(4) | PCLK_DBG_RATIO(1) |
  113. APLL_RATIO(0) | CORE2_RATIO(0);
  114. /*
  115. * Set dividers for MOUTcore = 1000 MHz
  116. * coreout = MOUT / (ratio + 1) = 1000 MHz (0)
  117. * corem0 = armclk / (ratio + 1) = 333 MHz (2)
  118. * corem1 = armclk / (ratio + 1) = 166 MHz (5)
  119. * periph = armclk / (ratio + 1) = 1000 MHz (0)
  120. * atbout = MOUT / (ratio + 1) = 200 MHz (4)
  121. * pclkdbgout = atbout / (ratio + 1) = 100 MHz (1)
  122. * sclkapll = MOUTapll / (ratio + 1) = 1000 MHz (0)
  123. * core2out = core_out / (ratio + 1) = 1000 MHz (0) (armclk)
  124. */
  125. clr = CORE_RATIO(7) | COREM0_RATIO(7) | COREM1_RATIO(7) |
  126. PERIPH_RATIO(7) | ATB_RATIO(7) | PCLK_DBG_RATIO(7) |
  127. APLL_RATIO(7) | CORE2_RATIO(7);
  128. clrsetbits_le32(&clk->div_cpu0, clr, set);
  129. /* Wait for divider ready status */
  130. while (readl(&clk->div_stat_cpu0) & DIV_STAT_CPU0_CHANGING)
  131. continue;
  132. /*
  133. * For MOUThpm = 1000 MHz (MOUTapll)
  134. * doutcopy = MOUThpm / (ratio + 1) = 200 (4)
  135. * sclkhpm = doutcopy / (ratio + 1) = 200 (4)
  136. * cores_out = armclk / (ratio + 1) = 200 (4)
  137. */
  138. clr = COPY_RATIO(7) | HPM_RATIO(7) | CORES_RATIO(7);
  139. set = COPY_RATIO(4) | HPM_RATIO(4) | CORES_RATIO(4);
  140. clrsetbits_le32(&clk->div_cpu1, clr, set);
  141. /* Wait for divider ready status */
  142. while (readl(&clk->div_stat_cpu1) & DIV_STAT_CPU1_CHANGING)
  143. continue;
  144. /*
  145. * Set CMU_DMC clocks src to APLL
  146. * Bit values: 0 ; 1
  147. * MUX_C2C_SEL: SCLKMPLL ; SCLKAPLL
  148. * MUX_DMC_BUS_SEL: SCLKMPLL ; SCLKAPLL
  149. * MUX_DPHY_SEL: SCLKMPLL ; SCLKAPLL
  150. * MUX_MPLL_SEL: FINPLL ; MOUT_MPLL_FOUT
  151. * MUX_PWI_SEL: 0110 (MPLL); 0111 (EPLL); 1000 (VPLL); 0(XXTI)
  152. * MUX_G2D_ACP0_SEL: SCLKMPLL ; SCLKAPLL
  153. * MUX_G2D_ACP1_SEL: SCLKEPLL ; SCLKVPLL
  154. * MUX_G2D_ACP_SEL: OUT_ACP0 ; OUT_ACP1
  155. */
  156. clr_src_dmc = MUX_C2C_SEL(1) | MUX_DMC_BUS_SEL(1) |
  157. MUX_DPHY_SEL(1) | MUX_MPLL_SEL(1) |
  158. MUX_PWI_SEL(15) | MUX_G2D_ACP0_SEL(1) |
  159. MUX_G2D_ACP1_SEL(1) | MUX_G2D_ACP_SEL(1);
  160. set = MUX_C2C_SEL(1) | MUX_DMC_BUS_SEL(1) | MUX_DPHY_SEL(1) |
  161. MUX_MPLL_SEL(0) | MUX_PWI_SEL(0) | MUX_G2D_ACP0_SEL(1) |
  162. MUX_G2D_ACP1_SEL(1) | MUX_G2D_ACP_SEL(1);
  163. clrsetbits_le32(&clk->src_dmc, clr_src_dmc, set);
  164. /* Wait for mux change */
  165. while (readl(&clk->mux_stat_dmc) & MUX_STAT_DMC_CHANGING)
