tsc.c 38 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511
  1. #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  2. #include <linux/kernel.h>
  3. #include <linux/sched.h>
  4. #include <linux/sched/clock.h>
  5. #include <linux/init.h>
  6. #include <linux/export.h>
  7. #include <linux/timer.h>
  8. #include <linux/acpi_pmtmr.h>
  9. #include <linux/cpufreq.h>
  10. #include <linux/delay.h>
  11. #include <linux/clocksource.h>
  12. #include <linux/percpu.h>
  13. #include <linux/timex.h>
  14. #include <linux/static_key.h>
  15. #include <asm/hpet.h>
  16. #include <asm/timer.h>
  17. #include <asm/vgtod.h>
  18. #include <asm/time.h>
  19. #include <asm/delay.h>
  20. #include <asm/hypervisor.h>
  21. #include <asm/nmi.h>
  22. #include <asm/x86_init.h>
  23. #include <asm/geode.h>
  24. #include <asm/apic.h>
  25. #include <asm/intel-family.h>
  26. #include <asm/i8259.h>
  27. #include <asm/uv/uv.h>
  28. unsigned int __read_mostly cpu_khz; /* TSC clocks / usec, not used here */
  29. EXPORT_SYMBOL(cpu_khz);
  30. unsigned int __read_mostly tsc_khz;
  31. EXPORT_SYMBOL(tsc_khz);
  32. #define KHZ 1000
  33. /*
  34. * TSC can be unstable due to cpufreq or due to unsynced TSCs
  35. */
  36. static int __read_mostly tsc_unstable;
  37. static DEFINE_STATIC_KEY_FALSE(__use_tsc);
  38. int tsc_clocksource_reliable;
  39. static u32 art_to_tsc_numerator;
  40. static u32 art_to_tsc_denominator;
  41. static u64 art_to_tsc_offset;
  42. struct clocksource *art_related_clocksource;
  43. struct cyc2ns {
  44. struct cyc2ns_data data[2]; /* 0 + 2*16 = 32 */
  45. seqcount_t seq; /* 32 + 4 = 36 */
  46. }; /* fits one cacheline */
  47. static DEFINE_PER_CPU_ALIGNED(struct cyc2ns, cyc2ns);
  48. void __always_inline cyc2ns_read_begin(struct cyc2ns_data *data)
  49. {
  50. int seq, idx;
  51. preempt_disable_notrace();
  52. do {
  53. seq = this_cpu_read(cyc2ns.seq.sequence);
  54. idx = seq & 1;
  55. data->cyc2ns_offset = this_cpu_read(cyc2ns.data[idx].cyc2ns_offset);
  56. data->cyc2ns_mul = this_cpu_read(cyc2ns.data[idx].cyc2ns_mul);
  57. data->cyc2ns_shift = this_cpu_read(cyc2ns.data[idx].cyc2ns_shift);
  58. } while (unlikely(seq != this_cpu_read(cyc2ns.seq.sequence)));
  59. }
  60. void __always_inline cyc2ns_read_end(void)
  61. {
  62. preempt_enable_notrace();
  63. }
  64. /*
  65. * Accelerators for sched_clock()
  66. * convert from cycles(64bits) => nanoseconds (64bits)
  67. * basic equation:
  68. * ns = cycles / (freq / ns_per_sec)
  69. * ns = cycles * (ns_per_sec / freq)
  70. * ns = cycles * (10^9 / (cpu_khz * 10^3))
  71. * ns = cycles * (10^6 / cpu_khz)
  72. *
  73. * Then we use scaling math (suggested by george@mvista.com) to get:
  74. * ns = cycles * (10^6 * SC / cpu_khz) / SC
  75. * ns = cycles * cyc2ns_scale / SC
  76. *
  77. * And since SC is a constant power of two, we can convert the div
  78. * into a shift. The larger SC is, the more accurate the conversion, but
  79. * cyc2ns_scale needs to be a 32-bit value so that 32-bit multiplication
  80. * (64-bit result) can be used.
  81. *
  82. * We can use khz divisor instead of mhz to keep a better precision.
  83. * (mathieu.desnoyers@polymtl.ca)
  84. *
  85. * -johnstul@us.ibm.com "math is hard, lets go shopping!"
  86. */
  87. static __always_inline unsigned long long cycles_2_ns(unsigned long long cyc)
  88. {
  89. struct cyc2ns_data data;
  90. unsigned long long ns;
  91. cyc2ns_read_begin(&data);
  92. ns = data.cyc2ns_offset;
  93. ns += mul_u64_u32_shr(cyc, data.cyc2ns_mul, data.cyc2ns_shift);
  94. cyc2ns_read_end();
  95. return ns;
  96. }
  97. static void __set_cyc2ns_scale(unsigned long khz, int cpu, unsigned long long tsc_now)
  98. {
  99. unsigned long long ns_now;
  100. struct cyc2ns_data data;
  101. struct cyc2ns *c2n;
  102. ns_now = cycles_2_ns(tsc_now);
  103. /*
  104. * Compute a new multiplier as per the above comment and ensure our
  105. * time function is continuous; see the comment near struct
  106. * cyc2ns_data.
  107. */
  108. clocks_calc_mult_shift(&data.cyc2ns_mul, &data.cyc2ns_shift, khz,
  109. NSEC_PER_MSEC, 0);
  110. /*
  111. * cyc2ns_shift is exported via arch_perf_update_userpage() where it is
  112. * not expected to be greater than 31 due to the original published
  113. * conversion algorithm shifting a 32-bit value (now specifies a 64-bit
  114. * value) - refer perf_event_mmap_page documentation in perf_event.h.
  115. */
  116. if (data.cyc2ns_shift == 32) {
  117. data.cyc2ns_shift = 31;
  118. data.cyc2ns_mul >>= 1;
  119. }
  120. data.cyc2ns_offset = ns_now -
  121. mul_u64_u32_shr(tsc_now, data.cyc2ns_mul, data.cyc2ns_shift);
  122. c2n = per_cpu_ptr(&cyc2ns, cpu);
  123. raw_write_seqcount_latch(&c2n->seq);
  124. c2n->data[0] = data;
  125. raw_write_seqcount_latch(&c2n->seq);
  126. c2n->data[1] = data;
  127. }
  128. static void set_cyc2ns_scale(unsigned long khz, int cpu, unsigned long long tsc_now)
  129. {
  130. unsigned long flags;
  131. local_irq_save(flags);
  132. sched_clock_idle_sleep_event();
  133. if (khz)
  134. __set_cyc2ns_scale(khz, cpu, tsc_now);
  135. sched_clock_idle_wakeup_event();
  136. local_irq_restore(flags);
  137. }
  138. /*
  139. * Initialize cyc2ns for boot cpu
  140. */
  141. static void __init cyc2ns_init_boot_cpu(void)
  142. {
  143. struct cyc2ns *c2n = this_cpu_ptr(&cyc2ns);
  144. seqcount_init(&c2n->seq);
  145. __set_cyc2ns_scale(tsc_khz, smp_processor_id(), rdtsc());
  146. }
  147. /*
  148. * Secondary CPUs do not run through tsc_init(), so set up
  149. * all the scale factors for all CPUs, assuming the same
  150. * speed as the bootup CPU. (cpufreq notifiers will fix this
  151. * up if their speed diverges)
  152. */
  153. static void __init cyc2ns_init_secondary_cpus(void)
  154. {
  155. unsigned int cpu, this_cpu = smp_processor_id();
  156. struct cyc2ns *c2n = this_cpu_ptr(&cyc2ns);
  157. struct cyc2ns_data *data = c2n->data;
  158. for_each_possible_cpu(cpu) {
  159. if (cpu != this_cpu) {
  160. seqcount_init(&c2n->seq);
  161. c2n = per_cpu_ptr(&cyc2ns, cpu);
  162. c2n->data[0] = data[0];
  163. c2n->data[1] = data[1];
  164. }
  165. }
  166. }
  167. /*
  168. * Scheduler clock - returns current time in nanosec units.
