1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534 |
- // SPDX-License-Identifier: GPL-2.0
- /*
- * Resource Director Technology (RDT)
- *
- * Pseudo-locking support built on top of Cache Allocation Technology (CAT)
- *
- * Copyright (C) 2018 Intel Corporation
- *
- * Author: Reinette Chatre <reinette.chatre@intel.com>
- */
- #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
- #include <linux/cacheinfo.h>
- #include <linux/cpu.h>
- #include <linux/cpumask.h>
- #include <linux/debugfs.h>
- #include <linux/kthread.h>
- #include <linux/mman.h>
- #include <linux/pm_qos.h>
- #include <linux/slab.h>
- #include <linux/uaccess.h>
- #include <asm/cacheflush.h>
- #include <asm/intel-family.h>
- #include <asm/intel_rdt_sched.h>
- #include <asm/perf_event.h>
- #include "intel_rdt.h"
- #define CREATE_TRACE_POINTS
- #include "intel_rdt_pseudo_lock_event.h"
- /*
- * MSR_MISC_FEATURE_CONTROL register enables the modification of hardware
- * prefetcher state. Details about this register can be found in the MSR
- * tables for specific platforms found in Intel's SDM.
- */
- #define MSR_MISC_FEATURE_CONTROL 0x000001a4
- /*
- * The bits needed to disable hardware prefetching varies based on the
- * platform. During initialization we will discover which bits to use.
- */
- static u64 prefetch_disable_bits;
- /*
- * Major number assigned to and shared by all devices exposing
- * pseudo-locked regions.
- */
- static unsigned int pseudo_lock_major;
- static unsigned long pseudo_lock_minor_avail = GENMASK(MINORBITS, 0);
- static struct class *pseudo_lock_class;
- /**
- * get_prefetch_disable_bits - prefetch disable bits of supported platforms
- *
- * Capture the list of platforms that have been validated to support
- * pseudo-locking. This includes testing to ensure pseudo-locked regions
- * with low cache miss rates can be created under variety of load conditions
- * as well as that these pseudo-locked regions can maintain their low cache
- * miss rates under variety of load conditions for significant lengths of time.
- *
- * After a platform has been validated to support pseudo-locking its
- * hardware prefetch disable bits are included here as they are documented
- * in the SDM.
- *
- * When adding a platform here also add support for its cache events to
- * measure_cycles_perf_fn()
- *
- * Return:
- * If platform is supported, the bits to disable hardware prefetchers, 0
- * if platform is not supported.
- */
- static u64 get_prefetch_disable_bits(void)
- {
- if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL ||
- boot_cpu_data.x86 != 6)
- return 0;
- switch (boot_cpu_data.x86_model) {
- case INTEL_FAM6_BROADWELL_X:
- /*
- * SDM defines bits of MSR_MISC_FEATURE_CONTROL register
- * as:
- * 0 L2 Hardware Prefetcher Disable (R/W)
- * 1 L2 Adjacent Cache Line Prefetcher Disable (R/W)
- * 2 DCU Hardware Prefetcher Disable (R/W)
- * 3 DCU IP Prefetcher Disable (R/W)
- * 63:4 Reserved
- */
- return 0xF;
- case INTEL_FAM6_ATOM_GOLDMONT:
- case INTEL_FAM6_ATOM_GOLDMONT_PLUS:
- /*
- * SDM defines bits of MSR_MISC_FEATURE_CONTROL register
- * as:
- * 0 L2 Hardware Prefetcher Disable (R/W)
- * 1 Reserved
- * 2 DCU Hardware Prefetcher Disable (R/W)
- * 63:3 Reserved
- */
- return 0x5;
- }
- return 0;
- }
- /*
- * Helper to write 64bit value to MSR without tracing. Used when
- * use of the cache should be restricted and use of registers used
- * for local variables avoided.
- */
- static inline void pseudo_wrmsrl_notrace(unsigned int msr, u64 val)
- {
- __wrmsr(msr, (u32)(val & 0xffffffffULL), (u32)(val >> 32));
- }
- /**
- * pseudo_lock_minor_get - Obtain available minor number
- * @minor: Pointer to where new minor number will be stored
- *
- * A bitmask is used to track available minor numbers. Here the next free
- * minor number is marked as unavailable and returned.
- *
- * Return: 0 on success, <0 on failure.
- */
- static int pseudo_lock_minor_get(unsigned int *minor)
- {
- unsigned long first_bit;
- first_bit = find_first_bit(&pseudo_lock_minor_avail, MINORBITS);
- if (first_bit == MINORBITS)
- return -ENOSPC;
- __clear_bit(first_bit, &pseudo_lock_minor_avail);
- *minor = first_bit;
- return 0;
- }
- /**
- * pseudo_lock_minor_release - Return minor number to available
- * @minor: The minor number made available
- */
- static void pseudo_lock_minor_release(unsigned int minor)
- {
- __set_bit(minor, &pseudo_lock_minor_avail);
- }
- /**
- * region_find_by_minor - Locate a pseudo-lock region by inode minor number
- * @minor: The minor number of the device representing pseudo-locked region
- *
- * When the character device is accessed we need to determine which
- * pseudo-locked region it belongs to. This is done by matching the minor
- * number of the device to the pseudo-locked region it belongs.
- *
- * Minor numbers are assigned at the time a pseudo-locked region is associated
- * with a cache instance.
- *
- * Return: On success return pointer to resource group owning the pseudo-locked
- * region, NULL on failure.
- */
- static struct rdtgroup *region_find_by_minor(unsigned int minor)
- {
- struct rdtgroup *rdtgrp, *rdtgrp_match = NULL;
- list_for_each_entry(rdtgrp, &rdt_all_groups, rdtgroup_list) {
- if (rdtgrp->plr && rdtgrp->plr->minor == minor) {
- rdtgrp_match = rdtgrp;
- break;
- }
- }
- return rdtgrp_match;
- }
- /**
- * pseudo_lock_pm_req - A power management QoS request list entry
- * @list: Entry within the @pm_reqs list for a pseudo-locked region
- * @req: PM QoS request
- */
- struct pseudo_lock_pm_req {
- struct list_head list;
- struct dev_pm_qos_request req;
- };
- static void pseudo_lock_cstates_relax(struct pseudo_lock_region *plr)
- {
- struct pseudo_lock_pm_req *pm_req, *next;
- list_for_each_entry_safe(pm_req, next, &plr->pm_reqs, list) {
- dev_pm_qos_remove_request(&pm_req->req);
- list_del(&pm_req->list);
- kfree(pm_req);
- }
- }
- /**
- * pseudo_lock_cstates_constrain - Restrict cores from entering C6
- *
- * To prevent the cache from being affected by power management entering
- * C6 has to be avoided. This is accomplished by requesting a latency
- * requirement lower than lowest C6 exit latency of all supported
- * platforms as found in the cpuidle state tables in the intel_idle driver.