  166. continue;
  167. /* Set MPLL to 800MHz */
  168. set = SDIV(0) | PDIV(3) | MDIV(100) | FSEL(0) | PLL_ENABLE(1);
  169. clrsetbits_le32(&clk->mpll_con0, clr_pll_con0, set);
  170. /* Wait for PLL to be locked */
  171. while (!(readl(&clk->mpll_con0) & PLL_LOCKED_BIT))
  172. continue;
  173. /* Switch back CMU_DMC mux */
  174. set = MUX_C2C_SEL(0) | MUX_DMC_BUS_SEL(0) | MUX_DPHY_SEL(0) |
  175. MUX_MPLL_SEL(1) | MUX_PWI_SEL(8) | MUX_G2D_ACP0_SEL(0) |
  176. MUX_G2D_ACP1_SEL(0) | MUX_G2D_ACP_SEL(0);
  177. clrsetbits_le32(&clk->src_dmc, clr_src_dmc, set);
  178. /* Wait for mux change */
  179. while (readl(&clk->mux_stat_dmc) & MUX_STAT_DMC_CHANGING)
  180. continue;
  181. /* CLK_DIV_DMC0 */
  182. clr = ACP_RATIO(7) | ACP_PCLK_RATIO(7) | DPHY_RATIO(7) |
  183. DMC_RATIO(7) | DMCD_RATIO(7) | DMCP_RATIO(7);
  184. /*
  185. * For:
  186. * MOUTdmc = 800 MHz
  187. * MOUTdphy = 800 MHz
  188. *
  189. * aclk_acp = MOUTdmc / (ratio + 1) = 200 (3)
  190. * pclk_acp = aclk_acp / (ratio + 1) = 100 (1)
  191. * sclk_dphy = MOUTdphy / (ratio + 1) = 400 (1)
  192. * sclk_dmc = MOUTdmc / (ratio + 1) = 400 (1)
  193. * aclk_dmcd = sclk_dmc / (ratio + 1) = 200 (1)
  194. * aclk_dmcp = aclk_dmcd / (ratio + 1) = 100 (1)
  195. */
  196. set = ACP_RATIO(3) | ACP_PCLK_RATIO(1) | DPHY_RATIO(1) |
  197. DMC_RATIO(1) | DMCD_RATIO(1) | DMCP_RATIO(1);
  198. clrsetbits_le32(&clk->div_dmc0, clr, set);
  199. /* Wait for divider ready status */
  200. while (readl(&clk->div_stat_dmc0) & DIV_STAT_DMC0_CHANGING)
  201. continue;
  202. /* CLK_DIV_DMC1 */
  203. clr = G2D_ACP_RATIO(15) | C2C_RATIO(7) | PWI_RATIO(15) |
  204. C2C_ACLK_RATIO(7) | DVSEM_RATIO(127) | DPM_RATIO(127);
  205. /*
  206. * For:
  207. * MOUTg2d = 800 MHz
  208. * MOUTc2c = 800 Mhz
  209. * MOUTpwi = 108 MHz
  210. *
  211. * sclk_g2d_acp = MOUTg2d / (ratio + 1) = 200 (3)
  212. * sclk_c2c = MOUTc2c / (ratio + 1) = 400 (1)
  213. * aclk_c2c = sclk_c2c / (ratio + 1) = 200 (1)
  214. * sclk_pwi = MOUTpwi / (ratio + 1) = 18 (5)
  215. */
  216. set = G2D_ACP_RATIO(3) | C2C_RATIO(1) | PWI_RATIO(5) |
  217. C2C_ACLK_RATIO(1) | DVSEM_RATIO(1) | DPM_RATIO(1);
  218. clrsetbits_le32(&clk->div_dmc1, clr, set);
  219. /* Wait for divider ready status */
  220. while (readl(&clk->div_stat_dmc1) & DIV_STAT_DMC1_CHANGING)
  221. continue;
  222. /* CLK_SRC_PERIL0 */
  223. clr = UART0_SEL(15) | UART1_SEL(15) | UART2_SEL(15) |