  169. */
  170. u64 native_sched_clock(void)
  171. {
  172. if (static_branch_likely(&__use_tsc)) {
  173. u64 tsc_now = rdtsc();
  174. /* return the value in ns */
  175. return cycles_2_ns(tsc_now);
  176. }
  177. /*
  178. * Fall back to jiffies if there's no TSC available:
  179. * ( But note that we still use it if the TSC is marked
  180. * unstable. We do this because unlike Time Of Day,
  181. * the scheduler clock tolerates small errors and it's
  182. * very important for it to be as fast as the platform
  183. * can achieve it. )
  184. */
  185. /* No locking but a rare wrong value is not a big deal: */
  186. return (jiffies_64 - INITIAL_JIFFIES) * (1000000000 / HZ);
  187. }
  188. /*
  189. * Generate a sched_clock if you already have a TSC value.
  190. */
  191. u64 native_sched_clock_from_tsc(u64 tsc)
  192. {
  193. return cycles_2_ns(tsc);
  194. }
  195. /* We need to define a real function for sched_clock, to override the
  196. weak default version */
  197. #ifdef CONFIG_PARAVIRT
  198. unsigned long long sched_clock(void)
  199. {
  200. return paravirt_sched_clock();
  201. }
  202. bool using_native_sched_clock(void)
  203. {
  204. return pv_time_ops.sched_clock == native_sched_clock;
  205. }
  206. #else
  207. unsigned long long
  208. sched_clock(void) __attribute__((alias("native_sched_clock")));
  209. bool using_native_sched_clock(void) { return true; }
  210. #endif
  211. int check_tsc_unstable(void)
  212. {
  213. return tsc_unstable;
  214. }
  215. EXPORT_SYMBOL_GPL(check_tsc_unstable);
  216. #ifdef CONFIG_X86_TSC
  217. int __init notsc_setup(char *str)
  218. {
  219. mark_tsc_unstable("boot parameter notsc");
  220. return 1;
  221. }
  222. #else
  223. /*
  224. * disable flag for tsc. Takes effect by clearing the TSC cpu flag
  225. * in cpu/common.c
  226. */
  227. int __init notsc_setup(char *str)
  228. {
  229. setup_clear_cpu_cap(X86_FEATURE_TSC);
  230. return 1;
  231. }
  232. #endif
  233. __setup("notsc", notsc_setup);
  234. static int no_sched_irq_time;
  235. static int __init tsc_setup(char *str)
  236. {
  237. if (!strcmp(str, "reliable"))
  238. tsc_clocksource_reliable = 1;
  239. if (!strncmp(str, "noirqtime", 9))
  240. no_sched_irq_time = 1;
  241. if (!strcmp(str, "unstable"))
  242. mark_tsc_unstable("boot parameter");
  243. return 1;
  244. }
  245. __setup("tsc=", tsc_setup);
  246. #define MAX_RETRIES 5
  247. #define SMI_TRESHOLD 50000
  248. /*
  249. * Read TSC and the reference counters. Take care of SMI disturbance
  250. */
  251. static u64 tsc_read_refs(u64 *p, int hpet)
  252. {
  253. u64 t1, t2;
  254. int i;
  255. for (i = 0; i < MAX_RETRIES; i++) {
  256. t1 = get_cycles();
  257. if (hpet)
  258. *p = hpet_readl(HPET_COUNTER) & 0xFFFFFFFF;
  259. else
  260. *p = acpi_pm_read_early();
  261. t2 = get_cycles();
  262. if ((t2 - t1) < SMI_TRESHOLD)
  263. return t2;
  264. }
  265. return ULLONG_MAX;
  266. }
  267. /*
  268. * Calculate the TSC frequency from HPET reference
  269. */
  270. static unsigned long calc_hpet_ref(u64 deltatsc, u64 hpet1, u64 hpet2)
  271. {
  272. u64 tmp;
  273. if (hpet2 < hpet1)
  274. hpet2 += 0x100000000ULL;
  275. hpet2 -= hpet1;
  276. tmp = ((u64)hpet2 * hpet_readl(HPET_PERIOD));
  277. do_div(tmp, 1000000);
  278. deltatsc = div64_u64(deltatsc, tmp);
  279. return (unsigned long) deltatsc;
  280. }
  281. /*
  282. * Calculate the TSC frequency from PMTimer reference
  283. */
  284. static unsigned long calc_pmtimer_ref(u64 deltatsc, u64 pm1, u64 pm2)
  285. {
  286. u64 tmp;
  287. if (!pm1 && !pm2)
  288. return ULONG_MAX;
  289. if (pm2 < pm1)
  290. pm2 += (u64)ACPI_PM_OVRRUN;
  291. pm2 -= pm1;
  292. tmp = pm2 * 1000000000LL;
  293. do_div(tmp, PMTMR_TICKS_PER_SEC);
  294. do_div(deltatsc, tmp);
  295. return (unsigned long) deltatsc;
  296. }
  297. #define CAL_MS 10
  298. #define CAL_LATCH (PIT_TICK_RATE / (1000 / CAL_MS))
  299. #define CAL_PIT_LOOPS 1000
  300. #define CAL2_MS 50
  301. #define CAL2_LATCH (PIT_TICK_RATE / (1000 / CAL2_MS))
  302. #define CAL2_PIT_LOOPS 5000
  303. /*
  304. * Try to calibrate the TSC against the Programmable
  305. * Interrupt Timer and return the frequency of the TSC
  306. * in kHz.
  307. *
  308. * Return ULONG_MAX on failure to calibrate.
  309. */
  310. static unsigned long pit_calibrate_tsc(u32 latch, unsigned long ms, int loopmin)
  311. {
  312. u64 tsc, t1, t2, delta;
  313. unsigned long tscmin, tscmax;
  314. int pitcnt;
  315. if (!has_legacy_pic()) {
  316. /*
  317. * Relies on tsc_early_delay_calibrate() to have given us semi
  318. * usable udelay(), wait for the same 50ms we would have with
  319. * the PIT loop below.