- * At this time it is possible to do so with a single latency requirement
- * for all supported platforms.
- *
- * Since Goldmont is supported, which is affected by X86_BUG_MONITOR,
- * the ACPI latencies need to be considered while keeping in mind that C2
- * may be set to map to deeper sleep states. In this case the latency
- * requirement needs to prevent entering C2 also.
- */
- static int pseudo_lock_cstates_constrain(struct pseudo_lock_region *plr)
- {
- struct pseudo_lock_pm_req *pm_req;
- int cpu;
- int ret;
- for_each_cpu(cpu, &plr->d->cpu_mask) {
- pm_req = kzalloc(sizeof(*pm_req), GFP_KERNEL);
- if (!pm_req) {
- rdt_last_cmd_puts("fail allocating mem for PM QoS\n");
- ret = -ENOMEM;
- goto out_err;
- }
- ret = dev_pm_qos_add_request(get_cpu_device(cpu),
- &pm_req->req,
- DEV_PM_QOS_RESUME_LATENCY,
- 30);
- if (ret < 0) {
- rdt_last_cmd_printf("fail to add latency req cpu%d\n",
- cpu);
- kfree(pm_req);
- ret = -1;
- goto out_err;
- }
- list_add(&pm_req->list, &plr->pm_reqs);
- }
- return 0;
- out_err:
- pseudo_lock_cstates_relax(plr);
- return ret;
- }
- /**
- * pseudo_lock_region_clear - Reset pseudo-lock region data
- * @plr: pseudo-lock region
- *
- * All content of the pseudo-locked region is reset - any memory allocated
- * freed.
- *
- * Return: void
- */
- static void pseudo_lock_region_clear(struct pseudo_lock_region *plr)
- {
- plr->size = 0;
- plr->line_size = 0;
- kfree(plr->kmem);
- plr->kmem = NULL;
- plr->r = NULL;
- if (plr->d)
- plr->d->plr = NULL;
- plr->d = NULL;
- plr->cbm = 0;
- plr->debugfs_dir = NULL;
- }
- /**
- * pseudo_lock_region_init - Initialize pseudo-lock region information
- * @plr: pseudo-lock region
- *
- * Called after user provided a schemata to be pseudo-locked. From the
- * schemata the &struct pseudo_lock_region is on entry already initialized
- * with the resource, domain, and capacity bitmask. Here the information
- * required for pseudo-locking is deduced from this data and &struct
- * pseudo_lock_region initialized further. This information includes:
- * - size in bytes of the region to be pseudo-locked
- * - cache line size to know the stride with which data needs to be accessed
- * to be pseudo-locked
- * - a cpu associated with the cache instance on which the pseudo-locking
- * flow can be executed
- *
- * Return: 0 on success, <0 on failure. Descriptive error will be written
- * to last_cmd_status buffer.
- */
- static int pseudo_lock_region_init(struct pseudo_lock_region *plr)
- {
- struct cpu_cacheinfo *ci;
- int ret;
- int i;
- /* Pick the first cpu we find that is associated with the cache. */
- plr->cpu = cpumask_first(&plr->d->cpu_mask);
- if (!cpu_online(plr->cpu)) {
- rdt_last_cmd_printf("cpu %u associated with cache not online\n",
- plr->cpu);
- ret = -ENODEV;
- goto out_region;
- }
- ci = get_cpu_cacheinfo(plr->cpu);
- plr->size = rdtgroup_cbm_to_size(plr->r, plr->d, plr->cbm);
- for (i = 0; i < ci->num_leaves; i++) {
- if (ci->info_list[i].level == plr->r->cache_level) {
- plr->line_size = ci->info_list[i].coherency_line_size;
- return 0;
- }
- }
- ret = -1;
- rdt_last_cmd_puts("unable to determine cache line size\n");
- out_region:
- pseudo_lock_region_clear(plr);
- return ret;
- }
- /**
- * pseudo_lock_init - Initialize a pseudo-lock region
- * @rdtgrp: resource group to which new pseudo-locked region will belong
- *
- * A pseudo-locked region is associated with a resource group. When this
- * association is created the pseudo-locked region is initialized. The
- * details of the pseudo-locked region are not known at this time so only
- * allocation is done and association established.
- *
- * Return: 0 on success, <0 on failure
- */
- static int pseudo_lock_init(struct rdtgroup *rdtgrp)
- {
- struct pseudo_lock_region *plr;
- plr = kzalloc(sizeof(*plr), GFP_KERNEL);
- if (!plr)
- return -ENOMEM;
- init_waitqueue_head(&plr->lock_thread_wq);
- INIT_LIST_HEAD(&plr->pm_reqs);
- rdtgrp->plr = plr;
- return 0;
- }
- /**
- * pseudo_lock_region_alloc - Allocate kernel memory that will be pseudo-locked
- * @plr: pseudo-lock region
- *
- * Initialize the details required to set up the pseudo-locked region and
- * allocate the contiguous memory that will be pseudo-locked to the cache.
- *
- * Return: 0 on success, <0 on failure. Descriptive error will be written
- * to last_cmd_status buffer.
- */
- static int pseudo_lock_region_alloc(struct pseudo_lock_region *plr)
- {
- int ret;
- ret = pseudo_lock_region_init(plr);
- if (ret < 0)
- return ret;
- /*
- * We do not yet support contiguous regions larger than
- * KMALLOC_MAX_SIZE.
- */
- if (plr->size > KMALLOC_MAX_SIZE) {
- rdt_last_cmd_puts("requested region exceeds maximum size\n");
- ret = -E2BIG;
- goto out_region;
- }
- plr->kmem = kzalloc(plr->size, GFP_KERNEL);
- if (!plr->kmem) {
- rdt_last_cmd_puts("unable to allocate memory\n");
- ret = -ENOMEM;
- goto out_region;
- }
- ret = 0;
- goto out;
- out_region:
- pseudo_lock_region_clear(plr);
- out:
- return ret;
- }
- /**
- * pseudo_lock_free - Free a pseudo-locked region
- * @rdtgrp: resource group to which pseudo-locked region belonged
- *
- * The pseudo-locked region's resources have already been released, or not
- * yet created at this point. Now it can be freed and disassociated from the
- * resource group.
- *
- * Return: void
- */
- static void pseudo_lock_free(struct rdtgroup *rdtgrp)
- {
- pseudo_lock_region_clear(rdtgrp->plr);
- kfree(rdtgrp->plr);
- rdtgrp->plr = NULL;
- }
- /**
- * pseudo_lock_fn - Load kernel memory into cache
- * @_rdtgrp: resource group to which pseudo-lock region belongs
- *
- * This is the core pseudo-locking flow.
