vector.S 6.6 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330
  1. /* SPDX-License-Identifier: GPL-2.0 */
  2. #include <asm/processor.h>
  3. #include <asm/ppc_asm.h>
  4. #include <asm/reg.h>
  5. #include <asm/asm-offsets.h>
  6. #include <asm/cputable.h>
  7. #include <asm/thread_info.h>
  8. #include <asm/page.h>
  9. #include <asm/ptrace.h>
  10. #include <asm/export.h>
  11. #include <asm/asm-compat.h>
  12. /*
  13. * Load state from memory into VMX registers including VSCR.
  14. * Assumes the caller has enabled VMX in the MSR.
  15. */
  16. _GLOBAL(load_vr_state)
  17. li r4,VRSTATE_VSCR
  18. lvx v0,r4,r3
  19. mtvscr v0
  20. REST_32VRS(0,r4,r3)
  21. blr
  22. EXPORT_SYMBOL(load_vr_state)
  23. /*
  24. * Store VMX state into memory, including VSCR.
  25. * Assumes the caller has enabled VMX in the MSR.
  26. */
  27. _GLOBAL(store_vr_state)
  28. SAVE_32VRS(0, r4, r3)
  29. mfvscr v0
  30. li r4, VRSTATE_VSCR
  31. stvx v0, r4, r3
  32. blr
  33. EXPORT_SYMBOL(store_vr_state)
  34. /*
  35. * Disable VMX for the task which had it previously,
  36. * and save its vector registers in its thread_struct.
  37. * Enables the VMX for use in the kernel on return.
  38. * On SMP we know the VMX is free, since we give it up every
  39. * switch (ie, no lazy save of the vector registers).
  40. *
  41. * Note that on 32-bit this can only use registers that will be
  42. * restored by fast_exception_return, i.e. r3 - r6, r10 and r11.
  43. */
  44. _GLOBAL(load_up_altivec)
  45. mfmsr r5 /* grab the current MSR */
  46. oris r5,r5,MSR_VEC@h
  47. MTMSRD(r5) /* enable use of AltiVec now */
  48. isync
  49. /*
  50. * While userspace in general ignores VRSAVE, glibc uses it as a boolean
  51. * to optimise userspace context save/restore. Whenever we take an
  52. * altivec unavailable exception we must set VRSAVE to something non
  53. * zero. Set it to all 1s. See also the programming note in the ISA.
  54. */
  55. mfspr r4,SPRN_VRSAVE
  56. cmpwi 0,r4,0
  57. bne+ 1f
  58. li r4,-1
  59. mtspr SPRN_VRSAVE,r4
  60. 1:
  61. /* enable use of VMX after return */
  62. #ifdef CONFIG_PPC32
  63. mfspr r5,SPRN_SPRG_THREAD /* current task's THREAD (phys) */
  64. oris r9,r9,MSR_VEC@h
  65. #else
  66. ld r4,PACACURRENT(r13)
  67. addi r5,r4,THREAD /* Get THREAD */
  68. oris r12,r12,MSR_VEC@h
  69. std r12,_MSR(r1)
  70. #endif
  71. /* Don't care if r4 overflows, this is desired behaviour */
  72. lbz r4,THREAD_LOAD_VEC(r5)
  73. addi r4,r4,1
  74. stb r4,THREAD_LOAD_VEC(r5)
  75. addi r6,r5,THREAD_VRSTATE
  76. li r4,1
  77. li r10,VRSTATE_VSCR
  78. stw r4,THREAD_USED_VR(r5)
  79. lvx v0,r10,r6
  80. mtvscr v0
  81. REST_32VRS(0,r4,r6)
  82. /* restore registers and return */
  83. blr
  84. /*
  85. * save_altivec(tsk)
  86. * Save the vector registers to its thread_struct
  87. */
  88. _GLOBAL(save_altivec)
  89. addi r3,r3,THREAD /* want THREAD of task */
  90. PPC_LL r7,THREAD_VRSAVEAREA(r3)
  91. PPC_LL r5,PT_REGS(r3)
  92. PPC_LCMPI 0,r7,0
  93. bne 2f
  94. addi r7,r3,THREAD_VRSTATE
  95. 2: SAVE_32VRS(0,r4,r7)
  96. mfvscr v0
  97. li r4,VRSTATE_VSCR
  98. stvx v0,r4,r7
  99. blr
  100. #ifdef CONFIG_VSX
  101. #ifdef CONFIG_PPC32
  102. #error This asm code isn't ready for 32-bit kernels
  103. #endif
  104. /*
  105. * load_up_vsx(unused, unused, tsk)
  106. * Disable VSX for the task which had it previously,
  107. * and save its vector registers in its thread_struct.