  320. */
  321. udelay(10 * USEC_PER_MSEC);
  322. udelay(10 * USEC_PER_MSEC);
  323. udelay(10 * USEC_PER_MSEC);
  324. udelay(10 * USEC_PER_MSEC);
  325. udelay(10 * USEC_PER_MSEC);
  326. return ULONG_MAX;
  327. }
  328. /* Set the Gate high, disable speaker */
  329. outb((inb(0x61) & ~0x02) | 0x01, 0x61);
  330. /*
  331. * Setup CTC channel 2* for mode 0, (interrupt on terminal
  332. * count mode), binary count. Set the latch register to 50ms
  333. * (LSB then MSB) to begin countdown.
  334. */
  335. outb(0xb0, 0x43);
  336. outb(latch & 0xff, 0x42);
  337. outb(latch >> 8, 0x42);
  338. tsc = t1 = t2 = get_cycles();
  339. pitcnt = 0;
  340. tscmax = 0;
  341. tscmin = ULONG_MAX;
  342. while ((inb(0x61) & 0x20) == 0) {
  343. t2 = get_cycles();
  344. delta = t2 - tsc;
  345. tsc = t2;
  346. if ((unsigned long) delta < tscmin)
  347. tscmin = (unsigned int) delta;
  348. if ((unsigned long) delta > tscmax)
  349. tscmax = (unsigned int) delta;
  350. pitcnt++;
  351. }
  352. /*
  353. * Sanity checks:
  354. *
  355. * If we were not able to read the PIT more than loopmin
  356. * times, then we have been hit by a massive SMI
  357. *
  358. * If the maximum is 10 times larger than the minimum,
  359. * then we got hit by an SMI as well.
  360. */
  361. if (pitcnt < loopmin || tscmax > 10 * tscmin)
  362. return ULONG_MAX;
  363. /* Calculate the PIT value */
  364. delta = t2 - t1;
  365. do_div(delta, ms);
  366. return delta;
  367. }
  368. /*
  369. * This reads the current MSB of the PIT counter, and
  370. * checks if we are running on sufficiently fast and
  371. * non-virtualized hardware.
  372. *
  373. * Our expectations are:
  374. *
  375. * - the PIT is running at roughly 1.19MHz
  376. *
  377. * - each IO is going to take about 1us on real hardware,
  378. * but we allow it to be much faster (by a factor of 10) or
  379. * _slightly_ slower (ie we allow up to a 2us read+counter
  380. * update - anything else implies a unacceptably slow CPU
  381. * or PIT for the fast calibration to work.
  382. *
  383. * - with 256 PIT ticks to read the value, we have 214us to
  384. * see the same MSB (and overhead like doing a single TSC
  385. * read per MSB value etc).
  386. *
  387. * - We're doing 2 reads per loop (LSB, MSB), and we expect
  388. * them each to take about a microsecond on real hardware.
  389. * So we expect a count value of around 100. But we'll be
  390. * generous, and accept anything over 50.
  391. *
  392. * - if the PIT is stuck, and we see *many* more reads, we
  393. * return early (and the next caller of pit_expect_msb()
  394. * then consider it a failure when they don't see the
  395. * next expected value).
  396. *
  397. * These expectations mean that we know that we have seen the
  398. * transition from one expected value to another with a fairly
  399. * high accuracy, and we didn't miss any events. We can thus
  400. * use the TSC value at the transitions to calculate a pretty
  401. * good value for the TSC frequencty.
  402. */
  403. static inline int pit_verify_msb(unsigned char val)
  404. {
  405. /* Ignore LSB */
  406. inb(0x42);
  407. return inb(0x42) == val;
  408. }
  409. static inline int pit_expect_msb(unsigned char val, u64 *tscp, unsigned long *deltap)
  410. {
  411. int count;
  412. u64 tsc = 0, prev_tsc = 0;
  413. for (count = 0; count < 50000; count++) {
  414. if (!pit_verify_msb(val))
  415. break;
  416. prev_tsc = tsc;
  417. tsc = get_cycles();
  418. }
  419. *deltap = get_cycles() - prev_tsc;
  420. *tscp = tsc;
  421. /*
  422. * We require _some_ success, but the quality control
  423. * will be based on the error terms on the TSC values.
  424. */
  425. return count > 5;
  426. }
  427. /*
  428. * How many MSB values do we want to see? We aim for
  429. * a maximum error rate of 500ppm (in practice the
  430. * real error is much smaller), but refuse to spend
  431. * more than 50ms on it.
  432. */
  433. #define MAX_QUICK_PIT_MS 50
  434. #define MAX_QUICK_PIT_ITERATIONS (MAX_QUICK_PIT_MS * PIT_TICK_RATE / 1000 / 256)
  435. static unsigned long quick_pit_calibrate(void)
  436. {
  437. int i;
  438. u64 tsc, delta;
  439. unsigned long d1, d2;
  440. if (!has_legacy_pic())
  441. return 0;
  442. /* Set the Gate high, disable speaker */
  443. outb((inb(0x61) & ~0x02) | 0x01, 0x61);
  444. /*
  445. * Counter 2, mode 0 (one-shot), binary count
  446. *
  447. * NOTE! Mode 2 decrements by two (and then the
  448. * output is flipped each time, giving the same
  449. * final output frequency as a decrement-by-one),
  450. * so mode 0 is much better when looking at the
  451. * individual counts.
  452. */
  453. outb(0xb0, 0x43);
  454. /* Start at 0xffff */
  455. outb(0xff, 0x42);
  456. outb(0xff, 0x42);
  457. /*
  458. * The PIT starts counting at the next edge, so we
  459. * need to delay for a microsecond. The easiest way
  460. * to do that is to just read back the 16-bit counter
  461. * once from the PIT.
  462. */
  463. pit_verify_msb(0);
  464. if (pit_expect_msb(0xff, &tsc, &d1)) {
  465. for (i = 1; i <= MAX_QUICK_PIT_ITERATIONS; i++) {
  466. if (!pit_expect_msb(0xff-i, &delta, &d2))
  467. break;
  468. delta -= tsc;
  469. /*
  470. * Extrapolate the error and fail fast if the error will
  471. * never be below 500 ppm.
  472. */
  473. if (i == 1 &&
  474. d1 + d2 >= (delta * MAX_QUICK_PIT_ITERATIONS) >> 11)
  475. return 0;
  476. /*
  477. * Iterate until the error is less than 500 ppm
  478. */
  479. if (d1+d2 >= delta >> 11)
  480. continue;
  481. /*
  482. * Check the PIT one more time to verify that
  483. * all TSC reads were stable wrt the PIT.
  484. *
  485. * This also guarantees serialization of the
  486. * last cycle read ('d2') in pit_expect_msb.
  487. */
  488. if (!pit_verify_msb(0xfe - i))
  489. break;
  490. goto success;
  491. }
  492. }
  493. pr_info("Fast TSC calibration failed\n");
  494. return 0;
  495. success:
  496. /*
  497. * Ok, if we get here, then we've seen the
  498. * MSB of the PIT decrement 'i' times, and the
  499. * error has shrunk to less than 500 ppm.
  500. *
  501. * As a result, we can depend on there not being
  502. * any odd delays anywhere, and the TSC reads are
  503. * reliable (within the error).