- *
- * First we ensure that the kernel memory cannot be found in the cache.
- * Then, while taking care that there will be as little interference as
- * possible, the memory to be loaded is accessed while core is running
- * with class of service set to the bitmask of the pseudo-locked region.
- * After this is complete no future CAT allocations will be allowed to
- * overlap with this bitmask.
- *
- * Local register variables are utilized to ensure that the memory region
- * to be locked is the only memory access made during the critical locking
- * loop.
- *
- * Return: 0. Waiter on waitqueue will be woken on completion.
- */
- static int pseudo_lock_fn(void *_rdtgrp)
- {
- struct rdtgroup *rdtgrp = _rdtgrp;
- struct pseudo_lock_region *plr = rdtgrp->plr;
- u32 rmid_p, closid_p;
- unsigned long i;
- #ifdef CONFIG_KASAN
- /*
- * The registers used for local register variables are also used
- * when KASAN is active. When KASAN is active we use a regular
- * variable to ensure we always use a valid pointer, but the cost
- * is that this variable will enter the cache through evicting the
- * memory we are trying to lock into the cache. Thus expect lower
- * pseudo-locking success rate when KASAN is active.
- */
- unsigned int line_size;
- unsigned int size;
- void *mem_r;
- #else
- register unsigned int line_size asm("esi");
- register unsigned int size asm("edi");
- #ifdef CONFIG_X86_64
- register void *mem_r asm("rbx");
- #else
- register void *mem_r asm("ebx");
- #endif /* CONFIG_X86_64 */
- #endif /* CONFIG_KASAN */
- /*
- * Make sure none of the allocated memory is cached. If it is we
- * will get a cache hit in below loop from outside of pseudo-locked
- * region.
- * wbinvd (as opposed to clflush/clflushopt) is required to
- * increase likelihood that allocated cache portion will be filled
- * with associated memory.
- */
- native_wbinvd();
- /*
- * Always called with interrupts enabled. By disabling interrupts
- * ensure that we will not be preempted during this critical section.
- */
- local_irq_disable();
- /*
- * Call wrmsr and rdmsr as directly as possible to avoid tracing
- * clobbering local register variables or affecting cache accesses.
- *
- * Disable the hardware prefetcher so that when the end of the memory
- * being pseudo-locked is reached the hardware will not read beyond
- * the buffer and evict pseudo-locked memory read earlier from the
- * cache.
- */
- __wrmsr(MSR_MISC_FEATURE_CONTROL, prefetch_disable_bits, 0x0);
- closid_p = this_cpu_read(pqr_state.cur_closid);
- rmid_p = this_cpu_read(pqr_state.cur_rmid);
- mem_r = plr->kmem;
- size = plr->size;
- line_size = plr->line_size;
- /*
- * Critical section begin: start by writing the closid associated
- * with the capacity bitmask of the cache region being
- * pseudo-locked followed by reading of kernel memory to load it
- * into the cache.
- */
- __wrmsr(IA32_PQR_ASSOC, rmid_p, rdtgrp->closid);
- /*
- * Cache was flushed earlier. Now access kernel memory to read it
- * into cache region associated with just activated plr->closid.
- * Loop over data twice:
- * - In first loop the cache region is shared with the page walker
- * as it populates the paging structure caches (including TLB).
- * - In the second loop the paging structure caches are used and
- * cache region is populated with the memory being referenced.
- */
- for (i = 0; i < size; i += PAGE_SIZE) {
- /*
- * Add a barrier to prevent speculative execution of this
- * loop reading beyond the end of the buffer.
- */
- rmb();
- asm volatile("mov (%0,%1,1), %%eax\n\t"
- :
- : "r" (mem_r), "r" (i)
- : "%eax", "memory");
- }
- for (i = 0; i < size; i += line_size) {
- /*
- * Add a barrier to prevent speculative execution of this
- * loop reading beyond the end of the buffer.
- */
- rmb();
- asm volatile("mov (%0,%1,1), %%eax\n\t"
- :
- : "r" (mem_r), "r" (i)
- : "%eax", "memory");
- }
- /*
- * Critical section end: restore closid with capacity bitmask that
- * does not overlap with pseudo-locked region.
- */
- __wrmsr(IA32_PQR_ASSOC, rmid_p, closid_p);
- /* Re-enable the hardware prefetcher(s) */
- wrmsr(MSR_MISC_FEATURE_CONTROL, 0x0, 0x0);
- local_irq_enable();
- plr->thread_done = 1;
- wake_up_interruptible(&plr->lock_thread_wq);
- return 0;
- }
- /**
- * rdtgroup_monitor_in_progress - Test if monitoring in progress
- * @r: resource group being queried
- *
- * Return: 1 if monitor groups have been created for this resource
- * group, 0 otherwise.
- */
- static int rdtgroup_monitor_in_progress(struct rdtgroup *rdtgrp)
- {
- return !list_empty(&rdtgrp->mon.crdtgrp_list);
- }
- /**
- * rdtgroup_locksetup_user_restrict - Restrict user access to group
- * @rdtgrp: resource group needing access restricted
- *
- * A resource group used for cache pseudo-locking cannot have cpus or tasks
- * assigned to it. This is communicated to the user by restricting access
- * to all the files that can be used to make such changes.
- *
- * Permissions restored with rdtgroup_locksetup_user_restore()
- *
- * Return: 0 on success, <0 on failure. If a failure occurs during the
- * restriction of access an attempt will be made to restore permissions but
- * the state of the mode of these files will be uncertain when a failure
- * occurs.
- */
- static int rdtgroup_locksetup_user_restrict(struct rdtgroup *rdtgrp)
- {
- int ret;
- ret = rdtgroup_kn_mode_restrict(rdtgrp, "tasks");
- if (ret)
- return ret;
- ret = rdtgroup_kn_mode_restrict(rdtgrp, "cpus");
- if (ret)
- goto err_tasks;
- ret = rdtgroup_kn_mode_restrict(rdtgrp, "cpus_list");
- if (ret)
- goto err_cpus;
- if (rdt_mon_capable) {
- ret = rdtgroup_kn_mode_restrict(rdtgrp, "mon_groups");
- if (ret)
- goto err_cpus_list;
- }
- ret = 0;
- goto out;
- err_cpus_list:
- rdtgroup_kn_mode_restore(rdtgrp, "cpus_list", 0777);
- err_cpus:
- rdtgroup_kn_mode_restore(rdtgrp, "cpus", 0777);
- err_tasks:
- rdtgroup_kn_mode_restore(rdtgrp, "tasks", 0777);
- out:
- return ret;
- }
- /**
- * rdtgroup_locksetup_user_restore - Restore user access to group
- * @rdtgrp: resource group needing access restored
- *
- * Restore all file access previously removed using
- * rdtgroup_locksetup_user_restrict()
- *
- * Return: 0 on success, <0 on failure. If a failure occurs during the
- * restoration of access an attempt will be made to restrict permissions
- * again but the state of the mode of these files will be uncertain when
- * a failure occurs.