  224. UART3_SEL(15) | UART4_SEL(15);
  225. /*
  226. * Set CLK_SRC_PERIL0 clocks src to MPLL
  227. * src values: 0(XXTI); 1(XusbXTI); 2(SCLK_HDMI24M); 3(SCLK_USBPHY0);
  228. * 5(SCLK_HDMIPHY); 6(SCLK_MPLL_USER_T); 7(SCLK_EPLL);
  229. * 8(SCLK_VPLL)
  230. *
  231. * Set all to SCLK_MPLL_USER_T
  232. */
  233. set = UART0_SEL(6) | UART1_SEL(6) | UART2_SEL(6) | UART3_SEL(6) |
  234. UART4_SEL(6);
  235. clrsetbits_le32(&clk->src_peril0, clr, set);
  236. /* CLK_DIV_PERIL0 */
  237. clr = UART0_RATIO(15) | UART1_RATIO(15) | UART2_RATIO(15) |
  238. UART3_RATIO(15) | UART4_RATIO(15);
  239. /*
  240. * For MOUTuart0-4: 800MHz
  241. *
  242. * SCLK_UARTx = MOUTuartX / (ratio + 1) = 100 (7)
  243. */
  244. set = UART0_RATIO(7) | UART1_RATIO(7) | UART2_RATIO(7) |
  245. UART3_RATIO(7) | UART4_RATIO(7);
  246. clrsetbits_le32(&clk->div_peril0, clr, set);
  247. while (readl(&clk->div_stat_peril0) & DIV_STAT_PERIL0_CHANGING)
  248. continue;
  249. /* CLK_DIV_FSYS1 */
  250. clr = MMC0_RATIO(15) | MMC0_PRE_RATIO(255) | MMC1_RATIO(15) |
  251. MMC1_PRE_RATIO(255);
  252. /*
  253. * For MOUTmmc0-3 = 800 MHz (MPLL)
  254. *
  255. * DOUTmmc1 = MOUTmmc1 / (ratio + 1) = 100 (7)
  256. * sclk_mmc1 = DOUTmmc1 / (ratio + 1) = 50 (1)
  257. * DOUTmmc0 = MOUTmmc0 / (ratio + 1) = 100 (7)
  258. * sclk_mmc0 = DOUTmmc0 / (ratio + 1) = 50 (1)
  259. */
  260. set = MMC0_RATIO(7) | MMC0_PRE_RATIO(1) | MMC1_RATIO(7) |
  261. MMC1_PRE_RATIO(1);
  262. clrsetbits_le32(&clk->div_fsys1, clr, set);
  263. /* Wait for divider ready status */
  264. while (readl(&clk->div_stat_fsys1) & DIV_STAT_FSYS1_CHANGING)
  265. continue;
  266. /* CLK_DIV_FSYS2 */
  267. clr = MMC2_RATIO(15) | MMC2_PRE_RATIO(255) | MMC3_RATIO(15) |
  268. MMC3_PRE_RATIO(255);
  269. /*
  270. * For MOUTmmc0-3 = 800 MHz (MPLL)
  271. *
  272. * DOUTmmc3 = MOUTmmc3 / (ratio + 1) = 100 (7)
  273. * sclk_mmc3 = DOUTmmc3 / (ratio + 1) = 50 (1)
  274. * DOUTmmc2 = MOUTmmc2 / (ratio + 1) = 100 (7)
  275. * sclk_mmc2 = DOUTmmc2 / (ratio + 1) = 50 (1)
  276. */
  277. set = MMC2_RATIO(7) | MMC2_PRE_RATIO(1) | MMC3_RATIO(7) |
  278. MMC3_PRE_RATIO(1);
  279. clrsetbits_le32(&clk->div_fsys2, clr, set);
  280. /* Wait for divider ready status */
  281. while (readl(&clk->div_stat_fsys2) & DIV_STAT_FSYS2_CHANGING)
  282. continue;
  283. /* CLK_DIV_FSYS3 */
  284. clr = MMC4_RATIO(15) | MMC4_PRE_RATIO(255);
  285. /*