  504. *
  505. * kHz = ticks / time-in-seconds / 1000;
  506. * kHz = (t2 - t1) / (I * 256 / PIT_TICK_RATE) / 1000
  507. * kHz = ((t2 - t1) * PIT_TICK_RATE) / (I * 256 * 1000)
  508. */
  509. delta *= PIT_TICK_RATE;
  510. do_div(delta, i*256*1000);
  511. pr_info("Fast TSC calibration using PIT\n");
  512. return delta;
  513. }
  514. /**
  515. * native_calibrate_tsc
  516. * Determine TSC frequency via CPUID, else return 0.
  517. */
  518. unsigned long native_calibrate_tsc(void)
  519. {
  520. unsigned int eax_denominator, ebx_numerator, ecx_hz, edx;
  521. unsigned int crystal_khz;
  522. if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL)
  523. return 0;
  524. if (boot_cpu_data.cpuid_level < 0x15)
  525. return 0;
  526. eax_denominator = ebx_numerator = ecx_hz = edx = 0;
  527. /* CPUID 15H TSC/Crystal ratio, plus optionally Crystal Hz */
  528. cpuid(0x15, &eax_denominator, &ebx_numerator, &ecx_hz, &edx);
  529. if (ebx_numerator == 0 || eax_denominator == 0)
  530. return 0;
  531. crystal_khz = ecx_hz / 1000;
  532. if (crystal_khz == 0) {
  533. switch (boot_cpu_data.x86_model) {
  534. case INTEL_FAM6_SKYLAKE_MOBILE:
  535. case INTEL_FAM6_SKYLAKE_DESKTOP:
  536. case INTEL_FAM6_KABYLAKE_MOBILE:
  537. case INTEL_FAM6_KABYLAKE_DESKTOP:
  538. crystal_khz = 24000; /* 24.0 MHz */
  539. break;
  540. case INTEL_FAM6_ATOM_GOLDMONT_X:
  541. crystal_khz = 25000; /* 25.0 MHz */
  542. break;
  543. case INTEL_FAM6_ATOM_GOLDMONT:
  544. crystal_khz = 19200; /* 19.2 MHz */
  545. break;
  546. }
  547. }
  548. if (crystal_khz == 0)
  549. return 0;
  550. /*
  551. * TSC frequency determined by CPUID is a "hardware reported"
  552. * frequency and is the most accurate one so far we have. This
  553. * is considered a known frequency.
  554. */
  555. setup_force_cpu_cap(X86_FEATURE_TSC_KNOWN_FREQ);
  556. /*
  557. * For Atom SoCs TSC is the only reliable clocksource.
  558. * Mark TSC reliable so no watchdog on it.
  559. */
  560. if (boot_cpu_data.x86_model == INTEL_FAM6_ATOM_GOLDMONT)
  561. setup_force_cpu_cap(X86_FEATURE_TSC_RELIABLE);
  562. return crystal_khz * ebx_numerator / eax_denominator;
  563. }
  564. static unsigned long cpu_khz_from_cpuid(void)
  565. {
  566. unsigned int eax_base_mhz, ebx_max_mhz, ecx_bus_mhz, edx;
  567. if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL)
  568. return 0;
  569. if (boot_cpu_data.cpuid_level < 0x16)
  570. return 0;
  571. eax_base_mhz = ebx_max_mhz = ecx_bus_mhz = edx = 0;
  572. cpuid(0x16, &eax_base_mhz, &ebx_max_mhz, &ecx_bus_mhz, &edx);
  573. return eax_base_mhz * 1000;
  574. }
  575. /*
  576. * calibrate cpu using pit, hpet, and ptimer methods. They are available
  577. * later in boot after acpi is initialized.
  578. */
  579. static unsigned long pit_hpet_ptimer_calibrate_cpu(void)
  580. {
  581. u64 tsc1, tsc2, delta, ref1, ref2;
  582. unsigned long tsc_pit_min = ULONG_MAX, tsc_ref_min = ULONG_MAX;
  583. unsigned long flags, latch, ms;
  584. int hpet = is_hpet_enabled(), i, loopmin;
  585. /*
  586. * Run 5 calibration loops to get the lowest frequency value
  587. * (the best estimate). We use two different calibration modes
  588. * here:
  589. *
  590. * 1) PIT loop. We set the PIT Channel 2 to oneshot mode and
  591. * load a timeout of 50ms. We read the time right after we
  592. * started the timer and wait until the PIT count down reaches
  593. * zero. In each wait loop iteration we read the TSC and check
  594. * the delta to the previous read. We keep track of the min
  595. * and max values of that delta. The delta is mostly defined
  596. * by the IO time of the PIT access, so we can detect when a
  597. * SMI/SMM disturbance happened between the two reads. If the
  598. * maximum time is significantly larger than the minimum time,
  599. * then we discard the result and have another try.
  600. *
  601. * 2) Reference counter. If available we use the HPET or the
  602. * PMTIMER as a reference to check the sanity of that value.
  603. * We use separate TSC readouts and check inside of the
  604. * reference read for a SMI/SMM disturbance. We dicard
  605. * disturbed values here as well. We do that around the PIT
  606. * calibration delay loop as we have to wait for a certain
  607. * amount of time anyway.
  608. */
  609. /* Preset PIT loop values */
  610. latch = CAL_LATCH;
  611. ms = CAL_MS;
  612. loopmin = CAL_PIT_LOOPS;
  613. for (i = 0; i < 3; i++) {
  614. unsigned long tsc_pit_khz;
  615. /*
  616. * Read the start value and the reference count of
  617. * hpet/pmtimer when available. Then do the PIT
  618. * calibration, which will take at least 50ms, and
  619. * read the end value.
  620. */
  621. local_irq_save(flags);
  622. tsc1 = tsc_read_refs(&ref1, hpet);
  623. tsc_pit_khz = pit_calibrate_tsc(latch, ms, loopmin);
  624. tsc2 = tsc_read_refs(&ref2, hpet);
  625. local_irq_restore(flags);
  626. /* Pick the lowest PIT TSC calibration so far */
  627. tsc_pit_min = min(tsc_pit_min, tsc_pit_khz);
  628. /* hpet or pmtimer available ? */
  629. if (ref1 == ref2)
  630. continue;
  631. /* Check, whether the sampling was disturbed by an SMI */
  632. if (tsc1 == ULLONG_MAX || tsc2 == ULLONG_MAX)
  633. continue;
  634. tsc2 = (tsc2 - tsc1) * 1000000LL;
  635. if (hpet)
  636. tsc2 = calc_hpet_ref(tsc2, ref1, ref2);
  637. else
  638. tsc2 = calc_pmtimer_ref(tsc2, ref1, ref2);
  639. tsc_ref_min = min(tsc_ref_min, (unsigned long) tsc2);
  640. /* Check the reference deviation */
  641. delta = ((u64) tsc_pit_min) * 100;
  642. do_div(delta, tsc_ref_min);
  643. /*
  644. * If both calibration results are inside a 10% window
  645. * then we can be sure, that the calibration
  646. * succeeded. We break out of the loop right away. We
  647. * use the reference value, as it is more precise.