- */
- static int rdtgroup_locksetup_user_restore(struct rdtgroup *rdtgrp)
- {
- int ret;
- ret = rdtgroup_kn_mode_restore(rdtgrp, "tasks", 0777);
- if (ret)
- return ret;
- ret = rdtgroup_kn_mode_restore(rdtgrp, "cpus", 0777);
- if (ret)
- goto err_tasks;
- ret = rdtgroup_kn_mode_restore(rdtgrp, "cpus_list", 0777);
- if (ret)
- goto err_cpus;
- if (rdt_mon_capable) {
- ret = rdtgroup_kn_mode_restore(rdtgrp, "mon_groups", 0777);
- if (ret)
- goto err_cpus_list;
- }
- ret = 0;
- goto out;
- err_cpus_list:
- rdtgroup_kn_mode_restrict(rdtgrp, "cpus_list");
- err_cpus:
- rdtgroup_kn_mode_restrict(rdtgrp, "cpus");
- err_tasks:
- rdtgroup_kn_mode_restrict(rdtgrp, "tasks");
- out:
- return ret;
- }
- /**
- * rdtgroup_locksetup_enter - Resource group enters locksetup mode
- * @rdtgrp: resource group requested to enter locksetup mode
- *
- * A resource group enters locksetup mode to reflect that it would be used
- * to represent a pseudo-locked region and is in the process of being set
- * up to do so. A resource group used for a pseudo-locked region would
- * lose the closid associated with it so we cannot allow it to have any
- * tasks or cpus assigned nor permit tasks or cpus to be assigned in the
- * future. Monitoring of a pseudo-locked region is not allowed either.
- *
- * The above and more restrictions on a pseudo-locked region are checked
- * for and enforced before the resource group enters the locksetup mode.
- *
- * Returns: 0 if the resource group successfully entered locksetup mode, <0
- * on failure. On failure the last_cmd_status buffer is updated with text to
- * communicate details of failure to the user.
- */
- int rdtgroup_locksetup_enter(struct rdtgroup *rdtgrp)
- {
- int ret;
- /*
- * The default resource group can neither be removed nor lose the
- * default closid associated with it.
- */
- if (rdtgrp == &rdtgroup_default) {
- rdt_last_cmd_puts("cannot pseudo-lock default group\n");
- return -EINVAL;
- }
- /*
- * Cache Pseudo-locking not supported when CDP is enabled.
- *
- * Some things to consider if you would like to enable this
- * support (using L3 CDP as example):
- * - When CDP is enabled two separate resources are exposed,
- * L3DATA and L3CODE, but they are actually on the same cache.
- * The implication for pseudo-locking is that if a
- * pseudo-locked region is created on a domain of one
- * resource (eg. L3CODE), then a pseudo-locked region cannot
- * be created on that same domain of the other resource
- * (eg. L3DATA). This is because the creation of a
- * pseudo-locked region involves a call to wbinvd that will
- * affect all cache allocations on particular domain.
- * - Considering the previous, it may be possible to only
- * expose one of the CDP resources to pseudo-locking and
- * hide the other. For example, we could consider to only
- * expose L3DATA and since the L3 cache is unified it is
- * still possible to place instructions there are execute it.
- * - If only one region is exposed to pseudo-locking we should
- * still keep in mind that availability of a portion of cache
- * for pseudo-locking should take into account both resources.
- * Similarly, if a pseudo-locked region is created in one
- * resource, the portion of cache used by it should be made
- * unavailable to all future allocations from both resources.
- */
- if (rdt_resources_all[RDT_RESOURCE_L3DATA].alloc_enabled ||
- rdt_resources_all[RDT_RESOURCE_L2DATA].alloc_enabled) {
- rdt_last_cmd_puts("CDP enabled\n");
- return -EINVAL;
- }
- /*
- * Not knowing the bits to disable prefetching implies that this
- * platform does not support Cache Pseudo-Locking.
- */
- prefetch_disable_bits = get_prefetch_disable_bits();
- if (prefetch_disable_bits == 0) {
- rdt_last_cmd_puts("pseudo-locking not supported\n");
- return -EINVAL;
- }
- if (rdtgroup_monitor_in_progress(rdtgrp)) {
- rdt_last_cmd_puts("monitoring in progress\n");
- return -EINVAL;
- }
- if (rdtgroup_tasks_assigned(rdtgrp)) {
- rdt_last_cmd_puts("tasks assigned to resource group\n");
- return -EINVAL;
- }
- if (!cpumask_empty(&rdtgrp->cpu_mask)) {
- rdt_last_cmd_puts("CPUs assigned to resource group\n");
- return -EINVAL;
- }
- if (rdtgroup_locksetup_user_restrict(rdtgrp)) {
- rdt_last_cmd_puts("unable to modify resctrl permissions\n");
- return -EIO;
- }
- ret = pseudo_lock_init(rdtgrp);
- if (ret) {
- rdt_last_cmd_puts("unable to init pseudo-lock region\n");
- goto out_release;
- }
- /*
- * If this system is capable of monitoring a rmid would have been
- * allocated when the control group was created. This is not needed
- * anymore when this group would be used for pseudo-locking. This
- * is safe to call on platforms not capable of monitoring.
- */
- free_rmid(rdtgrp->mon.rmid);
- ret = 0;
- goto out;
- out_release:
- rdtgroup_locksetup_user_restore(rdtgrp);
- out:
- return ret;
- }
- /**
- * rdtgroup_locksetup_exit - resource group exist locksetup mode
- * @rdtgrp: resource group
- *
- * When a resource group exits locksetup mode the earlier restrictions are
- * lifted.
- *
- * Return: 0 on success, <0 on failure
- */
- int rdtgroup_locksetup_exit(struct rdtgroup *rdtgrp)
- {
- int ret;
- if (rdt_mon_capable) {
- ret = alloc_rmid();
- if (ret < 0) {
- rdt_last_cmd_puts("out of RMIDs\n");
- return ret;
- }
- rdtgrp->mon.rmid = ret;
- }
- ret = rdtgroup_locksetup_user_restore(rdtgrp);
- if (ret) {
- free_rmid(rdtgrp->mon.rmid);
- return ret;
- }
- pseudo_lock_free(rdtgrp);
- return 0;
- }
- /**
- * rdtgroup_cbm_overlaps_pseudo_locked - Test if CBM or portion is pseudo-locked
- * @d: RDT domain
- * @cbm: CBM to test
- *
- * @d represents a cache instance and @cbm a capacity bitmask that is
- * considered for it. Determine if @cbm overlaps with any existing
- * pseudo-locked region on @d.