  286. * For MOUTmmc4 = 800 MHz (MPLL)
  287. *
  288. * DOUTmmc4 = MOUTmmc4 / (ratio + 1) = 100 (7)
  289. * sclk_mmc4 = DOUTmmc4 / (ratio + 1) = 100 (0)
  290. */
  291. set = MMC4_RATIO(7) | MMC4_PRE_RATIO(0);
  292. clrsetbits_le32(&clk->div_fsys3, clr, set);
  293. /* Wait for divider ready status */
  294. while (readl(&clk->div_stat_fsys3) & DIV_STAT_FSYS3_CHANGING)
  295. continue;
  296. return;
  297. }
  298. static void board_gpio_init(void)
  299. {
  300. /* eMMC Reset Pin */
  301. gpio_request(EXYNOS4X12_GPIO_K12, "eMMC Reset");
  302. gpio_cfg_pin(EXYNOS4X12_GPIO_K12, S5P_GPIO_FUNC(0x1));
  303. gpio_set_pull(EXYNOS4X12_GPIO_K12, S5P_GPIO_PULL_NONE);
  304. gpio_set_drv(EXYNOS4X12_GPIO_K12, S5P_GPIO_DRV_4X);
  305. /* Enable FAN (Odroid U3) */
  306. gpio_request(EXYNOS4X12_GPIO_D00, "FAN Control");
  307. gpio_set_pull(EXYNOS4X12_GPIO_D00, S5P_GPIO_PULL_UP);
  308. gpio_set_drv(EXYNOS4X12_GPIO_D00, S5P_GPIO_DRV_4X);
  309. gpio_direction_output(EXYNOS4X12_GPIO_D00, 1);
  310. /* OTG Vbus output (Odroid U3+) */
  311. gpio_request(EXYNOS4X12_GPIO_L20, "OTG Vbus");
  312. gpio_set_pull(EXYNOS4X12_GPIO_L20, S5P_GPIO_PULL_NONE);
  313. gpio_set_drv(EXYNOS4X12_GPIO_L20, S5P_GPIO_DRV_4X);
  314. gpio_direction_output(EXYNOS4X12_GPIO_L20, 0);
  315. /* OTG INT (Odroid U3+) */
  316. gpio_request(EXYNOS4X12_GPIO_X31, "OTG INT");
  317. gpio_set_pull(EXYNOS4X12_GPIO_X31, S5P_GPIO_PULL_UP);
  318. gpio_set_drv(EXYNOS4X12_GPIO_X31, S5P_GPIO_DRV_4X);
  319. gpio_direction_input(EXYNOS4X12_GPIO_X31);
  320. /* Blue LED (Odroid X2/U2/U3) */
  321. gpio_request(EXYNOS4X12_GPIO_C10, "Blue LED");
  322. gpio_direction_output(EXYNOS4X12_GPIO_C10, 0);
  323. #ifdef CONFIG_CMD_USB
  324. /* USB3503A Reference frequency */
  325. gpio_request(EXYNOS4X12_GPIO_X30, "USB3503A RefFreq");
  326. /* USB3503A Connect */
  327. gpio_request(EXYNOS4X12_GPIO_X34, "USB3503A Connect");
  328. /* USB3503A Reset */
  329. gpio_request(EXYNOS4X12_GPIO_X35, "USB3503A Reset");
  330. #endif
  331. }
  332. int exynos_early_init_f(void)
  333. {
  334. board_clock_init();
  335. return 0;
  336. }
  337. int exynos_init(void)
  338. {
  339. board_gpio_init();
  340. return 0;
  341. }
  342. int exynos_power_init(void)
  343. {
  344. const char *mmc_regulators[] = {
  345. "VDDQ_EMMC_1.8V",
  346. "VDDQ_EMMC_2.8V",
  347. "TFLASH_2.8V",
  348. NULL,
  349. };
  350. if (regulator_list_autoset(mmc_regulators, NULL, true))