  648. */
  649. if (delta >= 90 && delta <= 110) {
  650. pr_info("PIT calibration matches %s. %d loops\n",
  651. hpet ? "HPET" : "PMTIMER", i + 1);
  652. return tsc_ref_min;
  653. }
  654. /*
  655. * Check whether PIT failed more than once. This
  656. * happens in virtualized environments. We need to
  657. * give the virtual PC a slightly longer timeframe for
  658. * the HPET/PMTIMER to make the result precise.
  659. */
  660. if (i == 1 && tsc_pit_min == ULONG_MAX) {
  661. latch = CAL2_LATCH;
  662. ms = CAL2_MS;
  663. loopmin = CAL2_PIT_LOOPS;
  664. }
  665. }
  666. /*
  667. * Now check the results.
  668. */
  669. if (tsc_pit_min == ULONG_MAX) {
  670. /* PIT gave no useful value */
  671. pr_warn("Unable to calibrate against PIT\n");
  672. /* We don't have an alternative source, disable TSC */
  673. if (!hpet && !ref1 && !ref2) {
  674. pr_notice("No reference (HPET/PMTIMER) available\n");
  675. return 0;
  676. }
  677. /* The alternative source failed as well, disable TSC */
  678. if (tsc_ref_min == ULONG_MAX) {
  679. pr_warn("HPET/PMTIMER calibration failed\n");
  680. return 0;
  681. }
  682. /* Use the alternative source */
  683. pr_info("using %s reference calibration\n",
  684. hpet ? "HPET" : "PMTIMER");
  685. return tsc_ref_min;
  686. }
  687. /* We don't have an alternative source, use the PIT calibration value */
  688. if (!hpet && !ref1 && !ref2) {
  689. pr_info("Using PIT calibration value\n");
  690. return tsc_pit_min;
  691. }
  692. /* The alternative source failed, use the PIT calibration value */
  693. if (tsc_ref_min == ULONG_MAX) {
  694. pr_warn("HPET/PMTIMER calibration failed. Using PIT calibration.\n");
  695. return tsc_pit_min;
  696. }
  697. /*
  698. * The calibration values differ too much. In doubt, we use
  699. * the PIT value as we know that there are PMTIMERs around
  700. * running at double speed. At least we let the user know:
  701. */
  702. pr_warn("PIT calibration deviates from %s: %lu %lu\n",
  703. hpet ? "HPET" : "PMTIMER", tsc_pit_min, tsc_ref_min);
  704. pr_info("Using PIT calibration value\n");
  705. return tsc_pit_min;
  706. }
  707. /**
  708. * native_calibrate_cpu_early - can calibrate the cpu early in boot
  709. */
  710. unsigned long native_calibrate_cpu_early(void)
  711. {
  712. unsigned long flags, fast_calibrate = cpu_khz_from_cpuid();
  713. if (!fast_calibrate)
  714. fast_calibrate = cpu_khz_from_msr();
  715. if (!fast_calibrate) {
  716. local_irq_save(flags);
  717. fast_calibrate = quick_pit_calibrate();
  718. local_irq_restore(flags);
  719. }
  720. return fast_calibrate;
  721. }
  722. /**
  723. * native_calibrate_cpu - calibrate the cpu
  724. */
  725. static unsigned long native_calibrate_cpu(void)
  726. {
  727. unsigned long tsc_freq = native_calibrate_cpu_early();
  728. if (!tsc_freq)
  729. tsc_freq = pit_hpet_ptimer_calibrate_cpu();
  730. return tsc_freq;
  731. }
  732. void recalibrate_cpu_khz(void)
  733. {
  734. #ifndef CONFIG_SMP
  735. unsigned long cpu_khz_old = cpu_khz;
  736. if (!boot_cpu_has(X86_FEATURE_TSC))
  737. return;
  738. cpu_khz = x86_platform.calibrate_cpu();
  739. tsc_khz = x86_platform.calibrate_tsc();
  740. if (tsc_khz == 0)
  741. tsc_khz = cpu_khz;
  742. else if (abs(cpu_khz - tsc_khz) * 10 > tsc_khz)
  743. cpu_khz = tsc_khz;
  744. cpu_data(0).loops_per_jiffy = cpufreq_scale(cpu_data(0).loops_per_jiffy,
  745. cpu_khz_old, cpu_khz);
  746. #endif
  747. }
  748. EXPORT_SYMBOL(recalibrate_cpu_khz);
  749. static unsigned long long cyc2ns_suspend;
  750. void tsc_save_sched_clock_state(void)
  751. {
  752. if (!sched_clock_stable())
  753. return;
  754. cyc2ns_suspend = sched_clock();
  755. }
  756. /*
  757. * Even on processors with invariant TSC, TSC gets reset in some the
  758. * ACPI system sleep states. And in some systems BIOS seem to reinit TSC to
  759. * arbitrary value (still sync'd across cpu's) during resume from such sleep
  760. * states. To cope up with this, recompute the cyc2ns_offset for each cpu so
  761. * that sched_clock() continues from the point where it was left off during
  762. * suspend.
  763. */
  764. void tsc_restore_sched_clock_state(void)
  765. {
  766. unsigned long long offset;
  767. unsigned long flags;
  768. int cpu;
  769. if (!sched_clock_stable())
  770. return;
  771. local_irq_save(flags);
  772. /*
  773. * We're coming out of suspend, there's no concurrency yet; don't
  774. * bother being nice about the RCU stuff, just write to both
  775. * data fields.
  776. */
  777. this_cpu_write(cyc2ns.data[0].cyc2ns_offset, 0);
  778. this_cpu_write(cyc2ns.data[1].cyc2ns_offset, 0);
  779. offset = cyc2ns_suspend - sched_clock();
  780. for_each_possible_cpu(cpu) {
  781. per_cpu(cyc2ns.data[0].cyc2ns_offset, cpu) = offset;
  782. per_cpu(cyc2ns.data[1].cyc2ns_offset, cpu) = offset;
  783. }
  784. local_irq_restore(flags);
  785. }
  786. #ifdef CONFIG_CPU_FREQ
  787. /* Frequency scaling support. Adjust the TSC based timer when the cpu frequency
  788. * changes.
  789. *
  790. * RED-PEN: On SMP we assume all CPUs run with the same frequency. It's
  791. * not that important because current Opteron setups do not support
  792. * scaling on SMP anyroads.
  793. *
  794. * Should fix up last_tsc too. Currently gettimeofday in the
  795. * first tick after the change will be slightly wrong.