- *
- * @cbm is unsigned long, even if only 32 bits are used, to make the
- * bitmap functions work correctly.
- *
- * Return: true if @cbm overlaps with pseudo-locked region on @d, false
- * otherwise.
- */
- bool rdtgroup_cbm_overlaps_pseudo_locked(struct rdt_domain *d, unsigned long cbm)
- {
- unsigned int cbm_len;
- unsigned long cbm_b;
- if (d->plr) {
- cbm_len = d->plr->r->cache.cbm_len;
- cbm_b = d->plr->cbm;
- if (bitmap_intersects(&cbm, &cbm_b, cbm_len))
- return true;
- }
- return false;
- }
- /**
- * rdtgroup_pseudo_locked_in_hierarchy - Pseudo-locked region in cache hierarchy
- * @d: RDT domain under test
- *
- * The setup of a pseudo-locked region affects all cache instances within
- * the hierarchy of the region. It is thus essential to know if any
- * pseudo-locked regions exist within a cache hierarchy to prevent any
- * attempts to create new pseudo-locked regions in the same hierarchy.
- *
- * Return: true if a pseudo-locked region exists in the hierarchy of @d or
- * if it is not possible to test due to memory allocation issue,
- * false otherwise.
- */
- bool rdtgroup_pseudo_locked_in_hierarchy(struct rdt_domain *d)
- {
- cpumask_var_t cpu_with_psl;
- struct rdt_resource *r;
- struct rdt_domain *d_i;
- bool ret = false;
- if (!zalloc_cpumask_var(&cpu_with_psl, GFP_KERNEL))
- return true;
- /*
- * First determine which cpus have pseudo-locked regions
- * associated with them.
- */
- for_each_alloc_enabled_rdt_resource(r) {
- list_for_each_entry(d_i, &r->domains, list) {
- if (d_i->plr)
- cpumask_or(cpu_with_psl, cpu_with_psl,
- &d_i->cpu_mask);
- }
- }
- /*
- * Next test if new pseudo-locked region would intersect with
- * existing region.
- */
- if (cpumask_intersects(&d->cpu_mask, cpu_with_psl))
- ret = true;
- free_cpumask_var(cpu_with_psl);
- return ret;
- }
- /**
- * measure_cycles_lat_fn - Measure cycle latency to read pseudo-locked memory
- * @_plr: pseudo-lock region to measure
- *
- * There is no deterministic way to test if a memory region is cached. One
- * way is to measure how long it takes to read the memory, the speed of
- * access is a good way to learn how close to the cpu the data was. Even
- * more, if the prefetcher is disabled and the memory is read at a stride
- * of half the cache line, then a cache miss will be easy to spot since the
- * read of the first half would be significantly slower than the read of
- * the second half.
- *
- * Return: 0. Waiter on waitqueue will be woken on completion.
- */
- static int measure_cycles_lat_fn(void *_plr)
- {
- struct pseudo_lock_region *plr = _plr;
- unsigned long i;
- u64 start, end;
- #ifdef CONFIG_KASAN
- /*
- * The registers used for local register variables are also used
- * when KASAN is active. When KASAN is active we use a regular
- * variable to ensure we always use a valid pointer to access memory.
- * The cost is that accessing this pointer, which could be in
- * cache, will be included in the measurement of memory read latency.
- */
- void *mem_r;
- #else
- #ifdef CONFIG_X86_64
- register void *mem_r asm("rbx");
- #else
- register void *mem_r asm("ebx");
- #endif /* CONFIG_X86_64 */
- #endif /* CONFIG_KASAN */
- local_irq_disable();
- /*
- * The wrmsr call may be reordered with the assignment below it.
- * Call wrmsr as directly as possible to avoid tracing clobbering
- * local register variable used for memory pointer.
- */
- __wrmsr(MSR_MISC_FEATURE_CONTROL, prefetch_disable_bits, 0x0);
- mem_r = plr->kmem;
- /*
- * Dummy execute of the time measurement to load the needed
- * instructions into the L1 instruction cache.
- */
- start = rdtsc_ordered();
- for (i = 0; i < plr->size; i += 32) {
- start = rdtsc_ordered();
- asm volatile("mov (%0,%1,1), %%eax\n\t"
- :
- : "r" (mem_r), "r" (i)
- : "%eax", "memory");
- end = rdtsc_ordered();
- trace_pseudo_lock_mem_latency((u32)(end - start));
- }
- wrmsr(MSR_MISC_FEATURE_CONTROL, 0x0, 0x0);
- local_irq_enable();
- plr->thread_done = 1;
- wake_up_interruptible(&plr->lock_thread_wq);
- return 0;
- }
- static int measure_cycles_perf_fn(void *_plr)
- {
- unsigned long long l3_hits = 0, l3_miss = 0;
- u64 l3_hit_bits = 0, l3_miss_bits = 0;
- struct pseudo_lock_region *plr = _plr;
- unsigned long long l2_hits, l2_miss;
- u64 l2_hit_bits, l2_miss_bits;
- unsigned long i;
- #ifdef CONFIG_KASAN
- /*
- * The registers used for local register variables are also used
- * when KASAN is active. When KASAN is active we use regular variables
- * at the cost of including cache access latency to these variables
- * in the measurements.
- */
- unsigned int line_size;
- unsigned int size;
- void *mem_r;
- #else
- register unsigned int line_size asm("esi");
- register unsigned int size asm("edi");
- #ifdef CONFIG_X86_64
- register void *mem_r asm("rbx");
- #else
- register void *mem_r asm("ebx");
- #endif /* CONFIG_X86_64 */
- #endif /* CONFIG_KASAN */
- /*
- * Non-architectural event for the Goldmont Microarchitecture
- * from Intel x86 Architecture Software Developer Manual (SDM):
- * MEM_LOAD_UOPS_RETIRED D1H (event number)
- * Umask values:
- * L1_HIT 01H
- * L2_HIT 02H
- * L1_MISS 08H
- * L2_MISS 10H
- *
- * On Broadwell Microarchitecture the MEM_LOAD_UOPS_RETIRED event
- * has two "no fix" errata associated with it: BDM35 and BDM100. On
- * this platform we use the following events instead:
- * L2_RQSTS 24H (Documented in https://download.01.org/perfmon/BDW/)
- * REFERENCES FFH
- * MISS 3FH
- * LONGEST_LAT_CACHE 2EH (Documented in SDM)
- * REFERENCE 4FH
- * MISS 41H
- */
- /*
- * Start by setting flags for IA32_PERFEVTSELx:
- * OS (Operating system mode) 0x2
- * INT (APIC interrupt enable) 0x10
- * EN (Enable counter) 0x40
- *
- * Then add the Umask value and event number to select performance
- * event.