  351. pr_err("Unable to init all mmc regulators\n");
  352. return 0;
  353. }
  354. #ifdef CONFIG_USB_GADGET
  355. static int s5pc210_phy_control(int on)
  356. {
  357. struct udevice *dev;
  358. int ret;
  359. ret = regulator_get_by_platname("VDD_UOTG_3.0V", &dev);
  360. if (ret) {
  361. pr_err("Regulator get error: %d\n", ret);
  362. return ret;
  363. }
  364. if (on)
  365. return regulator_set_mode(dev, OPMODE_ON);
  366. else
  367. return regulator_set_mode(dev, OPMODE_LPM);
  368. }
  369. struct dwc2_plat_otg_data s5pc210_otg_data = {
  370. .phy_control = s5pc210_phy_control,
  371. .regs_phy = EXYNOS4X12_USBPHY_BASE,
  372. .regs_otg = EXYNOS4X12_USBOTG_BASE,
  373. .usb_phy_ctrl = EXYNOS4X12_USBPHY_CONTROL,
  374. .usb_flags = PHY0_SLEEP,
  375. };
  376. #endif
  377. #if defined(CONFIG_USB_GADGET) || defined(CONFIG_CMD_USB)
  378. int board_usb_init(int index, enum usb_init_type init)
  379. {
  380. #ifdef CONFIG_CMD_USB
  381. struct udevice *dev;
  382. int ret;
  383. /* Set Ref freq 0 => 24MHz, 1 => 26MHz*/
  384. /* Odroid Us have it at 24MHz, Odroid Xs at 26MHz */
  385. if (gd->board_type == ODROID_TYPE_U3)
  386. gpio_direction_output(EXYNOS4X12_GPIO_X30, 0);
  387. else
  388. gpio_direction_output(EXYNOS4X12_GPIO_X30, 1);
  389. /* Disconnect, Reset, Connect */
  390. gpio_direction_output(EXYNOS4X12_GPIO_X34, 0);
  391. gpio_direction_output(EXYNOS4X12_GPIO_X35, 0);
  392. gpio_direction_output(EXYNOS4X12_GPIO_X35, 1);
  393. gpio_direction_output(EXYNOS4X12_GPIO_X34, 1);
  394. /* Power off and on BUCK8 for LAN9730 */
  395. debug("LAN9730 - Turning power buck 8 OFF and ON.\n");
  396. ret = regulator_get_by_platname("VCC_P3V3_2.85V", &dev);
  397. if (ret) {
  398. pr_err("Regulator get error: %d\n", ret);
  399. return ret;
  400. }
  401. ret = regulator_set_enable(dev, true);
  402. if (ret) {
  403. pr_err("Regulator %s enable setting error: %d\n", dev->name, ret);
  404. return ret;
  405. }
  406. ret = regulator_set_value(dev, 750000);
  407. if (ret) {
  408. pr_err("Regulator %s value setting error: %d\n", dev->name, ret);
  409. return ret;
  410. }
  411. ret = regulator_set_value(dev, 3300000);
  412. if (ret) {
  413. pr_err("Regulator %s value setting error: %d\n", dev->name, ret);
  414. return ret;
  415. }
  416. #endif
  417. debug("USB_udc_probe\n");
  418. return dwc2_udc_probe(&s5pc210_otg_data);
  419. }
  420. #endif