  108. * Reuse the fp and vsx saves, but first check to see if they have
  109. * been saved already.
  110. */
  111. _GLOBAL(load_up_vsx)
  112. /* Load FP and VSX registers if they haven't been done yet */
  113. andi. r5,r12,MSR_FP
  114. beql+ load_up_fpu /* skip if already loaded */
  115. andis. r5,r12,MSR_VEC@h
  116. beql+ load_up_altivec /* skip if already loaded */
  117. ld r4,PACACURRENT(r13)
  118. addi r4,r4,THREAD /* Get THREAD */
  119. li r6,1
  120. stw r6,THREAD_USED_VSR(r4) /* ... also set thread used vsr */
  121. /* enable use of VSX after return */
  122. oris r12,r12,MSR_VSX@h
  123. std r12,_MSR(r1)
  124. b fast_exception_return
  125. #endif /* CONFIG_VSX */
  126. /*
  127. * The routines below are in assembler so we can closely control the
  128. * usage of floating-point registers. These routines must be called
  129. * with preempt disabled.
  130. */
  131. #ifdef CONFIG_PPC32
  132. .data
  133. fpzero:
  134. .long 0
  135. fpone:
  136. .long 0x3f800000 /* 1.0 in single-precision FP */
  137. fphalf:
  138. .long 0x3f000000 /* 0.5 in single-precision FP */
  139. #define LDCONST(fr, name) \
  140. lis r11,name@ha; \
  141. lfs fr,name@l(r11)
  142. #else
  143. .section ".toc","aw"
  144. fpzero:
  145. .tc FD_0_0[TC],0
  146. fpone:
  147. .tc FD_3ff00000_0[TC],0x3ff0000000000000 /* 1.0 */
  148. fphalf:
  149. .tc FD_3fe00000_0[TC],0x3fe0000000000000 /* 0.5 */
  150. #define LDCONST(fr, name) \
  151. lfd fr,name@toc(r2)
  152. #endif
  153. .text
  154. /*
  155. * Internal routine to enable floating point and set FPSCR to 0.
  156. * Don't call it from C; it doesn't use the normal calling convention.
  157. */
  158. fpenable:
  159. #ifdef CONFIG_PPC32
  160. stwu r1,-64(r1)
  161. #else
  162. stdu r1,-64(r1)
  163. #endif
  164. mfmsr r10
  165. ori r11,r10,MSR_FP
  166. mtmsr r11
  167. isync
  168. stfd fr0,24(r1)
  169. stfd fr1,16(r1)
  170. stfd fr31,8(r1)
  171. LDCONST(fr1, fpzero)
  172. mffs fr31
  173. MTFSF_L(fr1)
  174. blr
  175. fpdisable:
  176. mtlr r12
  177. MTFSF_L(fr31)
  178. lfd fr31,8(r1)
  179. lfd fr1,16(r1)
  180. lfd fr0,24(r1)
  181. mtmsr r10
  182. isync
  183. addi r1,r1,64
  184. blr
  185. /*
  186. * Vector add, floating point.
  187. */
  188. _GLOBAL(vaddfp)
  189. mflr r12
  190. bl fpenable
  191. li r0,4
  192. mtctr r0
  193. li r6,0
  194. 1: lfsx fr0,r4,r6
  195. lfsx fr1,r5,r6
  196. fadds fr0,fr0,fr1
  197. stfsx fr0,r3,r6
  198. addi r6,r6,4
  199. bdnz 1b
  200. b fpdisable
  201. /*
  202. * Vector subtract, floating point.