- */
- switch (boot_cpu_data.x86_model) {
- case INTEL_FAM6_ATOM_GOLDMONT:
- case INTEL_FAM6_ATOM_GOLDMONT_PLUS:
- l2_hit_bits = (0x52ULL << 16) | (0x2 << 8) | 0xd1;
- l2_miss_bits = (0x52ULL << 16) | (0x10 << 8) | 0xd1;
- break;
- case INTEL_FAM6_BROADWELL_X:
- /* On BDW the l2_hit_bits count references, not hits */
- l2_hit_bits = (0x52ULL << 16) | (0xff << 8) | 0x24;
- l2_miss_bits = (0x52ULL << 16) | (0x3f << 8) | 0x24;
- /* On BDW the l3_hit_bits count references, not hits */
- l3_hit_bits = (0x52ULL << 16) | (0x4f << 8) | 0x2e;
- l3_miss_bits = (0x52ULL << 16) | (0x41 << 8) | 0x2e;
- break;
- default:
- goto out;
- }
- local_irq_disable();
- /*
- * Call wrmsr direcly to avoid the local register variables from
- * being overwritten due to reordering of their assignment with
- * the wrmsr calls.
- */
- __wrmsr(MSR_MISC_FEATURE_CONTROL, prefetch_disable_bits, 0x0);
- /* Disable events and reset counters */
- pseudo_wrmsrl_notrace(MSR_ARCH_PERFMON_EVENTSEL0, 0x0);
- pseudo_wrmsrl_notrace(MSR_ARCH_PERFMON_EVENTSEL0 + 1, 0x0);
- pseudo_wrmsrl_notrace(MSR_ARCH_PERFMON_PERFCTR0, 0x0);
- pseudo_wrmsrl_notrace(MSR_ARCH_PERFMON_PERFCTR0 + 1, 0x0);
- if (l3_hit_bits > 0) {
- pseudo_wrmsrl_notrace(MSR_ARCH_PERFMON_EVENTSEL0 + 2, 0x0);
- pseudo_wrmsrl_notrace(MSR_ARCH_PERFMON_EVENTSEL0 + 3, 0x0);
- pseudo_wrmsrl_notrace(MSR_ARCH_PERFMON_PERFCTR0 + 2, 0x0);
- pseudo_wrmsrl_notrace(MSR_ARCH_PERFMON_PERFCTR0 + 3, 0x0);
- }
- /* Set and enable the L2 counters */
- pseudo_wrmsrl_notrace(MSR_ARCH_PERFMON_EVENTSEL0, l2_hit_bits);
- pseudo_wrmsrl_notrace(MSR_ARCH_PERFMON_EVENTSEL0 + 1, l2_miss_bits);
- if (l3_hit_bits > 0) {
- pseudo_wrmsrl_notrace(MSR_ARCH_PERFMON_EVENTSEL0 + 2,
- l3_hit_bits);
- pseudo_wrmsrl_notrace(MSR_ARCH_PERFMON_EVENTSEL0 + 3,
- l3_miss_bits);
- }
- mem_r = plr->kmem;
- size = plr->size;
- line_size = plr->line_size;
- for (i = 0; i < size; i += line_size) {
- asm volatile("mov (%0,%1,1), %%eax\n\t"
- :
- : "r" (mem_r), "r" (i)
- : "%eax", "memory");
- }
- /*
- * Call wrmsr directly (no tracing) to not influence
- * the cache access counters as they are disabled.
- */
- pseudo_wrmsrl_notrace(MSR_ARCH_PERFMON_EVENTSEL0,
- l2_hit_bits & ~(0x40ULL << 16));
- pseudo_wrmsrl_notrace(MSR_ARCH_PERFMON_EVENTSEL0 + 1,
- l2_miss_bits & ~(0x40ULL << 16));
- if (l3_hit_bits > 0) {
- pseudo_wrmsrl_notrace(MSR_ARCH_PERFMON_EVENTSEL0 + 2,
- l3_hit_bits & ~(0x40ULL << 16));
- pseudo_wrmsrl_notrace(MSR_ARCH_PERFMON_EVENTSEL0 + 3,
- l3_miss_bits & ~(0x40ULL << 16));
- }
- l2_hits = native_read_pmc(0);
- l2_miss = native_read_pmc(1);
- if (l3_hit_bits > 0) {
- l3_hits = native_read_pmc(2);
- l3_miss = native_read_pmc(3);
- }
- wrmsr(MSR_MISC_FEATURE_CONTROL, 0x0, 0x0);
- local_irq_enable();
- /*
- * On BDW we count references and misses, need to adjust. Sometimes
- * the "hits" counter is a bit more than the references, for
- * example, x references but x + 1 hits. To not report invalid
- * hit values in this case we treat that as misses eaqual to
- * references.
- */
- if (boot_cpu_data.x86_model == INTEL_FAM6_BROADWELL_X)
- l2_hits -= (l2_miss > l2_hits ? l2_hits : l2_miss);
- trace_pseudo_lock_l2(l2_hits, l2_miss);
- if (l3_hit_bits > 0) {
- if (boot_cpu_data.x86_model == INTEL_FAM6_BROADWELL_X)
- l3_hits -= (l3_miss > l3_hits ? l3_hits : l3_miss);
- trace_pseudo_lock_l3(l3_hits, l3_miss);
- }
- out:
- plr->thread_done = 1;
- wake_up_interruptible(&plr->lock_thread_wq);
- return 0;
- }
- /**
- * pseudo_lock_measure_cycles - Trigger latency measure to pseudo-locked region
- *
- * The measurement of latency to access a pseudo-locked region should be
- * done from a cpu that is associated with that pseudo-locked region.
- * Determine which cpu is associated with this region and start a thread on
- * that cpu to perform the measurement, wait for that thread to complete.