  796. */
  797. static unsigned int ref_freq;
  798. static unsigned long loops_per_jiffy_ref;
  799. static unsigned long tsc_khz_ref;
  800. static int time_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
  801. void *data)
  802. {
  803. struct cpufreq_freqs *freq = data;
  804. unsigned long *lpj;
  805. lpj = &boot_cpu_data.loops_per_jiffy;
  806. #ifdef CONFIG_SMP
  807. if (!(freq->flags & CPUFREQ_CONST_LOOPS))
  808. lpj = &cpu_data(freq->cpu).loops_per_jiffy;
  809. #endif
  810. if (!ref_freq) {
  811. ref_freq = freq->old;
  812. loops_per_jiffy_ref = *lpj;
  813. tsc_khz_ref = tsc_khz;
  814. }
  815. if ((val == CPUFREQ_PRECHANGE && freq->old < freq->new) ||
  816. (val == CPUFREQ_POSTCHANGE && freq->old > freq->new)) {
  817. *lpj = cpufreq_scale(loops_per_jiffy_ref, ref_freq, freq->new);
  818. tsc_khz = cpufreq_scale(tsc_khz_ref, ref_freq, freq->new);
  819. if (!(freq->flags & CPUFREQ_CONST_LOOPS))
  820. mark_tsc_unstable("cpufreq changes");
  821. set_cyc2ns_scale(tsc_khz, freq->cpu, rdtsc());
  822. }
  823. return 0;
  824. }
  825. static struct notifier_block time_cpufreq_notifier_block = {
  826. .notifier_call = time_cpufreq_notifier
  827. };
  828. static int __init cpufreq_register_tsc_scaling(void)
  829. {
  830. if (!boot_cpu_has(X86_FEATURE_TSC))
  831. return 0;
  832. if (boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
  833. return 0;
  834. cpufreq_register_notifier(&time_cpufreq_notifier_block,
  835. CPUFREQ_TRANSITION_NOTIFIER);
  836. return 0;
  837. }
  838. core_initcall(cpufreq_register_tsc_scaling);
  839. #endif /* CONFIG_CPU_FREQ */
  840. #define ART_CPUID_LEAF (0x15)
  841. #define ART_MIN_DENOMINATOR (1)
  842. /*
  843. * If ART is present detect the numerator:denominator to convert to TSC
  844. */
  845. static void __init detect_art(void)
  846. {
  847. unsigned int unused[2];
  848. if (boot_cpu_data.cpuid_level < ART_CPUID_LEAF)
  849. return;
  850. /*
  851. * Don't enable ART in a VM, non-stop TSC and TSC_ADJUST required,
  852. * and the TSC counter resets must not occur asynchronously.
  853. */
  854. if (boot_cpu_has(X86_FEATURE_HYPERVISOR) ||
  855. !boot_cpu_has(X86_FEATURE_NONSTOP_TSC) ||
  856. !boot_cpu_has(X86_FEATURE_TSC_ADJUST) ||
  857. tsc_async_resets)
  858. return;
  859. cpuid(ART_CPUID_LEAF, &art_to_tsc_denominator,
  860. &art_to_tsc_numerator, unused, unused+1);
  861. if (art_to_tsc_denominator < ART_MIN_DENOMINATOR)
  862. return;
  863. rdmsrl(MSR_IA32_TSC_ADJUST, art_to_tsc_offset);
  864. /* Make this sticky over multiple CPU init calls */
  865. setup_force_cpu_cap(X86_FEATURE_ART);
  866. }
  867. /* clocksource code */
  868. static void tsc_resume(struct clocksource *cs)
  869. {
  870. tsc_verify_tsc_adjust(true);
  871. }
  872. /*
  873. * We used to compare the TSC to the cycle_last value in the clocksource
  874. * structure to avoid a nasty time-warp. This can be observed in a
  875. * very small window right after one CPU updated cycle_last under
  876. * xtime/vsyscall_gtod lock and the other CPU reads a TSC value which
  877. * is smaller than the cycle_last reference value due to a TSC which
  878. * is slighty behind. This delta is nowhere else observable, but in
  879. * that case it results in a forward time jump in the range of hours
  880. * due to the unsigned delta calculation of the time keeping core
  881. * code, which is necessary to support wrapping clocksources like pm
  882. * timer.
  883. *
  884. * This sanity check is now done in the core timekeeping code.
  885. * checking the result of read_tsc() - cycle_last for being negative.
  886. * That works because CLOCKSOURCE_MASK(64) does not mask out any bit.
  887. */
  888. static u64 read_tsc(struct clocksource *cs)
  889. {
  890. return (u64)rdtsc_ordered();
  891. }
  892. static void tsc_cs_mark_unstable(struct clocksource *cs)
  893. {
  894. if (tsc_unstable)
  895. return;
  896. tsc_unstable = 1;
  897. if (using_native_sched_clock())
  898. clear_sched_clock_stable();
  899. disable_sched_clock_irqtime();
  900. pr_info("Marking TSC unstable due to clocksource watchdog\n");
  901. }
  902. static void tsc_cs_tick_stable(struct clocksource *cs)
  903. {
  904. if (tsc_unstable)
  905. return;
  906. if (using_native_sched_clock())
  907. sched_clock_tick_stable();
  908. }
  909. /*
  910. * .mask MUST be CLOCKSOURCE_MASK(64). See comment above read_tsc()
  911. */
  912. static struct clocksource clocksource_tsc_early = {
  913. .name = "tsc-early",
  914. .rating = 299,
  915. .read = read_tsc,
  916. .mask = CLOCKSOURCE_MASK(64),
  917. .flags = CLOCK_SOURCE_IS_CONTINUOUS |
  918. CLOCK_SOURCE_MUST_VERIFY,
  919. .archdata = { .vclock_mode = VCLOCK_TSC },
  920. .resume = tsc_resume,
  921. .mark_unstable = tsc_cs_mark_unstable,
  922. .tick_stable = tsc_cs_tick_stable,
  923. .list = LIST_HEAD_INIT(clocksource_tsc_early.list),
  924. };
  925. /*
  926. * Must mark VALID_FOR_HRES early such that when we unregister tsc_early
  927. * this one will immediately take over. We will only register if TSC has
  928. * been found good.
  929. */
  930. static struct clocksource clocksource_tsc = {
  931. .name = "tsc",
  932. .rating = 300,
  933. .read = read_tsc,
  934. .mask = CLOCKSOURCE_MASK(64),
  935. .flags = CLOCK_SOURCE_IS_CONTINUOUS |
  936. CLOCK_SOURCE_VALID_FOR_HRES |
  937. CLOCK_SOURCE_MUST_VERIFY,
  938. .archdata = { .vclock_mode = VCLOCK_TSC },
  939. .resume = tsc_resume,
  940. .mark_unstable = tsc_cs_mark_unstable,
  941. .tick_stable = tsc_cs_tick_stable,
  942. .list = LIST_HEAD_INIT(clocksource_tsc.list),
  943. };
  944. void mark_tsc_unstable(char *reason)
  945. {
  946. if (tsc_unstable)
  947. return;
  948. tsc_unstable = 1;
  949. if (using_native_sched_clock())
  950. clear_sched_clock_stable();
  951. disable_sched_clock_irqtime();
  952. pr_info("Marking TSC unstable due to %s\n", reason);
  953. clocksource_mark_unstable(&clocksource_tsc_early);
  954. clocksource_mark_unstable(&clocksource_tsc);
  955. }
  956. EXPORT_SYMBOL_GPL(mark_tsc_unstable);
  957. static void __init check_system_tsc_reliable(void)
  958. {
  959. #if defined(CONFIG_MGEODEGX1) || defined(CONFIG_MGEODE_LX) || defined(CONFIG_X86_GENERIC)
  960. if (is_geode_lx()) {
  961. /* RTSC counts during suspend */
  962. #define RTSC_SUSP 0x100
  963. unsigned long res_low, res_high;
  964. rdmsr_safe(MSR_GEODE_BUSCONT_CONF0, &res_low, &res_high);
  965. /* Geode_LX - the OLPC CPU has a very reliable TSC */
  966. if (res_low & RTSC_SUSP)
  967. tsc_clocksource_reliable = 1;
  968. }
  969. #endif
  970. if (boot_cpu_has(X86_FEATURE_TSC_RELIABLE))
  971. tsc_clocksource_reliable = 1;
  972. }
  973. /*
  974. * Make an educated guess if the TSC is trustworthy and synchronized
  975. * over all CPUs.