  203. */
  204. _GLOBAL(vsubfp)
  205. mflr r12
  206. bl fpenable
  207. li r0,4
  208. mtctr r0
  209. li r6,0
  210. 1: lfsx fr0,r4,r6
  211. lfsx fr1,r5,r6
  212. fsubs fr0,fr0,fr1
  213. stfsx fr0,r3,r6
  214. addi r6,r6,4
  215. bdnz 1b
  216. b fpdisable
  217. /*
  218. * Vector multiply and add, floating point.
  219. */
  220. _GLOBAL(vmaddfp)
  221. mflr r12
  222. bl fpenable
  223. stfd fr2,32(r1)
  224. li r0,4
  225. mtctr r0
  226. li r7,0
  227. 1: lfsx fr0,r4,r7
  228. lfsx fr1,r5,r7
  229. lfsx fr2,r6,r7
  230. fmadds fr0,fr0,fr2,fr1
  231. stfsx fr0,r3,r7
  232. addi r7,r7,4
  233. bdnz 1b
  234. lfd fr2,32(r1)
  235. b fpdisable
  236. /*
  237. * Vector negative multiply and subtract, floating point.
  238. */
  239. _GLOBAL(vnmsubfp)
  240. mflr r12
  241. bl fpenable
  242. stfd fr2,32(r1)
  243. li r0,4
  244. mtctr r0
  245. li r7,0
  246. 1: lfsx fr0,r4,r7
  247. lfsx fr1,r5,r7
  248. lfsx fr2,r6,r7
  249. fnmsubs fr0,fr0,fr2,fr1
  250. stfsx fr0,r3,r7
  251. addi r7,r7,4
  252. bdnz 1b
  253. lfd fr2,32(r1)
  254. b fpdisable
  255. /*
  256. * Vector reciprocal estimate. We just compute 1.0/x.
  257. * r3 -> destination, r4 -> source.
  258. */
  259. _GLOBAL(vrefp)
  260. mflr r12
  261. bl fpenable
  262. li r0,4
  263. LDCONST(fr1, fpone)
  264. mtctr r0
  265. li r6,0
  266. 1: lfsx fr0,r4,r6
  267. fdivs fr0,fr1,fr0
  268. stfsx fr0,r3,r6
  269. addi r6,r6,4
  270. bdnz 1b
  271. b fpdisable
  272. /*
  273. * Vector reciprocal square-root estimate, floating point.
  274. * We use the frsqrte instruction for the initial estimate followed
  275. * by 2 iterations of Newton-Raphson to get sufficient accuracy.
  276. * r3 -> destination, r4 -> source.
  277. */
  278. _GLOBAL(vrsqrtefp)
  279. mflr r12
  280. bl fpenable
  281. stfd fr2,32(r1)
  282. stfd fr3,40(r1)
  283. stfd fr4,48(r1)
  284. stfd fr5,56(r1)
  285. li r0,4
  286. LDCONST(fr4, fpone)
  287. LDCONST(fr5, fphalf)
  288. mtctr r0
  289. li r6,0
  290. 1: lfsx fr0,r4,r6
  291. frsqrte fr1,fr0 /* r = frsqrte(s) */
  292. fmuls fr3,fr1,fr0 /* r * s */
  293. fmuls fr2,fr1,fr5 /* r * 0.5 */
  294. fnmsubs fr3,fr1,fr3,fr4 /* 1 - s * r * r */
  295. fmadds fr1,fr2,fr3,fr1 /* r = r + 0.5 * r * (1 - s * r * r) */
  296. fmuls fr3,fr1,fr0 /* r * s */
  297. fmuls fr2,fr1,fr5 /* r * 0.5 */
  298. fnmsubs fr3,fr1,fr3,fr4 /* 1 - s * r * r */
  299. fmadds fr1,fr2,fr3,fr1 /* r = r + 0.5 * r * (1 - s * r * r) */
  300. stfsx fr1,r3,r6
  301. addi r6,r6,4
  302. bdnz 1b
  303. lfd fr5,56(r1)
  304. lfd fr4,48(r1)
  305. lfd fr3,40(r1)
  306. lfd fr2,32(r1)
  307. b fpdisable