- *
- * Return: 0 on success, <0 on failure
- */
- static int pseudo_lock_measure_cycles(struct rdtgroup *rdtgrp, int sel)
- {
- struct pseudo_lock_region *plr = rdtgrp->plr;
- struct task_struct *thread;
- unsigned int cpu;
- int ret = -1;
- cpus_read_lock();
- mutex_lock(&rdtgroup_mutex);
- if (rdtgrp->flags & RDT_DELETED) {
- ret = -ENODEV;
- goto out;
- }
- if (!plr->d) {
- ret = -ENODEV;
- goto out;
- }
- plr->thread_done = 0;
- cpu = cpumask_first(&plr->d->cpu_mask);
- if (!cpu_online(cpu)) {
- ret = -ENODEV;
- goto out;
- }
- if (sel == 1)
- thread = kthread_create_on_node(measure_cycles_lat_fn, plr,
- cpu_to_node(cpu),
- "pseudo_lock_measure/%u",
- cpu);
- else if (sel == 2)
- thread = kthread_create_on_node(measure_cycles_perf_fn, plr,
- cpu_to_node(cpu),
- "pseudo_lock_measure/%u",
- cpu);
- else
- goto out;
- if (IS_ERR(thread)) {
- ret = PTR_ERR(thread);
- goto out;
- }
- kthread_bind(thread, cpu);
- wake_up_process(thread);
- ret = wait_event_interruptible(plr->lock_thread_wq,
- plr->thread_done == 1);
- if (ret < 0)
- goto out;
- ret = 0;
- out:
- mutex_unlock(&rdtgroup_mutex);
- cpus_read_unlock();
- return ret;
- }
- static ssize_t pseudo_lock_measure_trigger(struct file *file,
- const char __user *user_buf,
- size_t count, loff_t *ppos)
- {
- struct rdtgroup *rdtgrp = file->private_data;
- size_t buf_size;
- char buf[32];
- int ret;
- int sel;
- buf_size = min(count, (sizeof(buf) - 1));
- if (copy_from_user(buf, user_buf, buf_size))
- return -EFAULT;
- buf[buf_size] = '\0';
- ret = kstrtoint(buf, 10, &sel);
- if (ret == 0) {
- if (sel != 1)
- return -EINVAL;
- ret = debugfs_file_get(file->f_path.dentry);
- if (ret)
- return ret;
- ret = pseudo_lock_measure_cycles(rdtgrp, sel);
- if (ret == 0)
- ret = count;
- debugfs_file_put(file->f_path.dentry);
- }
- return ret;
- }
- static const struct file_operations pseudo_measure_fops = {
- .write = pseudo_lock_measure_trigger,
- .open = simple_open,
- .llseek = default_llseek,
- };
- /**
- * rdtgroup_pseudo_lock_create - Create a pseudo-locked region
- * @rdtgrp: resource group to which pseudo-lock region belongs
- *
- * Called when a resource group in the pseudo-locksetup mode receives a
- * valid schemata that should be pseudo-locked. Since the resource group is
- * in pseudo-locksetup mode the &struct pseudo_lock_region has already been
- * allocated and initialized with the essential information. If a failure
- * occurs the resource group remains in the pseudo-locksetup mode with the
- * &struct pseudo_lock_region associated with it, but cleared from all
- * information and ready for the user to re-attempt pseudo-locking by
- * writing the schemata again.
- *
- * Return: 0 if the pseudo-locked region was successfully pseudo-locked, <0
- * on failure. Descriptive error will be written to last_cmd_status buffer.
- */
- int rdtgroup_pseudo_lock_create(struct rdtgroup *rdtgrp)
- {
- struct pseudo_lock_region *plr = rdtgrp->plr;
- struct task_struct *thread;
- unsigned int new_minor;
- struct device *dev;
- int ret;
- ret = pseudo_lock_region_alloc(plr);
- if (ret < 0)
- return ret;
- ret = pseudo_lock_cstates_constrain(plr);
- if (ret < 0) {
- ret = -EINVAL;
- goto out_region;
- }
- plr->thread_done = 0;
- thread = kthread_create_on_node(pseudo_lock_fn, rdtgrp,
- cpu_to_node(plr->cpu),
- "pseudo_lock/%u", plr->cpu);
- if (IS_ERR(thread)) {
- ret = PTR_ERR(thread);
- rdt_last_cmd_printf("locking thread returned error %d\n", ret);
- goto out_cstates;
- }
- kthread_bind(thread, plr->cpu);
- wake_up_process(thread);
- ret = wait_event_interruptible(plr->lock_thread_wq,
- plr->thread_done == 1);
- if (ret < 0) {
- /*
- * If the thread does not get on the CPU for whatever
- * reason and the process which sets up the region is
- * interrupted then this will leave the thread in runnable
- * state and once it gets on the CPU it will derefence
- * the cleared, but not freed, plr struct resulting in an
- * empty pseudo-locking loop.
- */
- rdt_last_cmd_puts("locking thread interrupted\n");
- goto out_cstates;
- }
- ret = pseudo_lock_minor_get(&new_minor);
- if (ret < 0) {
- rdt_last_cmd_puts("unable to obtain a new minor number\n");
- goto out_cstates;
- }
- /*
- * Unlock access but do not release the reference. The
- * pseudo-locked region will still be here on return.
- *
- * The mutex has to be released temporarily to avoid a potential
- * deadlock with the mm->mmap_sem semaphore which is obtained in
- * the device_create() and debugfs_create_dir() callpath below
- * as well as before the mmap() callback is called.
- */
- mutex_unlock(&rdtgroup_mutex);
- if (!IS_ERR_OR_NULL(debugfs_resctrl)) {
- plr->debugfs_dir = debugfs_create_dir(rdtgrp->kn->name,
- debugfs_resctrl);
- if (!IS_ERR_OR_NULL(plr->debugfs_dir))
- debugfs_create_file("pseudo_lock_measure", 0200,
- plr->debugfs_dir, rdtgrp,
- &pseudo_measure_fops);
- }
- dev = device_create(pseudo_lock_class, NULL,
- MKDEV(pseudo_lock_major, new_minor),
- rdtgrp, "%s", rdtgrp->kn->name);
- mutex_lock(&rdtgroup_mutex);
- if (IS_ERR(dev)) {
- ret = PTR_ERR(dev);
- rdt_last_cmd_printf("failed to create character device: %d\n",
- ret);
- goto out_debugfs;
- }
- /* We released the mutex - check if group was removed while we did so */
- if (rdtgrp->flags & RDT_DELETED) {
- ret = -ENODEV;
- goto out_device;
- }
- plr->minor = new_minor;
- rdtgrp->mode = RDT_MODE_PSEUDO_LOCKED;
- closid_free(rdtgrp->closid);
- rdtgroup_kn_mode_restore(rdtgrp, "cpus", 0444);
- rdtgroup_kn_mode_restore(rdtgrp, "cpus_list", 0444);
- ret = 0;
- goto out;
- out_device:
- device_destroy(pseudo_lock_class, MKDEV(pseudo_lock_major, new_minor));
- out_debugfs:
- debugfs_remove_recursive(plr->debugfs_dir);
- pseudo_lock_minor_release(new_minor);
- out_cstates:
- pseudo_lock_cstates_relax(plr);
- out_region:
- pseudo_lock_region_clear(plr);
- out:
- return ret;
- }
- /**
- * rdtgroup_pseudo_lock_remove - Remove a pseudo-locked region
- * @rdtgrp: resource group to which the pseudo-locked region belongs
- *
- * The removal of a pseudo-locked region can be initiated when the resource
- * group is removed from user space via a "rmdir" from userspace or the
- * unmount of the resctrl filesystem. On removal the resource group does
- * not go back to pseudo-locksetup mode before it is removed, instead it is
- * removed directly. There is thus assymmetry with the creation where the
- * &struct pseudo_lock_region is removed here while it was not created in
- * rdtgroup_pseudo_lock_create().