  976. */
  977. int unsynchronized_tsc(void)
  978. {
  979. if (!boot_cpu_has(X86_FEATURE_TSC) || tsc_unstable)
  980. return 1;
  981. #ifdef CONFIG_SMP
  982. if (apic_is_clustered_box())
  983. return 1;
  984. #endif
  985. if (boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
  986. return 0;
  987. if (tsc_clocksource_reliable)
  988. return 0;
  989. /*
  990. * Intel systems are normally all synchronized.
  991. * Exceptions must mark TSC as unstable:
  992. */
  993. if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL) {
  994. /* assume multi socket systems are not synchronized: */
  995. if (num_possible_cpus() > 1)
  996. return 1;
  997. }
  998. return 0;
  999. }
  1000. /*
  1001. * Convert ART to TSC given numerator/denominator found in detect_art()
  1002. */
  1003. struct system_counterval_t convert_art_to_tsc(u64 art)
  1004. {
  1005. u64 tmp, res, rem;
  1006. rem = do_div(art, art_to_tsc_denominator);
  1007. res = art * art_to_tsc_numerator;
  1008. tmp = rem * art_to_tsc_numerator;
  1009. do_div(tmp, art_to_tsc_denominator);
  1010. res += tmp + art_to_tsc_offset;
  1011. return (struct system_counterval_t) {.cs = art_related_clocksource,
  1012. .cycles = res};
  1013. }
  1014. EXPORT_SYMBOL(convert_art_to_tsc);
  1015. /**
  1016. * convert_art_ns_to_tsc() - Convert ART in nanoseconds to TSC.
  1017. * @art_ns: ART (Always Running Timer) in unit of nanoseconds
  1018. *
  1019. * PTM requires all timestamps to be in units of nanoseconds. When user
  1020. * software requests a cross-timestamp, this function converts system timestamp
  1021. * to TSC.
  1022. *
  1023. * This is valid when CPU feature flag X86_FEATURE_TSC_KNOWN_FREQ is set
  1024. * indicating the tsc_khz is derived from CPUID[15H]. Drivers should check
  1025. * that this flag is set before conversion to TSC is attempted.
  1026. *
  1027. * Return:
  1028. * struct system_counterval_t - system counter value with the pointer to the
  1029. * corresponding clocksource
  1030. * @cycles: System counter value
  1031. * @cs: Clocksource corresponding to system counter value. Used
  1032. * by timekeeping code to verify comparibility of two cycle
  1033. * values.
  1034. */
  1035. struct system_counterval_t convert_art_ns_to_tsc(u64 art_ns)
  1036. {
  1037. u64 tmp, res, rem;
  1038. rem = do_div(art_ns, USEC_PER_SEC);
  1039. res = art_ns * tsc_khz;
  1040. tmp = rem * tsc_khz;
  1041. do_div(tmp, USEC_PER_SEC);
  1042. res += tmp;
  1043. return (struct system_counterval_t) { .cs = art_related_clocksource,
  1044. .cycles = res};
  1045. }
  1046. EXPORT_SYMBOL(convert_art_ns_to_tsc);
  1047. static void tsc_refine_calibration_work(struct work_struct *work);
  1048. static DECLARE_DELAYED_WORK(tsc_irqwork, tsc_refine_calibration_work);
  1049. /**
  1050. * tsc_refine_calibration_work - Further refine tsc freq calibration
  1051. * @work - ignored.
  1052. *
  1053. * This functions uses delayed work over a period of a
  1054. * second to further refine the TSC freq value. Since this is
  1055. * timer based, instead of loop based, we don't block the boot
  1056. * process while this longer calibration is done.
  1057. *
  1058. * If there are any calibration anomalies (too many SMIs, etc),
  1059. * or the refined calibration is off by 1% of the fast early
  1060. * calibration, we throw out the new calibration and use the
  1061. * early calibration.
  1062. */
  1063. static void tsc_refine_calibration_work(struct work_struct *work)
  1064. {
  1065. static u64 tsc_start = -1, ref_start;
  1066. static int hpet;
  1067. u64 tsc_stop, ref_stop, delta;
  1068. unsigned long freq;
  1069. int cpu;
  1070. /* Don't bother refining TSC on unstable systems */
  1071. if (tsc_unstable)
  1072. goto unreg;
  1073. /*
  1074. * Since the work is started early in boot, we may be
  1075. * delayed the first time we expire. So set the workqueue
  1076. * again once we know timers are working.
  1077. */
  1078. if (tsc_start == -1) {
  1079. /*
  1080. * Only set hpet once, to avoid mixing hardware
  1081. * if the hpet becomes enabled later.
  1082. */
  1083. hpet = is_hpet_enabled();
  1084. schedule_delayed_work(&tsc_irqwork, HZ);
  1085. tsc_start = tsc_read_refs(&ref_start, hpet);
  1086. return;
  1087. }
  1088. tsc_stop = tsc_read_refs(&ref_stop, hpet);
  1089. /* hpet or pmtimer available ? */
  1090. if (ref_start == ref_stop)
  1091. goto out;
  1092. /* Check, whether the sampling was disturbed by an SMI */
  1093. if (tsc_start == ULLONG_MAX || tsc_stop == ULLONG_MAX)
  1094. goto out;
  1095. delta = tsc_stop - tsc_start;
  1096. delta *= 1000000LL;
  1097. if (hpet)
  1098. freq = calc_hpet_ref(delta, ref_start, ref_stop);
  1099. else
  1100. freq = calc_pmtimer_ref(delta, ref_start, ref_stop);
  1101. /* Make sure we're within 1% */
  1102. if (abs(tsc_khz - freq) > tsc_khz/100)
  1103. goto out;
  1104. tsc_khz = freq;
  1105. pr_info("Refined TSC clocksource calibration: %lu.%03lu MHz\n",
  1106. (unsigned long)tsc_khz / 1000,
  1107. (unsigned long)tsc_khz % 1000);
  1108. /* Inform the TSC deadline clockevent devices about the recalibration */
  1109. lapic_update_tsc_freq();
  1110. /* Update the sched_clock() rate to match the clocksource one */
  1111. for_each_possible_cpu(cpu)
  1112. set_cyc2ns_scale(tsc_khz, cpu, tsc_stop);
  1113. out:
  1114. if (tsc_unstable)
  1115. goto unreg;
  1116. if (boot_cpu_has(X86_FEATURE_ART))
  1117. art_related_clocksource = &clocksource_tsc;
  1118. clocksource_register_khz(&clocksource_tsc, tsc_khz);
  1119. unreg:
  1120. clocksource_unregister(&clocksource_tsc_early);
  1121. }
  1122. static int __init init_tsc_clocksource(void)
  1123. {
  1124. if (!boot_cpu_has(X86_FEATURE_TSC) || !tsc_khz)
  1125. return 0;
  1126. if (tsc_unstable)
  1127. goto unreg;
  1128. if (tsc_clocksource_reliable)
  1129. clocksource_tsc.flags &= ~CLOCK_SOURCE_MUST_VERIFY;
  1130. if (boot_cpu_has(X86_FEATURE_NONSTOP_TSC_S3))
  1131. clocksource_tsc.flags |= CLOCK_SOURCE_SUSPEND_NONSTOP;
  1132. /*
  1133. * When TSC frequency is known (retrieved via MSR or CPUID), we skip
  1134. * the refined calibration and directly register it as a clocksource.