- *
- * Return: void
- */
- void rdtgroup_pseudo_lock_remove(struct rdtgroup *rdtgrp)
- {
- struct pseudo_lock_region *plr = rdtgrp->plr;
- if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKSETUP) {
- /*
- * Default group cannot be a pseudo-locked region so we can
- * free closid here.
- */
- closid_free(rdtgrp->closid);
- goto free;
- }
- pseudo_lock_cstates_relax(plr);
- debugfs_remove_recursive(rdtgrp->plr->debugfs_dir);
- device_destroy(pseudo_lock_class, MKDEV(pseudo_lock_major, plr->minor));
- pseudo_lock_minor_release(plr->minor);
- free:
- pseudo_lock_free(rdtgrp);
- }
- static int pseudo_lock_dev_open(struct inode *inode, struct file *filp)
- {
- struct rdtgroup *rdtgrp;
- mutex_lock(&rdtgroup_mutex);
- rdtgrp = region_find_by_minor(iminor(inode));
- if (!rdtgrp) {
- mutex_unlock(&rdtgroup_mutex);
- return -ENODEV;
- }
- filp->private_data = rdtgrp;
- atomic_inc(&rdtgrp->waitcount);
- /* Perform a non-seekable open - llseek is not supported */
- filp->f_mode &= ~(FMODE_LSEEK | FMODE_PREAD | FMODE_PWRITE);
- mutex_unlock(&rdtgroup_mutex);
- return 0;
- }
- static int pseudo_lock_dev_release(struct inode *inode, struct file *filp)
- {
- struct rdtgroup *rdtgrp;
- mutex_lock(&rdtgroup_mutex);
- rdtgrp = filp->private_data;
- WARN_ON(!rdtgrp);
- if (!rdtgrp) {
- mutex_unlock(&rdtgroup_mutex);
- return -ENODEV;
- }
- filp->private_data = NULL;
- atomic_dec(&rdtgrp->waitcount);
- mutex_unlock(&rdtgroup_mutex);
- return 0;
- }
- static int pseudo_lock_dev_mremap(struct vm_area_struct *area)
- {
- /* Not supported */
- return -EINVAL;
- }
- static const struct vm_operations_struct pseudo_mmap_ops = {
- .mremap = pseudo_lock_dev_mremap,
- };
- static int pseudo_lock_dev_mmap(struct file *filp, struct vm_area_struct *vma)
- {
- unsigned long vsize = vma->vm_end - vma->vm_start;
- unsigned long off = vma->vm_pgoff << PAGE_SHIFT;
- struct pseudo_lock_region *plr;
- struct rdtgroup *rdtgrp;
- unsigned long physical;
- unsigned long psize;
- mutex_lock(&rdtgroup_mutex);
- rdtgrp = filp->private_data;
- WARN_ON(!rdtgrp);
- if (!rdtgrp) {
- mutex_unlock(&rdtgroup_mutex);
- return -ENODEV;
- }
- plr = rdtgrp->plr;
- if (!plr->d) {
- mutex_unlock(&rdtgroup_mutex);
- return -ENODEV;
- }
- /*
- * Task is required to run with affinity to the cpus associated
- * with the pseudo-locked region. If this is not the case the task
- * may be scheduled elsewhere and invalidate entries in the
- * pseudo-locked region.
- */
- if (!cpumask_subset(¤t->cpus_allowed, &plr->d->cpu_mask)) {
- mutex_unlock(&rdtgroup_mutex);
- return -EINVAL;
- }
- physical = __pa(plr->kmem) >> PAGE_SHIFT;
- psize = plr->size - off;
- if (off > plr->size) {
- mutex_unlock(&rdtgroup_mutex);
- return -ENOSPC;
- }
- /*
- * Ensure changes are carried directly to the memory being mapped,
- * do not allow copy-on-write mapping.
- */
- if (!(vma->vm_flags & VM_SHARED)) {
- mutex_unlock(&rdtgroup_mutex);
- return -EINVAL;
- }
- if (vsize > psize) {
- mutex_unlock(&rdtgroup_mutex);
- return -ENOSPC;
- }
- memset(plr->kmem + off, 0, vsize);
- if (remap_pfn_range(vma, vma->vm_start, physical + vma->vm_pgoff,
- vsize, vma->vm_page_prot)) {
- mutex_unlock(&rdtgroup_mutex);
- return -EAGAIN;
- }
- vma->vm_ops = &pseudo_mmap_ops;
- mutex_unlock(&rdtgroup_mutex);
- return 0;
- }
- static const struct file_operations pseudo_lock_dev_fops = {
- .owner = THIS_MODULE,
- .llseek = no_llseek,
- .read = NULL,
- .write = NULL,
- .open = pseudo_lock_dev_open,
- .release = pseudo_lock_dev_release,
- .mmap = pseudo_lock_dev_mmap,
- };
- static char *pseudo_lock_devnode(struct device *dev, umode_t *mode)
- {
- struct rdtgroup *rdtgrp;
- rdtgrp = dev_get_drvdata(dev);
- if (mode)
- *mode = 0600;
- return kasprintf(GFP_KERNEL, "pseudo_lock/%s", rdtgrp->kn->name);
- }
- int rdt_pseudo_lock_init(void)
- {
- int ret;
- ret = register_chrdev(0, "pseudo_lock", &pseudo_lock_dev_fops);
- if (ret < 0)
- return ret;
- pseudo_lock_major = ret;
- pseudo_lock_class = class_create(THIS_MODULE, "pseudo_lock");
- if (IS_ERR(pseudo_lock_class)) {
- ret = PTR_ERR(pseudo_lock_class);
- unregister_chrdev(pseudo_lock_major, "pseudo_lock");
- return ret;
- }
- pseudo_lock_class->devnode = pseudo_lock_devnode;
- return 0;
- }
- void rdt_pseudo_lock_release(void)
- {
- class_destroy(pseudo_lock_class);
- pseudo_lock_class = NULL;
- unregister_chrdev(pseudo_lock_major, "pseudo_lock");
- pseudo_lock_major = 0;
- }
|