  1135. */
  1136. if (boot_cpu_has(X86_FEATURE_TSC_KNOWN_FREQ)) {
  1137. if (boot_cpu_has(X86_FEATURE_ART))
  1138. art_related_clocksource = &clocksource_tsc;
  1139. clocksource_register_khz(&clocksource_tsc, tsc_khz);
  1140. unreg:
  1141. clocksource_unregister(&clocksource_tsc_early);
  1142. return 0;
  1143. }
  1144. schedule_delayed_work(&tsc_irqwork, 0);
  1145. return 0;
  1146. }
  1147. /*
  1148. * We use device_initcall here, to ensure we run after the hpet
  1149. * is fully initialized, which may occur at fs_initcall time.
  1150. */
  1151. device_initcall(init_tsc_clocksource);
  1152. static bool __init determine_cpu_tsc_frequencies(bool early)
  1153. {
  1154. /* Make sure that cpu and tsc are not already calibrated */
  1155. WARN_ON(cpu_khz || tsc_khz);
  1156. if (early) {
  1157. cpu_khz = x86_platform.calibrate_cpu();
  1158. tsc_khz = x86_platform.calibrate_tsc();
  1159. } else {
  1160. /* We should not be here with non-native cpu calibration */
  1161. WARN_ON(x86_platform.calibrate_cpu != native_calibrate_cpu);
  1162. cpu_khz = pit_hpet_ptimer_calibrate_cpu();
  1163. }
  1164. /*
  1165. * Trust non-zero tsc_khz as authoritative,
  1166. * and use it to sanity check cpu_khz,
  1167. * which will be off if system timer is off.
  1168. */
  1169. if (tsc_khz == 0)
  1170. tsc_khz = cpu_khz;
  1171. else if (abs(cpu_khz - tsc_khz) * 10 > tsc_khz)
  1172. cpu_khz = tsc_khz;
  1173. if (tsc_khz == 0)
  1174. return false;
  1175. pr_info("Detected %lu.%03lu MHz processor\n",
  1176. (unsigned long)cpu_khz / KHZ,
  1177. (unsigned long)cpu_khz % KHZ);
  1178. if (cpu_khz != tsc_khz) {
  1179. pr_info("Detected %lu.%03lu MHz TSC",
  1180. (unsigned long)tsc_khz / KHZ,
  1181. (unsigned long)tsc_khz % KHZ);
  1182. }
  1183. return true;
  1184. }
  1185. static unsigned long __init get_loops_per_jiffy(void)
  1186. {
  1187. u64 lpj = (u64)tsc_khz * KHZ;
  1188. do_div(lpj, HZ);
  1189. return lpj;
  1190. }
  1191. static void __init tsc_enable_sched_clock(void)
  1192. {
  1193. /* Sanitize TSC ADJUST before cyc2ns gets initialized */
  1194. tsc_store_and_check_tsc_adjust(true);
  1195. cyc2ns_init_boot_cpu();
  1196. static_branch_enable(&__use_tsc);
  1197. }
  1198. void __init tsc_early_init(void)
  1199. {
  1200. if (!boot_cpu_has(X86_FEATURE_TSC))
  1201. return;
  1202. /* Don't change UV TSC multi-chassis synchronization */
  1203. if (is_early_uv_system())
  1204. return;
  1205. if (!determine_cpu_tsc_frequencies(true))
  1206. return;
  1207. loops_per_jiffy = get_loops_per_jiffy();
  1208. tsc_enable_sched_clock();
  1209. }
  1210. void __init tsc_init(void)
  1211. {
  1212. /*
  1213. * native_calibrate_cpu_early can only calibrate using methods that are
  1214. * available early in boot.
  1215. */
  1216. if (x86_platform.calibrate_cpu == native_calibrate_cpu_early)
  1217. x86_platform.calibrate_cpu = native_calibrate_cpu;
  1218. if (!boot_cpu_has(X86_FEATURE_TSC)) {
  1219. setup_clear_cpu_cap(X86_FEATURE_TSC_DEADLINE_TIMER);
  1220. return;
  1221. }
  1222. if (!tsc_khz) {
  1223. /* We failed to determine frequencies earlier, try again */
  1224. if (!determine_cpu_tsc_frequencies(false)) {
  1225. mark_tsc_unstable("could not calculate TSC khz");
  1226. setup_clear_cpu_cap(X86_FEATURE_TSC_DEADLINE_TIMER);
  1227. return;
  1228. }
  1229. tsc_enable_sched_clock();
  1230. }
  1231. cyc2ns_init_secondary_cpus();
  1232. if (!no_sched_irq_time)
  1233. enable_sched_clock_irqtime();
  1234. lpj_fine = get_loops_per_jiffy();
  1235. use_tsc_delay();
  1236. check_system_tsc_reliable();
  1237. if (unsynchronized_tsc()) {
  1238. mark_tsc_unstable("TSCs unsynchronized");
  1239. return;
  1240. }
  1241. clocksource_register_khz(&clocksource_tsc_early, tsc_khz);
  1242. detect_art();
  1243. }
  1244. #ifdef CONFIG_SMP
  1245. /*
  1246. * If we have a constant TSC and are using the TSC for the delay loop,
  1247. * we can skip clock calibration if another cpu in the same socket has already
  1248. * been calibrated. This assumes that CONSTANT_TSC applies to all
  1249. * cpus in the socket - this should be a safe assumption.
  1250. */
  1251. unsigned long calibrate_delay_is_known(void)
  1252. {
  1253. int sibling, cpu = smp_processor_id();
  1254. int constant_tsc = cpu_has(&cpu_data(cpu), X86_FEATURE_CONSTANT_TSC);
  1255. const struct cpumask *mask = topology_core_cpumask(cpu);
  1256. if (!constant_tsc || !mask)
  1257. return 0;
  1258. sibling = cpumask_any_but(mask, cpu);
  1259. if (sibling < nr_cpu_ids)
  1260. return cpu_data(sibling).loops_per_jiffy;
  1261. return 0;
  1262. }
  1263. #endif